EP2610815B1 - Method for acquiring traffic flow data in a street network - Google Patents
Method for acquiring traffic flow data in a street network Download PDFInfo
- Publication number
- EP2610815B1 EP2610815B1 EP20110195820 EP11195820A EP2610815B1 EP 2610815 B1 EP2610815 B1 EP 2610815B1 EP 20110195820 EP20110195820 EP 20110195820 EP 11195820 A EP11195820 A EP 11195820A EP 2610815 B1 EP2610815 B1 EP 2610815B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radio
- data
- measurement data
- radio beacon
- beacons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/008—Registering or indicating the working of vehicles communicating information to a remotely located station
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0112—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0133—Traffic data processing for classifying traffic situation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0137—Measuring and analyzing of parameters relative to traffic conditions for specific applications
- G08G1/0141—Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
Definitions
- the present invention relates to a method for determining traffic flow data in a road network.
- traffic flow data in the present description refers to all types of sensor or measurement data from and about vehicles (s) of flowing and stationary traffic that can be collected at the level of granularity of individual vehicles and in the form of e.g. Statistical evaluation of several vehicles an overview of the traffic, the "flow of traffic" in a road network or a sub-area of the same may result.
- Modern vehicles have a variety of sensors for generating measurement data such as speed, acceleration and deceleration, information from the ABS and ESP systems of the vehicle, status of the lighting and heating systems, ambient and weather data such as daylight, outside temperature, humidity, Visibility (fog), data from camera and radar systems of the vehicle to detect surrounding traffic and hazards, etc.
- the multitude of measurement data from the vehicle is further enhanced by measurement data of electronic on-board units (OBUs), eg Satellite navigation receiver and / or transceiver for radio communication with roadside units (RSUs).
- OBUs electronic on-board units
- RSUs roadside units
- Such on-board units can both receive measurement data of the vehicle and, with the aid of own sensors, obtain measurement data about the vehicle and / or its surroundings, e.g. Positions and speeds determined by satellite navigation from radio communications with radio beacons or mobile networks, environmental data from own weather sensors, etc.
- the invention has the object to provide a method for determining traffic flow data, which overcomes the disadvantages mentioned.
- the method according to the invention uses the location-based infrastructure of a network of street-side radio beacons, such as those currently in use for road toll, traffic telematics and / or vehicle communication systems, and short-range radio communications (DSRC) between vehicle OBUs and DSRCs.
- Radio beacons are based.
- the limited range of such DSRC radio communications enables a localized feed of data collection tasks into a subgroup of the road network's road users, namely all vehicles moving between start and stop locations as data sources for the determination of traffic flow data.
- the survey area is not bound to the locations of the radio beacons themselves but can be determined arbitrarily by self-localization of the OBUs.
- the subset is conveniently set as a representative selection, e.g. every second, third, tenth, hundredth, etc. of the passing onboard units.
- the method of the invention can be triggered locally in a radio beacon by the order message is assembled there and distributed to the radio beacons of the first group.
- the order message is compiled in a center communicating with the radio beacons and sent to the radio beacons of the first group for making available from the center.
- the measurement data from the data-collecting radio beacon are preferably sent to the control center for evaluation.
- the measurement data can be pre-evaluated and compressed by the data-collecting radio beacon before being sent to the control center for evaluation.
- the order message may preferably also contain an indication of the type of measurement data to be recorded and the onboard unit only record measurement data of this type, and / or the order message also contain an indication of a validity period and the onboard unit the measurement data record only within this validity period. This allows the data collection jobs to be further specified, allowing even more accurate insight into the traffic.
- the radio beacon may also poll an on-board unit prior to sending the job message to determine what type of measurement data the onboard unit may acquire to adjust job message thereto.
- Fig. 5 the construction of a job message for data collection in the process of Fig. 3 and 4 ,
- Fig. 1 schematically a road network 1 from a plurality of road segments S 1 , S 2 , S 3 , ..., generally Si shown, between which connection points or nodes N 1 , N 2 , N 3 , ..., in general N 1 , lie.
- the road network 1 may thus be modeled by a corresponding network graph, as known in the art. It is understood that for different lanes and / or directions in the road network 1 each own road segments S i can be defined.
- a plurality of vehicles 2 move, each with an onboard unit (OBU) 3, here identified for identification as O 1 , O 2 , O 3 , ..., generally O i , are equipped.
- OBUs 3 each have a short range transceiver 6 (FIG. Fig. 2 ), via which they can handle short-range radio communications 7 (dedicated short range communications, DSRC) with radio beacons 8 of the road toll system 1.
- DSRC dedicated short range communications
- the radio beacons 8 are locally distributed over the entire road network 1 and in the present example with A 1 , A 2 , A 3 , ..., generally A i ; B 1 , B 2 , B 3 , ..., in general B i ; and C 1 , C 2 , C 3 , ..., generally C i .
- the radio beacons 8 are set up as road-side units (RSUs) in each case on a road segment S i , wherein several radio beacons 8 at a Road segment S i can be placed or a radio beacon 8 can be responsible for several road segments S i .
- RSUs road-side units
- the radio beacons 8 are connected via a e.g. Wired data network 9 connected to each other and can be about this with a central office 10 of the road network 1, for example, a traffic control center (toll control center) (toll charger) TC, in connection.
- a traffic control center toll control center
- toll charger toll charger
- the vehicles 2 passing through a radio beacon 8 can each be localized (localized) to the location or radio coverage area of this radio beacon 8.
- the radio beacons 8 are, for example, part of a road toll system in which they locate the movements of the vehicles 2 with the aid of the radio communications 7 and thus congested local uses of the vehicles 2 accordingly. Further applications of the radio beacons 8 are e.g. the distribution of traffic information or "infotainment" to passing vehicles 2 and / or the receipt of data of the passing vehicles 2.
- the radio communications 7, ie in particular the transceivers 6 of the OBUs 3 and the radio beacons 8, may operate on any short range radio standard known in the art, such as the ITS-G5, IEEE 802.11p, WAVE (wireless access in a vehicle environment ), WLAN (wireless local area network), RFID (radio frequency identification), Bluetooth ® , etc.
- the radio range of the radio communications 7 (or the radio coverage area of the radio beacons 8) is usually some 10 to a few 100 meters, but may be specific in WLAN, WAVE and IEEE 802.11p up to a few km, but is usually not greater than the extent of the road segment S i , the radio beacon 8 is assigned, and usually does not overlap with the radio coverage area of an adjacent radio beacon 8.
- the described infrastructure of the road network 1 is now used to collect traffic flow data from a narrow area E of the road network 1, in the following manner.
- the OBUs 3 or O i considered here are - in addition to their ability to wireless communication 7 - also capable of self-determined their own position p in the road network 1, with the help of a position determining means 11.
- the position-determining device 11 is a satellite navigation receiver for a global navigation satellite system (GNSS) such as GPS, GLONASS, GALILEO etc.
- GNSS global navigation satellite system
- each OBU 3 is capable of autonomously detecting the entry and exit of the survey area E.
- the survey area E is defined for this purpose by its starting location X on the corresponding road segment S i and its stop location Y on this (or another) road segment S i , ie extending in the example shown on the road segment S 5 between the Start and stop locations X and Y. It is irrelevant whether in the collection area E itself is a radio beacon C 8 or not.
- each OBU 3 now receives from a radio beacon 8 a data collection order in the form of a request message M (FIG. Fig. 5 ) containing (at least) the start location X and the stop location Y.
- Fig. 3 shows the sequence of the thereby triggered in an OBU 3 process flow in detail.
- a first radio beacon 8 passes through, the order message M is received via a (first) radio communication 7.
- the OBU 3 stores the start and stop locations X and Y from the order message M and determines and continuously compares its own position p with the start location X in step 13: as soon as the own position p in a (predetermined) close range 14 ( Fig. 1 ) arrives around the start location X, data collection for the survey area E is started, ie, recording 14 of measurement data d is started.
- the measurement data d recorded in the data collection process 14 can be of any kind mentioned initially, for example position, velocity or motion vector data d a from the position determination device 11, temperature and weather and environmental pollutant data d b from internal weather and pollutant sensors 16 of the OBU 3, engine or exhaust gas data d c or ABS or ESP data d d of the vehicle 2, which are received via an interface module 17 with wireless or wired interfaces 18 from the vehicle 2, etc., etc.
- all accumulated measurement data d i, j are recorded continuously and stored in the memory 5 of the OBU 3, for example continuously or at discrete times j.
- the selected measurement data type (s) i can or can be predefined, for example, or can only be communicated to the OBU 3 in an order message M.
- the individual OBUs 3 or O i in the recording process 14 can also check respectively ensure that measurement data d i, j are recorded only within the validity period t.
- the recording process 14 is terminated when the position determining means 11 detects entry into a (predetermined) near area 19 of the stop location Y (step 20).
- the proximity areas 14, 19 around the start and stop locations X, Y serve as Tolerance for measurement inaccuracies of the position-determining device 11 and are kept as low as possible according to the accuracy of the position-determining device 11 in order to define the survey area E as accurately as possible.
- the measurement data d i, j recorded in step 14 are sent via a (second) radio communication 7 in a step 21 to the next best radio beacon 8, which encounters the OBU 3 on its way.
- the order message M and the recorded measurement data d i, j in the OBU can optionally be deleted become.
- Fig. 4 shows the principle of the locally specific feeding of data collection order messages M in the road network 1 using the network of distributed radio beacons 8.
- the method starts in the center 10 of the network 9 of radio beacons 8, wherein the center 10 also realized by one of the radio beacons 8 itself could be.
- the first group G 1 is composed of those radio beacons 8, which in all possible access routes via which the starting location X of the survey area E can be reached, in each case last : In the example of Fig. 1 are located in the approach S 1 -S 2 -S 3 -S 4 -S 5 to the starting location X the radio beacons C 4 and A 2 ; the radio beacon A 2 is the last in the approach path.
- the selection of the radio beacons 8 for the group G 1 in step 22 can be created, for example, with the aid of known algorithms of graph theory from a network graph model of the road network 1, which is stored for example in a database 23 of the center 10.
- the order message M is compiled, wherein, for example, a validity period t, for example in the form of an expiry time, can also be included in the order message M.
- the order message M is now distributed in step 24 from the central office 10 via the data network 9 to all radio beacons 8 of the first group G 1 , which receive these in each case in a receiving step 25.
- the radio beacons 8 or A 1 , A 2 , A 3 , A 4 of the first group G 1 then each send in a step 26 the order message M to each OBU 3, which passes them by; in each OBU 3 the order message M is received in step 12 ( Fig. 3 ).
- the radio beacons 8 of the first group G 1 can not send the job messages M to all, but only to a subset of the OBUs 3 passing through them, eg to OBU 3 passing every second, third, tenth, hundredth and so on.
- Fig. 4 an exemplary scenario is shown in which the radio beacon A 1 is passed consecutively in time by three OBUs O 1 , O 2 , O 3 ; the radio beacon A 2 of two OBUs O 4 , O 5 ; and the radio beacon A 3 of three OBUs O 6 , O 7 , O 8 . It is understood that the transmitting and receiving steps 26, 12 take place in each case in the event of the passage of an OBU 3 to a radio beacon 8, ie at various times. As long as a radio beacon 8 of the first group G 1 does not receive a contrary instruction from the center 10, it continues to send 26 order messages M to all passing OBUs 3.
- Such a contrary instruction ie an order to the radio beacons 8 of the first group G 1 to refrain from sending the step 26, for example, by means of a deactivation message from the center 10 to the radio beacons 8 of the first group G 1 with respect to the previously sent order message M, for which purpose the job messages M can also be referenced via unique identifiers id.
- Each OBU 3 (here O 1 to O 8 ), which has received an order message M, now performs the basis of Fig. 3 already described data collection method, ie records sensor data d i, j between start location X and stop location Y and outputs the recorded sensor data d i, j at the next radio beacon 8 on their way again (step 21). All possible next radio beacons 8, which in this way can obtain measurement data d i, j from an OBU 3, form a second group G 2 (FIG. Fig. 1 ).
- the second group G 2 is composed of all those radio beacons 8, which lie first in the departure paths from the stop location Y respectively.
- the radio beacon B 4 will thus be those to which the OBU 3 sends its recorded measurement data d i, j in step 21.
- Fig. 4 shows the transmission step 21 associated with receiving step 27 in the radio beacon 8 (here B 1 , B 2 , B 3 , B 4 , B 5 ) of the second group G 2nd
- the radio beacons 8 of the second group G 2 now send all measurement data d i, j (O i ) in a sending step 28 either directly to the center 10 or preferably - as shown - to a selected "data-collecting" radio beacon 8 of the second group G 2 , here the beacon B 2 , more precisely to a data collection process (" container ") 29 in the data-collecting radio beacon B 2 .
- this can perform pre-processing and data compression of the collected measurement data d i, j (O i ), eg a statistical evaluation.
- the collected and optionally preprocessed measurement data d i, j (O i ) are then sent in a step 31 to the central office 10 for the final evaluation 32.
- the evaluation in step 32 can determine, for example, a traffic density and / or average traffic flow velocity in the survey area E, generate congestion forecasts, also on the basis of weather measurement data, brake measurement data, etc., generally on the basis of all types i of measured data i, j and their values discussed above Time j recorded histories.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Traffic Control Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Ermitteln von Verkehrsflussdaten in einem Straßennetz.The present invention relates to a method for determining traffic flow data in a road network.
Unter dem Begriff "Verkehrsflussdaten" werden in der vorliegenden Beschreibung alle Arten von Sensor- bzw. Messdaten von und über Fahrzeuge(n) des fließenden und ruhenden Verkehrs verstanden, die auf Granularitätsebene einzelner Fahrzeuge erhoben werden können und in Form einer z.B. statistischen Auswertung über mehrere Fahrzeuge einen Überblick über das Verkehrsgeschehen, den "Verkehrsfluss" in einem Straßennetz bzw. einem Teilgebiet desselben, ergeben können.The term "traffic flow data" in the present description refers to all types of sensor or measurement data from and about vehicles (s) of flowing and stationary traffic that can be collected at the level of granularity of individual vehicles and in the form of e.g. Statistical evaluation of several vehicles an overview of the traffic, the "flow of traffic" in a road network or a sub-area of the same may result.
Moderne Fahrzeuge verfügen über eine Vielzahl von Sensoren zur Erzeugung von Messdaten, wie Geschwindigkeit, Beschleunigung und Verzögerung, Informationen aus den ABS- und ESP-Systemen des Fahrzeugs, Status der Licht- und Heizungssysteme, Umgebungs- und Witterungsdaten wie Tageslicht, Außentemperatur, Luftfeuchtigkeit, Sichtverhältnisse (Nebel), Daten aus Kameraund Radarsystemen des Fahrzeugs, um Umgebungsverkehr und Gefährdungen zu erkennen, usw. Die Vielzahl von Messdaten aus dem Fahrzeug wird noch erhöht durch Messdaten elektronischer Zusatzgeräte ("Onboard-Units", OBUs), z.B. Satellitennavigationsempfänger und/oder Sendeempfänger bzw. Transceiver zur Funkkommunikation mit straßenseitigen Funkbaken ("Roadside Units", RSUs). Solche Onboard-Units können sowohl Messdaten des Fahrzeugs empfangen als auch mit Hilfe eigener Sensoren Messdaten über das Fahrzeug und/oder dessen Umgebung gewinnen, z.B. Positionen und Geschwindigkeiten, die sie durch Satellitennavigation aus Funkkommunikationen mit Funkbaken oder Mobilfunknetzen bestimmen, Umgebungsdaten aus eigenen Witterungssensoren, usw.Modern vehicles have a variety of sensors for generating measurement data such as speed, acceleration and deceleration, information from the ABS and ESP systems of the vehicle, status of the lighting and heating systems, ambient and weather data such as daylight, outside temperature, humidity, Visibility (fog), data from camera and radar systems of the vehicle to detect surrounding traffic and hazards, etc. The multitude of measurement data from the vehicle is further enhanced by measurement data of electronic on-board units (OBUs), eg Satellite navigation receiver and / or transceiver for radio communication with roadside units (RSUs). Such on-board units can both receive measurement data of the vehicle and, with the aid of own sensors, obtain measurement data about the vehicle and / or its surroundings, e.g. Positions and speeds determined by satellite navigation from radio communications with radio beacons or mobile networks, environmental data from own weather sensors, etc.
Die Ermittlung aussagekräftiger Verkehrsflussdaten ist jedoch selbst mit derart ausgerüsteten Fahrzeugen in der Praxis ein nicht-triviales Problem. Eine Übertragung der Messdaten aller Fahrzeuge an eine zentrale Auswertestelle ist aufgrund des anfallenden hohen Datenvolumens und der begrenzten Übertragungskapazitäten heute verfügbarer Drahtloskanäle z.B. von Mobilfunksystemen nicht realistisch. Überdies sind die von den einzelnen Fahrzeugen erzeugten Messdaten bei dichtem Verkehr hochredundant und bei "Schönwetterverhältnissen" (geringer Verkehr, gutes Wetter, keine Stör- oder Unfälle) von geringem Nutzen. Derzeitige Systeme zur Verkehrsflussdatenerfassung verwenden daher nur eine begrenzte Anzahl speziell ausgerüsteter Fahrzeuge, z.B. Taxis, welche mit dem Verkehr "mitschwimmen" und dadurch ein repräsentatives Bild der Verkehrslage oder der Umweltsituation wiedergeben sollen. Dies erfordert jedoch einerseits eine spezielle Flotte von Fahrzeugen, anderseits müssen diese Fahrzeuge eine dauernde Datenverbindung zur Auswertungszentrale haben, in der Regel eine Datenverbindung in einem Mobilfunknetz, was kostspielig und ressourcenverbrauchend ist.However, the identification of meaningful traffic flow data in practice is a non-trivial problem even with such equipped vehicles. A transmission of the measurement data of all vehicles to a central evaluation point is due to the The high volume of data and the limited transmission capacities of today's available wireless channels eg of mobile radio systems are not realistic. Moreover, the measured data generated by the individual vehicles in dense traffic are highly redundant and in "fair weather conditions" (low traffic, good weather, no accidents or accidents) of little use. Current systems for traffic flow data collection therefore use only a limited number of specially equipped vehicles, eg taxis, which "swim" with the traffic and thereby represent a representative picture of the traffic situation or the environmental situation. However, this requires on the one hand a special fleet of vehicles, on the other hand, these vehicles must have a permanent data connection to the evaluation center, usually a data connection in a mobile network, which is costly and resource consuming.
In dem technischen
Gegenüber diesem Stand der Technik setzt sich die Erfindung zum Ziel, ein Verfahren zum Ermitteln von Verkehrsflussdaten zu schaffen, welches die genannten Nachteile überwindet.Compared to this prior art, the invention has the object to provide a method for determining traffic flow data, which overcomes the disadvantages mentioned.
Dieses Ziel wird gemäß der Erfindung mit einem Verfahren zum Ermitteln von Verkehrsflussdaten in einem Straßennetz erreicht, welches Straßensegmente aufweist, von denen zumindest einige mit Funkbaken zur DSRC-Funkkommunikation mit fahrzeuggestützten Onboard-Units ausgestattet sind, welche ihre Position bestimmen und Messdaten ihres Fahrzeugs oder ihrer Umgebung aufzeichnen können, umfassend die folgenden, von einer Onboard-Unit durchgeführten Schritte:
- a) Passieren einer ersten Funkbake und Empfangen einer Auftragsnachricht, die zumindest einen Start-Ort und einen Stop-Ort enthält, von der ersten Funkbake über eine erste DSRC-Funkkommunikation;
- b) fortlaufendes Bestimmen der eigenen Position und, wenn die eigene Position in einen vorgegebenen Nahbereich des Start-Orts gelangt, Starten des Aufzeichnens der Messdaten;
- c) fortlaufendes Bestimmen der eigenen Position und, wenn die eigene Position in einen vorgegebenen Nahbereich des Stop-Orts gelangt, Stoppen des Aufzeichnens der Messdaten; und
- d) Senden der aufgezeichneten Messdaten an die nächste Funkbake, welche die Onboard-Unit auf ihrem Weg passiert, über eine zweite DSRC-Funkkommunikation.
- a) passing a first radio beacon and receiving a job message containing at least a start location and a stop location from the first radio beacon via a first DSRC radio communication;
- b) continuously determining the own position and, when the own position comes within a predetermined short range of the start location, starting the recording of the measurement data;
- c) continuously determining the own position and, when the own position comes within a predetermined near area of the stop location, stopping the recording of the measurement data; and
- d) sending the recorded measurement data to the next radio beacon that the onboard unit passes on its way via a second DSRC radio communication.
Das erfindungsgemäße Verfahren verwendet die ortsbezogene Infrastruktur eines Netzes straßenseitiger Funkbaken, wie sie beispielsweise für Straßenmaut-, Verkehrstelematik- und/oder Fahrzeugkommunikationssysteme derzeit bereits im Einsatz sind und auf Kurzreichweiten-Funkkommunikationen (dedicated short range communications, DSRC) zwischen Fahrzeug-OBUs und DSRC-Funkbaken beruhen. Die begrenzte Reichweite solcher DSRC-Funkkommunikationen ermöglicht eine ortskonkrete Einspeisung von Datensammelaufträgen in eine Untergruppe der Verkehrsteilnehmer des Straßennetzes, nämlich alle sich zwischen Start- und Stop-Ort bewegende Fahrzeuge als Datenquellen für die Ermittlung der Verkehrsflussdaten. Das Erhebungsgebiet ist dabei nicht an die Orte der Funkbaken selbst gebunden sondern durch Selbstlokalisation der OBUs beliebig festlegbar. Im Ergebnis können umfassende, nahezu lückenlose Verkehrsflussdaten aus einem ganz konkreten Gebiet eines weitverzweigten Straßennetzes unter geringstmöglichen Speicheranforderungen und unter geringstmöglicher Belastung der verfügbaren Kommunikationskanäle, und zwar begrenzt auf DSRC-Funkkommunikationen zwischen OBUs und Funkbaken rund um das Erhebungsgebiet, gewonnen werden.The method according to the invention uses the location-based infrastructure of a network of street-side radio beacons, such as those currently in use for road toll, traffic telematics and / or vehicle communication systems, and short-range radio communications (DSRC) between vehicle OBUs and DSRCs. Radio beacons are based. The limited range of such DSRC radio communications enables a localized feed of data collection tasks into a subgroup of the road network's road users, namely all vehicles moving between start and stop locations as data sources for the determination of traffic flow data. The survey area is not bound to the locations of the radio beacons themselves but can be determined arbitrarily by self-localization of the OBUs. As a result, comprehensive, nearly seamless traffic flow data can be obtained from a very specific area of a widely branched road network with the least possible memory requirements and with the least possible load on the available communication channels, limited to DSRC radio communications between OBUs and radio beacons around the survey area.
Gemäß einem weiteren Aspekt der Erfindung umfasst ein Verfahren zur Verkehrsflussdatenermittlung, das eine Vielzahl von Onboard-Units verwendet, welche jeweils die genannten Schritte a) bis d) durchführen, zusätzlich die Schritte:
- Ermitteln jener Funkbaken, welche in allen möglichen aus den Straßensegmenten des Straßennetzes gebildeten Anfahrtswegen zum Start-Ort jeweils zuletzt liegen, als erste Gruppe von Funkbaken;
- Zurverfügungstellen der Auftragsnachricht an die Funkbaken der ersten Gruppe; und
- Senden der Auftragsnachricht von jeder Funkbake der ersten Gruppe alle oder an zumindest eine Untermenge der sie passierenden Onboard-Units in deren Schritten a).
- Determining those radio beacons, which in each of the possible formed from the road segments of the road network access routes to the starting location are last, as the first group of radio beacons;
- Providing the order message to the radio beacons of the first group; and
- Sending the order message from each radio beacon of the first group all or at least a subset of the onboard units passing through it in their steps a).
Wenn eine Untermenge der passierenden Onboard-Units verwendet wird, wird die Untermenge zweckmäßigerweise als repräsentative Auswahl festgelegt, z.B. jede zweite, dritte, zehnte, hundertste usw. der passierenden Onboard-Units.When a subset of the onboard passing units is used, the subset is conveniently set as a representative selection, e.g. every second, third, tenth, hundredth, etc. of the passing onboard units.
Das Verfahren der Erfindung kann dezentral in einer Funkbake angestoßen werden, indem dort die Auftragsnachricht zusammengestellt und an die Funkbaken der ersten Gruppe verteilt wird. Bevorzugt wird die Auftragsnachricht jedoch in einer mit den Funkbaken in Verbindung stehenden Zentrale zusammengestellt und zum Zurverfügungstellen von der Zentrale an die Funkbaken der ersten Gruppe gesandt. Dadurch kann z.B. in einer Verkehrsleitzentrale jederzeit ein konkreter Detaileinblick über das Verkehrsgeschehen in einem Ausschnitt des Straßennetzes erhalten werden.The method of the invention can be triggered locally in a radio beacon by the order message is assembled there and distributed to the radio beacons of the first group. Preferably, however, the order message is compiled in a center communicating with the radio beacons and sent to the radio beacons of the first group for making available from the center. Thereby, e.g. In a traffic control center at any time a detailed insight into the traffic in a section of the road network can be obtained.
Zu diesem Zweck ist es besonders günstig, wenn gemäß einem weiteren bevorzugten Merkmal das Verfahren die folgenden zusätzlichen Schritte umfasst:
- Auswählen einer Funkbake als datensammelnde Funkbake; und
- Weiterleiten der von Onboard-Units jeweils in deren Schritt d) ausgesendeten Messdaten von der jeweiligen Funkbake an die datensammelnde Funkbake.
- Selecting a radio beacon as the data collecting radio beacon; and
- Forwarding of the onboard units each in their step d) emitted measurement data from the respective radio beacon to the data-collecting radio beacon.
Um den zwischen den Funkbaken ablaufenden Datenverkehr möglichst gering zu halten, wird die datensammelnde Funkbake möglichst nahe dem Erhebungsgebiet eingesetzt, und zwar durch die bevorzugten zusätzlichen Schritte:
- Ermitteln jener Funkbaken, welche in allen möglichen aus den Straßensegmenten des Straßennetzes gebildeten Abfahrtswegen vom Stop-Ort jeweils zuerst liegen, als zweite Gruppe von Funkbaken; und
- Auswählen der datensammelnden Funkbake aus der zweiten Gruppe.
- Determining those radio beacons, which are in each case first in all possible departure paths formed from the road segments of the road network from the stop location, as a second group of radio beacons; and
- Selecting the data-collecting radio beacon from the second group.
In der zentralen Auswertungsvariante des Verfahrens werden die Messdaten von der datensammelnden Funkbake bevorzugt an die Zentrale zur Auswertung gesandt.In the central evaluation variant of the method, the measurement data from the data-collecting radio beacon are preferably sent to the control center for evaluation.
Um den Datenverkehr zwischen der datensammelnden Funkbake und der Zentrale weiter zu reduzieren, können gemäß einem weiteren vorteilhaften Merkmal der Erfindung die Messdaten von der datensammelnden Funkbake vorausgewertet und komprimiert werden, bevor sie an die Zentrale zur Auswertung gesandt werden.In order to further reduce the data traffic between the data-collecting radio beacon and the control center, according to a further advantageous feature of the invention, the measurement data can be pre-evaluated and compressed by the data-collecting radio beacon before being sent to the control center for evaluation.
In jeder Ausführungsform des Verfahrens der Erfindung kann die Auftragsnachricht bevorzugt auch eine Angabe der Art von aufzuzeichnenden Messdaten enthalten und die Onboard-Unit nur Messdaten dieser Art aufzeichnen, und/oder die Auftragsnachricht auch eine Angabe über einen Gültigkeitszeitraum enthalten und die Onboard-Unit die Messdaten nur innerhalb dieses Gültigkeitszeitraums aufzeichnen. Dadurch können die Datensammelaufträge weiter spezifiziert werden, was einen noch genaueren Einblick in das Verkehrsgeschehen erlaubt. Die Funkbake kann eine Onboard-Unit vor dem Versenden der Auftragsnachricht auch dahingehend abfragen, welche Art von Messdaten die Onboard-Unit erfassen kann, um Auftragsnachricht daran anzupassen.In each embodiment of the method of the invention, the order message may preferably also contain an indication of the type of measurement data to be recorded and the onboard unit only record measurement data of this type, and / or the order message also contain an indication of a validity period and the onboard unit the measurement data record only within this validity period. This allows the data collection jobs to be further specified, allowing even more accurate insight into the traffic. The radio beacon may also poll an on-board unit prior to sending the job message to determine what type of measurement data the onboard unit may acquire to adjust job message thereto.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels, welches auf die begleitenden Zeichnungen Bezug nimmt, in denen zeigt:
-
Fig. 1 ein Straßennetz mit Komponenten, die im Rahmen des Verfahrens der Erfindung eingesetzt werden, in schematischem Überblick; -
Fig. 2 ein Blockschaltbild einer der Onboard-Units des Straßennetzes vonFig. 1 ; -
Fig. 3 ein Flussdiagramm eines in der Onboard-Unit vonFig. 2 ablaufenden Verfahrens; -
Fig. 4 ein Flussdiagramm eines in dem Straßennetz vonFig. 1 ablaufenden Verfahrens; und
-
Fig. 1 a road network with components, which are used in the context of the method of the invention, in a schematic overview; -
Fig. 2 a block diagram of one of the onboard units of the road network ofFig. 1 ; -
Fig. 3 a flowchart of one in the onboard unit ofFig. 2 expiring procedure; -
Fig. 4 a flowchart of one in the road network ofFig. 1 expiring procedure; and
In
Im Straßennetz 1 bewegen sich eine Vielzahl von Fahrzeugen 2 (nur eines stellvertretend gezeigt), die jeweils mit einer Onboard-Unit (OBU) 3, hier zur Identifizierung bezeichnet als O1, O2, O3, ..., allgemein Oi, ausgestattet sind. Die OBUs 3 verfügen neben einem Mikroprozessor 4 und einem Speicher 5 jeweils über einen Kurzreichweiten-Sendeempfänger 6 (
Die Funkbaken 8 sind örtlich über das gesamte Straßennetz 1 verteilt und im vorliegenden Beispiel mit A1, A2, A3, ..., allgemein Ai; B1, B2, B3, ..., allgemein Bi; und C1, C2, C3, ..., allgemein Ci, bezeichnet. Die Funkbaken 8 sind als straßenseitige Einrichtungen (road side units, RSUs) jeweils an einem Straßensegment Si aufgestellt, wobei auch mehrere Funkbaken 8 an einem Straßensegment Si aufgestellt sein können oder eine Funkbake 8 für mehrere Straßensegmente Si zuständig sein kann.The
Die Funkbaken 8 sind über ein z.B. drahtgebundenes Datennetz 9 untereinander verbunden und können über dieses auch mit einer Zentrale 10 des Straßennetzes 1, beispielsweise einer Verkehrsleitstelle (traffic control) oder Mautabrechnungszentrale (toll charger) TC, in Verbindung stehen.The
Aufgrund der kurzen Reichweite der Funkkommunikationen 7 zwischen OBUs 3 und Funkbaken 8 können die eine Funkbake 8 passierenden Fahrzeuge 2 jeweils auf den Ort bzw. Funkabdeckungsbereich dieser Funkbake 8 verortet (lokalisiert) werden. Die Funkbaken 8 sind beispielsweise Bestandteil eines Straßenmautsystems, in welchem sie die Bewegungen der Fahrzeuge 2 mit Hilfe der Funkkommunikationen 7 verorten und so Ortsnutzungen der Fahrzeuge 2 entsprechend vermauten. Weitere Anwendungsmöglichkeiten der Funkbaken 8 sind z.B. die Verteilung von Verkehrsinformationen oder "Infotainment" an passierende Fahrzeuge 2 und/oder das Entgegennehmen von Daten der passierenden Fahrzeuge 2.Due to the short range of the
Die Funkkommunikationen 7, d.h. insbesondere die Sendeempfänger 6 der OBUs 3 und die Funkbaken 8, können nach jedem in der Technik bekannten Kurzreichweiten-Funkstandard arbeiten, wie den DSRC-Standards ITS-G5, IEEE 802.11p, WAVE (wireless access in a vehicle environment), WLAN (wireless local area network), RFID (radio frequency identification), Bluetooth®, usw. Die Funkreichweite der Funkkommunikationen 7 (bzw. das Funkabdeckungsgebiet der Funkbaken 8) beträgt in der Regel einige 10 bis einige 100 m, kann jedoch speziell bei WLAN, WAVE und IEEE 802.11p bis zu einige km betragen, ist in der Regel jedoch nicht größer als die Ausdehnung des Straßensegments Si, dem die Funkbake 8 zugeordnet ist, und überlappt sich üblicherweise nicht mit dem Funkabdeckungsgebiet einer benachbarten Funkbake 8. Bevorzugt ist es möglichst eng begrenzt, um eine möglichst genaue Lokalisierung der passierenden Fahrzeuge 2 zu erreichen.The
Die geschilderte Infrastruktur des Straßennetzes 1 wird nun dazu verwendet, Verkehrsflussdaten aus einem eng begrenzten Gebiet E des Straßennetzes 1 zu erheben, und zwar auf die folgende Art und Weise.The described infrastructure of the
Dazu dienen speziell ausgerüstete OBUs 3, welche anhand der
Mit Hilfe der Positionsbestimmungseinrichtung 11 ist jede OBU 3 befähigt, das Betreten und Verlassen des Erhebungsgebiet E autark zu detektieren. Das Erhebungsgebiet E ist zu diesem Zweck durch seinen Start-Ort X auf dem entsprechenden Straßensegment Si und seinen Stop-Ort Y auf diesem (oder einem anderen) Straßensegment Si definiert, d.h. erstreckt sich im gezeigten Beispiel auf dem Straßensegment S5 zwischen den Startund Stop-Orten X und Y. Es ist dabei unbeachtlich, ob im Erhebungsgebiet E selbst eine Funkbake C8 liegt oder nicht.With the aid of the position-determining
Über einen - später noch ausführlicher erläuterten - ortsspezifischen Distributionsprozess, der auf das Netz von Funkbaken 8 zugreift, erhält nun jede OBU 3 von einer Funkbake 8 einen Datensammelauftrag in Form einer Auftragsnachricht M (
Gemäß
Die im Datensammelprozess 14 aufgezeichneten Messdaten d können von jedweder eingangs genannten Art i sein, beispielsweise Positions-, Geschwindigkeits- oder Bewegungsvektordaten da aus der Positionsbestimmungseinrichtung 11, Temperatur- und Wetter- und Umweltschadstoffdaten db aus internen Witterungsund Schadstoffsensoren 16 der OBU 3, Motor- oder Abgasdaten dc oder ABS- oder ESP-Daten dd des Fahrzeugs 2, die über ein Schnittstellenmodul 17 mit drahtlosen oder drahtgebundenen Schnittstellen 18 vom Fahrzeug 2 empfangen werden, usw. usf.The measurement data d recorded in the
Im Aufzeichnungsprozess 14 werden für eine (oder mehrere) ausgewählte Sensor- bzw. Messdatenarten i somit fortlaufend - z.B. kontinuierlich oder zu diskreten Zeitpunkten j - alle anfallenden Messdaten di,j aufgezeichnet und im Speicher 5 der OBU 3 gespeichert. Die ausgewählte(n) Messdatenart(en) i kann bzw. können beispielsweise vordefiniert sein oder erst in einer Auftragsnachricht M der OBU 3 mitübermittelt werden.In the
Wenn die Auftragsnachricht M auch einen Gültigkeitszeitraum t umfasst, können die einzelnen OBUs 3 bzw. Oi im Aufzeichnungsprozess 14 auch jeweils überprüfen bzw. sicherstellen, dass Messdaten di,j nur innerhalb des Gültigkeitszeitraums t aufgezeichnet werden.If the order message M also includes a validity period t, the
Der Aufzeichnungsprozess 14 wird beendet, wenn die Positionsbestimmungseinrichtung 11 den Eintritt in einen (vorgegebenen) Nahbereich 19 des Stop-Orts Y detektiert (Schritt 20). Die Nahbereiche 14, 19 um die Start- und Stop-Orte X, Y dienen als Toleranz für Messungenauigkeiten der Positionsbestimmungseinrichtung 11 und werden entsprechend der Genauigkeit der Positionsbestimmungseinrichtung 11 so gering wie möglich gehalten, um das Erhebungsgebiet E so genau wie möglich zu definieren.The
Anschließend werden die in Schritt 14 aufgezeichneten Messdaten di,j in einem Schritt 21 an die nächstbeste Funkbake 8, welcher die OBU 3 auf ihrem Weg begegnet, über eine (zweite) Funkkommunikation 7 gesandt.Subsequently, the measurement data d i, j recorded in
Sollte aus irgendwelchen Gründen der Stop-Ort Y nicht innerhalb einer vorgegebenen Entfernung vom Start-Ort X oder einer angemessenen Zeit, z.B. innerhalb des Gültigkeitszeitraums t, detektiert werden, können optional die Auftragsnachricht M und die aufgezeichneten Messdaten di,j in der OBU gelöscht werden.If for some reason the stop location Y is not detected within a predetermined distance from the starting location X or an appropriate time, eg within the validity period t, the order message M and the recorded measurement data d i, j in the OBU can optionally be deleted become.
Durch eine Vielzahl von OBUs 3, welche beim Durchfahren des Erhebungsgebiets E das Verfahren nach
Unter Vorgabe des interessierenden Erhebungsgebiets E wird in einem ersten Schritt 22 eine erste Gruppe G1 von (ersten) Funkbaken 8, hier der Funkbaken A1, A2, A3 und A4, ausgewählt, welche zur Einspeisung der Auftragsnachrichten M in vorbeifahrende (passierende) OBUs 3 dienen sollen. Die erste Gruppe G1 setzt sich dabei aus jenen Funkbaken 8 zusammen, welche in allen möglichen Anfahrtswegen, über die der Start-Ort X des Erhebungsgebiets E erreicht werden kann, jeweils zuletzt liegen: In dem Beispiel von
Die Auswahl der Funkbaken 8 für die Gruppe G1 im Schritt 22 kann beispielsweise mit Hilfe an sich bekannter Algorithmen der Graphentheorie aus einem Netzgraphenmodell des Straßennetzes 1 erstellt werden, welches z.B. in einer Datenbank 23 der Zentrale 10 hinterlegt wird.The selection of the
In einem anschließenden Schritt 24 wird die Auftragsnachricht M zusammengestellt, wobei beispielsweise auch ein Gültigkeitszeitraum t, z.B. in Form einer Ablaufzeit (expiry time), in die Auftragsnachricht M mitaufgenommen werden kann. Die Auftragsnachricht M wird nun im Schritt 24 von der Zentrale 10 über das Datennetz 9 an alle Funkbaken 8 der ersten Gruppe G1 verteilt, welche diese jeweils in einem Empfangsschritt 25 empfangen.In a
Die Funkbaken 8 bzw. A1, A2, A3, A4 der ersten Gruppe G1 senden anschließend jeweils in einem Schritt 26 die Auftragsnachricht M an jede OBU 3, die an ihnen vorbeifährt; in jeder OBU 3 wird die Auftragsnachricht M in Schritt 12 empfangen (
Optional können die Funkbaken 8 der ersten Gruppe G1 die Auftragsnachrichten M nicht an alle, sondern nur an eine Untermenge der sie jeweils passierenden OBUs 3 senden, z.B. an jede zweite, dritte, zehnte, hundertste usw. passierende OBU 3.Optionally, the
In
Jede OBU 3 (hier O1 bis O8), welche eine Auftragsnachricht M erhalten hat, führt nun das anhand von
Die zweite Gruppe G2 setzt sich aus all jenen Funkbaken 8 zusammen, welche in den Abfahrtswegen vom Stop-Ort Y jeweils zuerst liegen. So liegen z.B. im Abfahrtsweg S5-S6-S7 vom Stop-Ort Y die Funkbaken B4 und C12 und von diesen die Funkbake B4 als nächste; die Funkbake B4 wird also jene sein, an die die OBU 3 im Schritt 21 ihre aufgezeichneten Messdaten di,j absendet. Aus allen möglichen Abfahrtswegen vom Stop-Ort Y ergeben sich somit die in
Zur Auswertung der gesammelten Messdaten di,j aller OBUs Oi senden die Funkbaken 8 der zweiten Gruppe G2 nun alle Messdaten di,j(Oi) in einem Sendeschritt 28 entweder direkt an die Zentrale 10 oder bevorzugt - wie dargestellt - an eine ausgewählte "datensammelnde" Funkbake 8 der zweiten Gruppe G2, hier die Funkbake B2, genauer an einen Datensammelprozess ("container") 29 in der datensammelnden Funkbake B2. Diese kann in einem optionalen Vorverarbeitungsschritt 30 eine Vorverarbeitung und Datenkomprimierung der gesammelten Messdaten di,j(Oi) durchführen, z.B. eine statistische Auswertung. Die gesammelten und optional vorverarbeiteten Messdaten di,j(Oi) werden anschließend in einem Schritt 31 an die Zentrale 10 zur finalen Auswertung 32 gesandt.In order to evaluate the collected measurement data d i, j of all OBUs Oi, the
Die Auswertung in Schritt 32 kann beispielsweise eine Verkehrsdichte und/oder mittlere Verkehrsflussgeschwindigkeit im Erhebungsbereich E ermitteln, Stauprognosen erstellen, auch aufgrund von Witterungs-Messdaten, Bremsmessdaten usw., allgemein aufgrund aller eingangs erörterten Arten i von Messdaten di,j und ihrer über der Zeit j aufgezeichneten Verläufe.The evaluation in
Die Erfindung ist nicht auf die dargestellten Ausführungsformen beschränkt, sondern umfasst alle Varianten und Modifikationen, die in den Rahmen der angeschlossenen Ansprüche fallen.The invention is not limited to the illustrated embodiments, but includes all variants and modifications that fall within the scope of the appended claims.
Claims (14)
- A method for determining traffic flow data in a road network (1) with road segments (Si) of which at least some are equipped with radio beacons (8) for DSRC radio communications (7) with vehicle-mounted on-board units (3), which are configured to determine their position (p) and record measurement data (di,j) of their vehicle (2) or their environment, comprising the following steps carried out by an on-board unit (3):a) passing a first radio beacon (8) and receiving (12) a request message (M), which at least includes a start location (X) and a stop location (Y), from the first radio beacon (8) via a first DSRC radio communication (7);b) ongoing determining the own position (p) and, once the own position (p) enters into a given close range (14) of the start location (X), starting (13) the recording (14) of the measurement data (di,j);c) ongoing determining the own position (p) and, once the own position (p) enters into a given close range (19) of the stop location (Y), stopping (20) the recording (14) of the measurement data (di,j); andd) transmitting (21) the recorded measurement data (di,j) to the next radio beacon (8) which is passed by the on-board unit (3) along its way via a second DSRC radio communication (7).
- The method according to claim 1 using a multitude of on-board units (3) each of which carries out the steps a) to d), comprising:determining (22) those radio beacons (8) that are the last in all possible access routes to the start location (X) formed by the road segments (Si) of the road network (1), as a first group (G1) of radio beacons (8);providing (24) the request message (M) to the radio beacons (8) of the first group (G1); andtransmitting (26) the request message (M) from each radio beacon (8) of the first group (G1) to at least a subset of the on-board units (3) passing such radio beacon according to step a).
- The method according to claim 2, characterized in that the request message (M) is compiled in a central unit (10) interconnected with the radio beacons (8) and is sent by the central unit (10) to the radio beacons (8) of the first group (G1) for providing (24).
- The method according to claim 2, comprising:selecting a radio beacon (8) as a data-collecting radio beacon (B2); andforwarding (28) the measurement data (di,j) transmitted by on-board units (3) in their step d) from the particular receiving radio beacon (8) to the data-collecting radio beacon (B2).
- The method according to claim 4, comprising:determining those radio beacons (8) that are the first in all possible exit routes from the stop location (Y) formed by the road segments (Si) of the road network (1), as a second group (G2) of radio beacons (8); andselecting the data-collecting radio beacon (B2) from the second group (G2).
- The method according to the claims 3 and 5, characterized in that the measurement data (di,j) is sent by the data-collecting radio beacon (B2) to the central unit (10) for analysis (32).
- The method according to claim 6, characterized in that the measurement data (di,j) is pre-analyzed and compressed (30) by the data-collecting radio beacon (B2), before the data is sent to the central unit (10) for analysis (32).
- The method according to one of the claims 1 to 7, characterized in that the request message (M) also includes a specification of a type (i) of measurement data (di,j) to be recorded, with the on-board unit (3) only recording measurement data (di,j) of this type (i).
- The method according to claim 8, characterized in that the radio beacon (8) interrogates an on-board unit (3) before sending the request message (M) to retrieve the type (i) of measurement data collected by that on-board unit (3), whereupon the request message (M) is adjusted accordingly.
- The method according to one of the claims 1 to 9, characterized in that the request message (M) also includes a specification of a period of validity (t), with the on-board unit (3) only recording measurement data (di,j) within such period of validity (t).
- The method according to one of the claims 1 to 10, characterized in that the own position (p) of an on-board unit (3) is determined by means of satellite navigation (11).
- The method according to one of the claims 1 to 11, characterized in that the measurement data (di,j) comprise speed and/or deceleration data of the on-board unit (3) or its vehicle (2).
- The method according to one of the claims 1 to 12, characterized in that the measurement data (di,j) comprise weather data from the environment of the on-board unit (3) or its vehicle (2).
- The method according to one of the claims 1 to 13, characterized in that the measurement data (di,j) comprise pollutant emission data from the environment of the on-board unit (3) or its vehicle (2).
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL11195820T PL2610815T3 (en) | 2011-12-27 | 2011-12-27 | Method for acquiring traffic flow data in a street network |
ES11195820.3T ES2540866T3 (en) | 2011-12-27 | 2011-12-27 | Procedure for the acquisition of traffic flow data in a road network |
EP20110195820 EP2610815B1 (en) | 2011-12-27 | 2011-12-27 | Method for acquiring traffic flow data in a street network |
CA2794990A CA2794990C (en) | 2011-12-27 | 2012-11-07 | Method for determining traffic flow data in a road network |
US13/726,276 US9035798B2 (en) | 2011-12-27 | 2012-12-24 | Method for determining traffic flow data in a road network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20110195820 EP2610815B1 (en) | 2011-12-27 | 2011-12-27 | Method for acquiring traffic flow data in a street network |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2610815A1 EP2610815A1 (en) | 2013-07-03 |
EP2610815B1 true EP2610815B1 (en) | 2015-04-22 |
Family
ID=45509217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20110195820 Active EP2610815B1 (en) | 2011-12-27 | 2011-12-27 | Method for acquiring traffic flow data in a street network |
Country Status (5)
Country | Link |
---|---|
US (1) | US9035798B2 (en) |
EP (1) | EP2610815B1 (en) |
CA (1) | CA2794990C (en) |
ES (1) | ES2540866T3 (en) |
PL (1) | PL2610815T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018214224B3 (en) | 2018-08-23 | 2019-12-19 | Audi Ag | Method for controlling detection devices of vehicles in a vehicle fleet by a central control unit in order to obtain a database of measurement data |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010002093B4 (en) * | 2009-06-03 | 2024-03-14 | Continental Automotive Technologies GmbH | C2X communication with reduced data volume |
DE102012215601A1 (en) * | 2012-09-03 | 2014-03-06 | Continental Automotive Gmbh | Method and device for determining a value of a motion-dependent variable |
US9852637B2 (en) | 2014-01-10 | 2017-12-26 | Regents Of The University Of Minnesota | Vehicle-to-vehicle congestion monitoring using ad hoc control |
US10026313B2 (en) | 2014-01-10 | 2018-07-17 | Regents Of The University Of Minnesota | DSRC-equipped portable changeable sign |
JP6568406B2 (en) * | 2015-06-04 | 2019-08-28 | 矢崎エナジーシステム株式会社 | Drive recorder |
US10567910B2 (en) | 2015-11-02 | 2020-02-18 | Regents Of The University Of Minnesota | Workzone safety system |
EP3168822B1 (en) * | 2015-11-13 | 2021-11-10 | Volvo Car Corporation | Arrangement and method for estimating traffic intensity within a road network |
GB2550974B (en) * | 2016-06-03 | 2020-04-29 | Samsung Electronics Co Ltd | Environmental monitoring |
WO2018005531A1 (en) | 2016-06-30 | 2018-01-04 | Intel IP Corporation | Dynamic offloading of v2x services to dsrc |
US10319224B2 (en) * | 2016-08-19 | 2019-06-11 | Veniam, Inc. | Adaptive road management in the network of moving things |
US11270583B2 (en) * | 2017-11-27 | 2022-03-08 | International Business Machines Corporation | Traffic control for autonomous vehicles |
CN108415057B (en) * | 2018-01-25 | 2022-04-01 | 南京理工大学 | Relative positioning method for cooperative work of unmanned fleet and road side unit |
CN110213742A (en) * | 2019-06-03 | 2019-09-06 | 江苏恒宝智能系统技术有限公司 | Electronic equipment, wireless communications method and computer readable storage medium |
US20230110089A1 (en) * | 2020-03-27 | 2023-04-13 | Nec Corporation | Information collection device, roadside device, and road condition obtaining method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2945852A1 (en) * | 1979-11-13 | 1981-05-21 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR DETECTING TRAFFIC IN A GUIDE AND INFORMATION SYSTEM FOR INDIVIDUAL TRAFFIC |
US5289183A (en) * | 1992-06-19 | 1994-02-22 | At/Comm Incorporated | Traffic monitoring and management method and apparatus |
DE19526148C2 (en) * | 1995-07-07 | 1997-06-05 | Mannesmann Ag | Method and system for forecasting traffic flows |
US6282486B1 (en) * | 2000-04-03 | 2001-08-28 | International Business Machines Corporation | Distributed system and method for detecting traffic patterns |
GB2369709B (en) * | 2000-11-30 | 2004-08-04 | Nec Technologies | System and method for measuring traffic flow |
EP1368790A1 (en) * | 2001-03-16 | 2003-12-10 | Albert Renftle | Traffic toll charging system |
DE10252768B4 (en) * | 2002-11-13 | 2008-02-28 | Daimler Ag | Method for creating and sending traffic-relevant data |
US7176813B2 (en) * | 2004-09-10 | 2007-02-13 | Xanavi Informatics Corporation | System and method for processing and displaying traffic information in an automotive navigation system |
US7831380B2 (en) * | 2006-03-03 | 2010-11-09 | Inrix, Inc. | Assessing road traffic flow conditions using data obtained from mobile data sources |
US20110320112A1 (en) * | 2009-08-05 | 2011-12-29 | Lawrence Anderson | Solar or wind powered traffic monitoring device and method |
-
2011
- 2011-12-27 PL PL11195820T patent/PL2610815T3/en unknown
- 2011-12-27 EP EP20110195820 patent/EP2610815B1/en active Active
- 2011-12-27 ES ES11195820.3T patent/ES2540866T3/en active Active
-
2012
- 2012-11-07 CA CA2794990A patent/CA2794990C/en active Active
- 2012-12-24 US US13/726,276 patent/US9035798B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018214224B3 (en) | 2018-08-23 | 2019-12-19 | Audi Ag | Method for controlling detection devices of vehicles in a vehicle fleet by a central control unit in order to obtain a database of measurement data |
Also Published As
Publication number | Publication date |
---|---|
PL2610815T3 (en) | 2015-10-30 |
US20130162445A1 (en) | 2013-06-27 |
US9035798B2 (en) | 2015-05-19 |
CA2794990A1 (en) | 2013-06-27 |
ES2540866T3 (en) | 2015-07-14 |
CA2794990C (en) | 2019-03-05 |
EP2610815A1 (en) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2610815B1 (en) | Method for acquiring traffic flow data in a street network | |
EP2624233B1 (en) | Method for controlling a road toll system | |
EP0860954B1 (en) | Method pf transfering information between moving objects and communication device using the method | |
EP2979261B1 (en) | Backend for driver assistance systems | |
EP0931301B1 (en) | Method and device for transmitting data on traffic assessment | |
DE102018118029A1 (en) | SYSTEMS AND METHODS FOR TRANSPORT STUDENT CLASSIFICATION, POSITION AND KINEMATIC PARAMETER MEASUREMENT AND MESSAGE THROUGH A DIGITAL TELECOMMUNICATIONS NETWORK | |
EP2624218B1 (en) | Device and method for checking in a toll road system | |
DE102018102281A1 (en) | IMPROVED V2X EVENT DISTRIBUTION | |
DE102015202367A1 (en) | AUTONOMIC CONTROL IN A SEALED VEHICLE ENVIRONMENT | |
DE112011106073B4 (en) | Central-side system and vehicle-side system | |
EP3042368A1 (en) | Method, evaluation system and vehicle for predicting at least one congestion parameter | |
EP3446302B1 (en) | Method, device and arrangement for tracking moving objects | |
DE112018000870T5 (en) | Out-of-vehicle communication device, on-board device, on-board communication system, communication control method, and communication control program | |
EP2953111A1 (en) | Method and device for determining free parking spots in hgv parking lots and notification of hgv drivers | |
DE102022120060A1 (en) | System and method for Vehicle-to-Everything (V2X) collaborative perception | |
EP1466140B1 (en) | Method for determining a travel time | |
EP3279870A1 (en) | Data processing device, system and method for verifying performance of a specified function of a position determination device | |
EP2665044B1 (en) | Method for measuring the capacity of a toll system | |
DE10215887B4 (en) | Asynchronous traffic data collection | |
EP3211605A1 (en) | Vehicle device, system, roadside device and method for performing at least one transaction | |
DE102021105580A1 (en) | Method for providing a free parking space | |
EP3082099A1 (en) | Intermodal travel service system for communicating with a number of different travel and traffic service providers | |
DE112021006994T5 (en) | DRIVING ASSISTANCE SYSTEM, SERVER DEVICE, CONTROL CIRCUIT, STORAGE MEDIUM, PROGRAM AND METHOD FOR GENERATING DRIVING ASSISTANCE INFORMATION | |
DE202016001371U1 (en) | Vehicle device, system and roadside device for performing at least one transaction | |
DE102020119788A1 (en) | METHOD AND SYSTEM FOR SEARCHING FOR A ROUTE USING SIDED PARKING CONDITION INFORMATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20130627 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141119 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 723631 Country of ref document: AT Kind code of ref document: T Effective date: 20150515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011006645 Country of ref document: DE Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2540866 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150714 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150722 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150824 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150723 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150822 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011006645 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150422 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
26N | No opposition filed |
Effective date: 20160125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151227 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151227 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111227 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231228 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240126 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241210 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20241219 Year of fee payment: 14 Ref country code: NL Payment date: 20241219 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241224 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241223 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241220 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241219 Year of fee payment: 14 |