EP2606502A1 - Circuit for an electromagnetic switching device - Google Patents
Circuit for an electromagnetic switching deviceInfo
- Publication number
- EP2606502A1 EP2606502A1 EP10776969.7A EP10776969A EP2606502A1 EP 2606502 A1 EP2606502 A1 EP 2606502A1 EP 10776969 A EP10776969 A EP 10776969A EP 2606502 A1 EP2606502 A1 EP 2606502A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- switch
- coil
- current
- circuit
- control signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/22—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
- H01H47/32—Energising current supplied by semiconductor device
- H01H47/325—Energising current supplied by semiconductor device by switching regulator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/22—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
- H01H47/32—Energising current supplied by semiconductor device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/02—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
- H01H47/04—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/22—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
Definitions
- Circuit for an electromagnetic switching device The present invention relates to a circuit for providing a freewheeling current to a coil of an electromagnetic
- An electromagnetic switching device is typically used for controlling flow of electrical current in an electrical circuit.
- the electromagnetic switching device is controllable for switching between on and off states for closing and breaking a power supply circuit.
- magnets may be employed to actuate a movable contact element for breaking and closing the power supply circuit.
- the movable contact element is moved to engagement with a stationary contact element for closing the power supply circuit.
- the stationary contact element is
- the power supply circuit is closed when movable contact element is in engagement with the stationary contact element.
- the magnets employed to actuate the movable contact element are energized by a coil.
- the coil is energized by a current flowing through the coil.
- the freewheeling current is provided to the coil via the switch.
- the heat dissipation at the switch is lower than the heat that would have been dissipated at the diode if the freewheeling current was provided to the coil via the diode. This enables in deployment of relatively smaller heat sinks for dissipation of the heat produced at the switch, and thus, achieving reduction in cost and size.
- the switch being controlled responsive to the voltage across the diode enables in preventing short circuit as the switch and the supply switch are not turned at the same time.
- the circuit further comprises a controller configured to provide a control signal to the switch responsive to the voltage across the diode.
- the switch is operable responsive to the control signal provided by the controller.
- the control signal generated by the controller is responsive to the voltage detected across the diode.
- the switch is a solid state static switch.
- Solid state static switch has a lower voltage drop than the voltage drop across the freewheeling diode. As the voltage drop is less, the heat dissipation is also less with respect to the freewheeling diode.
- the switch is adapted to be in an on state to conduct the freewheeling current.
- the switch is turned on responsive to the voltage across the diode to conduct the freewheeling current.
- the switch is adapted to be in an off state when the dc supply source is electrically connected to the coil.
- the switch is turned off responsive to the voltage across the diode. This achieves is preventing short circuit when the dc supply source is electrically connected to the coil.
- the switch comprises a body diode. Certain solid state static switches comprise a diode internally referred to as a body diode.
- the body diode is adapted as the freewheeling diode. Adapting the body diode as the freewheeling diode eliminates the need of using an external diode.
- the switch is an MOSFET or an IGBT.
- Another embodiment includes, an apparatus for driving a coil of an electromagnetic switching device, the apparatus
- the power supply controller is configured to provide a first control signal and a second control signal to the supply switch.
- the supply switch is operable responsive to the first control signal and the second control signal.
- controller is configured to provide the first control signal and the second control signal to the supply switch responsive to a current flowing through the coil.
- the supply switch can be controlled responsive to the current flowing through the coil.
- controller is configured to provide the first control signal and the second control signal to the supply switch for respective predefined time periods.
- the supply switch is operable for respective predefined time periods responsive to the respective control signals.
- controller is configured to provide the first control signal to the supply switch for providing a pick-up current the coil and is configured to provide the second control signal to the supply switch for providing a hold-on current to the coil.
- the pick-up current is the current required for energizing the coil for the circuit closing motion of the contact element.
- the hold-on current is the current provided to the coil from the dc supply source in order to maintain the contactor in the circuit closing position.
- the supply switch is adapted to perform a high frequency switching responsive to the second control signal. Performing a high frequency switching enables in reducing the current being provided to the coil and thus, provide the hold-on current to the coil.
- Another embodiment includes, an electromagnetic switching device comprising the apparatus according to any one of the claims 9 to 14.
- FIG la illustrates a carrier of an electromagnetic
- FIG lb illustrates an assembly of an electromagnet system and the carrier 1 of FIG la according to an embodiment herein
- FIG 2 illustrates a schematic diagram of an apparatus for supplying a pick-up current, a hold-on current and a freewheeling current to a coil according to an embodiment herein
- FIG 3 illustrates a schematic diagram of an apparatus for supplying a pick-up current, a hold-on current and a freewheeling current to a coil and the change in polarity of the coil when the coil is electrically disconnected from a dc supply source according to an embodiment herein.
- a carrier 1 of an electromagnetic switching device is illustrated according to an embodiment herein.
- a contact element 3 is supported in the carrier to be movable form a circuit breaking position to a circuit closing position, wherein the contact element 3 is moved to be in contact with a stationary contact element to be in the circuit closing position.
- the stationary contact may be connected to the input power supply.
- FIG lb illustrates an assembly of an electromagnet system and the carrier 1 of FIG la according to an embodiment herein.
- the carrier 1 comprises a column 7 extending vertically upwards.
- the electromagnet system 8 is supported on the column 7 to actuate the carrier.
- the electromagnet system 8 is shown as comprising electromagnetic armatures 9, 13.
- the electromagnet system 8 may be designed in another way
- the electromagnetic armatures 9, 13 are adapted to actuate the carrier 1.
- the electromagnetic armature 9 engages the column 7 via a member 11 for transferring the armature 9 movement to the carrier 1.
- the carrier 1 in turn moves the contact element 3 into the circuit closing position.
- the electromagnetic armature 9 is in engagement with the column mechanically via the member 11.
- the electromagnetic armature 9 may be engaged with the column 7 using other known mechanical means.
- Another electromagnetic armature 13 comprising coils 17 is also supported on the column 7. In the shown example of FIG lb two coils 17 have been illustrated. However, in certain
- the magnetic armature may comprise only a single coil 17.
- the coils 17 are energized by supplying a current provided by a dc supply source.
- the electromagnetic armature 9 is drawn towards the electromagnetic armature 13. This movement of the
- the carrier 1 may comprise a column extending vertically downwards and the electromagnetic armature 9 and the electromagnetic armature 13 may be supported on the column .
- the contact element 3 In the circuit closing motion, the contact element 3 is moved to be in contact with the stationary contact element.
- the contact element 3 in contact with the stationary contact element is said to be in the circuit closing position.
- the current required for energizing the coil 17 for the circuit closing motion of the contact element 3 is hereinafter referred to as a pick-up current.
- the contact element 3 can be maintained in the circuit closing position by providing a hold-on current and a
- the hold-on current is the current provided to the coil from the dc supply source in order to maintain the contactor in the circuit closing position.
- the freewheeling current herein is referred to the current provided to the coil 17 from the energy stored in the coil 17 to maintain the coil 17 in the circuit closing position.
- the pick-up current is relatively of a very high value than the hold-on current.
- the pick-up current required for energizing a coil is about five to ten times the hold-on current.
- the duration for which the contact element 3 is maintained in the circuit closing position by providing the freewheeling current to the coil is substantially greater than the duration for which the hold-on current is provided to the coil 17.
- FIG 2 illustrates a schematic diagram of an apparatus 18 for supplying a pick-up current, a hold-on current and a
- the supply switch 19 is operable for providing the pick-up current to the coil 17 during circuit closing motion and is operable for providing the hold-on current to the coil 17 for maintaining the contact element 3 of FIG la in a circuit closing position.
- the switch 19 may be a solid state static switch. In the shown example of FIG 2, one supply switch 19 is illustrated for providing the pick-up current and the hold-on current to the coil 17. However, in an aspect, two supply switches may be deployed for providing the pick-up current and the hold-on current to the coil 17.
- one of the supply switches can be configured for providing the pick-up current to the coil 17 during circuit closing motion and the other supply switch can be configured for providing the hold-on current to the coil 17 for maintaining the contact element 3 of FIG lb at the circuit closing position.
- Use of two supply switches for providing the pick-up current and the hold-on current to the coil 17 respectively reduces electrical losses occurring at the supply switches.
- the apparatus 18 further comprises a power supply controller 21 to control the switch 19 for providing the pick-up current and the hold-on current.
- the switch 19 can be controlled responsive to the current flowing through the coil 17.
- the current flowing through the coil 17 can provided to the power supply controller 21 by a conditioning circuit.
- the controller 21 may be a processor, a microcontroller, and the like.
- the switch 19 is turned on to provide the pick-up current to the coil 17.
- the power supply controller 21 can control the switch 19 by providing a first control signal.
- the contact element 3 is in contact with the stationary contact element, the current flowing through the coil 17 decreases. This decrease in the current flowing through the coil 17 is detected by the power supply controller 21.
- the power supply controller 21 in response to the decrease in the current provides a second control signal to the switch 19.
- the switch 19 is operable for high frequency switching to provide the hold-on current to the coil 17 responsive to the second control signal.
- the second control signal in an example, can be a PWM pulse.
- the high frequency switching performed by the switch 19 reduces the current flowing through the coil 17 and thus provides the hold-on current to the coil 17 to maintain the contact element 3 in the circuit closing position.
- the power supply controller 21 can be configured to control the switch 19 for providing the pick-up current and the hold-on current for respective predefined time periods to the coil 17.
- the conditioning circuit may not be required as the control of the switch 19 is not responsive to the current flowing through the coil 17, but is time based.
- the power supply controller 21 can be configured to provide the first control signal for a predefined time period so that the switch 19 is operable for providing the pick-up current to the coil 17 for the
- controller 21 can be configured to provide the second control signal for a predefined time period so that the switch 19 is operable for providing the hold-on current to the coil 17 for the predefined time period.
- the power supply controller 21 can be configured to operate the switch 19 for providing the pick-up current to the coil 17 for about 100 ms and can be configured to operate the switch 19 for providing the hold-on current through high frequency switching for about 10-15% of the time period of maintaining the contact element in circuit closed position.
- the supply switch 19 may be a solid state static switch selected such that it is suitable for carrying high currents and also Perform high frequency switching with minimum frequency loses.
- one supply switch 19 can be a transistor, such as an IGBT and the other supply switch can be an MOSFET.
- An IGBT is capable of carrying high currents and an MOSFET is capable of
- the apparatusl8 further comprises a circuit 25 for providing a freewheeling current to the coil 17.
- the circuit 25 comprises a
- the freewheeling diode 27 for conducting the freewheeling current when an electrical supply to the coil 17 is disconnected.
- the freewheeling diode 27 is connected in parallel to the coil 17 in a reverse direction with respect to the polarity of the dc supply source 20, i.e., an anode of the freewheeling diode 27 is connected to the negative terminal of the dc supply source 18 and the cathode of the freewheeling diode 27 is connected to the positive terminal of the dc supply source 18.
- the circuit 25 further comprises a switch 30 connected in parallel to the freewheeling diode 27.
- the switch 30 can be a solid state static switch, such as an IGBT or an MOSFET.
- the switch 30 is used for providing the freewheeling current to the coil 17 instead of the freewheeling diode 27 as the voltage drop across the switch 30 is less than the voltage drop occurring at the freewheeling diode 27 if the freewheeling current is conducted by the freewheeling diode 27.
- the switch 30 is adapted to be in an on state and an off state responsive to a voltage across the freewheeling diode 27.
- the circuit 25 comprises a controller 35 configured to detect the voltage across the freewheeling diode 27 and provide a control signal to the switch 30 responsive to the voltage detected across the freewheeling diode 27.
- the switch is operable to be in the on state and the off state responsive to the control signal.
- the switch 30 can be adapted to be in the on state when the control signal is being provided and in the off state when no control signal is being provided.
- certain solid state static switches comprise a diode internally referred generally as a body diode.
- the solid state static switch comprises the body diode
- the same can be adapted as the freewheeling diode 27. This eliminates the need of using an external diode as the freewheeling diode 27.
- the switch 19 is closed and the current flows from the positive terminal of the dc supply source 18 to the negative terminal though the coil 17 for a predefined time period.
- the switch 19 is operable to conduct the hold-on current and the hold-on current flows through the coil 17 for a certain pre-defined time period.
- the supply switch 19 is turned off so that the energy stored at the coil 17 can be used for maintaining the contact element 3 in the form of the freewheeling current.
- the hold-on current to the coil 17 may be provided for 10 to 15 ]is .
- the oil 17 can be
- the freewheeling diode 27 When the pick-up current and the hold-on current are being provided to the coil 17, the currents flow though the coil 17 and the freewheeling diode 27 does not conduct the currents as the freewheeling diode 27 is reversed biased.
- the switch 30 is maintained in the off state when the supply switch 19 is in the on state, thus, allowing the current to flow though the coil 17 and avoiding short circuit.
- the freewheeling diode 27 is reversed biased, the voltage drop occurring across the freewheeling diode 27 is negative.
- the controller 35 on detecting the negative voltage drop across the freewheeling diode 27 is configured to maintain the switch 30 in the off state and the switch 30 being in the off state conducts no current .
- freewheeling diode 27 is forward biased relative to the changed polarity of the coil 27 and conducts the freewheeling current, as indicated by the arrow 40 from the positive potential at the bottom of the coil 17 to the negative potential at the top of the coil 17.
- the voltage drop occurring across the freewheeling diode 27 is positive.
- the voltage drop across the diode is about 0.7 to 2 volts.
- the controller 35 on detecting this positive voltage turns on the switch 30 allowing it to conduct the freewheeling current in a loop as indicated by the arrow 45.
- the switch 30 is turned on to conduct the freewheeling current, the freewheeling ceases to flow though the freewheeling diode 27.
- the switch 35 to provide the freewheeling current to the coil 17 enables in reducing the heat dissipation across the freewheeling diode 27 as the freewheeling diode 27 does not conduct the freewheeling current. As the heat dissipation across the freewheeling diode 27 is reduced, smaller heat sinks can be deployed for dissipation of heat, and thus, reduction in cost is achieved.
- the coil 17 is electrically connected to the dc supply source 20 using the switch 19.
- the controller 35 is configured to turn the switch 30 off when the supply switch 19 is turned on. Referring now to FIG 2, after the
- the freewheeling period when the supply switch 19 is turned on the current starts flowing from the positive terminal of the dc supply source 18 to the negative terminal of the dc supply source 18 via the coil 17, and the freewheeling diode 27 is reversed biased. As the freewheeling diode 27 is reversed biased, the voltage drop occurring across the freewheeling diode 27 is negative.
- the controller 35 on detecting the negative voltage drop across the freewheeling diode 27 being more negative than a threshold is configured to turn off the switch 30 and the switch 30 being in the off state conducts no current. Thus, the switch 30 is turned off when the supply switch 19 is turned on to energize the coil 17, and thus, avoiding short circuit.
- the power dissipation across the switch is less than the power dissipation across the freewheeling diode.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Relay Circuits (AREA)
- Electronic Switches (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2010/066145 WO2012055428A1 (en) | 2010-10-26 | 2010-10-26 | Circuit for an electromagnetic switching device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2606502A1 true EP2606502A1 (en) | 2013-06-26 |
EP2606502B1 EP2606502B1 (en) | 2014-11-26 |
Family
ID=44209693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10776969.7A Not-in-force EP2606502B1 (en) | 2010-10-26 | 2010-10-26 | Circuit for an electromagnetic switching device |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2606502B1 (en) |
KR (1) | KR101546297B1 (en) |
CN (1) | CN103180928B (en) |
BR (1) | BR112013010128B1 (en) |
WO (1) | WO2012055428A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101463965B1 (en) * | 2014-03-25 | 2014-12-15 | 태성전장주식회사 | Switching apparatus for high current using semiconductor |
DE102015117593A1 (en) | 2015-10-15 | 2017-04-20 | Eaton Electrical Ip Gmbh & Co. Kg | Control device for an electromagnetic drive of a switching device |
WO2017222333A1 (en) * | 2016-06-24 | 2017-12-28 | 태성전장주식회사 | High-current pcb assembly comprising current breaking apparatus |
US11676786B2 (en) * | 2020-04-09 | 2023-06-13 | Rockwell Automation Technologies, Inc. | Systems and methods for controlling contactor open time |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3864608A (en) * | 1973-05-21 | 1975-02-04 | Mkc Electronics Corp | Combination monostable and astable inductor driver |
CN1005509B (en) * | 1985-05-06 | 1989-10-18 | 西门子公司 | Electromagnetic switch control device |
JPS6269605A (en) * | 1985-09-24 | 1987-03-30 | Mitsubishi Electric Corp | Solenoid driving circuit |
DE3911431A1 (en) * | 1989-04-07 | 1990-10-11 | Siemens Ag | INTEGRATABLE FREE CIRCUIT |
US6061224A (en) | 1998-11-12 | 2000-05-09 | Burr-Brown Corporation | PWM solenoid driver and method |
DE10358858A1 (en) | 2003-12-16 | 2005-07-14 | Robert Bosch Gmbh | Method and device for operating an inductive load with different electrical voltages |
JP5373257B2 (en) * | 2006-08-04 | 2013-12-18 | 日立オートモティブシステムズ株式会社 | High pressure pump drive circuit for engine |
FR2940501B1 (en) * | 2008-12-19 | 2022-05-13 | Schneider Electric Ind Sas | PROCESSING UNIT COMPRISING MEANS FOR CONTROLLING AN ELECTROMAGNETIC ACTUATOR AND ELECTROMAGNETIC ACTUATOR COMPRISING SUCH A PROCESSING UNIT |
-
2010
- 2010-10-26 BR BR112013010128-8A patent/BR112013010128B1/en not_active IP Right Cessation
- 2010-10-26 KR KR1020137013168A patent/KR101546297B1/en not_active Expired - Fee Related
- 2010-10-26 CN CN201080069788.1A patent/CN103180928B/en not_active Expired - Fee Related
- 2010-10-26 EP EP10776969.7A patent/EP2606502B1/en not_active Not-in-force
- 2010-10-26 WO PCT/EP2010/066145 patent/WO2012055428A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2012055428A1 * |
Also Published As
Publication number | Publication date |
---|---|
BR112013010128B1 (en) | 2020-12-08 |
CN103180928A (en) | 2013-06-26 |
KR101546297B1 (en) | 2015-08-21 |
KR20130140029A (en) | 2013-12-23 |
EP2606502B1 (en) | 2014-11-26 |
BR112013010128A2 (en) | 2016-09-06 |
CN103180928B (en) | 2015-09-09 |
WO2012055428A1 (en) | 2012-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4359855B2 (en) | Solenoid valve drive circuit and solenoid valve | |
WO2007011692A1 (en) | Apparatus and method for relay contact arc suppression | |
US10217585B2 (en) | Control circuit for composite switch with contact protection based on diode and relay control method | |
JP2009289671A (en) | Relay control device | |
US10755881B2 (en) | Circuit arrangement for operating electromagnetic drive systems | |
US20150062770A1 (en) | Energy efficient bi-stable permanent magnet actuation system | |
EP2606502B1 (en) | Circuit for an electromagnetic switching device | |
TW201931414A (en) | Relay controller system, bi-stable relay control circuit and method for controlling bi-stable relay | |
US10320187B2 (en) | Apparatus to provide reverse polarity protection | |
KR101496434B1 (en) | Bypass switch apparatus for converter | |
CN107195422B (en) | Coil Actuators for LV or MV Applications | |
EP2513938B1 (en) | Apparatus for an electromagnetic switching device | |
US10395870B2 (en) | Relay with first and second electromagnets for placing and keeping a contact in a closed state | |
KR20170013734A (en) | Relay driving circuit | |
US10305390B2 (en) | Filter circuit for eliminating inrush current, DC coil control circuit, and electromagnetic contactor | |
US11843380B2 (en) | Contactor, and device and method for controlling same | |
US20240429010A1 (en) | Driver for driving an electromechanical device | |
US12237108B2 (en) | Power dumping driver for magnetic actuator | |
CN109958815B (en) | Electromagnetic driver with electromagnetic plunger motion detection circuit | |
JPH1032995A (en) | Drive unit for dc motor | |
JPH04107368A (en) | Solenoid valve driving device | |
JP2016025109A (en) | Electromagnet driving circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130306 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140624 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 698612 Country of ref document: AT Kind code of ref document: T Effective date: 20141215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010020575 Country of ref document: DE Effective date: 20150108 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 698612 Country of ref document: AT Kind code of ref document: T Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150226 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150326 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150227 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010020575 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
26N | No opposition filed |
Effective date: 20150827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151026 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151026 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101026 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20211220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221017 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20221011 Year of fee payment: 13 Ref country code: IT Payment date: 20221024 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010020575 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230503 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231026 |