[go: up one dir, main page]

EP2598664B1 - Hochtemperaturbelastbarer mit scandium legierter aluminium-werkstoff mit verbesserter extrudierbarkeit - Google Patents

Hochtemperaturbelastbarer mit scandium legierter aluminium-werkstoff mit verbesserter extrudierbarkeit Download PDF

Info

Publication number
EP2598664B1
EP2598664B1 EP11761484.2A EP11761484A EP2598664B1 EP 2598664 B1 EP2598664 B1 EP 2598664B1 EP 11761484 A EP11761484 A EP 11761484A EP 2598664 B1 EP2598664 B1 EP 2598664B1
Authority
EP
European Patent Office
Prior art keywords
weight
scandium
primary material
alloy
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11761484.2A
Other languages
English (en)
French (fr)
Other versions
EP2598664A1 (de
Inventor
Frank Palm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations GmbH filed Critical Airbus Operations GmbH
Publication of EP2598664A1 publication Critical patent/EP2598664A1/de
Application granted granted Critical
Publication of EP2598664B1 publication Critical patent/EP2598664B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component

Definitions

  • the invention relates to a high-temperature scandium alloyed aluminum material, a process for its preparation and the use of a process for its preparation.
  • the object of the present invention is to provide a method for producing a scandium alloyed aluminum material and the use of such a method, whereby the high temperature load capacity of this material is improved. It is further desirable to provide a method for producing a scandium-alloyed aluminum material and the use of such a method that makes it possible to reduce the amount of scandium used.
  • Another object of the present invention is to provide a scandium-alloyed aluminum material and a method of making the same, the scandium-alloyed aluminum material having improved strength and thermal stability.
  • a use of a method comprising the steps of: (a) introducing a precursor comprising an alloy comprising the metals aluminum and scandium into a vacuum chamber, said precursor being an AlMgMnScZr alloy consisting of 4.3 wt% Magnesium, 0.7% by weight scandium, 0.3% by weight zirconium and 0.5% by weight manganese, in each case based on the total weight of the alloy, the proportion of impurities in the total weight of the alloy being below 0.5% by weight, the rest is aluminum, (b) vacuum gases of the starting material at a vacuum of 0.1 to 10 -8 mbar and a temperature of 275 to 400 ° C over a period of 15 to 30 minutes, (c) gassing the starting material with nitrogen a duration of 1 to 30 minutes, where the nitrogen contains a water content of less than 1000 ppm, and (d) final vacuum degassing of the raw material at a vacuum of 0.1 to 10 -8 mbar and a temperature of
  • a method of making a high temperature scandium alloyed aluminum material comprising the steps of: (a) introducing a precursor material comprising an alloy comprising the metals aluminum and scandium into a vacuum chamber, the precursor material comprising an AlMgMnScZr; Alloy consisting of 4.3 wt .-% magnesium, 0.7 wt .-% scandium, 0.3 wt .-% zirconium and 0.5 wt .-% manganese, each based on the total weight of the alloy, wherein the proportion of impurities in the total weight of the Alloy below 0.5 wt .-%, the rest is aluminum, wherein the starting material (b) vacuum gases of the starting material at a vacuum of 0.1 to 10 -8 mbar and a temperature of 275 to 400 ° C over a period of 15 to 30 minutes, (c) gasification of the starting material with nitrogen for a period of 1 to 30 minutes, the nitrogen having a water content
  • a high temperature scannable aluminum alloy material obtainable by a process comprising the steps of: (a) incorporating a primary material comprising an alloy comprising the metals aluminum and scandium in a vacuum chamber, wherein the starting material is an AlMgMnScZr alloy consisting of 4.3 wt .-% magnesium, 0.7 wt .-% scandium, 0.3 wt .-% zirconium and 0.5 wt .-% manganese, each based on the total weight of the alloy, wherein the proportion of impurities in the total weight of the alloy is less than 0.5 wt .-%, the balance is aluminum, wherein the starting material was prepared by the melt spinning method, (b) vacuum gases of the starting material at a vacuum of 0.1 to 10 -8 mbar and a temperature of 275 to 400 ° C over a period of 15 to 30 minutes, (c) gassing the starting material with nitrogen over a period of 1 to 30 minutes, the starting material was prepared by the melt spinning method,
  • the inventive method and / or its use allows the production of AlSc materials, which have a larger processing window for the production of semi-finished products.
  • the materials produced by the process according to the invention and / or its use can be processed at higher temperatures, faster extrusion rates and higher injection ratios. This is for example advantageous for the production of semi-finished products by means of the extrusion process.
  • the invention enables the production of lightweight and corrosion-resistant AlSc materials with very high heat resistance. These materials according to the invention have a high toughness and damage tolerance and allow cost-effective process leading.
  • the inventive method and its use has the advantage that the reinforcement takes place "in situ" and, for example, no nanoscale reinforcing phase powder must be used, which are difficult to process and explosive.
  • an "aluminum material” is understood to mean a metallic material which consists essentially of aluminum and may be alloyed with other metals.
  • a "high-temperature-loadable AlSc material” is an aluminum material alloyed with scandium and, if appropriate, even further metals, whose structure or microstructure is at a Temperature load of more than 350 ° C remains largely stable, ie the grain size and the amount of precipitates, as well as their size and distribution remains largely constant, so that the material has similar strength properties at room temperature as before the temperature.
  • a "high-temperature-resistant AlSc material” in the context of the present invention preferably exhibits a drop in tensile strength R m of less than 5% and / or after a temperature of 375 ° C. after a temperature exposure of 350 ° C. to the starting material at room temperature the starting material at room temperature, a drop in the tensile strength R m of less than 10%.
  • a use of a method for producing a high-temperature scandium-alloyed aluminum material described here comprises the following method steps: (a) introducing a starting material comprising an alloy comprising the metals Al and Sc into a vacuum chamber (b) vacuum gases of the starting material, (c) Gassing the primary material with nitrogen, (d) final vacuum degassing of the primary material, and (e) compacting the primary material immediately following step (d) in the vacuum chamber.
  • the primary material used in the process comprises an alloy comprising the metals aluminum and scandium.
  • the amount of scandium in the alloy is 0.7% by weight based on the total mass of the alloy.
  • the alloy additionally includes Zr, which has properties similar to scandium in aluminum materials. This element can behave additively with the scandium, ie it can be forcibly dissolved with the scandium in the aluminum material and thus allow an increase in solidification by precipitation hardening.
  • the Al 3 Sc phase is modified by replacing part of the scandium with Zr.
  • the alloy used as the starting material in the present invention additionally comprises, in addition to aluminum and scandium, zirconium in an amount of 0.3% by weight.
  • zirconia alters the precipitated Al 3 Sc phase to Al 3 Sc 1 -x Zr x without losing its strength-increasing effect.
  • zirconium additive For example, the minimum cooling rate that must be maintained to produce a scandium and zirconium supersaturated solid solution can be reduced. The aging and thus the decline in the hardenability is slowed down. This allows the AlScZr alloy to withstand a certain temperature for an extended period of time before it begins to over age. At the same time, the use of zircon allows some reduction in the amount of scandium in the alloy, which is a relatively expensive alloying element due to its rarity.
  • the alloy comprises Mg and Mn.
  • the properties of the material produced from the starting material can be specifically influenced.
  • the addition of magnesium and manganese increases the strength of the aluminum material and thus enables the production of particularly hard materials.
  • the starting material comprises an alloy comprising the metals aluminum, magnesium, manganese, scandium and zirconium.
  • impurities are usually always included.
  • impurities are elements such as e.g. Alkali metals, Fe, Si, Be or In. These impurities may each be present in an amount of up to about 0.5% by weight, and in total in an amount of up to 2% by weight, based in each case on the total mass of the alloy.
  • impurities do not affect either the process of the invention or its use, or the AlSc material according to the invention.
  • an AlMgMnScZr alloy is used as a starting material, which consists mainly of aluminum and alloys of 4.3 wt .-% magnesium, 0.7 wt .-% scandium, 0.3 wt .-% zirconium and 0 , 5 wt .-% manganese, each based on the total weight of the alloy, wherein the proportion of impurities such as Fe, Si, Zn, etc., the total weight of the alloy is below 0.5 wt .-%.
  • the starting material is used as a particulate material, for example in the form of a powder, a granulate or in the form of flakes.
  • the starting material is introduced as a loose bed in the vacuum chamber.
  • the bulk density may for example be between 5 and 40%, 10 and 30% or 15 and 20%. However, it is also possible to precompact the starting material to a density of up to 50%.
  • the starting material used is a rapidly solidified material which has been obtained by means of a powder metallurgy rapid solidification processing ("rapid solidification processing").
  • the accelerated cooling makes it possible to dissolve considerably more scandium in the supersaturated solid solution than would be possible in the equilibrium state.
  • the cooling of the starting material at cooling rates of 100 to 10 9 K / s carried out, for example, at cooling rates of 1000 to 10 8 K / s, from 10 4 to 10 7 K / s or from 10 5 to 10 6 K / s.
  • Suitable processes for the production of a rapidly solidified starting material are, for example, atomization or atomization, the centrifugal mold process, splat cooling or the melt spinning process.
  • the starting material is produced by means of the melt spinning process.
  • the molten alloy is poured through a ceramic die onto a rapidly rotating, water-cooled metal cylinder.
  • the intimate contact between the forming metal film and the cylinder and its high thermal conductivity cause an extremely rapid cooling.
  • the metal film is lifted so that forms a continuous thin band.
  • the cooling rate correlates with the strip thickness, which in turn can be controlled by the roll speed.
  • the strip thickness can be, for example, between 0.01 and 1.00 mm.
  • the strip thickness is less than 0.1 mm.
  • the strip thus obtained can be comminuted to produce a particulate material.
  • the starting material produced by the melt spinning process can be further processed, for example in the form of granules.
  • a granulate produced by the melt spinning method has the advantage that it can be handled much easier and without special safety precautions compared to a powdery starting material, which poses a high risk of explosion due to its large surface area.
  • the use of a starting material produced by the melt spinning process allows a simplified and more efficient process management.
  • the introduced into the vacuum chamber precursor is degassed according to step (b) of the method according to the invention and / or the use according to the invention in a vacuum.
  • the starting material the surface of which may be contaminated with hydrogen, oxides and hydroxides and moisture, is treated in a vacuum so as to remove any such undesired contaminants.
  • the vacuum degassing is carried out in a suitable gastight container, also called vacuum chamber or recipient, wherein this one Gas outlet which is connected via a valve with a vacuum system.
  • the vacuum degassing is carried out at a vacuum of 0.1 to 10 -8 mbar.
  • the vacuum chamber can be controlled so that the vacuum in a range of 8-10 -2 to 10 -7 mbar, 5.10 -2 to 10 -6 mbar, 2.5 ⁇ 10 -2 to 10 -5 mbar or 10 - 2 to 10 -4 mbar.
  • the degassing process is carried out to increase the efficiency at an elevated temperature of 275 to 400 ° C, preferably at a temperature of 275 to 380 ° C or 275 to 350 ° C, more preferably at 290 ° C.
  • the vacuum degassing is carried out according to process steps (b) and (d) over a period of 15 minutes to 30 minutes.
  • the vacuum degassing according to process step (b) and / or (d) is at a vacuum of 0.05 mbar and a temperature of 290 ° C over a period of 15 to 30 minutes.
  • the vacuum degassing step (b) is interrupted by a step (c) in which the starting material is sparged with nitrogen.
  • the nitrogen is introduced into the vacuum chamber via the gas outlet to which the vacuum system is connected, the gas outlet being provided with a valve suitable for this purpose, e.g. with a 3/2-way valve.
  • the nitrogen gas can be inflated, for example, on the surface of the starting material or blown from below through the starting material.
  • Suitable is nitrogen containing less than 1000 ppm water, e.g. less than 500 ppm, less than 250 ppm, less than 100 ppm, less than 50 ppm, or less than 5 ppm of water.
  • the gassing of the starting material with nitrogen takes place over a period of 1 to 30 minutes, 2 to 20 minutes or 5 to 15 minutes. According to an exemplary embodiment, the gasification of the starting material takes place with nitrogen over a period of 10 min. According to another exemplary embodiment, the starting material is at least as long gassed with nitrogen until there is atmospheric pressure in the vacuum chamber.
  • Steps (b) and (c) may be performed one or more times in succession. According to one embodiment of the present invention, steps (b) and (c) are performed several times in succession, for example, 1 to 10 times, 2 to 9 times, 3 to 8 times, 4 to 7 times, or 5 to 6 times. Preferably, steps (b) and (c) are performed 5 times in succession.
  • a final vacuum degassing of the starting material takes place as process step (d).
  • the vacuum degassing is carried out as described under step (b).
  • the total duration of process steps (b), (c) and (d) is not more than 3000 min, 500 min, 300 min, 150 min or 100 min.
  • the starting material is compacted.
  • the compression can be done mechanically or by gas pressure.
  • suitable mechanical compression methods are cold pressing, isostatic pressing or vacuum pressing.
  • An example of a suitable gas pressure compression process is hot isostatic pressing (HIP).
  • HIP hot isostatic pressing
  • the compression can be done at atmospheric pressure or under vacuum.
  • the starting material is compressed in the vacuum chamber following the final degassing step (d).
  • the precursor material is compacted after the final degassing step (d) by means of mechanical vacuum pressing in the vacuum chamber.
  • the densified AlSc material may have a density greater than 80%, greater than 90%, greater than 95%, greater than 98%, or greater than 99%. According to a preferred embodiment, the density of the densified AlSc material is greater than 95%.
  • the resulting AlSc material can be transformed to produce semi-finished products and molded parts.
  • suitable forming processes are extruding or extrusion, rolling, forging, ironing, stamping, extrusion or deep drawing.
  • the AlSc material produced by the method according to the invention or its use has improved extrudability or extrudability. Due to its high temperature resistance, the extrusion of the AlSc material according to the invention can be carried out at higher temperatures, whereby the flow resistance or deformation resistance of the material decreases and this is better deformed.
  • An "AlSc material with improved extrudability" in the context of the present invention may preferably be further processed at a temperature of more than 320 ° C by means of extrusion without the tensile strength R m of the material compared to the starting material at room temperature, ie at 20 ° C, falls significantly.
  • the AlSc material according to the invention after being extruded at about 350 ° C.
  • the compacted AlSc material is further processed by extrusion at 320 to 400 ° C, preferably at 340 to 375 ° C or at about 350 ° C.
  • the materials produced by the method or its use according to the invention can be used, for example, for producing a welded, rolled, forged or extruded or extruded component for an aircraft, a sea-going vehicle or a motor vehicle. According to a preferred embodiment, the materials produced by the method according to the invention or its use are used for producing an extruded or extruded component for an aircraft, a sea-going vehicle or a motor vehicle.
  • the starting material used was an AlMgScZr alloy, which consisted mainly of aluminum and alloys of 4.3% by weight of magnesium, 0.7% by weight of scandium, 0.3% by weight of zirconium and 0.5% by weight. -% manganese is, in each case based on the total weight of the alloy.
  • the content of impurities such as Fe, Si, Zn, etc. in the total weight of the alloy was below 0.5 wt%.
  • the AlMgScZr alloy was used in the form of granules prepared by the melt spinning method.
  • the nominal strip thickness, which defines the achievable cooling rate during the melt spinning process, was 0.100 mm. From this, a maximum cooling rate (derived from the so-called dendrite arm spacing, which was determined by metallography) of about 2 ⁇ 10 5 K / s is calculated.
  • a material A was produced from the AlMgScZr starting material by a production process for AlMgSc materials according to the prior art (process A) and a material B by the process according to the invention (process B). The further processing of the two materials to round bars by extrusion was the same.
  • the starting material was placed in a recipient with a diameter of 31 mm as a loose bed with a height of 150 mm.
  • the recipient had a gas outlet, which was connected via a valve to a vacuum system.
  • the vacuum degassing was carried out at 5 ⁇ 10 -2 mbar and a temperature of 290 ° C. over a period of 120 minutes.
  • the starting material in the recipient was mechanically compacted into a bolt under vacuum in a 200 t press at a temperature of 290 ° C. and a pressing force of about 330 N / mm 2 .
  • the obtained stud had a density of about 99% and a height of 25 mm.
  • the starting material was placed in a recipient with a diameter of 31 mm as a loose bed with a height of 150 mm.
  • the recipient had a gas outlet connected to a vacuum system and a nitrogen source via a 3/2-way valve.
  • the vacuum degassing was at 5 ⁇ 10 -2 mbar and a temperature of 290 ° C over a period of 15 min performed.
  • dry nitrogen having a water content of less than 100 ppm was introduced into the recipient until atmospheric pressure prevailed in the vacuum chamber.
  • the vacuum degassing step described above and the subsequent sparging with nitrogen were carried out a total of 5 times. This was followed by a final vacuum degassing at 5 ⁇ 10 -2 mbar and a temperature of 290 ° C.
  • the total duration of the process was 300 min.
  • the starting material in the recipient was mechanically compacted into a bolt under vacuum in a 200 t press at a temperature of 290 ° C. and a pressing force of about 330 N / mm 2 .
  • the obtained stud had a density of about 99% and a height of 25 mm.
  • the obtained according to methods A and B and cooled to room temperature bolts were removed from the recipient and overdriven to a diameter of 30 mm and a length of 22 mm. Subsequently, the bolts were heated in an extrusion device in the oven to about 320 ° C, wherein heating time and holding time totaled 120 min.
  • the extrusion was carried out with a 200 t press with a continuously increasing extrusion speed, the initial speed was 250 mm / min and the final speed 4000 mm / min.
  • the pressed profile geometry was a round bar with a Diameter of 6 mm and a length of about 500 mm.
  • the compression ratio was 25: 1.
  • the results of the strength test show that the strength of the material B is largely constant. With increasing pressing speed, and the concomitant additional (adiabatic) material deformation heating, the strength of the material B produced by the process according to the invention is retained for a long time and drops slightly towards the end of the strand (by about 6%). On the other hand, in the material A produced by the method of the prior art, the strength at the end of the rod greatly drops. The loss of strength of the material A is already more than 11% in the strand center and even more than 25% at the strand end.
  • the inventive method and / or its use thus enables the production of scandium-alloyed aluminum materials, which have a consistently high material strength even at high deformation rates (extrusion rates).
  • the modified AlMgSc material according to the invention can be extruded at higher temperatures than the prior art without suffering the above-described large strength losses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)

Description

  • Die Erfindung betrifft einen hochtemperaturbelastbaren, mit Scandium legierten Aluminium-Werkstoff, ein Verfahren zu seiner Herstellung sowie die Verwendung eines Verfahrens zu seiner Herstellung.
  • Sowohl in der Luftfahrt als auch in der Fahrzeugtechnik werden spezielle Legierungen benötigt, um Halbzeuge und Bauteile mit hoher Festigkeit sowie Duktilität herzustellen. Daneben spielt das Gewicht und die Korrosionsbeständigkeit eine wichtige Rolle.
  • In den vergangenen vier Jahrzehnten ist die Herstellung von höherfesten mit Scandium legierten Aluminium-Werkstoffen in verschiedenen Halbzeugformen, wie z.B. Bleche, Profile, Schmiedeteile oder Guss, vielfach beschrieben worden. Diese Werkstoffe weisen eine hohe Festigkeit, eine hohe metallurgische Stabilität und einen sehr guten Korrosionswiderstand auf. Der verbesserten Festigkeit dieser Werkstoffe liegt die Ausscheidung von kohärenten Al3Sc-Phasen zu Grunde, die mittels definierter Wärmebehandlung gezielt erzeugt werden können.
  • Mit Scandium legierte Aluminium-Magnesium-Werkstoffe sind beispielsweise aus US 3619181 , US 6258318 B1 oder EP 0918095 A1 bekannt. Ein Verfahren zur Herstellung von mit Scandium oder Zirkon legierten Aluminiumblechmaterialien mit erhöhter Risszähigkeit ist in DE 102 48 594 A1 be-schrieben. Aus US 4,104,061 ist ein Verfahren zur Entfernung von Verunreinigungen aus einer Metalllegierung bekannt, bei dem eine Legierungen mehreren Zyklen bestehend aus einer Vakuumentgasung und einer Begasung mit einem reinigenden Gas unterworfen wird.
  • Mit Scandium legierte Aluminium-Werkstoffe weisen allerdings oft keine ausreichend hohe, dauerhafte Festigkeit bei erhöhten Temperaturen auf. Es ist beispielsweise bekannt, dass das Strangpressen von AlMgSc-Legierungen bei relativ niedrigen Temperaturen zwischen 300 und 350°C stattfinden muss, da ansonsten die hohe Temperatur des Pressbolzens zur ungewollten Entfestigen des AlMgSc-Materials infolge von Alterung der Al3Sc-Ausscheidungen führt. Bei diesen Temperaturen ist jedoch der Umformungswiderstand dieser Legierung deutlich erhöht, so dass nur mit einer verringerten Pressgeschwindigkeit gearbeitet werden kann. Diese Problematik wird zusätzlich verstärkt durch die Erwärmung des stranggepressten AlMgSc-Werkstoffs während des Umformungsvorgangs innerhalb der Strangpressmatrize. Dieser als adiabatische Erwärmung bekannte Prozess läuft zwangsläufig während des Strangpressens von Aluminium-Werkstoffen ab und führt zu einer weiteren Erwärmung des AlMgSc-Materials, so dass trotz einer definierten Erwärmung des Pressbolzens auf 350°C in der Legierung auf Grund der Umformarbeit kurzfristig 400°C oder bei großer Pressgeschwindigkeit sogar 450°C erreicht werden. Werkstofftechnisch betrachtet, ist das Ergebnis einer zusätzlichen Wärmezufuhr gleichzusetzen mit einer deutlichen Überalterung und einer damit einhergehenden Entfestigung der Legierung. Ein solches entfestigtes Material zeigt beispielsweise eine deutlich verringerte Zugfestigkeit.
  • Es besteht somit Bedarf an einem Aluminium-Werkstoff, der diese Nachteile nicht aufweist.
  • Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Herstellung eines mit Scandium legierten Aluminium-Werkstoffs sowie die Verwendung eines solchen Verfahrens bereitzustellen, wodurch die Hochtemperaturbelastbarkeit dieses Werkstoffs verbessert wird. Es ist ferner wünschenswert, ein Verfahren zur Herstellung eines mit Scandium legierten Aluminium-Werkstoffs sowie die Verwendung eines solchen Verfahrens bereitzustellen, das es ermöglicht, die Menge an eingesetztem Scandium zu verringern.
  • Eine weitere Aufgabe der vorliegenden Erfindung ist es, einen mit Scandium legierten Aluminium-Werkstoff sowie ein Verfahren zu seiner Herstellung bereitzustellen, wobei der mit Scandium legierten Aluminium-Werkstoff eine verbesserte Festigkeit und eine verbesserte thermische Stabilität aufweist. Darüber hinaus ist es wünschenswert, einen mit Scandium legierten Aluminium-Werkstoff bereitzustellen, der bei hohen Temperaturen umgeformt werden kann, ohne dass eine Entfestigung der Legierung auftritt. Des Weiteren ist es wünschenswert, dass der mit Scandium legierten Aluminium-Werkstoff eine verbesserte Strangpressbarkeit aufweist und mit hohen Pressgeschwindigkeiten verarbeitet werden kann.
  • Eine erfindungsgemäße Lösung wird in den unabhängigen Ansprüchen wiedergegeben. Bevorzugte Ausführungsformen ergeben sich durch Kombination mit den Merkmalen der Unteransprüche.
  • Gemäß einem Aspekt der Erfindung wird eine Verwendung eines Verfahrens, umfassend die Schritte: (a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Aluminium und Scandium in eine Vakuumkammer,wobei das Vormaterial eine AlMgMnScZr-Legierung ist, bestehend aus 4.3 Gew.-% Magnesium, 0.7 Gew.-% Scandium, 0.3 Gew.-% Zirkon und 0.5 Gew.-% Mangan, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen an dem Gesamtgewicht der Legierung unterhalb von 0.5 Gew.-% liegt, der Rest ist Aluminium, (b) Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min, (c) Begasen des Vormaterials mit Stickstoff über eine Dauer von 1 bis 30 min, wobei der Stickstoff einen Wassergehalt von weniger als 1000 ppm enthält, und (d) abschließendes Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min, zur Herstellung eines hochtemperaturbelastbaren, mit Scandium legierten Aluminium-Werkstoffs, wobei das Verfahren einen weiteren, zusätzlichen Schritt (e) umfasst, in dem das Vormaterial direkt in Anschluss an Schritt (d) in der Vakuumkammer verdichtet wird, angegeben.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zur Herstellung eines hochtemperaturbelastbaren, mit Scandium legierten Aluminium-Werkstoffs angegeben umfassend die Schritte: (a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Aluminium und Scandium in eine Vakuumkammer, wobei das Vormaterial eine AlMgMnScZr-Legierung ist, bestehend aus 4.3 Gew.-% Magnesium, 0.7 Gew.-% Scandium, 0.3 Gew.-% Zirkon und 0.5 Gew.-% Mangan, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen an dem Gesamtgewicht der Legierung unterhalb von 0.5 Gew.-% liegt, der Rest ist Aluminium, wobei das Vormaterial nach dem Schmelzspinn-Verfahren hergestellt wurde, (b) Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min, (c) Begasen des Vormaterials mit Stickstoff über eine Dauer von 1 bis 30 min, wobei der Stickstoff einen Wassergehalt von weniger als 1000 ppm enthält, und (d) abschließendes Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min, wobei das Verfahren einen weiteren, zusätzlichen Schritt (e) umfasst, in dem das Vormaterial direkt in Anschluss an Schritt (d) in der Vakuumkammer verdichtet wird.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung, wird ein hochtemperaturbelastbarer, mit Scandium legierter Aluminium-Werkstoff bereitgestellt, der durch ein Verfahren erhältlich ist, das die folgenden Schritte umfasst: (a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Aluminium und Scandium in eine Vakuumkammer, wobei das Vormaterial eine AlMgMnScZr-Legierung ist, bestehend aus 4.3 Gew.-% Magnesium, 0.7 Gew.-% Scandium, 0.3 Gew.-% Zirkon und 0.5 Gew.-% Mangan, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen an dem Gesamtgewicht der Legierung unterhalb von 0.5 Gew.-% liegt, der Rest ist Aluminium, wobei das Vormaterial nach dem Schmelzspinn-Verfahren hergestellt wurde, (b) Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min, (c) Begasen des Vormaterials mit Stickstoff über eine Dauer von 1 bis 30 min, wobei der Stickstoff einen Wassergehalt von weniger als 1000 ppm enthält, und (d) abschließendes Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min, wobei das Verfahren einen weiteren, zusätzlichen Schritt (e) umfasst, in dem das Vormaterial direkt in Anschluss an Schritt (d) in der Vakuumkammer verdichtet wird.
  • Bevorzugte Ausführungsformen sind in den entsprechenden, abhängigen Ansprüchen offenbart.
  • Das erfindungsgemäße Verfahren und/oder dessen Verwendung erlaubt die Herstellung von AlSc-Werkstoffen, die ein größeres Verarbeitungsfenster für die Herstellung von Halbzeugen aufweisen. Beispielsweise können die nach dem erfindungsgemäßen Verfahren und/oder dessen Verwendung hergestellten Werkstoffe bei höheren Temperaturen, schnelleren Auspressgeschwindigkeiten und höheren Verpress-Verhältnissen verarbeitet werden. Dies ist beispielsweise für die Herstellung von Halbzeugen mittels des Strangpress-Verfahrens von Vorteil.
  • Des Weiteren ermöglicht die Erfindung die Herstellung leichter und korrosionssicherer AlSc-Werkstoffe mit sehr hoher Warmfestigkeit. Diese erfindungsgemäß hergestellten Werkstoffe weisen eine hohe Zähigkeit und Schadenstoleranz auf und ermöglichen eine kostengünstige Prozessführen. Das erfindungsgemäße Verfahren und dessen Verwendung hat den Vorteil, dass die Verstärkung "in situ" erfolgt und beispielsweise keine nanoskaligen Verstärkungsphasenpulver eingesetzt werden müssen, die schwer zu verarbeiten und explosionsgefährlich sind.
  • Unter einem "Aluminium-Werkstoff" wird im Sinne der vorliegenden Erfindung ein metallisches Material verstanden, das im Wesentlichen aus Aluminium besteht und mit weiteren Metallen legiert sein kann.
  • Ein "hochtemperaturbelastbarer AlSc-Werkstoff" im Sinne der vorliegenden Erfindung ist ein mit Scandium und gegebenenfalls noch weiteren Metallen legierter Aluminium-Werkstoff, dessen Gefüge oder Mikrostruktur bei einer Temperaturbelastung von mehr als 350°C weitestgehend stabil bleibt, d.h. die Korngröße und die Menge der Ausscheidungen, sowie deren Größe und Verteilung bleibt weitgehend konstant, so dass der Werkstoff bei Raumtemperatur ähnliche Festigkeitseigenschaften besitzt wie vor der Temperaturbeaufschlagung. Ein "hochtemperaturbelastbarer AlSc-Werkstoff" im Sinne der vorliegenden Erfindung weist vorzugsweise nach einer Temperaturbeaufschlagung von 350°C gegenüber dem Ausgangsmaterial bei Raumtemperatur einen Abfall in der Zugfestigkeit Rm von weniger als 5% auf und/oder nach einer Temperaturbeaufschlagung von 375°C gegenüber dem Ausgangsmaterial bei Raumtemperatur einen Abfall in der Zugfestigkeit Rm von weniger als 10% auf.
  • Ein hier beschriebene Verwendung eines Verfahren zur Herstellung eines hochtemperaturbelastbaren, mit Scandium legierten Aluminium-Werkstoffs umfasst die folgenden Verfahrensschritte: (a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Al und Sc in eine Vakuumkammer (b) Vakuumentgasen des Vormaterials, (c) Begasen des Vormaterials mit Stickstoff, (d) abschließendes Vakuumentgasen des Vormaterials, und (e) Verdichten des Vormaterials direkt im Anschluss an Schritt (d) in der Vakuumkammer.
  • Das in dem Verfahren eingesetzte Vormaterial umfasst eine Legierung umfassend die Metalle Aluminium und Scandium. Die Menge an Scandium in der Legierung ist 0,7 Gew.-% bezogen auf die Gesamtmasse der Legierung.
  • Die Legierung umfasst zusätzlich Zr, das in Aluminium-Materialien ähnliche Eigenschaften wie Scandium aufweist. Dieses Element kann sich mit dem Scandium additiv verhalten, d.h. es kann mit dem Scandium in dem Aluminium-Material zwangsgelöst werden und so eine Festigungssteigerung durch Ausscheidungshärtung ermöglichen. Dabei wird die Al3Sc Phase dadurch modifiziert, dass ein Teil des Scandiums durch Zr ersetzt wird.
  • Die in der vorliegenden Erfindung als Vormaterial eingesetzte Legierung umfasst, neben Aluminium und Scandium, zusätzlich Zirkon in einer Menge von 0,3 Gew.-%.
  • Es wird angenommen, dass durch den Zusatz von Zirkon in eine AlSc-Legierung die ausgeschiedene Al3Sc-Phase zu Al3Sc1-xZrx modifiziert wird, ohne dass sie an ihrer festigkeitssteigernden Wirkung verliert. Durch den Zirkon-Zusatz kann z.B. die minimale Abkühlungsgeschwindigkeit verringert werden, die eingehalten werden muss, um einen mit Scandium und Zirkon übersättigten Mischkristall zu erzeugen. Die Überalterung und damit der Rückgang der Verfestigungsfähigkeit wird verlangsamt. Dadurch kann die AlScZr-Legierung über einen längeren Zeitraum eine bestimmte Temperatur aushalten, bevor sie zu überaltern beginnt. Gleichzeitig erlaubt der Einsatz von Zirkon eine gewisse Verringerung der Menge an Scandium in der Legierung, welches auf Grund seiner Seltenheit ein relativ teures Legierungselement ist.
  • Die Legierung umfasst zusätzlich zu den vorgenannten Legierungselementen Mg und Mn Durch den Zusatz dieser Elemente können die Eigenschaften des aus dem Vormaterial hergestellten Werkstoffs gezielt beeinflusst werden. Der Zusatz von Magnesium und Mangan erhöht die Festigkeit des Aluminium-Werkstoffs und ermöglicht so die Herstellung besonders harter Werkstoffe.
  • Das Vormaterial umfasst eine Legierung umfassend die Metalle Aluminium, Magnesium, Mangan, Scandium und Zirkon.
  • In kommerziell erhältlichen Aluminium-Legierungen sind in der Regel immer auch unerwünschte, aber meist tolerierbare, Verunreinigungen enthalten. Beispiele für solche Verunreinigungen sind Elemente wie z.B. AlkaliMetalle, Fe, Si, Be oder In. Diese Verunreinigungen können jeweils in einer Menge bis zu etwa 0,5 Gew.-% vorhanden sein, und insgesamt in einer Menge bis zu 2 Gew.-%, jeweils bezogen auf die Gesamtmasse der Legierung. Solche Verunreinigungen beeinträchtigen jedoch weder das erfindungsgemäße Verfahren oder dessen Verwendung, noch den erfindungsgemäßen AlSc-Werkstoff.
  • In der vorliegenden Erfindung wird eine AlMgMnScZr-Legierung als Vormaterial eingesetzt, die in der Hauptsache aus Aluminium sowie Zulegierungen von 4,3 Gew.-% Magnesium, 0,7 Gew.-% Scandium, 0,3 Gew.-% Zirkon und 0,5 Gew.-% Mangan besteht, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen wie Fe, Si, Zn, usw. An dem Gesamtgewicht der Legierung unterhalb von 0,5 Gew.-% liegt.
  • Gemäß einer Ausführungsform wird das Vormaterial als partikelförmiges Material eingesetzt, z.B. in Form eines Pulvers, eines Granulats oder in Form von Flocken. Gemäß einer Ausführungsform wird das Vormaterial als lose Schüttung in die Vakuumkammer eingebracht. Die Schüttdichte kann beispielsweise zwischen 5 und 40%, 10 und 30 % oder 15 und 20% liegen. Es besteht jedoch auch die Möglichkeit das Vormaterial auf eine Dichte von bis zu 50% vorzukompaktieren.
  • Gemäß einer Ausführungsform wird als Vormaterial ein schnell erstarrtes Material eingesetzt, das mittels eines pulvermetallurgischen Schnellerstarrungs-Verfahrens (engl. "rapid solidification processing") erhalten wurde. Die beschleunigte Abkühlung ermöglicht es, erheblich mehr Scandium in dem übersättigten Mischkristall zu lösen, als dies im Gleichgewichtszustand möglich wäre. Beispielsweise kann die Abkühlung des Vormaterials bei Abkühlgeschwindigkeiten von 100 bis 109 K/s erfolgen, z.B. bei Abkühlungsgeschwindigkeiten von 1000 bis 108 K/s, von 104 bis 107 K/s oder von 105 bis 106 K/s. Geeignete Verfahren zur Herstellung eines schnell erstarrten Vormaterials sind beispielsweise Verdüsen oder Atomisieren, das Schleuder-Kokillen-Verfahren, Splat-Cooling oder das Schmelzspinn-Verfahren.
  • Gemäß einer bevorzugten Ausführungsform wird das Vormaterial mittels des Schmelzspinn-Verfahrens hergestellt. Bei diesem Verfahren wird die aufgeschmolzene Legierung durch eine keramische Düse auf einen rasch rotierenden, wassergekühlten Metallzylinder aufgegossen. Der innige Kontakt zwischen dem sich bildenden Metallfilm und dem Zylinder sowie dessen hohe Wärmeleitfähigkeit bewirken eine extrem schnelle Abkühlung. Vor einer vollen Umdrehung des Metallzylinders wird der Metallfilm abgehoben, so dass sich ein kontinuierliches dünnes Band bildet. Die Abkühlungsgeschwindigkeit korreliert mit der Banddicke, die wiederum durch die Walzengeschwindigkeit gesteuert werden kann. Die Banddicke kann beispielsweise zwischen 0,01 und 1,00 mm liegen. Vorzugsweise beträgt die Banddicke weniger als 0,1 mm. Das so erhaltene Band kann zur Herstellung eines partikelförmigen Materials zerkleinert werden. Das nach dem Schmelzspinn-Verfahren hergestellte Vormaterial kann beispielsweise in Form eines Granulats weiterverarbeitet werden. Ein solches nach dem Schmelzspinn-Verfahren hergestelltes Granulat hat im Vergleich zu einem pulverförmigen Vormaterial, von dem auf Grund seiner großen Oberfläche eine hohe Explosionsgefahr ausgeht, den Vorteil, dass es sich wesentlich einfacher und ohne besondere Sicherheitsvorkehrungen handhaben lässt. Somit erlaubt der Einsatz eines nach dem Schmelzpinn-Verfahren hergestellten Vormaterials eine vereinfachte und effizientere Prozessführung.
  • Das in die Vakuumkammer eingebrachte Vormaterial wird gemäß Schritt (b) des erfindungsgemäßen Verfahrens und/oder der erfindungsgemäßen Verwendung im Vakuum entgast. Bei dem Entgasungsprozess wird das Vormaterial, dessen Oberfläche mit Wasserstoff, Oxiden sowie Hydroxiden und Feuchtigkeit kontaminiert sein kann, in einem Vakuum behandelt, um so diese eventuell vorhandenen, unerwünschten Kontaminationen zu entfernen. Die Vakuumentgasung wird in einem geeigneten gasdichten Behälter, auch Vakuumkammer oder Rezipient genannt, durchgeführt, wobei dieser einen Gasauslass aufweist, der über ein Ventil mit einem Vakuumsystem verbunden ist.
  • In der vorliegenden Erfindung wird das Vakuumentgasen bei einem Vakuum von 0,1 bis 10-8 mbar durchgeführt. Beispielsweise kann die Vakuumkammer so gesteuert werden, dass das Vakuum in einem Bereich von 8-10-2 bis 10-7 mbar, 5.10-2 bis 10-6 mbar, 2,5·10-2 bis 10-5 mbar oder 10-2 bis 10-4 mbar liegt.
  • Der Entgasungsprozess wird zur Steigerung der Effizienz bei einer erhöhten Temperatur von 275 bis 400°C durchgeführt, vorzugsweise bei einer Temperatur von 275 bis 380°C oder von 275 bis 350°C, besonders bevorzugt bei 290°C.
    Das Vakuumentgasen wird gemäß Verfahrensschritt (b) und (d) über eine Dauer von 15 min bis 30 min durchgeführt.
  • Gemäß einer beispielhaften Ausführungsform der vorliegenden Erfindung wird das Vakuumentgasen gemäß Verfahrensschritt (b) und/oder (d) bei einem Vakuum von 0,05 mbar und einer Temperatur von 290°C über eine Dauer von 15 bis 30 min durchgeführt.
  • In dem erfindungsgemäßen Verfahren oder dessen Verwendung wird der Vakuumentgasungsschritt (b) durch einen Schritt (c) unterbrochen, in dem das Vormaterial mit Stickstoff begast wird. Gemäß einer Ausführungsform wird der Stickstoff in die Vakuumkammer über den Gasauslass eingeleitet, an dem das Vakuumsystem angeschlossen ist, wobei der Gasauslass mit einem für diesen Zweck geeigneten Ventil versehen ist, z.B. mit einem 3/2-WegeVentil. Es besteht jedoch auch die Möglichkeit den Stickstoff über einen separaten Gaseinlass in die Vakuumkammer einzuleiten. Je nach Ausgestaltung der Vakuumkammer kann das Stickstoffgas beispielsweise auf die Oberfläche des Vormaterials aufgeblasen oder auch von unten durch das Vormaterial hindurch geblasen werden.
  • Zur Begasung des Vormaterials wird trockener Stickstoff verwendet. Hierdurch kann eine erneute Kontamination des Vormaterials mit Wasserstoff und Wasser verhindert werden. Geeignet ist Stickstoff, der weniger als 1000 ppm Wasser enthält, z.B. weniger als 500 ppm, weniger als 250 ppm, weniger als 100 ppm, weniger als 50 ppm oder weniger als 5 ppm Wasser.
  • Das Begasen des Vormaterials mit Stickstoff erfolgt über eine Dauer von 1 bis 30 min, 2 bis 20 min oder 5 bis 15 min. Gemäß einer beispielhaften Ausführungsform erfolgt das Begasen des Vormaterials mit Stickstoff über eine Dauer von 10 min. Gemäß einer anderen beispielhaften Ausführungsform wird das Vormaterial mindestens solange mit Stickstoff begast bis in der Vakuumkammer Atmosphärendruck herrscht.
  • Die Schritte (b) und (c) können einmal oder mehrmals hintereinander durchgeführt werden. Gemäß einer Ausführungsform der vorliegenden Erfindung werden die Schritte (b) und (c) mehrmals hintereinander durchgeführt, beispielsweise 1 bis 10mal, 2 bis 9mal, 3 bis 8mal, 4 bis 7 mal, oder 5 bis 6mal. Vorzugsweise werden die Schritte (b) und (c) 5mal nacheinander durchgeführt.
  • Ohne auf eine bestimmte Theorie festgelegt zu sein, wird angenommen, dass während der Vakuumentgasung eine Aktivierung der Oberfläche des Vormaterials stattfindet, welche dann die Adsorption sowie eine chemische Reaktion des Stickstoffs mit der AlSc-Legierung ermöglicht. Hierdurch scheinen sich thermisch sehr stabile Scandiumnitrid-Phasen auszubilden. Bei Anwesenheit von Elementen, die das Scandium ergänzen oder ersetzen können, wie z.B. Zirkon, besteht auch die Möglichkeit, dass mit diesen entsprechende Nitrid-Phasen ausgebildet werden, z.B. Zirkonnitrid-Phasen bei Anwesenheit von Zirkon in der Legierung.
  • Gemäß des erfindungsgemäßen Verfahrens findet im Anschluss an die Schritte (b) und (c) ein abschließendes Vakuumentgasen des Vormaterials als Verfahrensschritt (d) statt. Das Vakuumentgasen wird wie unter Schritt (b) beschrieben durchgeführt.
  • Gemäß einer beispielhaften Ausführungsform beträgt die Gesamtdauer der Verfahrensschritte (b), (c) und (d) nicht mehr als 3000 min, 500 min, 300 min, 150 min oder 100 min.
  • Nach dem abschließenden Vakuumentgasen wird das Vormaterial verdichtet. Die Verdichtung kann mechanisch oder mittels Gasdruck erfolgen. Beispiele für geeignete mechanische Verdichtungsverfahren sind Kaltpressen, Isostatisches Pressen oder Vakuumpressen. Ein Beispiel für ein geeignetes Verdichtungsverfahren mittels Gasdruck ist das Heiß-Isostatische-Pressen (HIP). Das Verdichten kann bei Atmosphärendruck oder unter Vakuum erfolgen.
  • Das Vormaterial wird in Anschluss an den abschließenden Entgasungsschritt (d) in der Vakuumkammer verdichtet. Gemäß einer beispielhaften Ausführungsform wird das Vormaterial in Anschluss an den abschließenden Entgasungsschritt (d) mittels mechanischem Vakuumpressen in der Vakuumkammer verdichtet.
  • Der verdichtete AlSc-Werkstoff kann beispielsweise eine Dichte größer als 80%, größer als 90%, größer als 95 %, größer als 98% oder größer als 99% aufweisen. Gemäß einer bevorzugten Ausführungsform ist die Dichte des verdichteten AlSc-Werkstoff größer als 95%.
  • Im Anschluss an das Verdichten kann der erhaltene AlSc-Werkstoff zur Herstellung von Halbzeug und Formteilen umgeformt werden. Beispiele für geeignete Umformungsverfahren sind Extrudieren oder Strangpressen, Walzen, Schmieden, Streckziehen, Stanzen, Fließpressen oder Tiefziehen.
  • Der nach dem erfindungsgemäßen Verfahren oder dessen Verwendung hergestellte AlSc-Werkstoff weist eine verbesserte Strangpressbarkeit oder Extrudierbarkeit auf. Auf Grund seiner Hochtemperaturbelastbarkeit kann das Strangpressen des erfindungsgemäßen AlSc-Werkstoffs bei höheren Temperaturen durchgeführt werden, wodurch der Fließwiderstand oder Umformungswiderstand des Werkstoffs abnimmt und dieser so besser verformbar wird. Ein "AlSc-Werkstoff mit verbesserter Strangpressbarkeit" im Sinne der vorliegenden Erfindung kann vorzugsweise bei einer Temperatur von mehr als 320°C mittels Strangpressen weiterverarbeitet werden, ohne dass die Zugfestigkeit Rm des Werkstoffs gegenüber dem Ausgangsmaterial bei Raumtemperatur, d.h. bei 20°C, signifikant abfällt. Beispielsweise weist der erfindungsgemäße AlSc-Werkstoff nach einer Strangpressung bei etwa 350°C gegenüber dem Ausgangsmaterial bei Raumtemperatur einen Abfall in der Zugfestigkeit Rm von weniger als 5% auf und/oder nach einer Strangpressung bei etwa 375°C gegenüber dem Ausgangsmaterial bei Raumtemperatur einen Abfall in der Zugfestigkeit Rm von weniger als 10% auf.
  • Gemäß einer beispielhaften Ausführungsform wird der verdichtete AlSc-Werkstoff mittels Strangpressen bei 320 bis 400°C, vorzugsweise bei 340 bis 375°C oder bei etwa 350°C weiterverarbeitet.
  • Die nach dem erfindungsgemäßen Verfahren oder seiner Verwendung hergestellten Werkstoffe können beispielsweise zur Herstellung eines geschweißten, gewalzten, geschmiedeten oder stranggepressten oder extrudierten Bauteils für ein Luftfahrzeug, ein Seefahrzeug oder ein Kraftfahrzeug verwendet werden. Gemäß einer bevorzugten Ausführungsform werden die nach dem erfindungsgemäßen Verfahren oder seiner Verwendung hergestellten Werkstoffe zur Herstellung eines stranggepressten oder extrudierten Bauteils für ein Luftfahrzeug, ein Seefahrzeug oder ein Kraftfahrzeug verwendet.
  • Beispiel
  • Als Vormaterial wurde eine AlMgScZr-Legierung eingesetzt, die in der Hauptsache aus Aluminium sowie Zulegierungen von 4,3 Gew.-% Magnesium, 0,7 Gew.-% Scandium, 0,3 Gew.-% Zirkon und 0,5 Gew.-% Mangan besteht, jeweils bezogen auf das Gesamtgewicht der Legierung. Der Anteil an Verunreinigungen wie Fe, Si, Zn, usw. an dem Gesamtgewicht der Legierung lag unterhalb von 0,5 Gew.-%.
  • Die AlMgScZr-Legierung wurde in Form eines Granulats eingesetzt, das mittels des Schmelzspinn-Verfahrens hergestellt wurde. Die nominelle Banddicke, welche die erreichbare Abkühlgeschwindigkeit während des Schmelzspinn-Verfahrens definiert, betrug 0,100 mm. Hieraus errechnet sich eine maximale Abkühlungsgeschwindigkeit (abgeleitet von dem sogenannten Dendritenarmabstand, der metallografisch ermittelt wurde) von etwa 2·105 K/s.
  • Aus dem AlMgScZr-Vormaterial wurde nach einem Herstellungsverfahren für AlMgSc-Werkstoffe nach dem Stand der Technik (Verfahren A) ein Werkstoff A und nach dem erfindungsgemäßen Verfahren (Verfahren B) ein Werkstoff B hergestellt. Die Weiterverarbeitung der beiden Werkstoff zu Rundstäben mittels Strangpressen war gleich.
  • Verfahren A (Vergleichsbeispiel):
  • Das Vormaterial wurde in einem Rezipienten mit einem Durchmesser von 31 mm als lose Schüttung mit einer Höhe von 150 mm vorgelegt. Der Rezipient wies einen Gasauslass auf, der über ein Ventil an ein Vakuumsystem angeschlossen wurde. Die Vakuumentgasung wurde bei 5·10-2 mbar und einer Temperatur von 290°C über eine Dauer von 120 min durchgeführt.
  • Im Anschluss an die Entgasung wurde das Vormaterial im Rezipienten unter Vakuum in einer 200 t Presse bei einer Temperatur von 290°C und einer Presskraft von etwa 330 N/mm2 mechanisch zu einem Bolzen kompaktiert. Der erhaltene Bolzen wies eine Dichte von etwa 99% und eine Höhe von 25 mm auf.
  • Verfahren B:
  • Das Vormaterial wurde in einem Rezipienten mit einem Durchmesser von 31 mm als lose Schüttung mit einer Höhe von 150 mm vorgelegt. Der Rezipient wies einen Gasauslass auf, der über ein 3/2-Wege-Ventil an ein Vakuumsystem und eine Stickstoffquelle angeschlossen wurde. Die Vakuumentgasung wurde bei 5·10-2 mbar und einer Temperatur von 290°C über eine Dauer von 15 min durchgeführt. Anschließend wurde zur Begasung des Vormaterials trockener Stickstoff mit einem Wassergehalt von weniger als 100 ppm in den Rezipienten eingeleitet bis in der Vakuumkammer Atmosphärendruck herrschte. Der zuvor beschriebene Vakuumentgasungsschritt und die nachfolgende Begasung mit Stickstoff wurden insgesamt 5mal durchgeführt. Danach erfolgte eine abschließende Vakuumentgasung bei 5·10-2 mbar und einer Temperatur von 290°C. Die Gesamtdauer des Verfahrens betrug 300 min.
  • Im Anschluss wurde das Vormaterial im Rezipienten unter Vakuum in einer 200 t Presse bei einer Temperatur von 290°C und einer Presskraft von etwa 330 N/mm2 mechanisch zu einem Bolzen kompaktiert. Der erhaltene Bolzen wies eine Dichte von etwa 99% und eine Höhe von 25 mm auf.
  • Weiterverarbeitung der Werkstoffe A und B
  • Die gemäß Verfahren A bzw. B erhaltenen und auf Raumtemperatur abgekühlten Bolzen wurden aus dem Rezipienten entnommen und auf einen Durchmesser von 30 mm und eine Länge von 22 mm überdreht. Anschließend wurden die Bolzen in eine Strangpressvorichtung im Ofen auf etwa 320°C aufgeheizt, wobei Aufheizdauer und Haltezeit insgesamt 120 min betrugen. Die Strangpressung erfolgte mit einer 200 t Presse mit einer kontinuierlich steigenden Auspressgeschwindigkeit, wobei die Anfangsgeschwindigkeit 250 mm/min und die Endgeschwindigkeit 4000 mm/min betrug. Die gepresste Profilgeometrie war ein Rundstab mit einem Durchmesser von 6 mm und einer Länge von etwa 500 mm. Das Verpressverhältnis lag bei 25:1.
  • Festigkeitsprüfung
  • Aus den gepressten Rundstäben werden jeweils 3 Rundzugproben gemäß DIN 50125 aus dem Anfangs-, Mitte- und Endbereich des jeweiligen Stabs entnommen. Die Ergebnisse der Festigkeitsprüfung sind in Tabelle 1 dargestellt. Tabelle 1
    Parameter Werkstoff A
    (Vergleichsbeispiel)
    Werkstoff B
    Zugfestigkeit Rm (N/mm2) Anfang: 580 Anfang: 578
    Mitte: 514 Mitte: 588
    Ende: 432 Ende: 542
    Streckgrenze Rp0.2 (N/mm2) Anfang: 556 Anfang: 548
    Mitte: 452 Mitte: 571
    Ende: 406 Ende: 541
  • Die Ergebnisse der Festigkeitsprüfung zeigen, dass die Festigkeit des Werkstoffs B weitgehend konstant ist. Mit zunehmender Pressgeschwindigkeit, und der damit einhergehenden zusätzlichen (adiabatischen) Materialverformungserwärmung, bleibt die Festigkeit des nach dem erfindungsgemäßen Verfahren hergestellten Werkstoffs B lange erhalten und fällt erst gegen Strangende geringfügig (um etwa 6%) ab. Dagegen fällt bei dem nach dem Verfahren nach dem Stand der Technik hergestellten Werkstoff A die Festigkeit zum Ende des Stabs stark ab. Der Festigkeitsverlust des Werkstoffs A beträgt in der Strangmitte bereits mehr als 11% und am Strangende sogar mehr als 25%.
  • Das erfindungsgemäße Verfahren und/oder dessen Verwendung ermöglicht somit die Herstellung von mit Scandium legierten Aluminium-Werkstoffen, die auch bei hohen Umformungsgeschwindigkeiten (Strangpressgeschwindigkeiten) eine gleich bleibend hohe Werkstofffestigkeit aufweisen. Zudem kann das erfindungsgemäß modifizierte AlMgSc-Material bei höheren Temperaturen stranggepresst werden als der Stand der Technik ohne dabei die zuvor beschriebenen großen Festigkeitsverluste zu erleiden.
  • Weitere Ausführungsbeispiele oder Aspekte der vorliegenden Erfindung sind im Folgenden wiedergegeben:
    1. 1. Verfahren zur Herstellung eines hochtemperaturbelastbaren, mit Scandium legierten Aluminium-Werkstoffs umfassend die Schritte:
      1. a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Aluminium und Scandium in eine Vakuumkammer, wobei das Vormaterial eine AlMgMnScZr-Legierung ist, bestehend aus 4.3 Gew.-% Magnesium, 0.7 Gew.-% Scandium, 0.3 Gew.-% Zirkon und 0.5 Gew.-% Mangan, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen an dem Gesamtgewicht der Legierung unterhalb von 0.5 Gew.-% liegt, der Rest ist Aluminium, wobei das Vormaterial nach dem Schmelzspinn-Verfahren hergestellt wurde,
      2. b) Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
      3. c) Begasen des Vormaterials mit Stickstoff über eine Dauer von 1 bis 30 min, wobei der Stickstoff einen Wassergehalt von weniger als 1000 ppm enthält, und
      4. d) abschließendes Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
      wobei das Verfahren einen weiteren, zusätzlichen Schritt (e) umfasst, in dem das Vormaterial direkt in Anschluss an Schritt (d) in der Vakuumkammer verdichtet wird.
    2. 2. Verfahren gemäß Aspekt 1, wobei das Vormaterial als Granulat vorliegt.
    3. 3. Verfahren gemäß Aspekt 1 oder 2, wobei die Schritte (b) und (c) 1 bis 10mal hintereinander durchgeführt werden.
    4. 4. Hochtemperaturbelastbarer, mit Scandium legierter Aluminium-Werkstoff, erhältlich durch das Verfahren umfassend die Schritte:
      1. a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Aluminium und Scandium in eine Vakuumkammer, wobei das Vormaterial eine AlMgMnScZr-Legierung ist, bestehend aus 4.3 Gew.-% Magnesium, 0.7 Gew.-% Scandium, 0.3 Gew.-% Zirkon und 0.5 Gew.-% Mangan, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen an dem Gesamtgewicht der Legierung unterhalb von 0.5 Gew.-% liegt, der Rest ist Aluminium, wobei das Vormaterial nach dem Schmelzspinn-Verfahren hergestellt wurde,
      2. b) Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
      3. c) Begasen des Vormaterials mit Stickstoff über eine Dauer von 1 bis 30 min, wobei der Stickstoff einen Wassergehalt von weniger als 1000 ppm enthält, und
      4. d) abschließendes Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
      wobei das Verfahren einen weiteren, zusätzlichen Schritt (e) umfasst, in dem das Vormaterial direkt in Anschluss an Schritt (d) in der Vakuumkammer verdichtet wird.
    5. 5. Verwendung eines Werkstoffs gemäß Aspekt 4 zur Herstellung eines geschweißten, gewalzten, stranggepressten oder geschmiedeten Bauteils für ein Luftfahrzeug, ein Seefahrzeug oder ein Kraftfahrzeug.
    6. 6. Geschweißtes, gewalztes, stranggepresstes oder geschmiedetes Bauteil für ein Luftfahrzeug, ein Seefahrzeug oder ein Kraftfahrzeug bestehend aus einem Werkstoff gemäß Aspekt 4.

Claims (9)

  1. Verwendung eines Verfahrens umfassend die Schritte:
    a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Aluminium und Scandium in eine Vakuumkammer, wobei das Vormaterial eine AlMgMnScZr-Legierung ist, bestehend aus 4.3 Gew.-% Magnesium, 0.7 Gew.-% Scandium, 0.3 Gew.-% Zirkon und 0.5 Gew.-% Mangan, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen an dem Gesamtgewicht der Legierung unterhalb von 0.5 Gew.-% liegt, der Rest ist Aluminium,
    b) Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
    c) Begasen des Vormaterials mit Stickstoff über eine Dauer von 1 bis 30 min, wobei der Stickstoff einen Wassergehalt von weniger als 1000 ppm enthält, und
    d) abschließendes Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
    zur Herstellung eines hochtemperaturbelastbaren, mit Scandium legierten Aluminium-Werkstoffs, wobei das Verfahren einen weiteren, zusätzlichen Schritt (e) umfasst, in dem das Vormaterial direkt in Anschluss an Schritt (d) in der Vakuumkammer verdichtet wird.
  2. Verwendung gemäß Anspruch 1, wobei der hochtemperaturbelastbare, mit Scandium legierte Aluminium-Werkstoff eine verbesserte Strangpressbarkeit aufweist.
  3. Verwendung gemäß Anspruch 1 oder 2, wobei das Vormaterial mittels des Schmelzspinn-Verfahren hergestellt wurde.
  4. Verwendung gemäß einem der vorherigen Ansprüche, wobei das Vormaterial als Granulat vorliegt.
  5. Verwendung gemäß einem der vorherigen Ansprüche, wobei die Schritte (b) und (c) 1 bis 10 mal hintereinander durchgeführt werden.
  6. Verfahren zur Herstellung eines hochtemperaturbelastbaren, mit Scandium legierten Aluminium-Werkstoffs umfassend die Schritte:
    a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Aluminium und Scandium in eine Vakuumkammer, wobei das Vormaterial eine AlMgMnScZr-Legierung ist, bestehend aus 4.3 Gew.-% Magnesium, 0.7 Gew.-% Scandium, 0.3 Gew.-% Zirkon und 0.5 Gew.-% Mangan, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen an dem Gesamtgewicht der Legierung unterhalb von 0.5 Gew.-% liegt, der Rest ist Aluminium, wobei das Vormaterial nach dem Schmelzspinn-Verfahren hergestellt wurde,
    b) Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
    c) Begasen des Vormaterials mit Stickstoff über eine Dauer von 1 bis 30 min, wobei der Stickstoff einen Wassergehalt von weniger als 1000 ppm enthält, und
    d) abschließendes Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
    wobei das Verfahren einen weiteren, zusätzlichen Schritt (e) umfasst, in dem das Vormaterial direkt in Anschluss an Schritt (d) in der Vakuumkammer verdichtet wird.
  7. Hochtemperaturbelastbarer, mit Scandium legierter Aluminium-Werkstoff, erhältlich durch das Verfahren umfassend die Schritte:
    a) Einbringen eines Vormaterials umfassend eine Legierung umfassend die Metalle Aluminium und Scandium in eine Vakuumkammer, wobei das Vormaterial eine AlMgMnScZr-Legierung ist, bestehend aus 4.3 Gew.-% Magnesium, 0.7 Gew.-% Scandium, 0.3 Gew.-% Zirkon und 0.5 Gew.-% Mangan, jeweils bezogen auf das Gesamtgewicht der Legierung, wobei der Anteil an Verunreinigungen an dem Gesamtgewicht der Legierung unterhalb von 0.5 Gew.-% liegt, der Rest ist Aluminium, wobei das Vormaterial nach dem Schmelzspinn-Verfahren hergestellt wurde,
    b) Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
    c) Begasen des Vormaterials mit Stickstoff über eine Dauer von 1 bis 30 min, wobei der Stickstoff einen Wassergehalt von weniger als 1000 ppm enthält, und
    d) abschließendes Vakuumentgasen des Vormaterials bei einem Vakuum von 0,1 bis 10-8 mbar und einer Temperatur von 275 bis 400 °C über eine Dauer von 15 bis 30 min,
    wobei das Verfahren einen weiteren, zusätzlichen Schritt (e) umfasst, in dem das Vormaterial direkt in Anschluss an Schritt (d) in der Vakuumkammer verdichtet wird.
  8. Verwendung eines Werkstoffs gemäß Anspruch 7 zur Herstellung eines geschweißten, gewalzten, stranggepressten oder geschmiedeten Bauteils für ein Luftfahrzeug, ein Seefahrzeug oder ein Kraftfahrzeug.
  9. Geschweißtes, gewalztes, stranggepresstes oder geschmiedetes Bauteil für ein Luftfahrzeug, ein Seefahrzeug oder ein Kraftfahrzeug bestehend aus einem Werkstoff gemäß Anspruch 7.
EP11761484.2A 2010-07-29 2011-07-25 Hochtemperaturbelastbarer mit scandium legierter aluminium-werkstoff mit verbesserter extrudierbarkeit Active EP2598664B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010032768A DE102010032768A1 (de) 2010-07-29 2010-07-29 Hochtemperaturbelastbarer mit Scandium legierter Aluminium-Werkstoff mit verbesserter Extrudierbarkeit
PCT/DE2011/001504 WO2012013185A1 (de) 2010-07-29 2011-07-25 Hochtemperaturbelastbarer mit scandium legierter aluminium-werkstoff mit verbesserter extrudierbarkeit

Publications (2)

Publication Number Publication Date
EP2598664A1 EP2598664A1 (de) 2013-06-05
EP2598664B1 true EP2598664B1 (de) 2017-01-18

Family

ID=44718971

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11761484.2A Active EP2598664B1 (de) 2010-07-29 2011-07-25 Hochtemperaturbelastbarer mit scandium legierter aluminium-werkstoff mit verbesserter extrudierbarkeit

Country Status (4)

Country Link
US (1) US20130143070A1 (de)
EP (1) EP2598664B1 (de)
DE (1) DE102010032768A1 (de)
WO (1) WO2012013185A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3456853A1 (de) 2017-09-13 2019-03-20 Univerza v Mariboru Fakulteta za strojnistvo Herstellung von hochfesten und wärmebeständigen durch dual-präzipitate verstärkten aluminiumlegierungen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201112028D0 (en) 2011-07-13 2011-08-31 Gas2 Ltd Fixed bed fischer tropsch reactor
EP2871642B1 (de) * 2013-11-06 2019-08-28 Airbus Defence and Space GmbH Solarzellenverbinder und Herstellungsverfahren dafür
US9945018B2 (en) 2014-11-26 2018-04-17 Honeywell International Inc. Aluminum iron based alloys and methods of producing the same
DE202016001530U1 (de) * 2016-03-09 2017-06-12 TWI GmbH Pulvermetallurgisch hergestelltes manganhaltiges Vormaterial zur Herstellung einer Leichtmetalllegierung sowie seine Verwendung
CN107081507A (zh) * 2017-07-05 2017-08-22 合肥万之景门窗有限公司 一种门窗用铝合金的焊接工艺
CN114672686B (zh) * 2022-03-21 2022-10-28 华中科技大学 一种外加纳米颗粒增强铸造铝锂合金的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619181A (en) 1968-10-29 1971-11-09 Aluminum Co Of America Aluminum scandium alloy
US4104061A (en) 1976-10-21 1978-08-01 Kaiser Aluminum & Chemical Corporation Powder metallurgy
US5211910A (en) * 1990-01-26 1993-05-18 Martin Marietta Corporation Ultra high strength aluminum-base alloys
ATE235575T1 (de) 1997-11-20 2003-04-15 Alcan Tech & Man Ag Verfahren zur herstellung eines strukturbauteiles aus einer aluminium-druckgusslegierung
DE19838017C2 (de) 1998-08-21 2003-06-18 Eads Deutschland Gmbh Schweißbare, korrosionsbeständige AIMg-Legierungen, insbesondere für die Verkehrstechnik
DE10248594B4 (de) 2001-12-14 2006-04-27 Eads Deutschland Gmbh Verfahren zum Herstellen eines Scandium (Sc)- legierten Aluminiumblechmaterials mit hoher Risszähigkeit
US7648593B2 (en) * 2003-01-15 2010-01-19 United Technologies Corporation Aluminum based alloy
EP1848835A2 (de) * 2005-02-01 2007-10-31 Timothy Langan Aluminium-zink-magnesium-scandium-legierungen und herstellungsverfahren dafür
US7875132B2 (en) * 2005-05-31 2011-01-25 United Technologies Corporation High temperature aluminum alloys
US8778099B2 (en) * 2008-12-09 2014-07-15 United Technologies Corporation Conversion process for heat treatable L12 aluminum alloys
US20100143177A1 (en) * 2008-12-09 2010-06-10 United Technologies Corporation Method for forming high strength aluminum alloys containing L12 intermetallic dispersoids
US20110044844A1 (en) * 2009-08-19 2011-02-24 United Technologies Corporation Hot compaction and extrusion of l12 aluminum alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3456853A1 (de) 2017-09-13 2019-03-20 Univerza v Mariboru Fakulteta za strojnistvo Herstellung von hochfesten und wärmebeständigen durch dual-präzipitate verstärkten aluminiumlegierungen

Also Published As

Publication number Publication date
US20130143070A1 (en) 2013-06-06
WO2012013185A1 (de) 2012-02-02
DE102010032768A1 (de) 2012-02-02
EP2598664A1 (de) 2013-06-05

Similar Documents

Publication Publication Date Title
EP2598664B1 (de) Hochtemperaturbelastbarer mit scandium legierter aluminium-werkstoff mit verbesserter extrudierbarkeit
EP2829624B1 (de) Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung
DE112007000673B4 (de) Magnesiumlegierung mit hoher Festigkeit und hoher Zähigkeit und Verfahren zu deren Herstellung
DE68907331T2 (de) Verfahren zur Herstellung von Aluminiumlegierungen der Serie 7000 mittels Sprühabscheidung und nichtkontinuierlich verstärkten Verbundwerkstoffen, deren Matrix aus diesen Legierungen mit hoher mechanischer Festigkeit und guter Duktilität besteht.
DE68909544T2 (de) Hochfeste magnesiumlegierungen und verfahren, um derartige legierungen mittels rascher erstarrung zu erhalten.
DE69223194T2 (de) Verfahren zur Herstellung von Verbundlegierungspulver mit Aluminiummatrix
EP1840235B1 (de) Magnesiumlegierung und dazugehöriges Herstellungsverfahren
DE3883087T2 (de) Aluminiumverbundlegierungen.
DE60033018T2 (de) Verfahren zur herstellung von metallprodukten, wie bleche durch kaltverformung und flashalterung
DE69006293T2 (de) Verfahren zur Herstellung von Magnesiumlegierungen durch Aufsprühbeschichten.
DE19937184B4 (de) Magnesiumlegierung für Hochtemperatur-Anwendungen
AT509613B1 (de) Verfahren zur herstellung von formköpern aus aluminiumlegierungen
DE102008033027B4 (de) Verfahren zur Erhöhung von Festigkeit und Verformbarkeit von ausscheidungshärtbaren Werkstoffen
DE2423597A1 (de) Verbesserte aluminiumlegierungsprodukte und verfahren zu deren herstellung
DE2813986C2 (de)
EP2646587B1 (de) VERFAHREN ZUM HERSTELLEN EINER AlScCa-LEGIERUNG SOWIE AIScCa-LEGIERUNG
KR100994812B1 (ko) 고강도 고연성 마그네슘 합금 압출재 및 그 제조방법
DE112010002575T5 (de) Recycelte Magnesiumlegierung, Verfahren zu deren Herstellung, und Magnesiumlegierung
DE112005000511B4 (de) Magnesiumknetlegierung mit verbesserter Extrudierbarkeit und Formbarkeit
DE2551294B2 (de) Verfahren zur Herstellung dispersionsverfestigter Aluminiumlegierungsprodukte
EP0554808B1 (de) Verfahren zur Herstellung von Formteilen aus Metallegierungen
DE102009048450A1 (de) Hochduktile und hochfeste Magnesiumlegierungen
DE2242235C3 (de) Superplastische Aluminiumlegierung
EP1680246B1 (de) Verfahren zur herstellung von metall-matrix-verbundwerkstoffen
DE4019305A1 (de) Pulver und produkte von tantal, niob und deren legierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150529

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161014

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 862971

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011011564

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011011564

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

26N No opposition filed

Effective date: 20171019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170725

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170725

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 862971

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011011564

Country of ref document: DE

Representative=s name: LKGLOBAL | LORENZ & KOPF PARTG MBB PATENTANWAE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011011564

Country of ref document: DE

Owner name: APWORKS GMBH, DE

Free format text: FORMER OWNER: AIRBUS OPERATIONS GMBH, 21129 HAMBURG, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170725

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20190307 AND 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240722

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 14