EP2585353B1 - System and method for localizing objects on a railway track - Google Patents
System and method for localizing objects on a railway track Download PDFInfo
- Publication number
- EP2585353B1 EP2585353B1 EP11729182.3A EP11729182A EP2585353B1 EP 2585353 B1 EP2585353 B1 EP 2585353B1 EP 11729182 A EP11729182 A EP 11729182A EP 2585353 B1 EP2585353 B1 EP 2585353B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensors
- railway track
- distance
- control unit
- successive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000001514 detection method Methods 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 9
- 230000000903 blocking effect Effects 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 230000008901 benefit Effects 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000003137 locomotive effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L1/00—Devices along the route controlled by interaction with the vehicle or train
- B61L1/12—Electric devices associated with overhead trolley wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
- B61L23/04—Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
- B61L23/041—Obstacle detection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L25/00—Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
- B61L25/02—Indicating or recording positions or identities of vehicles or trains
- B61L25/025—Absolute localisation, e.g. providing geodetic coordinates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L29/00—Safety means for rail/road crossing traffic
- B61L29/24—Means for warning road traffic that a gate is closed or closing, or that rail traffic is approaching, e.g. for visible or audible warning
- B61L29/28—Means for warning road traffic that a gate is closed or closing, or that rail traffic is approaching, e.g. for visible or audible warning electrically operated
- B61L29/30—Supervision, e.g. monitoring arrangements
Definitions
- the present invention relates to a system for localizing objects on a railway track and to a method therefor.
- the electrical track circuit system dates from 1872 and is based on electrical short-circuiting of rails. This short-circuiting occurs when a train enters a determined governed section (also referred to as governed (rail) block) and via its wheels and axle situated therebetween closes a circuit between the different rails.
- the electrical track circuit system then assumes that a train is situated within a determined block and designates the relevant block as occupied.
- a second detection system which was first applied in 1960, is the axle counter system, which detects the number of wheels/axles at a starting point and an end point of a predetermined block. If the number of axles at the start of the block is higher than the number of axles counted at the end of the block, it is assumed that the block is occupied.
- ERTMS European Rail Traffic Management System
- the electrical track circuit system, the axle counter system and ERMTS are so-called block systems.
- the rail routes are subdivided into blocks of different lengths, sometimes up to 5 kilometres long.
- a block in which a train is located is designated as occupied and for safety reasons the block from which the train has come is not fully cleared.
- At a block length of five kilometres this may mean that a length of ten kilometres is kept clear of other train traffic, this standing in the way of a high degree of occupancy of the track necessary for instance for timetable-free travel.
- Timetable-free travel is understood to mean that trains travel according to logistical availability and are not tied to predetermined specific times.
- Block systems have the further drawback that in the case of a suspected error message, for instance due to vandalism, the whole block has to be checked for the presence of an object before this block can be fully cleared.
- a block length of for instance 50 kilometres the engineer who clears the block manually no longer has an overall view hereof, which means that the train will travel through the block at reduced speed in order to be able to stop in good time in the case an object is present.
- the limited speed permitted for safety reasons can result in disruption of the rail system.
- resetting takes place manually in the axle counter system, and this is time-consuming.
- a further drawback of the above stated electrical track circuit system and axle counter system is that they are susceptible to vandalism.
- the electrical track circuit system it is for instance possible to complete a circuit between connected blocks by arranging coins in a gap between different blocks, which causes confusion in the system.
- a circuit can be completed for instance by electrically connecting the two rails with a jump lead, which causes the electrical track circuit system to suspect that a train is located within this block.
- the axle counter system can be disordered by for instance moving a metal object such as a spade in front of the sensor, this being detected by the system as a passing train wheel.
- axle counter system A further drawback of the axle counter system is that a minimum wheel size is required before a reliable registration of each wheel takes place.
- the axle counter system is hereby unsuitable for detecting all types of rail machinery placed on the track for the purpose of work on the track.
- Rust formation on the rails can also result in the electrical track circuit system in trains not being detected by the system. Attempts are made to prevent this by the so-called 'derusting' runs before regular train traffic begins.
- EMC electromagnetic compatibility
- All the above stated train detection systems further have the shortcoming that they are only able to detect trains or similar vehicles on a block, and not for instance a car blocking a level crossing.
- DE-U1-297 24 276 discloses a monitoring system for preventive safeguarding of a route where work is taking place on the track, wherein a single sensor is equipped with two separate channels for measuring separate parameters.
- the first channel is directed transversely of the railway track and detects, via a radar signal which measures the distance, whether an object is situated on the railway track. Because it is required for the purpose of giving an alarm that the second channel, which is directed obliquely at an angle of 30° to the railway track, simultaneously measures a speed via Doppler, the number of error messages - for instance because there is an animal on the track - is reduced.
- US-A1-2005/0184883 discloses a railroad crossing warning system according to the preamble of claim 1.
- Motion sensors are used to detect the approach of a train coming from either direction towards a highway crossing.
- presence detectors are located to sense moving a stationary train.
- DE-U1-29724276 discloses a system for detecting trains for warning persons working on the track.
- the approach of a train in the direction towards the persons working on the track is detected when the train is both registered by a Doppler radar, i.e. a motion sensor, and a second sensor which is a distance radar, i.e. a distance sensor.
- An object of the present invention is to provide a system and method for localizing objects on a railway track in which the stated drawbacks do not occur, or at least do so to lesser extent.
- At least two sensors cover a separate detection area of the railway track and transmit an identifiable warning signal to the control unit when they detect an object in their detection area of the railway track, the system knows where an object is situated. It is particularly noted that all kinds of object of any size can be detected with the system and, unlike the above discussed systems (electrical track circuit system, axle counter system and ERTMS), it is not limited to trains within a block.
- An identifiable warning signal is understood to mean that there is a link between the warning signal and a unique sensor of the system.
- the warning signal is a report of a measured condition to the control unit.
- the successive similar reports are assessed by the control unit, which only assumes that there is an object on the railway track if it receives similar warning signals from a predetermined number of successive sensors.
- the successive sensors measure the same quantity and transmit the value of the measured quantity as warning signal to the control unit, wherein the control unit generates an alarm if the measurement data detected by the successive sensors comply with a predetermined condition.
- Conditions against which measurement data detected by successive sensors could be tested are for instance "the distance is smaller than a threshold value” or "the distance lies within a determined range”.
- the successive sensors form part of an AND-circuit, wherein the control unit requires in each case that a plurality of successive sensors transmit comparable data to the control unit before an alarm is issued.
- the sensors are arranged such that their measuring direction is oriented transversely of the railway track and in the direction of the railway track. This has the advantage, among others, that the measurement distance is kept limited, which increases accuracy.
- control unit assumes that there is an object on the railway track when a warning signal is received from at least three successive sensors.
- the reliability increases and the susceptibility to vandalism decreases significantly. It would after all require at least three different people to cause three successive sensors to detect an object.
- the sensors are arranged at some mutual distance in longitudinal direction of the railway track.
- a distance between the different sensors is known, it is also possible to derive the direction of travel and speed of this object in addition to determining its position.
- successive sensors are arranged at a predetermined mutual distance from each other.
- the distance between individual sensors is known, it is also possible to determine the speed of the train in addition to an accurate position determination.
- the distance between successive sensors is constant, which simplifies the determination of position and speed.
- successive sensors are arranged at a distance of a minimum of two metres, more preferably at a distance of about four metres, from each other.
- a single train carriage is a minimum of 12 metres long, a single 'lost' train carriage will be detected by a minimum of three successive sensors.
- the system is hereby also suitable for detecting lost carriages in addition to position determination.
- the system according to the invention requires no additional electrical track circuit or axle counter system.
- the sensors are arranged over substantially the whole length of the railway track.
- the system is hereby not only able to detect a presence of a train in a block, but can also - depending on the distance between the sensors - give an accurate approximation of the location of the train on the railway track.
- the system can determine where trains and/or other objects are situated on the railway track.
- it is unnecessary to visually inspect a presence of a train in a (rail) block, which can be up to 5 km long.
- the system is hereby self-starting and soon fully operational again following brief failure.
- the degree of occupancy of the track can be increased while safety remains guaranteed.
- the system can hereby be applied within future logistical concepts such as timetable-free travel.
- the option is also provided of monitoring, replacing or repairing the sensors at a suitable point in time.
- the system is after all still reliable when one sensor, or even two successive sensors, are defective. Replacement can take place at a quiet moment suitable for the purpose so that there is minimum disruption to rail traffic.
- the system is reliable and not susceptible to malfunction, since the system continues to function even when several sensors fail.
- the detection areas monitored by the sensors are separate areas which have no overlap. Because there is no overlap, it is known very precisely, owing to the warning signal which is linked identifiably to a unique sensor, where the object, generally a train (section), is situated on the railway track.
- the sensors are distance sensors and, in the case a distance reduction is detected by at least two successive sensors, the control unit assumes that there is an object on the railway track.
- the sensors are arranged above the railway track with their detection area extending downward in the direction of the railway track.
- the distance detected in the case of an unoccupied track is about 5 to 6 metres. A soon as a train or other object is located under these sensors, a smaller distance is detected. In the case of a train of 3 metres in height the detected distance is suddenly reduced by 3 metres. Owing to the predictability in distance change the system is not susceptible to malfunction.
- sensors which are able to measure a distance offer further advantages.
- Each distance sensor can be used to make a distinction between the closest railway track which has to be monitored and a possible other track situated adjacently thereof. At a distance above a determined threshold value it is known that this object is not situated on the adjacent track to be monitored.
- each railway track is provided with its own series of distance sensors, whereby only the adjacent track has to be monitored in each case.
- distance sensors have the advantage that all components can be accommodated in a single sensor housing, while for instance optical sensors always comprise at least two components: a transmitter and a receiver, optionally with one or more reflectors, or a combined transmitter/receiver with one or more reflectors. All these individual components may become unusable, for instance due to technical failure or due to contamination (obstructions or scaling) which disrupts the optical system.
- a self-testing system is also obtained by using distance sensors. When a distance sensor fails it will measure a distance zero, which is noted by the control unit. The skilled person will appreciate that, when any sensor which in principle measures continuously fails, this is recognizable as such.
- Self-test capability is also obtained in yet another preferred embodiment by tracking in the control unit whether all sensors make a measurement within a determined relative measurement value when a train travels over the railway track. In the case one sensor deviates repeatedly, this sensor is designated by the system as a sensor to be checked/replaced.
- the distance sensors comprise an ultrasonic sensor and/or a radar and/or a laser.
- Such sensors have the advantage that the transmitter and receiver are housed in the same unit.
- the sensors are arranged above the railway track and their detection area extends downward in the direction of the track.
- Arranging the sensors above the railway track has several advantages, including not being susceptible to vandalism.
- the sensors can be placed above the railway track without time-consuming excavation operations.
- Sensors arranged on the cables above the railway track also provide the option of early detection of such a cable becoming detached, whereby the trains can be informed of this and it is possible to prevent kilometres of cable being pulled loose. This happens several times a year and the necessary repair operations can easily make the relevant route unusable for two days.
- Distance sensors which are arranged above the railway track and detect in downward direction therefore provide the system with a high degree of self-test capability.
- Sensors which are arranged above the railway track and detect in downward direction are more likely to detect an object on the track than sensors which detect in a lying plane. This is because the height at which a sensor detecting in a lying plane detects determines whether an object is detected or whether the sensor detects below or above the object.
- a downward viewing sensor is not susceptible to this.
- additional sensors are arranged in the vicinity of the railway track and these additional sensors each cover a separate detection area of the level crossing so that objects blocking the railway track at the position of the level crossing can be detected by the system.
- the mutual distance between the sensors close to the level crossing is a maximum of 2 metres. Objects from two metres in length can hereby be detected, including passenger cars blocking the railway track at the position of the level crossing.
- the invention further relates to a method for localizing objects on a railway track, comprising the steps of:
- Figure 1 shows a section of railway track 4 on which a train 21 is situated.
- Train 21 consists of a locomotive 22 and a carriage 24 drawn thereby.
- An overhead line 26 located above railway track 4 is an overhead line 26 on which sensors 8 are arranged at a constant mutual distance.
- Sensors 8 which in the shown embodiment comprise ultrasonic sensors, preferably have non-overlapping detection areas 10 extending downward from sensor 8 in the direction of railway track 4. Each unique sensor 8 thus covers a unique part of railway track 4 with its detection area 10.
- control unit 6 When control unit 6 receives a corresponding signal from a predetermined number of successive sensors 8, control unit 6 assumes that there is an object 2 on the railway track.
- control unit 6 receives identifiable warning signals from all sensors 8 under which object 2 is situated, such as locomotive 22 and carriage 24 in figure 1 , control unit 6 is able to determine the length of a train 21.
- system is also suitable for detecting individual objects 2, such as for instance a 'lost' carriage 24, on railway track 4 ( figure 2 ).
- ERTMS a position determination is possible ( figure 1 ), while 'lost' carriages 24 ( figure 2 ) are also detected by the system.
- the system according to the invention can therefore be used without - as is the case with ERTMS - an additional electrical track circuit or axle counter system having to be applied.
- successive sensors 8 When a train 21 consisting of locomotive 22 and carriage 24 moves over a railway track 4, successive sensors 8 will detect an object 2. If the distance between successive sensors 8 is known, in addition to the position determination it is also possible to determine the speed of train 21, and optionally even the acceleration or deceleration thereof.
- the system provides the possibility, when a train 21 approaches a level crossing 16, of controlling barriers 20 in dynamic manner.
- a sensor (not shown) is arranged at a predetermined distance corresponding to twenty-one seconds travel time to the railway crossing at the permitted travel speed.
- barriers 20 of level crossing 16 are closed.
- barriers 20 are also closed at the same distance between train 21 and level crossing 16, although because of the lower speed the train 21 will take longer than twenty-one seconds to travel this distance. If a train 21 travels at half the permitted speed, the waiting time is as much as forty-two seconds.
- control unit 6 can precisely determine when train 21 will pass level crossing 16. Barriers 20 can therefore be controlled in dynamic manner, i.e. subject to the travel speed of train 21, whereby the waiting times for traffic 18 crossing railway track 4 are minimized. Traffic flow is hereby enhanced and unsafe situations arising from impatient road users are prevented.
- the system is further expanded with additional sensors 12 which are situated close to level crossing 16, close to the lane of crossing traffic 18.
- additional sensors 12 which are situated close to level crossing 16, close to the lane of crossing traffic 18.
- this object 2 is detected by the additional sensors 12 and control unit 6 will intervene and cause the train 21 approaching level crossing 16 to make an automatic emergency stop.
- control unit 6 can, if desired, already assume when there are a smaller number of sensors 8, 12 that an object 2, 18 is situated on railway track 4 at level crossing 16 and take suitable measures. When for instance a detection by only two sensors 8, 12 suffices, smaller objects 2 can then also be detected.
- system according to the invention is also suitable for detecting objects 2 other than a train 21 or a carriage 24 on railway track 4.
- the system according to the invention provides, among others, the following advantages:
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Train Traffic Observation, Control, And Security (AREA)
Description
- The present invention relates to a system for localizing objects on a railway track and to a method therefor.
- There are at the moment three main categories of detection system in use for detecting trains on a railway track. The electrical track circuit system dates from 1872 and is based on electrical short-circuiting of rails. This short-circuiting occurs when a train enters a determined governed section (also referred to as governed (rail) block) and via its wheels and axle situated therebetween closes a circuit between the different rails. The electrical track circuit system then assumes that a train is situated within a determined block and designates the relevant block as occupied.
- A second detection system, which was first applied in 1960, is the axle counter system, which detects the number of wheels/axles at a starting point and an end point of a predetermined block. If the number of axles at the start of the block is higher than the number of axles counted at the end of the block, it is assumed that the block is occupied.
- The drawback of both the electrical track circuit system and the axle counter system is that, although it is known that a determined block is occupied, no accurate position determination is possible within this block, which can be up to 5 kilometres long.
- In order to also be able to determine the position of the train the European Rail Traffic Management System (ERTMS) has been developed, which makes use of GPS, balises and GSM-R for determining the position of the train. Since ERTMS is not able to determine the length of the train and, when a carriage is lost, does not therefore give a report to this effect, an axle counter system or electrical track circuit system is still always applied in addition to the ERMTS.
- All the above stated systems, the electrical track circuit system, the axle counter system and ERMTS, are so-called block systems. The rail routes are subdivided into blocks of different lengths, sometimes up to 5 kilometres long. A block in which a train is located is designated as occupied and for safety reasons the block from which the train has come is not fully cleared. At a block length of five kilometres this may mean that a length of ten kilometres is kept clear of other train traffic, this standing in the way of a high degree of occupancy of the track necessary for instance for timetable-free travel. Timetable-free travel is understood to mean that trains travel according to logistical availability and are not tied to predetermined specific times.
- A possible solution of using smaller blocks of for instance 2.5 kilometres doubles the costs of the system. The typical costs per block are substantially independent of the length thereof and lie in the order of magnitude of €400,000.00.
- Block systems have the further drawback that in the case of a suspected error message, for instance due to vandalism, the whole block has to be checked for the presence of an object before this block can be fully cleared. At a block length of for instance 50 kilometres the engineer who clears the block manually no longer has an overall view hereof, which means that the train will travel through the block at reduced speed in order to be able to stop in good time in the case an object is present. The limited speed permitted for safety reasons can result in disruption of the rail system. In addition, resetting takes place manually in the axle counter system, and this is time-consuming.
- A further drawback of the above stated electrical track circuit system and axle counter system is that they are susceptible to vandalism. In the electrical track circuit system it is for instance possible to complete a circuit between connected blocks by arranging coins in a gap between different blocks, which causes confusion in the system. In addition, a circuit can be completed for instance by electrically connecting the two rails with a jump lead, which causes the electrical track circuit system to suspect that a train is located within this block. The axle counter system can be disordered by for instance moving a metal object such as a spade in front of the sensor, this being detected by the system as a passing train wheel.
- Another form of vandalism is the theft of copper in the electrical track circuit system. The thick copper wires used are popular with thieves. When a copper wire is stolen, the track is designated as occupied. Repair is costly in terms of time and money. In 2009 the costs associated with copper theft in the Netherlands amounted to more than ten million Euros.
- A further drawback of the axle counter system is that a minimum wheel size is required before a reliable registration of each wheel takes place. The axle counter system is hereby unsuitable for detecting all types of rail machinery placed on the track for the purpose of work on the track.
- Further drawbacks of the electrical track circuit system lie in the fact that in the autumn a covering of leaves present on a rail track can function as electrical insulator, whereby no circuit is realized, and may result in the highly undesirable situation that for instance barriers at level crossings no longer close when a train approaches. This problem is also known under the term loss of shunt.
- Rust formation on the rails can also result in the electrical track circuit system in trains not being detected by the system. Attempts are made to prevent this by the so-called 'derusting' runs before regular train traffic begins.
- In addition, use is increasingly being made nowadays of rail vehicles with wheels provided with ball bearings. Because the wheels on both sides of the rail vehicle are no longer directly connected to each other with an efficient electrically conducting axle, such wheels provided with ball bearings are less suitable for the electrical track circuit system.
- Another significant problem for both the electrical track circuit system and the axle counter system is the sensitivity to electromagnetic radiation, also referred to as electromagnetic compatibility (EMC). While 800-1500 V is applied in conventional trains, this has been increased to 25 kV in the High-Speed Line (HSL). The associated increase in electromagnetic radiation is expected to result in an increase in EMC problems.
- All the above stated train detection systems further have the shortcoming that they are only able to detect trains or similar vehicles on a block, and not for instance a car blocking a level crossing.
-
DE-U1-297 24 276 discloses a monitoring system for preventive safeguarding of a route where work is taking place on the track, wherein a single sensor is equipped with two separate channels for measuring separate parameters. The first channel is directed transversely of the railway track and detects, via a radar signal which measures the distance, whether an object is situated on the railway track. Because it is required for the purpose of giving an alarm that the second channel, which is directed obliquely at an angle of 30° to the railway track, simultaneously measures a speed via Doppler, the number of error messages - for instance because there is an animal on the track - is reduced. -
US-A1-2005/0184883 discloses a railroad crossing warning system according to the preamble of claim 1. Motion sensors are used to detect the approach of a train coming from either direction towards a highway crossing. At the crossing, presence detectors are located to sense moving a stationary train. -
DE-U1-29724276 discloses a system for detecting trains for warning persons working on the track. The approach of a train in the direction towards the persons working on the track is detected when the train is both registered by a Doppler radar, i.e. a motion sensor, and a second sensor which is a distance radar, i.e. a distance sensor. - An object of the present invention is to provide a system and method for localizing objects on a railway track in which the stated drawbacks do not occur, or at least do so to lesser extent.
- The stated object is achieved with the system for localizing objects on a railway track, comprising:
- at least two sensors which are arranged in the vicinity of the railway track and each cover a separate detection area of the railway track;
- a control unit which is connected to each of the sensors and receives an identifiable warning signal from the individual sensors when they detect an object in their detection area of the railway track;
- wherein the successive sensors measure and transmit the same quantity to the control unit as warning signal;
- wherein the control unit generates an alarm if the measurement data detected by the successive sensors comply with a predetermined condition;
- wherein the sensors are distance sensors and, in the case a distance reduction is detected by at least two successive sensors, the control unit assumes that there is an object on the railway track; and
- wherein the sensors are arranged on cables above the railway track and their detection area extends downward in the direction of the railway track.
- Because at least two sensors cover a separate detection area of the railway track and transmit an identifiable warning signal to the control unit when they detect an object in their detection area of the railway track, the system knows where an object is situated. It is particularly noted that all kinds of object of any size can be detected with the system and, unlike the above discussed systems (electrical track circuit system, axle counter system and ERTMS), it is not limited to trains within a block.
- An identifiable warning signal is understood to mean that there is a link between the warning signal and a unique sensor of the system.
- It is noted that the warning signal is a report of a measured condition to the control unit. The successive similar reports are assessed by the control unit, which only assumes that there is an object on the railway track if it receives similar warning signals from a predetermined number of successive sensors.
- The successive sensors measure the same quantity and transmit the value of the measured quantity as warning signal to the control unit, wherein the control unit generates an alarm if the measurement data detected by the successive sensors comply with a predetermined condition.
- Conditions against which measurement data detected by successive sensors could be tested are for instance "the distance is smaller than a threshold value" or "the distance lies within a determined range".
- The successive sensors form part of an AND-circuit, wherein the control unit requires in each case that a plurality of successive sensors transmit comparable data to the control unit before an alarm is issued.
- According to a preferred embodiment, the sensors are arranged such that their measuring direction is oriented transversely of the railway track and in the direction of the railway track. This has the advantage, among others, that the measurement distance is kept limited, which increases accuracy.
- According to a further preferred embodiment, the control unit assumes that there is an object on the railway track when a warning signal is received from at least three successive sensors. The reliability increases and the susceptibility to vandalism decreases significantly. It would after all require at least three different people to cause three successive sensors to detect an object.
- According to yet another preferred embodiment, the sensors are arranged at some mutual distance in longitudinal direction of the railway track. When a distance between the different sensors is known, it is also possible to derive the direction of travel and speed of this object in addition to determining its position.
- According to yet another preferred embodiment, successive sensors are arranged at a predetermined mutual distance from each other. When the distance between individual sensors is known, it is also possible to determine the speed of the train in addition to an accurate position determination.
- According to yet another preferred embodiment, the distance between successive sensors is constant, which simplifies the determination of position and speed.
- According to yet another preferred embodiment, successive sensors are arranged at a distance of a minimum of two metres, more preferably at a distance of about four metres, from each other. The greater the mutual distance between sensors, the fewer sensors are required and the cheaper the system is. Because a single train carriage is a minimum of 12 metres long, a single 'lost' train carriage will be detected by a minimum of three successive sensors. The system is hereby also suitable for detecting lost carriages in addition to position determination. In contrast to ERTMS, which does enable position determination, the system according to the invention requires no additional electrical track circuit or axle counter system.
- According to yet another preferred embodiment, the sensors are arranged over substantially the whole length of the railway track. The system is hereby not only able to detect a presence of a train in a block, but can also - depending on the distance between the sensors - give an accurate approximation of the location of the train on the railway track.
- With sensors over substantially the whole length of the railway track the system is moreover no longer limited to application within conventional blocks.
- Following brief failure due to malfunction the system can determine where trains and/or other objects are situated on the railway track. In contrast to conventional block systems, it is unnecessary to visually inspect a presence of a train in a (rail) block, which can be up to 5 km long. The system is hereby self-starting and soon fully operational again following brief failure.
- Furthermore, because an accurate position determination of trains on a railway route is possible, the degree of occupancy of the track can be increased while safety remains guaranteed. The system can hereby be applied within future logistical concepts such as timetable-free travel.
- When a sufficiently large number of sensors is applied, the option is also provided of monitoring, replacing or repairing the sensors at a suitable point in time. The system is after all still reliable when one sensor, or even two successive sensors, are defective. Replacement can take place at a quiet moment suitable for the purpose so that there is minimum disruption to rail traffic. The system is reliable and not susceptible to malfunction, since the system continues to function even when several sensors fail.
- According to yet another preferred embodiment, the detection areas monitored by the sensors are separate areas which have no overlap. Because there is no overlap, it is known very precisely, owing to the warning signal which is linked identifiably to a unique sensor, where the object, generally a train (section), is situated on the railway track.
- The sensors are distance sensors and, in the case a distance reduction is detected by at least two successive sensors, the control unit assumes that there is an object on the railway track.
- The sensors are arranged above the railway track with their detection area extending downward in the direction of the railway track. The distance detected in the case of an unoccupied track is about 5 to 6 metres. A soon as a train or other object is located under these sensors, a smaller distance is detected. In the case of a train of 3 metres in height the detected distance is suddenly reduced by 3 metres. Owing to the predictability in distance change the system is not susceptible to malfunction.
- In contrast to sensors which only detect a presence (true/false) of an object, as is for instance the case with optical sensors, sensors which are able to measure a distance offer further advantages.
- Each distance sensor can be used to make a distinction between the closest railway track which has to be monitored and a possible other track situated adjacently thereof. At a distance above a determined threshold value it is known that this object is not situated on the adjacent track to be monitored. In order to prevent errors caused by unseen vehicles each railway track is provided with its own series of distance sensors, whereby only the adjacent track has to be monitored in each case.
- In addition, distance sensors have the advantage that all components can be accommodated in a single sensor housing, while for instance optical sensors always comprise at least two components: a transmitter and a receiver, optionally with one or more reflectors, or a combined transmitter/receiver with one or more reflectors. All these individual components may become unusable, for instance due to technical failure or due to contamination (obstructions or scaling) which disrupts the optical system.
- In the case of sensors which are arranged adjacently of the railway track and which measure distance in for instance a substantially horizontal plane, when a railway track is not occupied the detected distances can vary greatly between the different sensors depending on the free field of vision. A much shorter distance will however also be suddenly detected here when a train moves through the detection area.
- A self-testing system is also obtained by using distance sensors. When a distance sensor fails it will measure a distance zero, which is noted by the control unit. The skilled person will appreciate that, when any sensor which in principle measures continuously fails, this is recognizable as such.
- Self-test capability is also obtained in yet another preferred embodiment by tracking in the control unit whether all sensors make a measurement within a determined relative measurement value when a train travels over the railway track. In the case one sensor deviates repeatedly, this sensor is designated by the system as a sensor to be checked/replaced.
- According to yet another preferred embodiment, the distance sensors comprise an ultrasonic sensor and/or a radar and/or a laser. Such sensors have the advantage that the transmitter and receiver are housed in the same unit.
- The sensors are arranged above the railway track and their detection area extends downward in the direction of the track.
- Arranging the sensors above the railway track has several advantages, including not being susceptible to vandalism. In addition, the sensors can be placed above the railway track without time-consuming excavation operations.
- Sensors arranged on the cables above the railway track also provide the option of early detection of such a cable becoming detached, whereby the trains can be informed of this and it is possible to prevent kilometres of cable being pulled loose. This happens several times a year and the necessary repair operations can easily make the relevant route unusable for two days. Distance sensors which are arranged above the railway track and detect in downward direction therefore provide the system with a high degree of self-test capability.
- Sensors which are arranged above the railway track and detect in downward direction are more likely to detect an object on the track than sensors which detect in a lying plane. This is because the height at which a sensor detecting in a lying plane detects determines whether an object is detected or whether the sensor detects below or above the object. A downward viewing sensor is not susceptible to this.
- According to yet another preferred embodiment, close to a level crossing additional sensors are arranged in the vicinity of the railway track and these additional sensors each cover a separate detection area of the level crossing so that objects blocking the railway track at the position of the level crossing can be detected by the system.
- According to yet another preferred embodiment the mutual distance between the sensors close to the level crossing is a maximum of 2 metres. Objects from two metres in length can hereby be detected, including passenger cars blocking the railway track at the position of the level crossing.
- The invention further relates to a method for localizing objects on a railway track, comprising the steps of:
- at least two sensors arranged in the vicinity of the railway track each covering a detection area of the railway track;
- the individual sensors transmitting an identifiable warning signal to a control unit to which they are connected when the individual sensors detect an object in their detection area of the railway track;
- transmitting the same quantity measured by successive sensors as warning signal to the control unit;
- the control unit generating an alarm if the measurement data detected by the successive sensors comply with a predetermined condition;
- wherein the sensors are distance sensors and, in the case a distance reduction is detected by at least two successive sensors, the control unit assumes that there is an object of the railway track; and
- wherein the sensors are arranged above the railway track, and their detection area extends downward in the direction of the railway track.
- According to a preferred embodiment of the method, use is made of a system as described above.
- Preferred embodiments of the present invention are further elucidated in the following description with reference to the drawing, in which:
-
Figure 1 shows a view of a train on a track provided with the system according to the invention; -
Figure 2 shows a view of a carriage which has remained behind on the track provided with the system according to the invention; and -
Figure 3 shows a top view of a level crossing. -
Figure 1 shows a section ofrailway track 4 on which atrain 21 is situated.Train 21 consists of a locomotive 22 and a carriage 24 drawn thereby. Situated aboverailway track 4 is anoverhead line 26 on whichsensors 8 are arranged at a constant mutual distance. -
Sensors 8, which in the shown embodiment comprise ultrasonic sensors, preferably havenon-overlapping detection areas 10 extending downward fromsensor 8 in the direction ofrailway track 4. Eachunique sensor 8 thus covers a unique part ofrailway track 4 with itsdetection area 10. - When
ultrasonic sensors 8 view anunoccupied railway track 4, they will detect a distance of for instance 5.5 metres. When however there is atrain 21 or other object 2 undersensor 8, thissensor 8 suddenly detects a shorter distance. In the case there is atrain 21 of 3 metres in height undersensor 8, thissensor 8 suddenly detects a distance of only 5.5 - 3 = 2.5 metres, and thisunique sensor 8 transmits an identifiable warning signal to controlunit 6. - When
control unit 6 receives a corresponding signal from a predetermined number ofsuccessive sensors 8,control unit 6 assumes that there is an object 2 on the railway track. - Although the system can be applied within the current railway routes, which are divided into (rail) blocks, and can in such a case demonstrate occupancy of such a (rail) block, the system is expressly not limited to such block systems. It is after all possible, by means of identifiable warning signals received by
control unit 6 and coming fromunique sensors 8, to provide a very precise approximation of the location at which atrain 21 or other object 2 is situated on arailway track 4. - Because
control unit 6 receives identifiable warning signals from allsensors 8 under which object 2 is situated, such as locomotive 22 and carriage 24 infigure 1 ,control unit 6 is able to determine the length of atrain 21. - In addition, the system is also suitable for detecting individual objects 2, such as for instance a 'lost' carriage 24, on railway track 4 (
figure 2 ). - As in ERTMS, a position determination is possible (
figure 1 ), while 'lost' carriages 24 (figure 2 ) are also detected by the system. The system according to the invention can therefore be used without - as is the case with ERTMS - an additional electrical track circuit or axle counter system having to be applied. - When a
train 21 consisting of locomotive 22 and carriage 24 moves over arailway track 4,successive sensors 8 will detect an object 2. If the distance betweensuccessive sensors 8 is known, in addition to the position determination it is also possible to determine the speed oftrain 21, and optionally even the acceleration or deceleration thereof. - Because information concerning the position and speed of
train 21 is known, the system provides the possibility, when atrain 21 approaches alevel crossing 16, of controllingbarriers 20 in dynamic manner. - In the present systems use is made at a
level crossing 16 of the permitted travel speed of atrain 21 on the specific route on whichlevel crossing 16 is situated. A sensor (not shown) is arranged at a predetermined distance corresponding to twenty-one seconds travel time to the railway crossing at the permitted travel speed. When this sensor detects an approachingtrain 21,barriers 20 oflevel crossing 16 are closed. Whentrain 21 is travelling more slowly than the permitted travel speed,barriers 20 are also closed at the same distance betweentrain 21 andlevel crossing 16, although because of the lower speed thetrain 21 will take longer than twenty-one seconds to travel this distance. If atrain 21 travels at half the permitted speed, the waiting time is as much as forty-two seconds. - Because the position, the direction of movement and the speed of
train 21 are known according to the system,control unit 6 can precisely determine whentrain 21 will passlevel crossing 16.Barriers 20 can therefore be controlled in dynamic manner, i.e. subject to the travel speed oftrain 21, whereby the waiting times fortraffic 18crossing railway track 4 are minimized. Traffic flow is hereby enhanced and unsafe situations arising from impatient road users are prevented. - According to a preferred embodiment the system is further expanded with
additional sensors 12 which are situated close tolevel crossing 16, close to the lane of crossingtraffic 18. In the unlikely event acar 18 comes to a stop onlevel crossing 16 andblocks railway track 4, this object 2 is detected by theadditional sensors 12 andcontrol unit 6 will intervene and cause thetrain 21 approachinglevel crossing 16 to make an automatic emergency stop. - In the case of a warning signal coming from
sensors level crossing 16control unit 6 can, if desired, already assume when there are a smaller number ofsensors object 2, 18 is situated onrailway track 4 atlevel crossing 16 and take suitable measures. When for instance a detection by only twosensors - It is noted that the system according to the invention is also suitable for detecting objects 2 other than a
train 21 or a carriage 24 onrailway track 4. - In summary, the system according to the invention provides, among others, the following advantages:
- a semi-continuous detection of objects 2 on the track, wherein these objects 2 are not limited to train (sections);
- a technical solution wherein components close to or on
rails 28 are unnecessary; - a technical solution wherein electrical insulation of individual blocks is unnecessary;
- a system which is not susceptible to electromagnetic compatibility;
- a system which is not susceptible to weather influences, such as falling leaves and storms;
- a system which is not susceptible to rust formation on
rails 28; - a system which imposes only few requirements on (new) trains 21 so as to be detectable by the system, whereby rail machinery with small wheel size can for instance also be detected;
- lower energy consumption in the order of magnitude of 50 W/km, while the block system uses about 250 W/km;
- low implementation costs in that
sensors - a system which makes manual resets of a (rail) block unnecessary;
- a system which is self-starting and quickly operational again after a brief failure due to malfunction;
- a self-testing system;
- a system wherein
sensors - a reliable system not susceptible to malfunction;
- a system which, in addition to occupancy of a (rail) block, can also make an accurate approximation of position and speed of the train traffic;
- a system which enables dynamic control of level crossings;
- a system which can also detect objects 2 other than
trains 21, such as acar 18 which is blocking alevel crossing 16, and thereby provides increased safety; - a system which, like ERTMS, transmits the length of
rail vehicle 21 but can also continue to continuously monitor this length and even detects 'lost' carriages, whereby an additional electrical track circuit or axle counter system is unnecessary; and - a system which can serve as full backup when the current ERTMS fails.
- Although they show preferred embodiments of the invention, the above described embodiments are intended only to illustrate the present invention and not in any way to limit the specification of the invention. The scope of the invention is therefore defined solely by the following claims.
Claims (12)
- System for localizing objects on a railway track, comprising:- at least two sensors which are arranged in the vicinity of the railway track and each cover a separate detection area of the railway track;- a control unit which is connected to each of the sensors and receives an identifiable warning signal from the individual sensors when they detect an object in their detection area of the railway track;- wherein the successive sensors measure and transmit the same quantity to the control unit as warning signal; and- wherein the control unit generates an alarm if the measurement data detected by the successive sensors comply with a predetermined condition;characterized in that- the sensors are distance sensors and, in the case a distance reduction is detected by at least two successive sensors, the control unit assumes that there is an object on the railway track; and- wherein the sensors are arranged on cables above the railway track and their detection area extends downward in the direction of the railway track.
- System as claimed in claim 1, wherein the sensors are arranged such that their measuring direction is oriented transversely of the railway track.
- System as claimed in any of the foregoing claims, wherein the control unit assumes that there is an object on the railway track when a warning signal is received from at least three successive sensors.
- System as claimed in any of the foregoing claims, wherein the sensors are arranged at some mutual distance in longitudinal direction of the railway track.
- System as claimed in any of the foregoing claims, wherein successive sensors are arranged at a distance of a minimum of two metres, more preferably at a distance of about four metres, from each other.
- System as claimed in any of the foregoing claims, wherein the sensors are arranged over substantially the whole length of the railway track.
- System as claimed in any of the foregoing claims, wherein the detection areas monitored by the sensors are separate areas which have no overlap.
- System as claimed in claim 7, wherein the distance sensors comprise an ultrasonic sensor and/or a radar and/or a laser.
- System as claimed in any of the foregoing claims, wherein close to a level crossing additional sensors are arranged in the vicinity of the railway track which each cover a separate detection area of the level crossing, so that objects blocking the railway track at the position of the level crossing can be detected by the system.
- System as claimed in claim 9, wherein the mutual distance between the sensors close to the level crossing is a maximum of 2 metres.
- Method for localizing objects on a railway track, comprising the steps of:- at least two sensors arranged in the vicinity of the railway track each covering a detection area of the railway track;- the individual sensors transmitting an identifiable warning signal to a control unit to which they are connected when the individual sensors detect an object in their detection area of the railway track;- transmitting the same quantity measured by successive sensors as warning signal to the control unit;- the control unit generating an alarm if the measurement data detected by the successive sensors comply with a predetermined condition;characterized in that- the sensors are distance sensors and, in the case a distance reduction is detected by at least two successive sensors, the control unit assumes that there is an object on the railway track; and- wherein the sensors are arranged on cables above the railway track, and their detection area extends downward in the direction of the railway track.
- Method according to claim 11, applied to a system according to any of the claims 1-10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL2004944A NL2004944C2 (en) | 2010-06-22 | 2010-06-22 | SYSTEM FOR LOCALIZING OBJECTS ON A RAILWAY, AND METHOD FOR THIS. |
PCT/NL2011/050451 WO2011162605A2 (en) | 2010-06-22 | 2011-06-22 | System for localizing objects on a railway track, and method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2585353A2 EP2585353A2 (en) | 2013-05-01 |
EP2585353B1 true EP2585353B1 (en) | 2017-08-09 |
Family
ID=43529981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11729182.3A Not-in-force EP2585353B1 (en) | 2010-06-22 | 2011-06-22 | System and method for localizing objects on a railway track |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2585353B1 (en) |
NL (1) | NL2004944C2 (en) |
WO (1) | WO2011162605A2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6225362B2 (en) * | 2013-11-11 | 2017-11-08 | 株式会社明電舎 | Train self-position estimation device |
US9434397B2 (en) * | 2014-08-05 | 2016-09-06 | Panasec Corporation | Positive train control system and apparatus therefor |
CN105204496B (en) * | 2015-09-25 | 2018-01-12 | 清华大学 | The method and system of EMUs air brake control system sensor fault diagnosis |
EP3275764B1 (en) | 2016-07-28 | 2020-10-14 | Max Räz | Train guide system |
US10501102B2 (en) | 2017-02-06 | 2019-12-10 | Avante International Technology, Inc. | Positive train control system and apparatus employing RFID devices |
CN108974052B (en) * | 2017-06-01 | 2020-02-21 | 比亚迪股份有限公司 | Vehicle positioning system and method |
GB2572187B (en) | 2018-03-22 | 2021-09-01 | Siemens Mobility Ltd | Sensor unit for detecting the approach of a train |
DE102018206299A1 (en) * | 2018-04-24 | 2019-10-24 | Siemens Mobility GmbH | Method for controlling a level crossing and path control arrangement |
CN109131444A (en) * | 2018-08-31 | 2019-01-04 | 华南理工大学 | Foreign body intelligence detection device in a kind of underground railway track section |
US10752271B2 (en) | 2018-11-15 | 2020-08-25 | Avante International Technology, Inc. | Image-based monitoring and detection of track/rail faults |
IT201900010509A1 (en) * | 2019-07-01 | 2021-01-01 | P A L Italia S R L | Device for detecting the passage, along an electrified overhead line, of a pantograph sliding on it |
CN113815680A (en) * | 2021-09-16 | 2021-12-21 | 宁夏大学 | Railway track sand burying detection system and early warning method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2136703C3 (en) * | 1971-07-22 | 1975-03-20 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Arrangement for the automatic monitoring of danger areas |
FR2192345B1 (en) * | 1972-07-07 | 1975-08-29 | Thomson Csf | |
DE2814348C3 (en) * | 1978-04-03 | 1986-02-13 | Siemens AG, 1000 Berlin und 8000 München | Orientation device for a track-bound vehicle |
DE29724276U1 (en) * | 1997-09-06 | 2000-09-07 | EE-Signals GmbH & Co. KG, 91236 Alfeld | Traffic warning detector |
EP0989408B1 (en) * | 1998-09-24 | 2003-05-14 | Vossloh System-Technik Karlsfeld GmbH | Method and device for informing passengers of a train |
DE20206926U1 (en) * | 2002-05-01 | 2002-08-08 | Ludwig, Peter, 90513 Zirndorf | Monitoring system for optoelectronic control of train station danger areas |
US7196636B2 (en) * | 2004-02-24 | 2007-03-27 | Graham Kevin M | Railroad crossing warning system |
WO2007134430A1 (en) * | 2006-05-09 | 2007-11-29 | Sensotech Inc. | Presence detection system for path crossing |
DE102007035916A1 (en) * | 2007-07-30 | 2009-02-05 | Siemens Ag | Zugpositionserfassungssystem |
DE102007049248B4 (en) * | 2007-10-12 | 2013-07-04 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for determining the position of a rail vehicle |
EP2151364B1 (en) * | 2008-08-06 | 2012-08-29 | Siemens Schweiz AG | Method and device for securing an automatic, signal-controlled level crossing |
-
2010
- 2010-06-22 NL NL2004944A patent/NL2004944C2/en not_active IP Right Cessation
-
2011
- 2011-06-22 WO PCT/NL2011/050451 patent/WO2011162605A2/en active Application Filing
- 2011-06-22 EP EP11729182.3A patent/EP2585353B1/en not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2011162605A3 (en) | 2012-02-16 |
WO2011162605A2 (en) | 2011-12-29 |
NL2004944C2 (en) | 2011-12-27 |
EP2585353A2 (en) | 2013-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2585353B1 (en) | System and method for localizing objects on a railway track | |
US20230192164A1 (en) | Rail Vehicle Signal Enforcement and Separation Control | |
AU2014323587B2 (en) | System and method for identifying damaged sections of a route | |
WO2020021282A1 (en) | Determining position of a vehicle on a rail | |
WO2014193610A1 (en) | Broken rail detection system for communications-based train control | |
CN106715234A (en) | System and method for avoiding a collision for a vehicle | |
US10501100B2 (en) | Route examining system | |
US9481385B2 (en) | Systems and methods for predictive maintenance of crossings | |
KR20140069063A (en) | Method and system for determining the availability of a lane for a guided vehicle | |
CN216467864U (en) | Railway monitoring system | |
US11358618B2 (en) | Crossing obstruction detection system | |
AU2011308097B2 (en) | A railroad track inspection vehicle | |
CN113859331A (en) | Railway monitoring system and monitoring method thereof | |
CN100482512C (en) | Cab signal quality detecting and reporting system and method | |
US20080149782A1 (en) | Wheel detection and classification system for railroad data network | |
WO2013170307A1 (en) | Vehicle detection system | |
JP2010012932A (en) | Train monitoring system | |
EP1849679A1 (en) | Safety system for railroad level-crossing | |
JP2003054411A (en) | Method and device for detecting approach of train | |
CN113415318B (en) | Train coupling marshalling auxiliary protection system and protection method | |
CA2242723C (en) | Railway hazard acoustic sensing, locating, and alarm system | |
CN113715882A (en) | Method for detecting barrier at railway crossing | |
RU2770322C1 (en) | Device for determining the derailment of wheel pairs of rolling stock or a dragging metal part and a sensor for monitoring the obliquity of rolling stock | |
GB2569452A (en) | System and method for rail vehicle detection and alert | |
US20230264726A1 (en) | A railroad crossing control system with auxiliary shunting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130122 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170410 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 916457 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011040386 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 916457 Country of ref document: AT Kind code of ref document: T Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171110 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011040386 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
26N | No opposition filed |
Effective date: 20180511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180622 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190627 Year of fee payment: 9 Ref country code: FR Payment date: 20190625 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190619 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200622 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200622 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210629 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011040386 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230103 |