EP2582201B1 - Induction heating device - Google Patents
Induction heating device Download PDFInfo
- Publication number
- EP2582201B1 EP2582201B1 EP12187782.3A EP12187782A EP2582201B1 EP 2582201 B1 EP2582201 B1 EP 2582201B1 EP 12187782 A EP12187782 A EP 12187782A EP 2582201 B1 EP2582201 B1 EP 2582201B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- unit
- induction heating
- boost
- voltage
- frequency unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006698 induction Effects 0.000 title claims 11
- 238000010438 heat treatment Methods 0.000 title claims 10
- 239000003990 capacitor Substances 0.000 claims 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
Definitions
- the invention is based on an induction heating device according to the preamble of claim 1.
- Induction heaters which include an inductor powered by an inverter operated by a rectifier.
- the object of the invention is in particular to provide a generic device with improved properties in terms of increased efficiency.
- the object is achieved by the features of claim 1, while advantageous embodiments and modifications of the invention can be taken from the dependent claims.
- the invention is based on an induction heating device, in particular an induction hob device, with at least one induction heating element and at least one heating frequency unit which is provided, at least in one operating state, to supply at least one induction heating element with high-frequency alternating current.
- the induction heating device has at least one boost unit, which is intended to convert an input voltage into an output voltage which is at least 1%, in particular at least 30%, advantageously at least 60%, preferably at least 90% greater as the input voltage.
- An "induction heating element” is to be understood, in particular, as a wound electrical conductor, preferably in the form of a circular disk or an oval with an elongate shape, through which high-frequency alternating current flows in at least one operating state.
- the induction heating element is preferably provided to convert electrical energy into an alternating magnetic field, which is provided in a metallic, preferably at least partially ferromagnetic, heating means, in particular cooking utensils, eddy currents and / or remagnetization effects cause heat to be generated.
- the induction heating element in at least one operating state, in particular an operating state without a near heating medium, has an inductance value between 0.1 ⁇ H and 10 mH, in particular between 0.5 ⁇ H and 5 mH, preferably between 1 ⁇ H and 1 mH.
- heating frequency unit should in particular be understood to mean an electrical unit which generates an oscillating electrical signal, preferably with a frequency of at least 1 kHz, in particular of at least 10 kHz, advantageously of at least 20 kHz, and in particular of not more than 100 kHz for an induction heating element ,
- the heating frequency unit is provided to provide a, required by the induction heating, maximum electrical power of at least 1000 W, in particular at least 2000 W, advantageously at least 3000 W and preferably at least 3500 W.
- the heating frequency unit preferably has at least one switching element which is connected in series with it at least during a heating operation of the induction heating element.
- the heating frequency unit preferably has at least one diode which is connected in parallel with the at least one switching element.
- boost unit should in particular be understood to mean an electronic unit which has at least one boost inductance and at least one switching element, the boost inductance and the switching element being connected in series between input contacts of the input voltage and an output voltage being able to be removed across the switching element.
- the switching element is connected in parallel with at least one smoothing capacitor, advantageously in series with a backflow preventer, in order to smooth the output voltage which can be taken off across the smoothing capacitor.
- the boost unit can also be designed as a cascade circuit.
- a “switching element” is to be understood in particular to mean an electronic element which is intended to produce and / or to separate an electrically conductive connection between two points.
- the switching element has at least one control contact, via which it can be switched.
- the switching element is advantageously designed as a semiconductor switching element, in particular as a transistor, as a bipolar transistor with preferably insulated gate electrode (IGBT).
- a “boost inductance” is intended in particular to mean an electrical inductance, advantageously at least one electrical coil, with an inductance value of at least 10 ⁇ H, in particular at least 50 ⁇ H, preferably at least 80 ⁇ H, preferably at least 100 ⁇ H, and / or at most 10 H, in particular at most 1 H, advantageously at most 300 mH, preferably at most 100 mH.
- the boost inductance is preferably provided to store electrical energy in a closed state of the switching element of the boost unit and to discharge it again in an open state of the switching element.
- a boost inductance is different from a filter inductance intended to filter electrical noise.
- a “smoothing capacity” is to be understood in particular as meaning an electrical capacitance, in particular at least one electrical capacitor, which has a capacitance value of at least 100 nF, in particular at least 200 nF, advantageously at least 500 nF, preferably at least 1 ⁇ F, and / or at most 100 ⁇ F. in particular at most 500 ⁇ f, advantageously at most 300 ⁇ F, preferably at most 10 ⁇ F.
- a “backflow preventer” should in particular be understood to mean an electronic element, in particular a diode, and / or a switching element which is preferably precisely controlled and which is intended to suppress a current flow at specific times and / or in certain directions.
- the vomervermeider the boost unit is provided to prevent discharge of the smoothing capacitor via the switching element of the boost unit in at least one operating state.
- An "input voltage” is understood in particular to mean a voltage of an energy source, preferably a DC voltage, in particular a pulsating DC voltage and / or a rectified voltage of a phase of a domestic power connection.
- An “output voltage” should preferably be understood to mean a DC voltage, in particular a pulsating DC voltage, which is preferably provided to supply the heating frequency unit. Under that an output voltage is "greater” than an input voltage, should be understood in particular that a time average of the output voltage is greater than a time average of the input voltage.
- a current flow can advantageously be reduced, in particular with the same power, whereby a power loss can be reduced and thus an efficiency can be increased.
- a high heating power can be made available to an operator for a longer time before throttling of the heating power is carried out due to excessive heat development and / or insufficient cooling. Further consequential effects can be cost reduction, lifetime extension, performance improvement and so on.
- the heating frequency unit and the at least one boost unit are formed at least partially in one piece.
- two units are formed "partially in one piece” should be understood in particular that the units have at least one, in particular at least two, advantageously at least three common elements which are part, especially functionally important component of both units.
- at least one switching element of the heating frequency unit is part of the boost unit.
- at least one sudgurvermeider the boost unit is part of the heating frequency unit.
- the inductance value of the boost inductance is tuned to optimally boost at a frequency between 20 kHz and 100 kHz. In particular, components can be saved, which in turn electrical losses can be reduced.
- the induction heating device has at least one rectifier unit, which is in particular provided to rectify an AC voltage, in particular an AC line voltage, and to provide the boost unit as an input voltage.
- a "rectifier unit” should be understood to mean, in particular, a unit which has at least two, in particular at least four, backflow preventer, which are preferably designed as diodes.
- the sudmannvermeider are arranged in a bridge circuit.
- the rectifier unit has at least one smoothing capacitor, which is provided to at least partially store a rectified voltage.
- at least one of the reflux eliminators is arranged electrically between the boost coil and the switching element of the boost unit.
- the switching element of the boost unit is connected in parallel with at least part of the rectifier unit. In particular, high efficiency can be achieved.
- the rectifier unit and the boost unit are at least partially formed in one piece.
- at least one smoothing capacitor of the boost unit is part of the rectifier unit.
- at least one scrubmannvermeider the rectifier unit is part of the boost unit.
- the rectifier unit and the heating frequency unit are formed at least partially in one piece.
- at least one greedmannvermeider the rectifier unit is part of the heating frequency unit.
- components can be saved, which in turn electrical losses can be reduced.
- the heating frequency unit has at least one switching element which is connected in parallel with at least part of the rectifier unit, in particular a reflux preventer.
- a reflux preventer In particular, an efficiency can be increased.
- the heating frequency unit is designed as a bridge inverter with at least two switching elements.
- the two switching elements are preferably series-connected, bidirectional unipolar switches, which are formed in particular by a transistor and a parallel-connected diode.
- a voltage tap of the heating frequency unit is arranged in particular at a common contact point, a contact of the bridge branch, two bidirectional unipolar switch.
- the bridge inverter is designed as a half-bridge.
- the induction heating element is arranged in a bridge branch between the series-connected switching elements and two resonant capacitors connected in series.
- a resonance capacitance has a capacitance value between 50 nF and 100 ⁇ F, in particular between 150 nF and 60 ⁇ F, advantageously between 0.3 ⁇ F and 30 ⁇ F, and preferably between 0.5 ⁇ F and 10 ⁇ F.
- a capacitance value of the resonance capacitance is dependent on an inductance value of the induction heating element.
- an efficient and / or easily controllable heating frequency unit can be provided.
- a bridge branch of the bridge inverter directly with a contact of a power supply, in particular a phase of a AC power supply is connected.
- a "direct contact” is to be understood in particular as an electrically conductive, in particular metallic, connection which can be traversed by direct current irrespective of the direction. In particular, an increased effectiveness can be achieved.
- a damping capacity is connected in parallel.
- a “damping capacity” is to be understood in particular as meaning a capacitor, in particular at least one capacitor, which is provided to avoid voltage peaks when the switching element is switched on and / or switched off.
- a damping capacity differs from an intrinsic capacitance of a diode.
- the damping capacity has a capacitance value between 1 nF and 1000 nF, in particular between 3 nF and 600 nF, advantageously between 6 nF and 300 nF, preferably between 10 nF and 100 nF.
- At least one switching element of the heating frequency unit differs from a switching element with a parallel-connected damping capacity.
- an increased effectiveness can be achieved.
- FIG. 1 shows a cooking appliance designed as a domestic appliance 10 with four formed as induction hob devices induction heaters 12, 14, 16, 18.
- the induction heaters 12, 14, 16, 18 are formed as cooking zones.
- FIG. 2 shows a simple embodiment of the induction heating 12 which is not part of the invention.
- the induction heating device 12 has an induction heating element 20 and a heating frequency unit 22. Furthermore, the induction heating device 12 has a boost unit 24, which is intended to convert an input voltage into an output voltage that is greater than the input voltage. Furthermore, the induction heating device 12 has a rectifier unit 26.
- the rectifier unit 26 has four reflux inhibitors 40, 42, 44, 46 in the form of diodes, which are connected as bridge rectifiers.
- the rectifier unit 26 is intended to rectify a mains AC voltage which is applied to contacts of a voltage supply 28 and to store them partially in a smoothing capacitor 48.
- the AC voltage source is designed as a phase of a multi-phase house connection.
- the boost unit 24 receives as input voltage the pulsating DC voltage which is generated by the rectifier unit 26 and applied across the smoothing capacitor 48.
- the boost unit 24 has a boost inductance 50 and a switching element 52. By periodically opening and closing the switching element 52 at a high frequency, the boost inductance 50 generates an increased voltage, which is conducted via a backflow preventer 54 of the boost unit 24 into a smoothing capacitor 56. About the smoothing capacitor 56, an output voltage can be tapped, which is twice as large as the input voltage.
- the induction heating element 20 is designed as a circular inductor.
- the Schufrequenzaise 22 is formed as a bridge inverter with two switching elements 30, 32, each having a parallel-connected remindmannvermeider 34, 36, which is designed as a diode.
- the heating frequency unit 22 is designed as a half-bridge circuit.
- the heating frequency unit 22 is provided to receive a pulsating DC voltage, which is applied across the smoothing capacitor 56 of the boost unit 24, and to convert it into a high-frequency AC voltage.
- the Half-bridge circuit two resonance capacitances 38, 39 on.
- One of the switching elements 32, a damping capacitor 33 is connected in parallel.
- embodiments are conceivable in which more than one heating frequency unit 22 are connected to the smoothing capacitor 56 of the boost unit 24.
- all four induction heaters 12, 14, 16, 18 may share a rectifier unit 26 and / or a boost unit 24, and / or the induction heaters 14, 16, 18 may be analogous to the induction heater 12.
- a heating frequency unit is designed as a single switching element, which is connected in series with a parallel circuit of an induction heating element and a resonance capacitor.
- the smoothing capacitance 48 of the rectifier unit 26 can be dispensed with.
- the rectifier unit 26 is dispensed with and a DC voltage source is used directly for an input voltage of the boost unit 24.
- FIG. 3 a further embodiment of the invention is shown.
- the following descriptions are essentially limited to the differences between the embodiments, with respect to the same components, features and functions on the description of the other embodiment, in particular the FIGS. 1 and 2 , can be referenced.
- the letter a is added to the reference signs.
- identically designated components in particular with regard to components with the same reference numerals, can in principle also to the drawings and / or the description of the embodiment of FIGS. 1 and 2 to get expelled.
- Induction heater 12a includes an induction heating element 20a, a heating frequency unit 22a, and a boost unit 24a arranged to convert an input voltage to an output voltage that is greater than the input voltage.
- the heating frequency unit 22a is designed as a bridge inverter with two switching elements 30a, 32a. Each of the switching elements 30a, 32a is connected in parallel with a reflux eliminator 34a, 36a designed as a diode.
- the heating frequency unit 22a is designed as a half-bridge circuit.
- the boost unit 24a has two switching elements 52a, 52a 'and a boost inductance 50a.
- the boost inductance 50a has a Smoothing capacity 56a and two remindmannvermeider 54a, 54a 'on.
- the Schufrequenzlab 22 a and the boost unit 24 a are partially formed in one piece.
- the greedmannvermeider 54a, 54a 'of the boost unit 24a are as switching elements 30a, 32a and vent Wegvermeider 34a, 36a components of the heating frequency unit 22a.
- the switching elements 30a, 32a of the heating frequency unit 22a as switching elements 52a, 52a 'are components of the boost unit 24a.
- the induction heating device 12a has a rectifier unit 26a.
- the rectifier unit 26a is formed by four reflux mixers 40a, 42a, 44a, 46a and a smoothing capacitor 48a.
- the greedmannvermeider 40a, 42a, 44a, 46a are arranged substantially in bridge circuit.
- the return flow removers 40a, 42a are in this case arranged electrically between the switching elements 52a and the boost inductance 50a of the boost unit 24a.
- the rectifier unit 26a and the boost unit 24a are partially formed in one piece.
- the greedmannvermeider 54a, 54a 'of the boost unit 24a are as mulchmannmeider 44a, 46a components of the rectifier unit 26a.
- the smoothing capacity 48a of the rectifier unit 26a is part of the boost unit 24a.
- the rectifier unit 26a and the heating frequency unit 22a are formed partially in one piece.
- the return flow removers 34a, 36a of the heating frequency unit 22a are, as backflow preventer 44a, 46a, components of the rectifier unit 26a.
- the switching elements 30a, 32a of the heating frequency unit 22a are connected in parallel with reflux mixers 44a, 46a of the rectifier unit 26a.
- a bridge branch of the heating frequency unit 22a designed as a bridge inverter is connected directly to a contact of a voltage supply 28a.
- a single one of the switching elements 32a of the heating frequency unit 22a is connected in parallel with a damping capacitance 33a. If damping capacitances 33a were connected in parallel to both switching elements 30a, 32a, an interference voltage would build up, which led to a lower efficiency.
- the backflow preventer 40a, 42a, 44a, 46a, 54a, 54a', 34a, 36a behave like a regular rectifier, wherein an AC voltage of the voltage supply 28a is rectified and buffered in the smoothing capacitance 48a, 56a, which is arranged in a bridge branch of the rectifier.
- a connection via the induction heating element 20a and a resonance capacitance 38a or 39a is irrelevant, since these resonant circuits have a resonant frequency in the kHz range between 10 kHz and 50 kHz, which is far greater than a mains frequency of the power supply
- the switching elements 30a, 32a, 52a, 52a ' are periodically opened and closed at a high frequency between 20 kHz and 100 kHz to generate a high-frequency alternating current for the induction heating element 20a ,
- a maximum of one of the switching elements 30a, 32a, 52a, 52a ' is opened simultaneously in order to avoid a short circuit of the smoothing capacitor 48a, 56a and to ensure correct operation of the induction heating element 20a.
- a short circuit is generated periodically via the switching element 30a, 52a and the return flow suppressor 40a, which leads to an energy build-up in the boost inductance 50a.
- the boost inductance 50a When the switching element 30a, 52a is opened, the boost inductance 50a generates an induction voltage which, via the backflow preventer 40a and the backflow preventer 46a or the later opened switching element 32a, charges the smoothing capacitor 48a, 56a with a voltage that is greater than a current amount of the input voltage , Further, in a closed state of the switching element 30a, 52a ', the resonance capacitance 38a across the induction heating element 20a is discharged and the resonance capacitance 39a is charged via the induction heating element 20a by the smoothing capacitance 48a, 56a.
- the switching element 30a, 52a ' is opened without voltage.
- An inductance of the induction heating element 20a maintains a current flow through the induction heating element 20a by further charging the resonance capacity 39a via the reflux preventer 36a, 46a, 54a '. If current flows via the reflux preventer 36a, 46a, 54a ', the switching element 32a can be closed.
- the flow direction of a current through the induction heating element 20a reverses and the resonance capacity 39a is discharged via the induction heating element 20a, while the resonance capacity 38a is charged via the induction heating element 20a by the smoothing capacity 48a, 56a. This process continues periodically.
- a short circuit is periodically generated via the switching element 32a and the return flow observer 42a, which leads to an energy build-up in the boost inductance 50a.
- the boost inductance 50a When the switching element 32a, 52a 'is opened, the boost inductance 50a generates an induction voltage which charges the smoothing capacitor 48a, 56a with a voltage via the reflux preventer 42a and the reflux preventer 34a, 44a, 54a or the later opened switching element 30a, 52a' is greater than a current amount of input voltage.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
- Induction Heating Cooking Devices (AREA)
Description
Die Erfindung geht aus von einer Induktionsheizvorrichtung nach dem Oberbegriff des Anspruchs 1.The invention is based on an induction heating device according to the preamble of claim 1.
Es sind Induktionsheizvorrichtungen bekannt, die einen Induktor aufweisen, der von einem, von einem Gleichrichter betriebenen Wechselrichter versorgt ist.Induction heaters are known which include an inductor powered by an inverter operated by a rectifier.
Das Dokument
Die Aufgabe der Erfindung besteht insbesondere darin, eine gattungsgemäße Vorrichtung mit verbesserten Eigenschaften hinsichtlich einer erhöhten Effizienz bereitzustellen. Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.The object of the invention is in particular to provide a generic device with improved properties in terms of increased efficiency. The object is achieved by the features of claim 1, while advantageous embodiments and modifications of the invention can be taken from the dependent claims.
Die Erfindung geht aus von einer Induktionsheizvorrichtung, insbesondere einer Induktionskochfeldvorrichtung, mit zumindest einem Induktionsheizelement und zumindest einer Heizfrequenzeinheit, die dazu vorgesehen ist, zumindest in einem Betriebszustand, zumindest das eine Induktionsheizelement mit hochfrequentem Wechselstrom zu versorgen.The invention is based on an induction heating device, in particular an induction hob device, with at least one induction heating element and at least one heating frequency unit which is provided, at least in one operating state, to supply at least one induction heating element with high-frequency alternating current.
Es wird vorgeschlagen, dass die Induktionsheizvorrichtung zumindest eine Boosteinheit aufweist, die dazu vorgesehen ist, eine Eingangsspannung in eine Ausgangsspannung umzuwandeln, die zu mindestens 1 %, insbesondere zu mindestens 30 %, vorteilhaft zu mindestens 60 %, vorzugsweise zu mindestens 90 %, größer ist als die Eingangsspannung. Unter einem "Induktionsheizelement" soll insbesondere ein gewickelter elektrischer Leiter verstanden werden, vorzugsweise in Form einer Kreisscheibe oder eines Ovals mit länglicher Form, der in zumindest einem Betriebszustand von hochfrequentem Wechselstrom durchflossen wird. Das Induktionsheizelement ist vorzugsweise dazu vorgesehen, elektrische Energie in ein magnetisches Wechselfeld umzuwandeln, das dazu vorgesehen ist, in einem metallischen, vorzugsweise zumindest teilweise ferromagnetischen, Heizmittel, insbesondere einem Gargeschirr, Wirbelströme und/oder Ummagnetisierungseffekte hervorzurufen, die dazu vorgesehen sind, Wärme zu erzeugen. Insbesondere weist das Induktionsheizelement in zumindest einem Betriebszustand, insbesondere einem Betriebszustand ohne nahes Heizmittel, einen Induktivitätswert zwischen 0,1 µH und 10 mH, insbesondere zwischen 0,5 µH und 5 mH, vorzugsweise zwischen 1 µH und 1 mH, auf. Unter einer "Heizfrequenzeinheit" soll insbesondere eine elektrische Einheit verstanden werden, die ein oszillierendes elektrisches Signal, vorzugsweise mit einer Frequenz von zumindest 1 kHz, insbesondere von wenigstens 10 kHz, vorteilhaft von mindestens 20 kHz, und insbesondere von maximal 100 kHz für ein Induktionsheizelement erzeugt. Insbesondere ist die Heizfrequenzeinheit dazu vorgesehen, eine, von dem Induktionsheizelement geforderte, maximale elektrische Leistung von zumindest 1000 W, insbesondere zumindest 2000 W, vorteilhaft zumindest 3000 W und vorzugsweise zumindest 3500 W bereitzustellen. Vorzugsweise weist die Heizfrequenzeinheit zumindest ein Schaltelement auf, das zumindest bei einem Heizbetrieb des Induktionsheizelements mit diesem in Reihe geschaltet ist. Vorzugsweise weist die Heizfrequenzeinheit zumindest eine Diode auf, die dem zumindest einen Schaltelement parallel geschaltet ist. Unter "vorgesehen" soll insbesondere speziell ausgelegt und/oder ausgestattet verstanden werden. Unter einer "Boosteinheit" soll insbesondere eine elektronische Einheit verstanden werden, die zumindest eine Boostinduktivität und zumindest ein Schaltelement aufweist, wobei die Boostinduktivität und das Schaltelement zwischen Eingangskontakten der Eingangsspannung in Reihe geschaltet sind und wobei eine Ausgangsspannung über dem Schaltelement abgenommen werden kann. Vorzugsweise ist dem Schaltelement zumindest eine Glättungskapazität, vorteilhaft in Reihe mit einem Rückflussvermeider, parallel geschaltet, um die Ausgangsspannung zu glätten, die über der Glättungskapazität abgenommen werden kann. Alternativ kann die Boosteinheit auch als Kaskadenschaltung ausgebildet sein. Unter einem "Schaltelement" soll insbesondere ein elektronisches Element verstanden werde, das dazu vorgesehen ist, zwischen zwei Punkten eine elektrisch leitende Verbindung herzustellen und/oder zu trennen. Vorzugsweise weist das Schaltelement zumindest einen Steuerkontakt auf, über den es geschaltet werden kann. Insbesondere ist das Schaltelement als Halbleiterschaltelement, insbesondere als Transistor, vorteilhaft als Bipolartransistor mit vorzugsweise isolierter Gate-Elektrode (IGBT), ausgebildet. Unter einer "Boostinduktivität" soll insbesondere eine elektrische Induktivität, vorteilhaft zumindest eine elektrische Spule, mit einem Induktivitätswert von zumindest 10 µH, insbesondere zumindest 50 µH, vorzugsweise zumindest 80 µH, vorzugsweise zumindest 100 µH, und/oder maximal 10 H, insbesondere maximal 1 H, vorteilhaft maximal 300 mH, vorzugsweise maximal 100 mH, verstanden werden. Vorzugsweise ist die Boostinduktivität dazu vorgesehen, in einem geschlossenen Zustand des Schaltelements der Boosteinheit elektrische Energie zu speichern und in einem geöffneten Zustand des Schaltelements wieder abzugeben. Insbesondere unterscheidet sich eine Boostinduktivität von einer Filterinduktivität, die dazu vorgesehen ist, elektrische Störungen zu filtern. Unter einer "Glättungskapazität" soll insbesondere eine elektrische Kapazität, insbesondere zumindest ein elektrischer Kondensator, verstanden werden, die einen Kapazitätswert von zumindest 100 nF, insbesondere zumindest 200 nF, vorteilhaft zumindest 500 nF, vorzugsweise zumindest 1 µF, und/oder maximal 100 µF, insbesondere maximal 500 µf, vorteilhaft maximal 300 µF, vorzugsweise maximal 10 µF, aufweist. Unter einem "Rückflussvermeider" soll insbesondere ein elektronisches Element, insbesondere eine Diode, und/oder ein, vorzugsweise präzise angesteuertes Schaltelement, verstanden werden, das dazu vorgesehen ist, einen Stromfluss zu bestimmten Zeitpunkten und/oder in bestimmte Richtungen zu unterdrücken. Insbesondere ist der Rückflussvermeider der Boosteinheit dazu vorgesehen, in zumindest einem Betriebszustand eine Entladung der Glättungskapazität über das Schaltelement der Boosteinheit zu verhindern. Unter einer "Eingangsspannung" soll insbesondere eine Spannung einer Energiequelle, vorzugsweise eine Gleichspannung, insbesondere eine pulsierende Gleichspannung und/oder eine gleichgerichtete Spannung einer Phase eines Hausstromanschlusses verstanden werden. Unter einer "Ausgangsspannung" soll vorzugsweise eine Gleichspannung, insbesondere eine pulsierende Gleichspannung, verstanden werden, die vorzugsweise dazu vorgesehen ist, die Heizfrequenzeinheit zu versorgen. Darunter, dass eine Ausgangsspannung "größer ist" als eine Eingangsspannung, soll insbesondere verstanden werden, dass ein zeitlicher Mittelwert der Ausgangsspannung größer ist als ein zeitlicher Mittelwert der Eingangsspannung. Durch eine vergrößerte Spannung kann insbesondere bei gleicher Leistung vorteilhaft ein Stromfluss verringert werden, wodurch eine Verlustleistung verkleinert und somit eine Effizienz gesteigert werden kann. Insbesondere kann eine hohe Heizleistung einem Bediener länger bereitgestellt werden, bevor aufgrund zu hoher Wärmeentwicklung und/oder unzureichender Kühlung eine Drosselung der Heizleistung durchgeführt wird. Weitere Folgeeffekte können Kostenreduzierung, Lebensdauerverlängerung, Performancesteigerung und so weiter sein.It is proposed that the induction heating device has at least one boost unit, which is intended to convert an input voltage into an output voltage which is at least 1%, in particular at least 30%, advantageously at least 60%, preferably at least 90% greater as the input voltage. An "induction heating element" is to be understood, in particular, as a wound electrical conductor, preferably in the form of a circular disk or an oval with an elongate shape, through which high-frequency alternating current flows in at least one operating state. The induction heating element is preferably provided to convert electrical energy into an alternating magnetic field, which is provided in a metallic, preferably at least partially ferromagnetic, heating means, in particular cooking utensils, eddy currents and / or remagnetization effects cause heat to be generated. In particular, in at least one operating state, in particular an operating state without a near heating medium, the induction heating element has an inductance value between 0.1 μH and 10 mH, in particular between 0.5 μH and 5 mH, preferably between 1 μH and 1 mH. A "heating frequency unit" should in particular be understood to mean an electrical unit which generates an oscillating electrical signal, preferably with a frequency of at least 1 kHz, in particular of at least 10 kHz, advantageously of at least 20 kHz, and in particular of not more than 100 kHz for an induction heating element , In particular, the heating frequency unit is provided to provide a, required by the induction heating, maximum electrical power of at least 1000 W, in particular at least 2000 W, advantageously at least 3000 W and preferably at least 3500 W. The heating frequency unit preferably has at least one switching element which is connected in series with it at least during a heating operation of the induction heating element. The heating frequency unit preferably has at least one diode which is connected in parallel with the at least one switching element. By "intended" is intended to be understood in particular specially designed and / or equipped. A "boost unit" should in particular be understood to mean an electronic unit which has at least one boost inductance and at least one switching element, the boost inductance and the switching element being connected in series between input contacts of the input voltage and an output voltage being able to be removed across the switching element. Preferably, the switching element is connected in parallel with at least one smoothing capacitor, advantageously in series with a backflow preventer, in order to smooth the output voltage which can be taken off across the smoothing capacitor. Alternatively, the boost unit can also be designed as a cascade circuit. A "switching element" is to be understood in particular to mean an electronic element which is intended to produce and / or to separate an electrically conductive connection between two points. Preferably, the switching element has at least one control contact, via which it can be switched. In particular, the switching element is advantageously designed as a semiconductor switching element, in particular as a transistor, as a bipolar transistor with preferably insulated gate electrode (IGBT). A "boost inductance" is intended in particular to mean an electrical inductance, advantageously at least one electrical coil, with an inductance value of at least 10 μH, in particular at least 50 μH, preferably at least 80 μH, preferably at least 100 μH, and / or at most 10 H, in particular at most 1 H, advantageously at most 300 mH, preferably at most 100 mH. The boost inductance is preferably provided to store electrical energy in a closed state of the switching element of the boost unit and to discharge it again in an open state of the switching element. In particular, a boost inductance is different from a filter inductance intended to filter electrical noise. A "smoothing capacity" is to be understood in particular as meaning an electrical capacitance, in particular at least one electrical capacitor, which has a capacitance value of at least 100 nF, in particular at least 200 nF, advantageously at least 500 nF, preferably at least 1 μF, and / or at most 100 μF. in particular at most 500 μf, advantageously at most 300 μF, preferably at most 10 μF. A "backflow preventer" should in particular be understood to mean an electronic element, in particular a diode, and / or a switching element which is preferably precisely controlled and which is intended to suppress a current flow at specific times and / or in certain directions. In particular, the Rückflussvermeider the boost unit is provided to prevent discharge of the smoothing capacitor via the switching element of the boost unit in at least one operating state. An "input voltage" is understood in particular to mean a voltage of an energy source, preferably a DC voltage, in particular a pulsating DC voltage and / or a rectified voltage of a phase of a domestic power connection. An "output voltage" should preferably be understood to mean a DC voltage, in particular a pulsating DC voltage, which is preferably provided to supply the heating frequency unit. Under that an output voltage is "greater" than an input voltage, should be understood in particular that a time average of the output voltage is greater than a time average of the input voltage. Due to an increased voltage, a current flow can advantageously be reduced, in particular with the same power, whereby a power loss can be reduced and thus an efficiency can be increased. In particular, a high heating power can be made available to an operator for a longer time before throttling of the heating power is carried out due to excessive heat development and / or insufficient cooling. Further consequential effects can be cost reduction, lifetime extension, performance improvement and so on.
Weiterhin wird vorgeschlagen, dass die Heizfrequenzeinheit und die zumindest eine Boosteinheit zumindest teilweise einstückig ausgebildet sind. Darunter, dass zwei Einheiten "teilweise einstückig" ausgebildet sind, soll insbesondere verstanden werden, dass die Einheiten zumindest ein, insbesondere zumindest zwei, vorteilhaft zumindest drei gemeinsame Elemente aufweisen, die Bestandteil, insbesondere funktionell wichtiger Bestandteil, beider Einheiten sind. Insbesondere ist zumindest ein Schaltelement der Heizfrequenzeinheit Bestandteil der Boosteinheit. Insbesondere ist zumindest ein Rückflussvermeider der Boosteinheit Bestandteil der Heizfrequenzeinheit. Insbesondere ist der Induktivitätswert der Boostinduktivität darauf abgestimmt, bei einer Frequenz zwischen 20 kHz und 100 kHz optimal zu boosten. Es können insbesondere Bauteile gespart werden, wodurch wiederum elektrische Verluste verringert werden können.Furthermore, it is proposed that the heating frequency unit and the at least one boost unit are formed at least partially in one piece. By the fact that two units are formed "partially in one piece" should be understood in particular that the units have at least one, in particular at least two, advantageously at least three common elements which are part, especially functionally important component of both units. In particular, at least one switching element of the heating frequency unit is part of the boost unit. In particular, at least one Rückflussvermeider the boost unit is part of the heating frequency unit. In particular, the inductance value of the boost inductance is tuned to optimally boost at a frequency between 20 kHz and 100 kHz. In particular, components can be saved, which in turn electrical losses can be reduced.
Ferner wird vorgeschlagen, dass die Induktionsheizvorrichtung zumindest eine Gleichrichtereinheit aufweist, die insbesondere dazu vorgesehen ist, eine Wechselspannung, insbesondere eine Netzwechselspannung, gleichzurichten und der Boosteinheit als Eingangsspannung bereitzustellen. Unter einer "Gleichrichtereinheit" soll insbesondere eine Einheit verstanden werden, die zumindest zwei, insbesondere zumindest vier Rückflussvermeider, die vorzugsweise als Dioden ausgebildet sind, aufweist. Vorzugsweise sind die Rückflussvermeider in einer Brückenschaltung angeordnet. Insbesondere weist die Gleichrichtereinheit zumindest einen Glättungskondensator auf, der dazu vorgesehen ist, eine gleichgerichtete Spannung zumindest teilweise zu speichern. Insbesondere ist zumindest einer der Rückflussvermeider elektrisch zwischen der Boostspule und dem Schaltelement der Boosteinheit angeordnet. Insbesondere ist das Schaltelement der Boosteinheit zu mindestens einem Teil der Gleichrichtereinheit parallel geschaltet. Es kann insbesondere eine hohe Effizienz erreicht werden.It is also proposed that the induction heating device has at least one rectifier unit, which is in particular provided to rectify an AC voltage, in particular an AC line voltage, and to provide the boost unit as an input voltage. A "rectifier unit" should be understood to mean, in particular, a unit which has at least two, in particular at least four, backflow preventer, which are preferably designed as diodes. Preferably, the Rückflussvermeider are arranged in a bridge circuit. In particular, the rectifier unit has at least one smoothing capacitor, which is provided to at least partially store a rectified voltage. In particular, at least one of the reflux eliminators is arranged electrically between the boost coil and the switching element of the boost unit. In particular, the switching element of the boost unit is connected in parallel with at least part of the rectifier unit. In particular, high efficiency can be achieved.
Vorteilhaft wird vorgeschlagen, dass die Gleichrichtereinheit und die Boosteinheit zumindest teilweise einstückig ausgebildet sind. Insbesondere ist zumindest ein Glättungskondensator der Boosteinheit Bestandteil der Gleichrichtereinheit. Insbesondere ist zumindest ein Rückflussvermeider der Gleichrichtereinheit Bestandteil der Boosteinheit. Es können insbesondere Bauteile gespart werden, wodurch wiederum elektrische Verluste verringert werden können.It is advantageously proposed that the rectifier unit and the boost unit are at least partially formed in one piece. In particular, at least one smoothing capacitor of the boost unit is part of the rectifier unit. In particular, at least one Rückflussvermeider the rectifier unit is part of the boost unit. In particular, components can be saved, which in turn electrical losses can be reduced.
Weiterhin wird vorgeschlagen, dass die Gleichrichtereinheit und die Heizfrequenzeinheit zumindest teilweise einstückig ausgebildet sind. Insbesondere ist zumindest ein Rückflussvermeider der Gleichrichtereinheit Bestandteil der Heizfrequenzeinheit. Es können insbesondere Bauteile gespart werden, wodurch wiederum elektrische Verluste verringert werden können.Furthermore, it is proposed that the rectifier unit and the heating frequency unit are formed at least partially in one piece. In particular, at least one Rückflussvermeider the rectifier unit is part of the heating frequency unit. In particular, components can be saved, which in turn electrical losses can be reduced.
Ferner wird vorgeschlagen, dass die Heizfrequenzeinheit zumindest ein Schaltelement aufweist, das zu mindestens einem Teil der Gleichrichtereinheit, insbesondere einem Rückflussvermeider, parallel geschaltet ist. Es kann insbesondere eine Effizienz gesteigert werden.Furthermore, it is proposed that the heating frequency unit has at least one switching element which is connected in parallel with at least part of the rectifier unit, in particular a reflux preventer. In particular, an efficiency can be increased.
Ferner wird vorgeschlagen, dass die Heizfrequenzeinheit als Brückenwechselrichter mit zumindest zwei Schaltelementen ausgebildet ist. Die zwei Schaltelemente sind vorzugsweise in Reihe geschaltete, bidirektionale unipolare Schalter, die insbesondere von einem Transistor und einer parallel geschalteten Diode gebildet sind. Hierdurch kann eine hochfrequente Energieversorgung der Induktionsheizeinheit bereitgestellt werden. Ein Spannungsabgriff der Heizfrequenzeinheit ist insbesondere an einer gemeinsamen Kontaktstelle, einem Kontakt des Brückenzweigs, zweier bidirektionaler unipolarer Schalter angeordnet. Vorzugsweise ist der Brückenwechselrichter als Halbbrücke ausgebildet. Insbesondere ist dabei das Induktionsheizelement in einem Brückenzweig zwischen den in Reihe geschalteten Schaltelementen und zwei in Reihe geschalteten Resonanzkapazitäten angeordnet. Alternativ ist eine Ausgestaltung als Vollbrücke denkbar, wobei das Induktionsheizelement gemeinsam mit einer Resonanzkapazität in einem Brückenzweig zwischen den zwei in Reihe geschalteten Schaltelementen und weiteren zwei in Reihe geschalteten Schaltelementen angeordnet ist. Insbesondere weist eine Resonanzkapazität einen Kapazitätswert zwischen 50 nF und 100 µF, insbesondere zwischen 150 nF und 60 µF, vorteilhaft zwischen 0,3 µF und 30 µF und vorzugsweise zwischen 0,5 µF und 10 µF, auf. Insbesondere ist ein Kapazitätswert der Resonanzkapazität abhängig von einem Induktivitätswert des Induktionsheizelements. Es kann insbesondere eine effiziente und/oder gut steuerbare Heizfrequenzeinheit bereitgestellt werden.It is also proposed that the heating frequency unit is designed as a bridge inverter with at least two switching elements. The two switching elements are preferably series-connected, bidirectional unipolar switches, which are formed in particular by a transistor and a parallel-connected diode. As a result, a high-frequency power supply of the induction heating unit can be provided. A voltage tap of the heating frequency unit is arranged in particular at a common contact point, a contact of the bridge branch, two bidirectional unipolar switch. Preferably, the bridge inverter is designed as a half-bridge. In particular, the induction heating element is arranged in a bridge branch between the series-connected switching elements and two resonant capacitors connected in series. Alternatively, an embodiment is conceivable as a full bridge, wherein the induction heating is arranged together with a resonant capacitance in a bridge branch between the two series-connected switching elements and another two series-connected switching elements. In particular, a resonance capacitance has a capacitance value between 50 nF and 100 μF, in particular between 150 nF and 60 μF, advantageously between 0.3 μF and 30 μF, and preferably between 0.5 μF and 10 μF. In particular, a capacitance value of the resonance capacitance is dependent on an inductance value of the induction heating element. In particular, an efficient and / or easily controllable heating frequency unit can be provided.
Weiterhin wird vorgeschlagen, dass ein Brückenzweig des Brückenwechselrichters direkt mit einem Kontakt einer Spannungsversorgung, insbesondere einer Phase einer Wechselspannungsversorgung, verbunden ist. Unter einem "direkten Kontakt" soll insbesondere eine elektrisch gut leitfähige, insbesondere metallische, Verbindung verstanden werden, die richtungsunabhängig von Gleichstrom durchflossen werden kann. Es kann insbesondere eine erhöhte Effektivität erreicht werden.It is further proposed that a bridge branch of the bridge inverter directly with a contact of a power supply, in particular a phase of a AC power supply is connected. A "direct contact" is to be understood in particular as an electrically conductive, in particular metallic, connection which can be traversed by direct current irrespective of the direction. In particular, an increased effectiveness can be achieved.
Vorteilhaft wird vorgeschlagen, dass zu mindestens einem, insbesondere genau einem, der Schaltelemente der Heizfrequenzeinheit eine Dämpfungskapazität parallel geschaltet ist. Unter einer "Dämpfungskapazität" soll insbesondere ein Kapazität, insbesondere zumindest ein Kondensator, verstanden werden, der dazu vorgesehen ist, Spannungsspitzen bei einem Einschalten und/oder Ausschalten des Schaltelements zu vermeiden. Insbesondere unterscheidet sich eine Dämpfungskapazität von einer intrinsischen Kapazität einer Diode. Insbesondere weist die Dämpfungskapazität einen Kapazitätswert zwischen 1 nF und 1000 nF, insbesondere zwischen 3 nF und 600 nF, vorteilhaft zwischen 6 nF und 300 nF, vorzugsweise zwischen 10 nF und 100 nF, auf. Insbesondere unterscheidet sich zumindest ein Schaltelement der Heizfrequenzeinheit von einem Schaltelement mit einer parallel geschalteten Dämpfungskapazität. Es kann insbesondere eine erhöhte Effektivität erreicht werden. Insbesondere kann erreicht werden, dass eine Spannungsänderung über dem Schaltelemente der Heizfrequenzeinheit verringert wird und so ein spannungsloses Schalten, also ein Schalten unter ZVS-Bedingung, erleichtert wird, wodurch Schaltverluste vermieden werden können.It is advantageously proposed that at least one, in particular exactly one, of the switching elements of the heating frequency unit, a damping capacity is connected in parallel. A "damping capacity" is to be understood in particular as meaning a capacitor, in particular at least one capacitor, which is provided to avoid voltage peaks when the switching element is switched on and / or switched off. In particular, a damping capacity differs from an intrinsic capacitance of a diode. In particular, the damping capacity has a capacitance value between 1 nF and 1000 nF, in particular between 3 nF and 600 nF, advantageously between 6 nF and 300 nF, preferably between 10 nF and 100 nF. In particular, at least one switching element of the heating frequency unit differs from a switching element with a parallel-connected damping capacity. In particular, an increased effectiveness can be achieved. In particular, it can be achieved that a voltage change across the switching elements of the heating frequency unit is reduced and thus a voltage-free switching, that is a switching under ZVS condition, is facilitated, whereby switching losses can be avoided.
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.Further advantages emerge from the following description of the drawing. In the drawings, embodiments of the invention are shown. The drawing, the description and the claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into meaningful further combinations.
Es zeigen:
-
Fig. 1 ein erfindungsgemäßes Kochfeld in einer schematischen Ansicht, -
Fig. 2 ein Schaltbild einer Induktionsheizvorrichtung die kein Teil der Erfindung ist und -
Fig. 3 ein Schaltbild einer erfindungsgemäßen Induktionsheizvorrichtung mit weniger benötigten Bauteilen.
-
Fig. 1 an inventive hob in a schematic view, -
Fig. 2 a circuit diagram of an induction heater which is not part of the invention and -
Fig. 3 a diagram of an induction heater according to the invention with less required components.
Weiterhin sind Ausgestaltungen denkbar, in denen mehr als eine Heizfrequenzeinheit 22 an die Glättungskapazität 56 der Boosteinheit 24 angeschlossen sind. Beispielsweise können sich alle vier Induktionsheizvorrichtungen 12, 14, 16, 18 eine Gleichrichtereinheit 26 und/oder eine Boosteinheit 24 teilen und/oder die Induktionsheizvorrichtungen 14, 16, 18 sind analog zur Induktionsheizvorrichtung 12 ausgebildet. Weiterhin sind Ausgestaltungen denkbar, in denen eine Heizfrequenzeinheit als einzelnes Schaltelement ausgebildet ist, das zu einer Parallelschaltung von einem Induktionsheizelement und einer Resonanzkapazität in Reihe geschaltet ist. Weiterhin kann auf die Glättungskapazität 48 der Gleichrichtereinheit 26 verzichtet werden. Auch sind Ausgestaltungen denkbar, in denen auf die Gleichrichtereinheit 26 verzichtet wird und für eine Eingangsspannung der Boosteinheit 24 direkt eine Gleichspannungsquelle verwendet wird.Furthermore, embodiments are conceivable in which more than one
In der
In
In einem Betriebszustand, in dem die Schaltelemente 30a, 32a, 52a, 52a' geöffnet sind, verhalten sich die Rückflussvermeider 40a, 42a, 44a, 46a, 54a, 54a', 34a, 36a wie ein regulärer Gleichrichter, wobei eine Wechselspannung der Spannungsversorgung 28a gleichgerichtet und in der Glättungskapazität 48a, 56a gepuffert wird, die in einem Brückenzweig des Gleichrichters angeordnet ist. Eine Verbindung über das Induktionsheizelement 20a und eine Resonanzkapazität 38a bzw. 39a ist irrelevant, da diese Schwingkreise eine Resonanzfrequenz im kHz-Bereich zwischen 10 kHz und 50 kHz aufweisen, die weit größer ist als eine Netzfrequenz der Spannungsversorgung 28a, die kleiner ist als 100 Hz. Bei einem Betrieb der Heizfrequenzeinheit 22a werden die Schaltelemente 30a, 32a, 52a, 52a' periodisch mit hoher Frequenz zwischen 20 kHz und 100 kHz geöffnet und geschlossen, um einen hochfrequenten Wechselstrom für das Induktionsheizelement 20a zu erzeugen. Dabei ist maximal eines der Schaltelemente 30a, 32a, 52a, 52a' gleichzeitig geöffnet, um einen Kurzschluss der Glättungskapazität 48a, 56a zu vermeiden und einen korrekten Betrieb des Induktionsheizelements 20a zu gewährleisten. Im Fall einer positiven Halbwelle der Wechselspannung von der Spannungsversorgung 28a wird über das Schaltelement 30a, 52a und den Rückflussvermeider 40a periodisch ein Kurzschluss erzeugt, der in der Boostinduktivität 50a zu einem Energieaufbau führt. Wird das Schaltelement 30a, 52a geöffnet, erzeugt die Boostinduktivität 50a eine Induktionsspannung, die über den Rückflussvermeider 40a und den Rückflussvermeider 46a bzw. das später geöffnete Schaltelement 32a die Glättungskapazität 48a, 56a mit einer Spannung lädt, die größer ist als ein aktueller Betrag der Eingangsspannung. Weiterhin wird in einem geschlossenen Zustand des Schaltelements 30a, 52a' die Resonanzkapazität 38a über dem Induktionsheizelement 20a entladen und die Resonanzkapazität 39a über das Induktionsheizelement 20a durch die Glättungskapazität 48a, 56a geladen. Ist die Resonanzkapazität 38a entladen, wird das Schaltelement 30a, 52a' spannungslos geöffnet. Eine Induktivität des Induktionsheizelements 20a hält einen Stromfluss durch das Induktionsheizelement 20a aufrecht, in dem es die Resonanzkapazität 39a über den Rückflussvermeider 36a, 46a, 54a' weiter lädt. Fließt über den Rückflussvermeider 36a, 46a, 54a' Strom, kann das Schaltelement 32a geschlossen werden. Die Flussrichtung eines Stroms durch das Induktionsheizelement 20a kehrt sich um und die Resonanzkapazität 39a wird über das Induktionsheizelement 20a entladen, während die Resonanzkapazität 38a über das Induktionsheizelement 20a durch die Glättungskapazität 48a, 56a geladen wird. Dieser Vorgang setzt sich periodisch fort. Im Fall einer negativen Halbwelle der Wechselspannung von der Spannungsversorgung 28a wird über das Schaltelement 32a und den Rückflussvermeider 42a periodisch ein Kurzschluss erzeugt, der in der Boostinduktivität 50a zu einem Energieaufbau führt. Wird das Schaltelement 32a, 52a' geöffnet, erzeugt die Boostinduktivität 50a eine Induktionsspannung, die über den Rückflussvermeider 42a und den Rückflussvermeider 34a, 44a, 54a bzw. das später geöffnete Schaltelement 30a, 52a' die Glättungskapazität 48a, 56a mit einer Spannung lädt, die größer ist als ein aktueller Betrag der Eingangsspannung.In an operating state in which the
Bezugszeichen
- 10
- Hausgerät
- 12
- Induktionsheizvorrichtung
- 14
- Induktionsheizvorrichtung
- 16
- Induktionsheizvorrichtung
- 18
- Induktionsheizvorrichtung
- 20
- Induktionsheizelement
- 22
- Heizfrequenzeinheit
- 24
- Boosteinheit
- 26
- Gleichrichtereinheit
- 28
- Spannungsversorgung
- 30
- Schaltelement
- 32
- Schaltelement
- 33
- Dämpfungskapazität
- 34
- Rückflussvermeider
- 36
- Rückflussvermeider
- 38
- Resonanzkapazität
- 39
- Resonanzkapazität
- 40
- Rückflussvermeider
- 42
- Rückflussvermeider
- 44
- Rückflussvermeider
- 46
- Rückflussvermeider
- 48
- Glättungskapazität
- 50
- Boostinduktivität
- 52
- Schaltelement
- 54
- Rückflussvermeider
- 56
- Glättungskapazität
- 10
- household appliance
- 12
- induction heating
- 14
- induction heating
- 16
- induction heating
- 18
- induction heating
- 20
- induction heating
- 22
- Heizfrequenzeinheit
- 24
- boost unit
- 26
- Rectifier unit
- 28
- power supply
- 30
- switching element
- 32
- switching element
- 33
- damping capacity
- 34
- Rückflussvermeider
- 36
- Rückflussvermeider
- 38
- resonant capacitance
- 39
- resonant capacitance
- 40
- Rückflussvermeider
- 42
- Rückflussvermeider
- 44
- Rückflussvermeider
- 46
- Rückflussvermeider
- 48
- smoothing capacitor
- 50
- Boostinduktivität
- 52
- switching element
- 54
- Rückflussvermeider
- 56
- smoothing capacitor
Claims (8)
- Induction heating apparatus, in particular induction hob apparatus, with at least one induction heating element (20a), with at least one heat frequency unit (22a), with at least one rectifier unit (26a) and with at least one boost unit (24a), which is provided to convert an input voltage into an output voltage, which is larger than the input voltage, characterised in that the rectifier unit (26a) and the heat frequency unit (22a) are at least partially embodied in one piece, wherein the rectifier unit (26a) and the heat frequency unit (22a) have at least one common element, which is a component part of both units.
- Induction heating apparatus according to claim 1, characterised in that the heat frequency unit (22a) and the boost unit (24a) are at least partially embodied in one piece.
- Induction heating apparatus according to one of the preceding claims, characterised in that the rectifier unit (26a) and the boost unit (24a) are at least partially embodied in one piece.
- Induction heating apparatus according to one of the preceding claims, characterised in that the heat frequency unit (22a) has at least one switch element (30a, 32a), which is connected in parallel to at least one part of the rectifier unit (26a).
- Induction heating apparatus according to one of the preceding claims, characterised in that the heat frequency unit (22a) is embodied as a bridge inverter with at least two switch elements (30a, 32a).
- Induction heating apparatus according to claim 5, characterised in that a bridge branch of the bridge inverter is directly connected to a contact of a power supply (28a).
- Induction heating apparatus at least according to claim 5, characterised in that an attenuating capacitor (33a) is connected in parallel to at least one of the switch elements (32a).
- Domestic appliance with at least one induction heating apparatus (12, 14, 16, 18, 12a) according to one of the preceding claims.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201131632 | 2011-10-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2582201A1 EP2582201A1 (en) | 2013-04-17 |
EP2582201B1 true EP2582201B1 (en) | 2017-04-19 |
Family
ID=47215383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12187782.3A Active EP2582201B1 (en) | 2011-10-11 | 2012-10-09 | Induction heating device |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2582201B1 (en) |
ES (1) | ES2628875T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024056532A1 (en) * | 2022-09-16 | 2024-03-21 | BSH Hausgeräte GmbH | Induction hob device |
WO2024160664A1 (en) * | 2023-02-01 | 2024-08-08 | BSH Hausgeräte GmbH | Induction hob device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112015005055A5 (en) * | 2014-11-06 | 2017-08-03 | BSH Hausgeräte GmbH | Gargerätevorrichtung |
DE102018221521A1 (en) * | 2018-12-12 | 2020-06-18 | E.G.O. Elektro-Gerätebau GmbH | Method for operating an induction hob |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602006016278D1 (en) * | 2005-06-17 | 2010-09-30 | Panasonic Corp | INDUCTION HEATING DEVICE |
DE602007007434D1 (en) * | 2006-02-02 | 2010-08-12 | Panasonic Corp | INDUCTION HEATING DEVICE |
JP4909968B2 (en) * | 2008-09-29 | 2012-04-04 | 日立アプライアンス株式会社 | Electromagnetic induction heating device |
-
2012
- 2012-10-09 EP EP12187782.3A patent/EP2582201B1/en active Active
- 2012-10-09 ES ES12187782.3T patent/ES2628875T3/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024056532A1 (en) * | 2022-09-16 | 2024-03-21 | BSH Hausgeräte GmbH | Induction hob device |
WO2024160664A1 (en) * | 2023-02-01 | 2024-08-08 | BSH Hausgeräte GmbH | Induction hob device |
Also Published As
Publication number | Publication date |
---|---|
ES2628875T3 (en) | 2017-08-04 |
EP2582201A1 (en) | 2013-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2582201B1 (en) | Induction heating device | |
DE102012220324B4 (en) | induction heating device | |
EP2744299A1 (en) | Induction heating device for household appliances | |
EP3001774B1 (en) | Domestic appliance and method for operating a domestic appliance | |
WO2016071803A1 (en) | Cooking appliance | |
WO2018116050A1 (en) | Domestic appliance | |
EP2590476B1 (en) | Domestic appliance | |
EP2692202B1 (en) | Induction heating device | |
EP2515608B1 (en) | Domestic appliance | |
EP2774456B1 (en) | Induction heating apparatus | |
EP3556180A1 (en) | Domestic appliance device | |
EP2706817B1 (en) | Cooking hob | |
EP2214454B1 (en) | Induction hob with multiple inductors | |
EP2506670B1 (en) | Induction heating device | |
EP2648476B1 (en) | Induction heating device | |
DE102012206940A1 (en) | Induction heating device i.e. induction hob device, for use in induction oven, has control unit simultaneously adjusting resonance capacitor of resonance unit and attenuation capacitor depending on operational parameter | |
DE102013205746A1 (en) | Induction heating device e.g. induction cook box device for cook box, has heating frequency unit providing induction heating units with high frequency alternating current in operating mode, where frequency unit includes switching components | |
EP2506667B1 (en) | Induction heating device | |
EP2692203B1 (en) | Induction heating device | |
EP2453714A1 (en) | Induction heating device | |
WO2010069789A1 (en) | Household device having at least one power inverter | |
WO2025045938A1 (en) | Induction hob device, induction hob and method for operating an induction hob device | |
DE102012204250A1 (en) | Household appliance device e.g. induction heating appliance device used in induction cooktop, has switching elements to immediately provide and separate direct connection between different combinations of consumer unit and power converter | |
WO2016071824A1 (en) | Cooking appliance | |
WO2012131571A1 (en) | Induction heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20131017 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20131218 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BSH HAUSGERAETE GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161123 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 887039 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012010102 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2628875 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170804 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170419 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170819 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012010102 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
26N | No opposition filed |
Effective date: 20180122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171009 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171009 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 887039 Country of ref document: AT Kind code of ref document: T Effective date: 20171009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170419 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241031 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241024 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241024 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20241118 Year of fee payment: 13 Ref country code: IT Payment date: 20241031 Year of fee payment: 13 |