EP2568110B1 - Exploitation method of an oilfield on the basis of a selection technic of to be drilled borehole positions - Google Patents
Exploitation method of an oilfield on the basis of a selection technic of to be drilled borehole positions Download PDFInfo
- Publication number
- EP2568110B1 EP2568110B1 EP12290268.7A EP12290268A EP2568110B1 EP 2568110 B1 EP2568110 B1 EP 2568110B1 EP 12290268 A EP12290268 A EP 12290268A EP 2568110 B1 EP2568110 B1 EP 2568110B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- well
- production
- cell
- map
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 claims description 107
- 239000012530 fluid Substances 0.000 claims description 19
- 239000003208 petroleum Substances 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 238000005553 drilling Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 238000004590 computer program Methods 0.000 claims description 2
- 230000003116 impacting effect Effects 0.000 claims description 2
- 238000004088 simulation Methods 0.000 description 23
- 230000008569 process Effects 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 238000010276 construction Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- FNMKZDDKPDBYJM-UHFFFAOYSA-N 3-(1,3-benzodioxol-5-yl)-7-(3-methylbut-2-enoxy)chromen-4-one Chemical compound C1=C2OCOC2=CC(C2=COC=3C(C2=O)=CC=C(C=3)OCC=C(C)C)=C1 FNMKZDDKPDBYJM-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000001955 cumulated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/30—Specific pattern of wells, e.g. optimising the spacing of wells
Definitions
- the present invention relates to the technical field of the petroleum industry, and more particularly to the operation of underground reservoirs, such as petroleum reservoirs or gas storage sites.
- the invention makes it possible to effectively plan the development of a reservoir by selecting the positions where to drill new wells, for which the production potential will be maximum.
- a reservoir model is a model of the subsoil, representative of both its structure and its behavior. Generally, this type of model is represented on a computer, and one speaks then of numerical model.
- a reservoir model comprises a mesh or grid, generally three-dimensional, associated with one or more petrophysical property maps (porosity, permeability, saturation, etc.). The association consists of assigning values of these petrophysical properties to each grid cell.
- the reservoir model should verify as much as possible all the data collected in the field: the logging data measured along the wells, the measurements made on rock samples taken from the wells, the data deduced seismic acquisition campaigns, production data such as oil flow, water flow, pressure flow ... These data are insufficient to precisely characterize the values of the petrophysical properties to be attributed to the meshes of the model. This is why we usually resort to a stochastic formalism. Petrophysical properties are considered as realizations of random functions. We then generate a possible image of the reservoir, ie a model, from geostatistical simulation techniques. The resolution of the flow equations for this model provides answers in production. These responses are then compared to the production data measured in the wells.
- the concept of production indicator map also referred to in the quality map literature, was introduced to provide a practical answer to the problem of placing new wells in a reservoir. It is a two-dimensional map, comprising a set of meshes, where each mesh is associated with a real value that shows how a new well placed in the mesh in question impacts the production or the net present value (NPV) relative to to one compared to the base case.
- the basic case corresponds to the initial operating scheme, ie here a scheme for which no new wells are added. ( Da Cruz, PS, Horne, RN, Deutsch, C., The Quality map: A tool for reservoir quantification and decision making, SPE ATCE, SPE 56578, Houston, TX, USA, 1999 ).
- a production indicator defines an impact on the production of the fluid (hydrocarbon) linked to the addition of a well in the mesh in question.
- the reservoir comprises NX and NY meshes along the X and Y axes
- the total number of meshes to be examined is NX ⁇ NY to which we subtract the numbers of non-active meshes and meshes in which we already have a well for the case of based.
- This approach requires significant computation time as soon as NX ⁇ NY is important.
- the possible meshes being considered one after the other, the interference between the new wells are not taken into account.
- the map of production indicators quantifies for each mesh the impact on a production indicator due to the addition of a well in this mesh. It only takes into account a single well. To add several wells and to take into account the interferences between these wells, it was suggested to follow a sequential approach. The wells are added one after the other. Each time a well is added, the quality map is updated in the region encompassing the selected position. A flow simulation is made for each of the meshes of the region in question ( Cheng, Y., McVay, DA, Lee, WJ, A Practical Approach to Optimizing Inflammable Fuel Storage, Journal of Natural Gas Science and Engineering, 1, 165-176, 2005 ). This solution requires many simulations and therefore requires a large calculation time.
- the subject of the invention relates to an alternative method for operating a petroleum deposit from a reservoir model.
- This alternative method is based on the construction of the production indicator map, comprising a set of meshes, for which certain production indicators are determined by interpolation, the interpolation method chosen being dependent on the distance between the mesh considered and the well nearest to said mesh considered.
- This method also makes it possible to update said production indicator map when wells are added sequentially in the reservoir model, without the need for new simulations. Therefore, thanks to this method, interferences between wells are taken into account, and this, in a limited calculation time.
- the production indicator measures a variation of parameters impacting the production of the fluid when adding a well in the mesh.
- the production indicator is an increment of fluid volume produced by placing a well in the mesh or a change in the expected net value.
- the selection of the stitches is carried out by sampling.
- the attributes of the reservoir used are chosen from the following attributes: the distance between each mesh and the well closest to said mesh; dynamic data, such as pressure and connected fluid volume, seismic data such as velocities and densities.
- the classification method is the K-means algorithm.
- steps c) and defining the position of the second well are repeated for determining a position of at least one other well, taking into account the impact of adding one or more well on the distance between a mesh and the well nearest said mesh.
- the interpolation model used in step e) is a polynomial interpolation model, preferably of order 2, or a kriging interpolation model, or a combination of a polynomial interpolation model and of a kriging interpolation model.
- the invention also relates to a computer program product downloadable from a communication network and / or recorded on a computer readable medium and / or executable by a processor, wherein it comprises program code instructions for implementing the method as defined above, when said program is run on a computer.
- the invention relates to a method as defined above, in which exploratory drilling is carried out at said determined positions.
- the process according to the invention makes it possible to efficiently exploit a petroleum deposit.
- the method successively selects areas where it is interesting to put a new well, producer or injector, to improve the productivity of the reservoir. It relies on the construction of a map of production indicators ( Figure 1 ) taking into account the interferences between the wells.
- This production indicator card comprises a set of meshes, each mesh being associated with a production indicator (IP).
- a production indicator (IP) quantifies an impact on the production of the fluid due to the addition of a well in this mesh.
- the production indicator (PI) measures a variation of the parameters affecting the production of the fluid when adding a well in the mesh.
- This production indicator (PI) may include a change in total production of all wells, a change in the expected net present value, a variation in pressure or flow.
- the production indicator (IP) is the increment of volume of oil produced by placing a well, for example an injector well, in this mesh.
- a sampling technique which can be fully computerized, or computerized, then completed manually, or performed entirely manually.
- said sampling technique is a Latin hypercube, based on a "Maximin" criterion, which makes it possible to divide the space into equiprobable subspaces sampled in a uniform manner.
- a region identification map is used.
- the process according to the invention makes it possible to efficiently exploit a petroleum deposit, for which a set of properties (petrophysical or seismic) such as permeability, porosity, saturations, etc. is known.
- properties petrophysical or seismic
- These attributes of the reservoir which can be measured, simulated or calculated, are called geological data, geometric data, seismic data and dynamic data such as: the pressure at the time before the addition of new wells, connected fluid volume, minimum distance from existing wells, average permeability, porosity, velocities, density ...
- Attributes characterizing the reservoir being known, a classification method is applied, for analysis and separation into classes. We deduce a two-dimensional map, called an identification map of the regions, distinguishing regions for which the attributes belong to the same class. Meshes belonging to the same region are therefore characterized by similar or similar attributes. It is advantageous to use attributes because they require only negligible computation time.
- the classification is done according to the K-means algorithm, which makes it possible to group the attributes in K classes that do not overlap.
- K the number of classes (or coefficient K), generally less than 10, in order to obtain a relatively stable result.
- This algorithm has the advantages of conceptual simplicity, speed of execution and low memory size requirements.
- the figure 2 represents an example of map obtained by application of this method. Since the number of classes is five, there are five different attribute regions. The position of existing wells is indicated by white squares. Meshes selected by sampling are represented by a black circle and those manually added by a black dot.
- the region identification map being established can guide the mesh selection process. It is therefore advantageous to superimpose the selected meshes on the identification card of the regions. If a class identified during the creation of the identification map of the regions is considered a priori interesting by a specialist, but includes few meshes selected, additional meshes are manually selected by said specialist. A relevant choice of the selected meshes, in particular from the identification map of the regions, makes it possible to build a map of production indicators that is more precise and more reliable.
- the production indicator (IP) is determined either by measurement, by calculation or by simulation.
- a simulation of fluid flow contained in the reservoir to the producing wells is carried out for each selected mesh, on the assumption that a well is added in said selected mesh. Therefore, if in step b) of selection, N meshes are retained, one runs N flow simulations with for each of them a single well added to the considered position. These simulations give the exact value of the production indicator (IP1, IP2 ... IPN) for the selected meshes. Thanks to the invention, measurements, calculations or flow simulations are carried out only for the selected meshes. To execute a flow simulation, it is known to those skilled in the art to use software called flow simulators such as Pumaflow® (IFP Energys Hospital, France).
- the indicator of production is estimated by interpolation on the set of unsampled meshes of the map.
- the interpolation model is constructed from a group of regressors comprising an attribute that depends on the distance between the mesh to be interpolated and the well nearest to said interpolated mesh. .
- This well may be an existing well or an already added well.
- a polynomial interpolation model or a kriging interpolation model can be used.
- the meshes are characterized by the values of the regressors associated with them, for example their spatial coordinates x and y and the distance between the mesh to be interpolated and the well nearest to said mesh to be interpolated. This last regressor is introduced to take into account the interference between the added wells.
- the interpolation model depends on model construction parameters, which must be adjusted to the studied reservoir. To achieve this adjustment, the values of the production indicators obtained in step b) are used. Indeed, this is made possible because at the selected meshes, only these construction parameters are unknown.
- the parameters of the interpolation model having been estimated in step c) i., The production indicators with unselected meshes of the card are interpolated.
- the estimation of production indicators by interpolation makes it possible to dispense with an ancillary simulator and to reduce calculation times.
- the Figures 3.5 to 3.8 show examples of production indicator maps for an example, each case corresponding to a different initial configuration of wells constructed for a growing number of wells.
- the production indicator chosen is the increment of volume of oil produced.
- the black areas correspond to the areas where the production indicator is minimal and the dark gray areas correspond to the areas where the production indicator is maximum.
- this card has the advantage of being able to be updated to integrate the influence of successively added wells without having to restart new flow simulations.
- the figure 1 represents an example of a map of production indicators. The value in one position corresponds to the production indicator, it is here, in relative value (%), the increment of volume of oil produced by placing an injector well at this position. White squares indicate existing wells.
- Step 2 Positioning a new well ( Figure 3.9) to 3.12)
- the maximum value of the production indicator thus constructed corresponds to the mesh where it will be most advantageous to position a well.
- a well is then added to the production scheme and integrated into the group of existing wells. The well can then be drilled later.
- the Figures 3.9) to 3.12) represent an example of successive positioning of wells.
- the added well is represented by the mesh colored in black.
- the minimum distances to the nearest well are updated beforehand for each cell of the card. This update takes into account the well that has just been added. Indeed, a well having been added to the group of existing wells, it is necessary to recalculate for each of the meshes the distance separating it from the existing or simulated nearest well. This gives a discounted minimum distance map, as shown for an example at Figures 3.1 to 3.4) .
- the coordinates of the cells of the card are modified. It is recalled that these coordinates are x , y and the distance from the mesh considered to the nearest existing or simulated well. Current production indicators are therefore out of date.
- Step c) ii is then repeated, which results in the updating of the production indicator card. It should be noted that the values of the production indicators determined in step b) before the addition of the first well are retained for the selected meshes, except for the meshes selected for which the distance to the nearest well has varied. Taking in counting the distance to the nearest well in the interpolation process naturally leads to a decrease in the production indicators of these meshes.
- step 2 The map of production indicators having been updated, step 2) is repeated for defining the position of a new well.
- the positioning of the new well is a parameter that is taken into account in the determination of the production indicators. Therefore, interferences between the wells are taken into account.
- step b) of determining the production indicators with the selected meshes and step c) i. the definition of the interpolation model and its parameters are not repeated, which brings a saving in process time. This gain is significant, especially when the number of meshes sampled is important and when step b) uses a flow simulator to determine the production indicators meshes sampled.
- IP map of production indicators
- the reservoir model is discretized on a grid of 19 ⁇ 28 ⁇ 5 meshes, of which 1761 are active.
- This configuration leads us to build a map of production indicators on a grid of 19 ⁇ 28 meshes, of which 396 can accommodate a new well.
- the base case corresponds to the cumulated oil volume produced by the six producing wells at 15/01/80 in the absence of any injection wells.
- the production indicator assigned to a mesh of the production indicator card corresponds to the quantity of oil produced in addition when an injection well is placed in the mesh in question.
- a flow simulation for the PUNQ case requires a very short computation time. In these very particular conditions, it is quite possible to perform a flow simulation for all possible meshes, which gives access to the exact map of production indicators (PI) ( Figure 1 ).
- the minimum distance (Dmin) from the nearest wells (existing or simulated) is presented on the Figure 3.1) .
- the production indicators (IP) in the unselected meshes are then deduced from a kriging interpolation, the parameters of which have been determined beforehand from said flow simulations with the selected meshes.
- the Figure 3.5) shows the resulting map of production indicators. It is very close to the map of reference production indicators ( Figure 1 ), although it was constructed from 26 flow simulations instead of 396.
- the Figures 3.1) to 3.4) show the evolution of the minimum distance map with the successive addition of wells.
- the Figures 3.5 to 3.8) show the resulting evolution for the production indicator map.
- the Figures 3.9) to 3.12) show the selected position for the new well from the updated production indicator maps.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
La présente invention concerne le domaine technique de l'industrie pétrolière, et plus particulièrement l'exploitation de réservoirs souterrains, tels que des réservoirs pétroliers ou des sites de stockage de gaz.The present invention relates to the technical field of the petroleum industry, and more particularly to the operation of underground reservoirs, such as petroleum reservoirs or gas storage sites.
En particulier, l'invention permet de planifier efficacement le développement d'un réservoir en sélectionnant les positions où forer de nouveaux puits, pour lesquelles le potentiel de production sera maximal.In particular, the invention makes it possible to effectively plan the development of a reservoir by selecting the positions where to drill new wells, for which the production potential will be maximum.
L'optimisation et l'exploitation des gisements pétroliers reposent sur une description aussi précise que possible de la structure, des propriétés pétrophysiques, des propriétés des fluides, etc., du gisement étudié. Pour ce faire, les spécialistes utilisent un outil qui permet de rendre compte de ces aspects de façon approchée : le modèle de réservoir. Un tel modèle constitue une maquette du sous-sol, représentative à la fois de sa structure et de son comportement. Généralement, ce type de maquette est représenté sur un ordinateur, et l'on parle alors de modèle numérique. Un modèle de réservoir comporte un maillage ou grille, généralement tridimensionnelle, associée à une ou plusieurs cartes de propriétés pétrophysiques (porosité, perméabilité, saturation...). L'association consiste à attribuer des valeurs de ces propriétés pétrophysiques à chacune des mailles de la grille.The optimization and exploitation of oil deposits is based on as precise a description as possible of the structure, the petrophysical properties, the properties of the fluids, etc., of the deposit studied. To do this, the specialists use a tool that allows these aspects to be accounted for in an approximate way: the reservoir model. Such a model is a model of the subsoil, representative of both its structure and its behavior. Generally, this type of model is represented on a computer, and one speaks then of numerical model. A reservoir model comprises a mesh or grid, generally three-dimensional, associated with one or more petrophysical property maps (porosity, permeability, saturation, etc.). The association consists of assigning values of these petrophysical properties to each grid cell.
Pour être jugé fiable, le modèle de réservoir doit vérifier autant que possible l'ensemble des données collectées sur le terrain : les données de diagraphie mesurées le long des puits, les mesures réalisées sur des échantillons de roche prélevés dans les puits, les données déduites de campagnes d'acquisition sismiques, les données de production comme les débits d'huile, d'eau, de pression... Ces données sont insuffisantes pour caractériser précisément les valeurs des propriétés pétrophysiques à attribuer aux mailles du modèle. C'est pourquoi on recourt d'ordinaire à un formalisme stochastique. Les propriétés pétrophysiques sont considérées comme des réalisations de fonctions aléatoires. On génère alors une image possible du réservoir, c'est à dire un modèle, à partir de techniques géostatistiques de simulation. La résolution des équations d'écoulement pour ce modèle fournit des réponses en production. Ces réponses sont alors comparées aux données de production mesurées dans les puits. Pour accroître la prédictivité du modèle de réservoir, il faut minimiser l'écart entre les réponses simulées et les données acquises sur le terrain. Cette étape passe par un processus de calage ou d'optimisation. Ce dernier est en général très coûteux en temps calcul, car il est itératif et nécessite une simulation d'écoulement par itération. Or, une unique simulation d'écoulement implique souvent quelques heures de temps calcul.To be considered reliable, the reservoir model should verify as much as possible all the data collected in the field: the logging data measured along the wells, the measurements made on rock samples taken from the wells, the data deduced seismic acquisition campaigns, production data such as oil flow, water flow, pressure flow ... These data are insufficient to precisely characterize the values of the petrophysical properties to be attributed to the meshes of the model. This is why we usually resort to a stochastic formalism. Petrophysical properties are considered as realizations of random functions. We then generate a possible image of the reservoir, ie a model, from geostatistical simulation techniques. The resolution of the flow equations for this model provides answers in production. These responses are then compared to the production data measured in the wells. To increase the predictivity of the reservoir model, the discrepancy between the simulated responses and the data acquired in the field must be minimized. This step goes through a calibration or optimization process. The latter is generally very expensive in computation time, because it is iterative and requires a flow simulation by iteration. However, a single flow simulation often involves a few hours of computation time.
Lorsqu'un modèle respectant les données mesurées sur le terrain est finalement obtenu, il est utilisé pour prédire les déplacements de fluide dans le réservoir et planifier le développement futur du champ. Par exemple, pour les champs matures, il faut pouvoir sélectionner les zones où forer de nouveaux puits, soit pour produire l'huile par déplétion, soit pour injecter un fluide qui maintient la pression à un niveau suffisant dans le réservoir. Pour apprécier la performance d'un puits en un point, on peut s'appuyer sur le modèle de réservoir, y positionner le puits à la position souhaitée et exécuter une simulation d'écoulement. La performance d'un puits s'apprécie à partir de la quantité d'hydrocarbure qu'il produit. L'objectif final étant de maximiser la production ou la rentabilité du champ, il faudrait pouvoir tester toutes les positions possibles et ainsi sélectionner la meilleure d'entre elles. Une telle approche est inappropriée en pratique, car trop consommatrice en temps de calcul. Une alternative consiste à lancer un processus d'optimisation visant à placer un puits le mieux possible pour optimiser la production. Toutefois, cette démarche reste délicate à mettre en oeuvre, car elle nécessite quelques milliers d'itérations.When a model respecting the data measured in the field is finally obtained, it is used to predict the movements of fluid in the reservoir and to plan the future development of the field. For example, for mature fields, it is necessary to be able to select the zones where to drill new wells, either to produce the oil by depletion, or to inject a fluid which maintains the pressure at a sufficient level in the reservoir. To appreciate the performance of a well at a point, one can rely on the reservoir model, position the well in the desired position and perform a flow simulation. The performance of a well is estimated from the amount of hydrocarbon it produces. The ultimate goal is to maximize the production or profitability of the field, it should be possible to test all possible positions and thus select the best of them. Such an approach is inappropriate in practice because it consumes too much computing time. An alternative is to start an optimization process to place a well as best as possible to optimize production. However, this approach is difficult to implement because it requires a few thousand iterations.
Le concept de carte d'indicateurs de production, également appelée dans la littérature carte de qualité, a été introduit pour répondre de façon pratique au problème du placement des nouveaux puits dans un réservoir. Il s'agit d'une carte bidimensionnelle, comprenant un ensemble de mailles, où chaque maille est associée à une valeur réelle qui montre comment un nouveau puits placé dans la maille en question impacte la production ou la valeur actuelle nette (VAN) par rapport à un par rapport au cas de base. Le cas de base correspond au schéma d'exploitation initial, c'est à dire ici un schéma pour lequel aucun nouveau puits n'est ajouté. (
Pour construire cette carte, on peut faire une simulation d'écoulement pour chaque maille ou il est possible de placer un puits. Si le réservoir comprend NX et NY mailles suivant les axes X et Y, le nombre total de mailles à examiner est de NX×NY auquel on soustrait les nombres de mailles non actives et de mailles dans lesquelles on a déjà un puits pour le cas de base. Cette approche nécessite un temps de calcul significatif dès que NX×NY est important. En outre, les mailles possibles étant considérées les unes après les autres, les interférences entre les nouveaux puits ne sont pas prises en compte.To build this map, one can make a flow simulation for each mesh where it is possible to place a well. If the reservoir comprises NX and NY meshes along the X and Y axes, the total number of meshes to be examined is NX × NY to which we subtract the numbers of non-active meshes and meshes in which we already have a well for the case of based. This approach requires significant computation time as soon as NX × NY is important. In addition, the possible meshes being considered one after the other, the interference between the new wells are not taken into account.
Pour réduire les temps de calcul, une approche par interpolation a été envisagée (
La carte d'indicateurs de production quantifie pour chaque maille l'impact sur un indicateur de production du à l'ajout d'un puits dans cette maille. Elle ne tient compte que d'un puits unique. Pour ajouter plusieurs puits et prendre en compte les interférences entre ces puits, il a été suggéré de suivre une approche séquentielle. Les puits sont ajoutés les uns après les autres. A chaque fois qu'un puits est ajouté, la carte de qualité est mise à jour dans la région englobant la position sélectionnée. Une simulation d'écoulement est faite pour chacune des mailles de la région en question (
Aucun des procédés développés ne propose donc une solution qui, à la fois, donne des résultats précis en un temps de calcul réduit et prend en compte les interférences avec les puits ajoutés.None of the processes developed therefore proposes a solution that both gives accurate results in a reduced calculation time and takes into account the interference with the added wells.
Ainsi, l'objet de l'invention concerne un procédé alternatif pour exploiter un gisement pétrolier à partir d'un modèle de réservoir. Ce procédé alternatif repose sur la construction de la carte d'indicateurs de production, comprenant un ensemble de mailles, pour lesquelles certains indicateurs de production sont déterminés par interpolation, la méthode d'interpolation choisie étant dépendante de la distance entre la maille considérée et le puits le plus proche de ladite maille considérée. Ce procédé permet également de mettre à jour ladite carte d'indicateurs de production lorsque des puits sont ajoutés séquentiellement dans le modèle de réservoir, sans avoir besoin de réaliser de nouvelles simulations. Par conséquent, grâce à cette méthode, on prend en compte les interférences entre puits, et ce, en un temps de calcul limité.Thus, the subject of the invention relates to an alternative method for operating a petroleum deposit from a reservoir model. This alternative method is based on the construction of the production indicator map, comprising a set of meshes, for which certain production indicators are determined by interpolation, the interpolation method chosen being dependent on the distance between the mesh considered and the well nearest to said mesh considered. This method also makes it possible to update said production indicator map when wells are added sequentially in the reservoir model, without the need for new simulations. Therefore, thanks to this method, interferences between wells are taken into account, and this, in a limited calculation time.
L'invention concerne un procédé mis en oeuvre par ordinateur, d'exploitation d'un réservoir souterrain, notamment d'un réservoir pétrolier, traversé par au moins un premier puits à partir duquel un fluide est produit, dans lequel on détermine une position d'au moins un second puits à forer à l'aide d'une carte d'indicateurs de production comprenant un ensemble de mailles, chaque maille étant associée à un indicateur de production définissant un impact sur la production du fluide d'un ajout d'un puits dans cette maille. Le procédé comprend les étapes suivantes :
- on construit ladite carte au moyen des étapes suivantes :
- a) on sélectionne des mailles parmi l'ensemble de mailles de ladite carte ;
- b) on détermine des indicateurs de production aux mailles sélectionnées ;
- c) on interpole lesdits indicateurs de production déterminés à l'étape b) sur l'ensemble des mailles de ladite carte, au moyen d'un modèle d'interpolation prenant en compte une distance entre la maille à interpoler et le puits le plus proche de ladite maille à interpoler ; et
- on définit la position dudit second puits par la maille où ledit indicateur de production est maximal.
- said card is constructed by the following steps:
- a) selecting meshes from the set of meshes of said card;
- b) production indicators with the selected meshes are determined;
- c) interpolating said production indicators determined in step b) on all the cells of said card, by means of an interpolation model taking into account a distance between the mesh to interpolate and the nearest well said mesh to be interpolated; and
- defining the position of said second well by the mesh where said production indicator is maximum.
Dans un mode de réalisation, l'indicateur de production mesure une variation de paramètres impactant la production du fluide lors d'un ajout d'un puits dans la maille.In one embodiment, the production indicator measures a variation of parameters impacting the production of the fluid when adding a well in the mesh.
De préférence, l'indicateur de production est un incrément de volume de fluide produit en plaçant un puits dans la maille ou une variation de la valeur nette attendue.Preferably, the production indicator is an increment of fluid volume produced by placing a well in the mesh or a change in the expected net value.
Selon un mode de réalisation avantageux, la sélection des mailles est réalisée par échantillonnage.According to an advantageous embodiment, the selection of the stitches is carried out by sampling.
Avantageusement, on sélectionne les mailles en réalisant les étapes suivantes :
- i. on détermine des attributs du réservoir ;
- ii. on construit une carte d'identification des régions par une classification des attributs ; et
- iii. on sélectionne lesdites mailles en fonction de ladite carte d'identification de régions.
- i. tank attributes are determined;
- ii. an identification map of the regions is constructed by a classification of the attributes; and
- iii. said meshes are selected according to said region identification map.
Dans un mode de réalisation, les attributs du réservoir utilisés sont choisis parmi les attributs suivants la distance entre chaque maille et le puits le plus proche de ladite maille ; des données dynamiques, telles que la pression et le volume de fluide connecté, des données sismiques telles que les vitesses et densités.In one embodiment, the attributes of the reservoir used are chosen from the following attributes: the distance between each mesh and the well closest to said mesh; dynamic data, such as pressure and connected fluid volume, seismic data such as velocities and densities.
Selon un mode de réalisation préférentiel, le procédé de classification est l'algorithme du K-means.According to a preferred embodiment, the classification method is the K-means algorithm.
De préférence, les étapes c) et de définition de la position du second puits sont réitérées pour la détermination d'une position d'au moins un autre puits, en prenant en compte l'impact lié à l'ajout d'un ou plusieurs puits sur la distance entre une maille et le puits le plus proche de ladite maille.Preferably, steps c) and defining the position of the second well are repeated for determining a position of at least one other well, taking into account the impact of adding one or more well on the distance between a mesh and the well nearest said mesh.
Avantageusement, le modèle d'interpolation utilisé à l'étape e) est un modèle d'interpolation polynômial, de préférence d'ordre 2, ou un modèle d'interpolation par krigeage, ou une combinaison d'un modèle d'interpolation polynômial et d'un modèle d'interpolation par krigeage.Advantageously, the interpolation model used in step e) is a polynomial interpolation model, preferably of
L'invention concerne également un produit programme d'ordinateur téléchargeable depuis un réseau de communication et/ou enregistré sur un support lisible par ordinateur et/ou exécutable par un processeur, dans lequel il comprend des instructions de code de programme pour la mise en oeuvre du procédé tel que défini ci-dessus, lorsque ledit programme est exécuté sur un ordinateur.The invention also relates to a computer program product downloadable from a communication network and / or recorded on a computer readable medium and / or executable by a processor, wherein it comprises program code instructions for implementing the method as defined above, when said program is run on a computer.
En outre, l'invention concerne un procédé tel que défini ci-dessus, dans lequel on réalise des forages d'exploration auxdites positions déterminées.In addition, the invention relates to a method as defined above, in which exploratory drilling is carried out at said determined positions.
D'autres caractéristiques et avantages du procédé selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.Other features and advantages of the method according to the invention will appear on reading the following description of nonlimiting examples of embodiments, with reference to the appended figures and described below.
-
La
figure 1 illustre une carte d'indicateurs de production de référence.Thefigure 1 illustrates a map of reference production indicators. -
La
figure 2 illustre une carte d'identification des régions réalisée à partir d'une classification des attributs.Thefigure 2 illustrates a region identification map made from an attribute classification. -
La
figure 3 illustre plusieurs cartes. Lesfigures 3.1) à 3.4) représentent l'actualisation de la carte de distance minimale. Lesfigures 3.5) à 3.8) du milieu représentent l'actualisation de la carte d'indicateurs de production. Lesfigures 3.9 à 3.12 ) représentent la position du puits ajouté (position foncée isolée). Lesfigures 3.1) ,3.5) ,3.9) représentent les puits existants initialement, c'est à dire 6 producteurs. Lesfigures 3.2) ,3.6) ,3.10) représentent le cas précédent auquel on a ajouté un 1 injecteur. Lesfigures 3.3) ,3.7) ,3.11) représentent le cas précédent auquel on a ajouté un deuxième injecteur. Lesfigures 3.4) ,3.8) ,3.12) représentent le cas précédent auquel on a ajouté un troisième injecteur.Thefigure 3 illustrates several maps. TheFigures 3.1 to 3.4) represent the update of the minimum distance map. TheFigures 3.5 to 3.8) in the middle represent the updating of the production indicator map. TheFigures 3.9 to 3.12 ) represent the position of the added well (isolated dark position). Thefigures 3.1) ,3.5) ,3.9) represent existing wells initially,ie 6 producers. Thefigures 3.2) ,3.6) ,3.10) represent the previous case to which an injector has been added. Thefigures 3.3) ,3.7) ,3.11) represent the previous case to which a second injector has been added. Thefigures 3.4) ,3.8) ,3.12) represent the previous case to which a third injector has been added.
Le procédé selon l'invention permet d'exploiter efficacement un gisement pétrolier. Le procédé permet de sélectionner successivement des zones où il est intéressant de mettre un nouveau puits, producteur ou injecteur, pour améliorer la productivité du réservoir. Il s'appuie sur la construction d'une carte d'indicateurs de production (
Le procédé selon l'invention comporte les étapes listées ci-dessous :
- 1) on construit la carte d'indicateurs de production
- a) on sélectionne des mailles parmi l'ensemble de mailles de ladite carte,
- b) on détermine des indicateurs de production aux mailles sélectionnées,
- c) on réalise les étapes suivantes pour déterminer les indicateurs de production à l'ensemble des mailles de la carte :
- i. on définit un modèle d'interpolation prenant en compte la distance entre la maille à interpoler et le puits le plus proche et on estime les paramètres de ce modèle d'interpolation à partir desdits indicateurs de production déterminés à l'étape b),
- ii. on interpole lesdits indicateurs de production sur l'ensemble des mailles de ladite carte, au moyen du modèle d'interpolation et des paramètres spécifiés à l'étape c) i., et
- 2) on définit la position dudit nouveau puits par la maille où ledit indicateur de production est maximal.
- 1) build the production indicator map
- a) selecting meshes from the set of meshes of said card,
- (b) production indicators with selected meshes are determined,
- c) the following steps are carried out to determine the production indicators at all the cells of the map:
- i. defining an interpolation model taking into account the distance between the mesh to interpolate and the nearest well, and estimating the parameters of this interpolation model from said production indicators determined in step b),
- ii. said production indicators are interpolated on all the meshes of said map, by means of the interpolation model and the parameters specified in step c) i., and
- 2) defining the position of said new well by the mesh where said production indicator is maximum.
Cette carte d'indicateurs de production comprend un ensemble de mailles, chaque maille étant associée à un indicateur de production (IP). Un indicateur de production (IP) quantifie un impact sur la production du fluide dû à l'ajout d'un puits dans cette maille. L'indicateur de production (IP) mesure une variation des paramètres impactant la production du fluide lors d'un ajout d'un puits dans la maille. Cet indicateur de production (IP) peut être notamment une variation de production totale de l'ensemble des puits, une variation de la valeur actuelle nette attendue, une variation de la pression ou du débit. Dans un mode de réalisation, l'indicateur de production (IP) est l'incrément de volume d'huile produit en plaçant un puits, par exemple un puits injecteur, dans cette maille.This production indicator card comprises a set of meshes, each mesh being associated with a production indicator (IP). A production indicator (IP) quantifies an impact on the production of the fluid due to the addition of a well in this mesh. The production indicator (PI) measures a variation of the parameters affecting the production of the fluid when adding a well in the mesh. This production indicator (PI) may include a change in total production of all wells, a change in the expected net present value, a variation in pressure or flow. In one embodiment, the production indicator (IP) is the increment of volume of oil produced by placing a well, for example an injector well, in this mesh.
Avantageusement, on sélectionne des mailles de la carte à estimer à partir d'une technique d'échantillonnage, qui peut être entièrement informatisée, ou informatisée, puis complétée manuellement, ou réalisée entièrement manuellement. Par exemple, ladite technique d'échantillonnage est un hypercube latin, s'appuyant sur un critère "Maximin", qui permet de découper l'espace en sous-espaces équiprobables et échantillonnés de manière uniforme.Advantageously, we select meshes of the map to estimate from a sampling technique, which can be fully computerized, or computerized, then completed manually, or performed entirely manually. For example, said sampling technique is a Latin hypercube, based on a "Maximin" criterion, which makes it possible to divide the space into equiprobable subspaces sampled in a uniform manner.
Selon un mode de réalisation préféré, on utilise une carte d'identification des régions, élaborée au préalable à partir d'attributs. Le procédé selon l'invention permet d'exploiter efficacement un gisement pétrolier, pour lequel un ensemble de propriétés (pétrophysiques, ou sismiques) telles que la perméabilité, la porosité, les saturations... est connu. On appelle attributs, ces propriétés du réservoir, qui peuvent être mesurées, simulées ou calculées, il s'agit notamment de données géologiques, de données géométriques, de données sismiques et de données dynamiques telles que: la pression au temps précédant l'ajout des nouveaux puits, le volume de fluide connecté, la distance minimale par rapport aux puits existants, la perméabilité moyenne, la porosité, les vitesses, la densité...According to a preferred embodiment, a region identification map, previously prepared from attributes, is used. The process according to the invention makes it possible to efficiently exploit a petroleum deposit, for which a set of properties (petrophysical or seismic) such as permeability, porosity, saturations, etc. is known. These attributes of the reservoir, which can be measured, simulated or calculated, are called geological data, geometric data, seismic data and dynamic data such as: the pressure at the time before the addition of new wells, connected fluid volume, minimum distance from existing wells, average permeability, porosity, velocities, density ...
Des attributs caractérisant le réservoir étant connus, on applique une méthode de classification, pour les analyser et les séparer en classes. On en déduit une carte bidimensionnelle, dite carte d'identification des régions, distinguant des régions pour lesquelles les attributs appartiennent à la même classe. Les mailles appartenant à une même région sont donc caractérisés par des attributs proches ou similaires. Il est avantageux de recourir à des attributs, car ils ne demandent qu'un temps de calcul négligeable.Attributes characterizing the reservoir being known, a classification method is applied, for analysis and separation into classes. We deduce a two-dimensional map, called an identification map of the regions, distinguishing regions for which the attributes belong to the same class. Meshes belonging to the same region are therefore characterized by similar or similar attributes. It is advantageous to use attributes because they require only negligible computation time.
Dans un mode de réalisation préférentiel, la classification se fait suivant l'algorithme du K-means, qui permet de regrouper les attributs en K classes ne se chevauchant pas. On choisit un nombre de classes (ou coefficient K), en général inférieur à 10, afin d'obtenir un résultat relativement stable. Cet algorithme présente les avantages d'une simplicité conceptuelle, d'une rapidité d'exécution et de faibles exigences en taille mémoire.In a preferred embodiment, the classification is done according to the K-means algorithm, which makes it possible to group the attributes in K classes that do not overlap. We choose a number of classes (or coefficient K), generally less than 10, in order to obtain a relatively stable result. This algorithm has the advantages of conceptual simplicity, speed of execution and low memory size requirements.
La
La carte d'identification de régions étant établie, elle peut guider le processus de sélection de mailles. Il est donc avantageux de superposer les mailles sélectionnées sur la carte d'identification des régions. Si une classe identifiée lors de la création de la carte d'identification des régions est jugée a priori intéressante par un spécialiste, mais comprend peu de mailles sélectionnées, des mailles supplémentaires sont sélectionnées manuellement par ledit spécialiste. Un choix pertinent des mailles sélectionnées, en particulier à partir de la carte d'identification des régions, permet de construire une carte d'indicateurs de production plus précise et plus fiable.The region identification map being established, it can guide the mesh selection process. It is therefore advantageous to superimpose the selected meshes on the identification card of the regions. If a class identified during the creation of the identification map of the regions is considered a priori interesting by a specialist, but includes few meshes selected, additional meshes are manually selected by said specialist. A relevant choice of the selected meshes, in particular from the identification map of the regions, makes it possible to build a map of production indicators that is more precise and more reliable.
On détermine pour chaque maille sélectionnée à l'étape a), l'indicateur de production (IP), soit par mesure, soit par calcul ou soit par simulation.For each mesh selected in step a), the production indicator (IP) is determined either by measurement, by calculation or by simulation.
De manière préférentielle, on exécute une simulation d'écoulement de fluide contenu dans le réservoir vers les puits producteurs, pour chaque maille sélectionnée, en partant de l'hypothèse qu'on rajoute un puits dans ladite maille sélectionnée. Par conséquent, si à l'étape b) de sélection, N mailles sont retenues, on exécute N simulations d'écoulement avec pour chacune d'entre elles un unique puits ajouté à la position considérée. Ces simulations donnent la valeur exacte de l'indicateur de production (IP1, IP2 ... IPN) pour les mailles sélectionnées. Grâce à l'invention, on exécute des mesures, des calculs ou des simulations d'écoulement uniquement pour les mailles sélectionnées. Pour exécuter une simulation d'écoulement, il est connu de l'homme du métier d'utiliser un logiciel appelé simulateur d'écoulement tel que Pumaflow® (IFP Energies nouvelles, France).Preferably, a simulation of fluid flow contained in the reservoir to the producing wells is carried out for each selected mesh, on the assumption that a well is added in said selected mesh. Therefore, if in step b) of selection, N meshes are retained, one runs N flow simulations with for each of them a single well added to the considered position. These simulations give the exact value of the production indicator (IP1, IP2 ... IPN) for the selected meshes. Thanks to the invention, measurements, calculations or flow simulations are carried out only for the selected meshes. To execute a flow simulation, it is known to those skilled in the art to use software called flow simulators such as Pumaflow® (IFP Energies nouvelles, France).
Afin de ne pas avoir à déterminer les indicateurs de production sur l'ensemble des mailles de la carte à partir d'un processus coûteux en temps calcul comme une simulation d'écoulement, et par conséquent pour diminuer le temps de calcul, l'indicateur de production est estimé par interpolation sur l'ensemble des mailles non échantillonnées de la carte. Afin de prendre en compte les interférences avec les puits, le modèle d'interpolation est construit à partir d'un groupe de régresseurs comprenant un attribut qui dépend de la distance entre la maille à interpoler et le puits le plus proche de ladite maille à interpoler. Ce puits peut être un puits existant ou un puits déjà ajouté.In order not to have to determine the production indicators on all the cells of the card from a time-consuming process such as a flow simulation, and consequently to reduce the calculation time, the indicator of production is estimated by interpolation on the set of unsampled meshes of the map. In order to take into account the interference with the wells, the interpolation model is constructed from a group of regressors comprising an attribute that depends on the distance between the mesh to be interpolated and the well nearest to said interpolated mesh. . This well may be an existing well or an already added well.
Dans un mode de réalisation, on peut utiliser un modèle d'interpolation polynômial ou un modèle d'interpolation par krigeage. Pour ces modèles, les mailles sont caractérisées par les valeurs des régresseurs qui leurs sont associés, par exemple leurs coordonnées spatiales x et y et la distance entre la maille à interpoler et le puits le plus proche de ladite maille à interpoler. Ce dernier régresseur est introduit pour prendre en compte les interférences entre les puits ajoutés. L'indicateur de production en une maille peut donc être exprimé par la formule suivante :
En outre, le modèle d'interpolation dépend de paramètres de construction du modèle, qui doivent être ajustés au réservoir étudié. Pour réaliser cet ajustement, on se sert des valeurs des indicateurs de production obtenus à l'étape b). En effet, cela est rendu possible car aux mailles sélectionnées, seuls ces paramètres de construction sont inconnus.In addition, the interpolation model depends on model construction parameters, which must be adjusted to the studied reservoir. To achieve this adjustment, the values of the production indicators obtained in step b) are used. Indeed, this is made possible because at the selected meshes, only these construction parameters are unknown.
Les paramètres du modèle d'interpolation ayant été estimés à l'étape c) i., on détermine par interpolation les indicateurs de production aux mailles non sélectionnées de la carte. L'estimation des indicateurs de production par interpolation permet de s'affranchir d'un simulateur annexe et de réduire les temps de calcul.The parameters of the interpolation model having been estimated in step c) i., The production indicators with unselected meshes of the card are interpolated. The estimation of production indicators by interpolation makes it possible to dispense with an ancillary simulator and to reduce calculation times.
Les
En outre, cette carte présente l'avantage de pouvoir être mise à jour pour intégrer l'influence des puits successivement ajoutés sans avoir à relancer de nouvelles simulations d'écoulement. La
La valeur maximale de l'indicateur de production ainsi construit correspond à la maille où il sera le plus avantageux de positionner un puits. On ajoute au schéma de production alors un puits qu'on intègre au groupe des puits existants. Le puits pourra alors être foré ultérieurement.The maximum value of the production indicator thus constructed corresponds to the mesh where it will be most advantageous to position a well. A well is then added to the production scheme and integrated into the group of existing wells. The well can then be drilled later.
Les
Pour définir l'emplacement optimal d'au moins un autre nouveau puits, on réalise au préalable la mise à jour des distances minimales au puits le plus proche pour chaque maille de la carte. Cette mise à jour tient compte du puits qui vient d'être ajouté. En effet, un puits ayant été ajouté au groupe des puits existants, il faut recalculer pour chacune des mailles la distance la séparant du puits existant ou simulé le plus proche. On obtient alors une carte de distance minimale actualisée, telle que présentée pour un exemple aux
On répète alors l'étape c) ii, ce qui aboutit à la mise à jour de la carte d'indicateurs de production. On notera que les valeurs des indicateurs de production déterminés à l'étape b) avant l'ajout du premier puits sont conservées pour les mailles sélectionnées, sauf pour les mailles sélectionnées pour lesquelles la distance au puits le plus proche a variée. La prise en compte de la distance au puits le plus proche dans le processus d'interpolation engendre naturellement une décroissance des indicateurs de production de ces mailles.Step c) ii is then repeated, which results in the updating of the production indicator card. It should be noted that the values of the production indicators determined in step b) before the addition of the first well are retained for the selected meshes, except for the meshes selected for which the distance to the nearest well has varied. Taking in counting the distance to the nearest well in the interpolation process naturally leads to a decrease in the production indicators of these meshes.
La carte d'indicateurs de production ayant été actualisée, on répète l'étape 2) de définition de la position d'un nouveau puits.The map of production indicators having been updated, step 2) is repeated for defining the position of a new well.
Cette procédure est répétée tant qu'on souhaite ajouter un puits.This procedure is repeated as long as you want to add a well.
Ainsi, grâce à l'invention, le positionnement du nouveau puits est un paramètre entrant en compte dans la détermination des indicateurs de production. Par conséquent, les interférences entre les puits sont prises en compte. En outre, l'étape b) de détermination des indicateurs de production aux mailles sélectionnées et l'étape c) i. de définition du modèle d'interpolation et de ses paramètres ne sont pas répétées, ce qui apporte un gain de temps de déroulement du procédé. Ce gain est significatif, notamment quand le nombre de mailles échantillonnées est important et quand l'étape b) recourt à un simulateur d'écoulement pour déterminer les indicateurs de production aux mailles échantillonnées.Thus, thanks to the invention, the positioning of the new well is a parameter that is taken into account in the determination of the production indicators. Therefore, interferences between the wells are taken into account. In addition, step b) of determining the production indicators with the selected meshes and step c) i. the definition of the interpolation model and its parameters are not repeated, which brings a saving in process time. This gain is significant, especially when the number of meshes sampled is important and when step b) uses a flow simulator to determine the production indicators meshes sampled.
Pour illustrer le procédé, on reprend un cas test élaboré dans le cadre du projet européen "Production forecasting with UNcertainty Quantification" à partir d'un réservoir pétrolier réel. Le champ contient de l'huile et du gaz. Il est produit à partir de 6 puits producteurs localisés près de la ligne de contact entre l'huile et le gaz. Le schéma de production de base couvre la période allant du 01/01/1967 au 15/01/1975. Les puits sont ensuite fermés pendant trois ans avant d'être mis en production à débit imposé les quatre dernières années. Au terme des huit ans se pose la question d'ajouter des puits d'injection d'eau pour soutenir la pression dans le réservoir. On suppose que du 15/01/75 au 15/01/80, la production est pilotée par les six puits producteurs et des puits injecteurs. Le problème consiste à identifier les positions les plus stratégiques pour l'implantation des puits injecteurs.To illustrate the process, we use a test case developed as part of the European project "Production forecasting with UNcertainty Quantification" from a real oil reservoir. The field contains oil and gas. It is produced from 6 producing wells located near the line of contact between oil and gas. The basic production scheme covers the period from 01/01/1967 to 15/01/1975. The wells are then closed for three years before being put into production at the imposed rate for the last four years. At the end of eight years, there is the question of adding water injection wells to support the pressure in the tank. It is assumed that from 15/01/75 to 15/01/80, production is driven by the six producing wells and the injection wells. The problem is to identify the most strategic positions for the implantation of injection wells.
Il s'agit alors de construire, en utilisant le procédé selon l'invention, une carte d'indicateurs de production (IP), et d'en déduire la position des puits à ajouter tout en l'actualisant au fur et à mesure.It is then a matter of constructing, using the method according to the invention, a map of production indicators (IP), and to deduce the position of the wells to be added while updating it as and when.
Le modèle de réservoir est discrétisé sur une grille de 19×28×5 mailles, dont 1761 sont actives. Cette configuration nous amène à construire une carte d'indicateurs de production sur une grille de 19×28 mailles, dont 396 peuvent accueillir un nouveau puits. Le cas de base correspond au volume d'huile cumulé produit par les six puits producteurs au 15/01/80 en l'absence de tout puits injecteur. L'indicateur de production attribué à une maille de la carte d'indicateurs de production correspond à la quantité d'huile produite en plus lorsqu'un puits injecteur est placé dans la maille en question.The reservoir model is discretized on a grid of 19 × 28 × 5 meshes, of which 1761 are active. This configuration leads us to build a map of production indicators on a grid of 19 × 28 meshes, of which 396 can accommodate a new well. The base case corresponds to the cumulated oil volume produced by the six producing wells at 15/01/80 in the absence of any injection wells. The production indicator assigned to a mesh of the production indicator card corresponds to the quantity of oil produced in addition when an injection well is placed in the mesh in question.
Une simulation d'écoulement pour le cas PUNQ demande un temps de calcul très réduit. Dans ces conditions très particulières, il est tout à fait envisageable de faire une simulation d'écoulement pour toutes les mailles possibles, ce qui donne accès à la carte exacte d'indicateurs de production (IP) (
Plusieurs attributs ont été déterminés pour le cas test, parmi lesquels la pression et le volume d'huile connecté le 15/01/75 ainsi que la perméabilité moyenne connectée. L'algorithme du K-means est ensuite appliqué pour identifier des régions. Cinq classes sont considérées pour l'exemple étudié. La carte d'identification des régions en résultant est reportée sur la
On sélectionne ensuite des mailles de la carte par échantillonnage à partir d'un hypercube latin s'appuyant sur un critère "Maximin". En identifiant les mailles sélectionnées sur la carte d'identification des régions (
La distance minimale (Dmin) par rapport aux puits le plus proche (existant ou simulé) est présentée sur la
Claims (11)
- A computer-implemented method of developing an underground reservoir, notably a petroleum reservoir, crossed by at least a first well from which a fluid is produced, wherein a position of at least a second well to be drilled is determined by means of a production indicators map comprising a set of cells, each cell being associated with a production indicator (IP) defining an impact on the fluid production of a well addition in this cell, characterized in that it comprises the following stages:- constructing said map by means of the following stages:a) selecting cells from the set of cells of said mapb) determining production indicators (IP) in the cells selectedc) interpolating said production indicators (IP) determined in stage b) on the set of cells of said map, by means of an interpolation model taking account of a distance between the cell to be interpolated and the well closest to said cell to be interpolated, and- defining the position of said second well by the cell where said production indicator is maximal.
- A method as claimed in claim 1, wherein production indicator (IP) measures a parameter variation impacting the fluid production upon addition of a well in the cell.
- A method as claimed in any one of the previous claims, wherein production indicator (IP) is a fluid volume increment produced by placing a well in the cell or a variation of the net value expected.
- A method as claimed in any one of the previous claims, wherein selection of the cells is achieved by sampling.
- A method as claimed in any one of the previous claims, wherein the cells are selected by carrying out the following stages:i. determining reservoir attributesii. constructing a region identification map through attribute classification, andiii. selecting said cells as a function of said region identification map.
- A method as claimed in claim 5, wherein the reservoir attributes used are selected from among the following attributes: the distance between each cell and the well closest to said cell ; dynamic data such as the fluid pressure and the connected fluid volume ; seismic data such as velocities and densities.
- A method as claimed in any one of claims 5 and 6, wherein the classification method is the K-means algorithm.
- A method as claimed in any one of the previous claims, wherein stage c) and the stage of defining the position of the second well are repeated for determination of a position of at least another well, by taking account of the impact linked with the addition of one or more wells on the distance between a cell and the well closest to said cell.
- A method as claimed in any one of the previous claims, wherein the interpolation model used in stage c) is a polynomial interpolation model, preferably of second order, or a kriging interpolation model, or a combination of a polynomial interpolation model and of a kriging interpolation model.
- A computer program product downloadable from a communication network and/or recorded on a computer readable medium and/or processor executable, comprising program code instructions for implementing the method as claimed in any one of the previous claims, when said program is executed on a computer.
- A method as claimed in any one of claims 1 to 9, wherein exploratory drilling is carried out in said determined positions.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1102701A FR2979724B1 (en) | 2011-09-06 | 2011-09-06 | METHOD FOR OPERATING A PETROLEUM DEPOSITION FROM A SELECTION TECHNIQUE FOR WELLBORE POSITIONS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2568110A1 EP2568110A1 (en) | 2013-03-13 |
EP2568110B1 true EP2568110B1 (en) | 2018-12-05 |
Family
ID=46651435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12290268.7A Not-in-force EP2568110B1 (en) | 2011-09-06 | 2012-08-07 | Exploitation method of an oilfield on the basis of a selection technic of to be drilled borehole positions |
Country Status (4)
Country | Link |
---|---|
US (1) | US9422800B2 (en) |
EP (1) | EP2568110B1 (en) |
CA (1) | CA2789537C (en) |
FR (1) | FR2979724B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2747019C1 (en) * | 2020-06-18 | 2021-04-23 | Общество с ограниченной ответственностью "Тюменский нефтяной научный центр" (ООО "ТННЦ") | Method for justification of field operating practices |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014104909A1 (en) * | 2012-12-25 | 2014-07-03 | Общество С Ограниченной Ответственностью "Интровижн Ресерч Энд Девелопмент" | Method for producing a three-dimensional characteristic model of a porous material sample for analysis of permeability characteristics |
FR3002270B1 (en) * | 2013-02-21 | 2015-02-27 | Ifp Energies Now | METHOD FOR OPERATING A GEOLOGICAL TANK USING A STANDARD TANK MODEL AND COHERENT WITH RESPECT TO FLOW PROPERTIES |
EP2811108B1 (en) | 2013-06-06 | 2017-11-22 | Repsol, S.A. | Method for Assessing Production Strategy Plans |
FR3023316B1 (en) * | 2014-07-04 | 2016-08-19 | Ifp Energies Now | METHOD FOR OPERATING A PETROLEUM STORAGE FROM A WELL POSITIONING TECHNIQUE |
US10221659B2 (en) * | 2014-10-08 | 2019-03-05 | Chevron U.S.A. Inc. | Automated well placement for reservoir evaluation |
US10822922B2 (en) * | 2015-01-19 | 2020-11-03 | International Business Machines Corporation | Resource identification using historic well data |
CN106337679A (en) * | 2015-07-10 | 2017-01-18 | 中国石油化工股份有限公司 | Novel method for measuring and calculating well pattern thickening potential |
WO2017053080A1 (en) * | 2015-09-24 | 2017-03-30 | Schlumberger Technology Corporation | Subsurface volume evaluation |
US10060227B2 (en) * | 2016-08-02 | 2018-08-28 | Saudi Arabian Oil Company | Systems and methods for developing hydrocarbon reservoirs |
US12050981B2 (en) * | 2018-05-15 | 2024-07-30 | Landmark Graphics Corporation | Petroleum reservoir behavior prediction using a proxy flow model |
FR3101660B1 (en) * | 2019-10-03 | 2021-10-08 | Ifp Energies Now | Method for determining a trajectory of a well in an oil reservoir |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5757663A (en) * | 1995-09-26 | 1998-05-26 | Atlantic Richfield Company | Hydrocarbon reservoir connectivity tool using cells and pay indicators |
US6549879B1 (en) * | 1999-09-21 | 2003-04-15 | Mobil Oil Corporation | Determining optimal well locations from a 3D reservoir model |
WO2005074592A2 (en) * | 2004-01-30 | 2005-08-18 | Exxonmobil Upstream Research Company | Reservoir model building methods |
WO2009080711A2 (en) * | 2007-12-20 | 2009-07-02 | Shell Internationale Research Maatschappij B.V. | Method for producing hydrocarbons through a well or well cluster of which the trajectory is optimized by a trajectory optimisation algorithm |
US7894991B2 (en) * | 2008-02-01 | 2011-02-22 | Schlumberger Technology Corp. | Statistical determination of historical oilfield data |
US10060245B2 (en) * | 2009-01-09 | 2018-08-28 | Halliburton Energy Services, Inc. | Systems and methods for planning well locations with dynamic production criteria |
US20120143577A1 (en) * | 2010-12-02 | 2012-06-07 | Matthew Szyndel | Prioritizing well drilling propositions |
-
2011
- 2011-09-06 FR FR1102701A patent/FR2979724B1/en not_active Expired - Fee Related
-
2012
- 2012-08-07 EP EP12290268.7A patent/EP2568110B1/en not_active Not-in-force
- 2012-08-29 US US13/597,613 patent/US9422800B2/en not_active Expired - Fee Related
- 2012-09-04 CA CA2789537A patent/CA2789537C/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2747019C1 (en) * | 2020-06-18 | 2021-04-23 | Общество с ограниченной ответственностью "Тюменский нефтяной научный центр" (ООО "ТННЦ") | Method for justification of field operating practices |
Also Published As
Publication number | Publication date |
---|---|
FR2979724A1 (en) | 2013-03-08 |
FR2979724B1 (en) | 2018-11-23 |
CA2789537C (en) | 2019-05-07 |
US20130020131A1 (en) | 2013-01-24 |
US9422800B2 (en) | 2016-08-23 |
CA2789537A1 (en) | 2013-03-06 |
EP2568110A1 (en) | 2013-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2568110B1 (en) | Exploitation method of an oilfield on the basis of a selection technic of to be drilled borehole positions | |
EP2628893B1 (en) | Method for exploiting a deposit using a technique for selecting the positions of drilling wells | |
EP1801617B1 (en) | Method for updating a geological model using seismic data | |
EP2343576B1 (en) | Method of oil reservoir exploitation employing a facies chart construction which is representative for the reservoir | |
EP2963235B1 (en) | Method for exploiting an oil deposit based on a technique for positioning wells to be drilled | |
EP2685291B1 (en) | Method for exploiting a geological reservoir from a reservoir model conditioned by calculating an analytic law of the conditional distribution of uncertain parameters of the model | |
WO2009034253A1 (en) | Method, programme and computer system for scaling the modelling data for a hydrocarbon deposit | |
EP3327471B1 (en) | Method for exploiting a hydrocarbon deposit by production history matching as a function of the diagenesis | |
EP2365359B1 (en) | Method of history matching a geological model | |
FR3045098A1 (en) | METHOD OF OPERATING A SEDIMENT BASIN USING ORGANIC CARBON CONTENT CARDS AND HYDROGEN INDEX | |
EP2770162B1 (en) | Method for exploiting a geological reservoir by means of a wedge model of the reservoir that is consistent with the flow properties | |
EP2479590B1 (en) | Method for updating a reservoir model in real time using dynamic data while maintaining the consistency of same with static observations | |
CA2968579A1 (en) | Exploitation process for hydrocarbons in an underground formation, by means of optimized scaling | |
FR3037682A1 (en) | ||
EP3744946B1 (en) | Method for modelling a sedimentary basin, by taking into account at least one preponderant migration mechanism | |
WO2021063804A1 (en) | Method for determining a trajectory of a well in an oil reservoir | |
Heidari | History-matching of petroleum reservoir models by the ensemble Kalman filter and parameterization methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20130913 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IFP ENERGIES NOUVELLES |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180718 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1073314 Country of ref document: AT Kind code of ref document: T Effective date: 20181215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012054295 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1073314 Country of ref document: AT Kind code of ref document: T Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190305 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20181205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190306 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190405 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190405 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012054295 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
26N | No opposition filed |
Effective date: 20190906 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012054295 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190807 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190807 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120807 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210826 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20210818 Year of fee payment: 10 Ref country code: GB Payment date: 20210826 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220807 |