EP2505637A1 - Novel microbial succinic acid producer - Google Patents
Novel microbial succinic acid producer Download PDFInfo
- Publication number
- EP2505637A1 EP2505637A1 EP20120162854 EP12162854A EP2505637A1 EP 2505637 A1 EP2505637 A1 EP 2505637A1 EP 20120162854 EP20120162854 EP 20120162854 EP 12162854 A EP12162854 A EP 12162854A EP 2505637 A1 EP2505637 A1 EP 2505637A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- succinic acid
- glycerol
- glucose
- arabinose
- carbon source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 title claims abstract description 399
- 239000001384 succinic acid Substances 0.000 title claims abstract description 224
- 230000000813 microbial effect Effects 0.000 title 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 398
- 238000000034 method Methods 0.000 claims abstract description 70
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 58
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 57
- 230000001580 bacterial effect Effects 0.000 claims abstract description 28
- 150000007524 organic acids Chemical class 0.000 claims abstract description 25
- 210000004767 rumen Anatomy 0.000 claims abstract description 24
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 129
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 116
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 114
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 83
- 239000001095 magnesium carbonate Substances 0.000 claims description 82
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 81
- 239000008103 glucose Substances 0.000 claims description 79
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 claims description 72
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 claims description 68
- 238000004519 manufacturing process Methods 0.000 claims description 68
- 230000008569 process Effects 0.000 claims description 59
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 42
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 42
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 41
- SRBFZHDQGSBBOR-HWQSCIPKSA-N L-arabinopyranose Chemical compound O[C@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-HWQSCIPKSA-N 0.000 claims description 40
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 37
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 32
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 32
- 229930006000 Sucrose Natural products 0.000 claims description 32
- 239000005720 sucrose Substances 0.000 claims description 32
- 230000015572 biosynthetic process Effects 0.000 claims description 31
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 30
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-Fructose Natural products OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 claims description 30
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 30
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 27
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 21
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 20
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 20
- 238000000855 fermentation Methods 0.000 claims description 19
- 230000004151 fermentation Effects 0.000 claims description 19
- 238000012262 fermentative production Methods 0.000 claims description 19
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 16
- 230000012010 growth Effects 0.000 claims description 15
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 15
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 12
- 108020004465 16S ribosomal RNA Proteins 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- NHJPVZLSLOHJDM-UHFFFAOYSA-N azane;butanedioic acid Chemical class [NH4+].[NH4+].[O-]C(=O)CCC([O-])=O NHJPVZLSLOHJDM-UHFFFAOYSA-N 0.000 claims description 9
- 238000005886 esterification reaction Methods 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 230000032050 esterification Effects 0.000 claims description 8
- 150000004040 pyrrolidinones Chemical class 0.000 claims description 8
- 239000003225 biodiesel Substances 0.000 claims description 7
- 150000002148 esters Chemical class 0.000 claims description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- 238000009903 catalytic hydrogenation reaction Methods 0.000 claims description 6
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 6
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 229910000020 calcium bicarbonate Inorganic materials 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 4
- 239000000920 calcium hydroxide Substances 0.000 claims description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 4
- 239000000811 xylitol Substances 0.000 claims description 4
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 4
- 229960002675 xylitol Drugs 0.000 claims description 4
- 235000010447 xylitol Nutrition 0.000 claims description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 3
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000292 calcium oxide Substances 0.000 claims description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 3
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 claims description 3
- 229960000367 inositol Drugs 0.000 claims description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 3
- 239000000347 magnesium hydroxide Substances 0.000 claims description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 3
- 230000002503 metabolic effect Effects 0.000 claims description 3
- 239000011736 potassium bicarbonate Substances 0.000 claims description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 3
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 229960002920 sorbitol Drugs 0.000 claims description 3
- 150000003626 triacylglycerols Chemical class 0.000 claims description 3
- 229920002488 Hemicellulose Polymers 0.000 claims description 2
- 229920002472 Starch Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- 239000012847 fine chemical Substances 0.000 claims 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims 1
- 241000606752 Pasteurellaceae Species 0.000 claims 1
- 238000007257 deesterification reaction Methods 0.000 claims 1
- 229910000098 magnesium monohydride Inorganic materials 0.000 claims 1
- 239000002699 waste material Substances 0.000 claims 1
- 241000283690 Bos taurus Species 0.000 abstract description 7
- 244000005700 microbiome Species 0.000 abstract description 5
- 235000005985 organic acids Nutrition 0.000 abstract description 5
- 235000011187 glycerol Nutrition 0.000 description 119
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 83
- 239000002609 medium Substances 0.000 description 71
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 59
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 55
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 46
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 32
- 239000000047 product Substances 0.000 description 27
- 210000004027 cell Anatomy 0.000 description 22
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 21
- 239000007789 gas Substances 0.000 description 21
- 210000002966 serum Anatomy 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 20
- 239000002028 Biomass Substances 0.000 description 19
- 238000004128 high performance liquid chromatography Methods 0.000 description 19
- 238000011218 seed culture Methods 0.000 description 19
- 239000006227 byproduct Substances 0.000 description 18
- 238000011534 incubation Methods 0.000 description 18
- 239000011550 stock solution Substances 0.000 description 18
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N Lactic Acid Natural products CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 16
- 239000001888 Peptone Substances 0.000 description 16
- 108010080698 Peptones Proteins 0.000 description 16
- 229940041514 candida albicans extract Drugs 0.000 description 16
- 235000019319 peptone Nutrition 0.000 description 16
- 239000012138 yeast extract Substances 0.000 description 16
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 15
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 15
- 229920005549 butyl rubber Polymers 0.000 description 14
- 239000010802 sludge Substances 0.000 description 14
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 238000011177 media preparation Methods 0.000 description 13
- 239000013028 medium composition Substances 0.000 description 13
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 12
- 101150039027 ampH gene Proteins 0.000 description 12
- 238000011081 inoculation Methods 0.000 description 12
- 239000002054 inoculum Substances 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 11
- 241000029538 [Mannheimia] succiniciproducens Species 0.000 description 11
- 235000011054 acetic acid Nutrition 0.000 description 11
- 238000012365 batch cultivation Methods 0.000 description 11
- 235000019253 formic acid Nutrition 0.000 description 11
- 238000005984 hydrogenation reaction Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 10
- 229920001817 Agar Polymers 0.000 description 10
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 10
- 239000008272 agar Substances 0.000 description 10
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 10
- 239000001110 calcium chloride Substances 0.000 description 10
- 229910001628 calcium chloride Inorganic materials 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 10
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 10
- 229910001629 magnesium chloride Inorganic materials 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- JZRWCGZRTZMZEH-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 10
- 239000004310 lactic acid Substances 0.000 description 9
- 235000014655 lactic acid Nutrition 0.000 description 9
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 150000002314 glycerols Chemical class 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 7
- 150000003863 ammonium salts Chemical class 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000000306 component Substances 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 6
- 235000011130 ammonium sulphate Nutrition 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 229960002685 biotin Drugs 0.000 description 6
- 235000020958 biotin Nutrition 0.000 description 6
- 239000011616 biotin Substances 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000006285 cell suspension Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- -1 crude glycerol) Chemical compound 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- 235000019157 thiamine Nutrition 0.000 description 5
- 239000011721 thiamine Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108010023063 Bacto-peptone Proteins 0.000 description 4
- 229930182504 Lasalocid Natural products 0.000 description 4
- 229930191564 Monensin Natural products 0.000 description 4
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 240000008042 Zea mays Species 0.000 description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 235000005822 corn Nutrition 0.000 description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- BBMULGJBVDDDNI-OWKLGTHSSA-N lasalocid Chemical compound C([C@@H]1[C@@]2(CC)O[C@@H]([C@H](C2)C)[C@@H](CC)C(=O)[C@@H](C)[C@@H](O)[C@H](C)CCC=2C(=C(O)C(C)=CC=2)C(O)=O)C[C@](O)(CC)[C@H](C)O1 BBMULGJBVDDDNI-OWKLGTHSSA-N 0.000 description 4
- 229960000320 lasalocid Drugs 0.000 description 4
- 229960005358 monensin Drugs 0.000 description 4
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 3
- 241000722954 Anaerobiospirillum succiniciproducens Species 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 241001593968 Vitis palmata Species 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 3
- 229960003942 amphotericin b Drugs 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 239000002638 heterogeneous catalyst Substances 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 3
- JIEUNXTVLAWHMR-FQJGRRMBSA-N (2r,3s,4s)-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@H](O)[C@H](O)[C@@H](O)C=O.OC[C@H](O)[C@H](O)[C@@H](O)C=O.OC[C@H](O)[C@H](O)[C@@H](O)C=O JIEUNXTVLAWHMR-FQJGRRMBSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- CKLJMWTZIZZHCS-UWTATZPHSA-N D-aspartic acid Chemical compound OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 108010053763 Pyruvate Carboxylase Proteins 0.000 description 2
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000219094 Vitaceae Species 0.000 description 2
- 241000239097 [Mannheimia] succiniciproducens MBEL55E Species 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 239000007621 bhi medium Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 235000001727 glucose Nutrition 0.000 description 2
- 235000021021 grapes Nutrition 0.000 description 2
- 150000002402 hexoses Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 238000009630 liquid culture Methods 0.000 description 2
- 229910000022 magnesium bicarbonate Inorganic materials 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 150000002972 pentoses Chemical class 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- AUTALUGDOGWPQH-QCZDSKPDSA-N (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal (2R,3S,4S)-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@H](O)[C@H](O)[C@@H](O)C=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O AUTALUGDOGWPQH-QCZDSKPDSA-N 0.000 description 1
- CDVZCUKHEYPEQS-AZIZVCISSA-N (2r,3s,4s)-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@H](O)[C@H](O)[C@@H](O)C=O.OC[C@H](O)[C@H](O)[C@@H](O)C=O CDVZCUKHEYPEQS-AZIZVCISSA-N 0.000 description 1
- CDVZCUKHEYPEQS-FOASUZNUSA-N (2s,3r,4r)-2,3,4,5-tetrahydroxypentanal;(2r,3s,4r)-2,3,4,5-tetrahydroxypentanal Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)C=O.OC[C@@H](O)[C@@H](O)[C@H](O)C=O CDVZCUKHEYPEQS-FOASUZNUSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- PKAUICCNAWQPAU-UHFFFAOYSA-N 2-(4-chloro-2-methylphenoxy)acetic acid;n-methylmethanamine Chemical compound CNC.CC1=CC(Cl)=CC=C1OCC(O)=O PKAUICCNAWQPAU-UHFFFAOYSA-N 0.000 description 1
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 description 1
- OZDAOHVKBFBBMZ-UHFFFAOYSA-N 2-aminopentanedioic acid;hydrate Chemical compound O.OC(=O)C(N)CCC(O)=O OZDAOHVKBFBBMZ-UHFFFAOYSA-N 0.000 description 1
- GHOKWGTUZJEAQD-SSDOTTSWSA-N 3-[[(2s)-2,4-dihydroxy-3,3-dimethylbutanoyl]amino]propanoic acid Chemical compound OCC(C)(C)[C@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-SSDOTTSWSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000588919 Citrobacter freundii Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 244000024675 Eruca sativa Species 0.000 description 1
- 235000014755 Eruca sativa Nutrition 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 238000012366 Fed-batch cultivation Methods 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 241001293415 Mannheimia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229910003202 NH4 Inorganic materials 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000192142 Proteobacteria Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241000219095 Vitis Species 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000009603 aerobic growth Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009604 anaerobic growth Effects 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000000089 arabinosyl group Chemical group C1([C@@H](O)[C@H](O)[C@H](O)CO1)* 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960005261 aspartic acid Drugs 0.000 description 1
- 241000304395 bacterium DD1 Species 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 229960003563 calcium carbonate Drugs 0.000 description 1
- 229940095643 calcium hydroxide Drugs 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 229940087373 calcium oxide Drugs 0.000 description 1
- PBUBJNYXWIDFMU-UHFFFAOYSA-L calcium;butanedioate Chemical compound [Ca+2].[O-]C(=O)CCC([O-])=O PBUBJNYXWIDFMU-UHFFFAOYSA-L 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- JGDFBJMWFLXCLJ-UHFFFAOYSA-N copper chromite Chemical compound [Cu]=O.[Cu]=O.O=[Cr]O[Cr]=O JGDFBJMWFLXCLJ-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- QTBSBXVTEAMEQO-DYCDLGHISA-N deuterio acetate Chemical compound [2H]OC(C)=O QTBSBXVTEAMEQO-DYCDLGHISA-N 0.000 description 1
- BDAGIHXWWSANSR-DYCDLGHISA-N deuterio formate Chemical compound [2H]OC=O BDAGIHXWWSANSR-DYCDLGHISA-N 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- VDQVEACBQKUUSU-UHFFFAOYSA-M disodium;sulfanide Chemical compound [Na+].[Na+].[SH-] VDQVEACBQKUUSU-UHFFFAOYSA-M 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011552 falling film Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000000236 ionophoric effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000011392 neighbor-joining method Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 238000002862 phylogeny inference package Methods 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000013587 production medium Substances 0.000 description 1
- 235000008160 pyridoxine Nutrition 0.000 description 1
- 239000011677 pyridoxine Substances 0.000 description 1
- 238000000066 reactive distillation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- HYERJXDYFLQTGF-UHFFFAOYSA-N rhenium Chemical compound [Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re][Re] HYERJXDYFLQTGF-UHFFFAOYSA-N 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003890 succinate salts Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000011514 vinification Methods 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/46—Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/32—Processes using, or culture media containing, lower alkanols, i.e. C1 to C6
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a novel bacterial strain designated DD1, which has the ability to produce organic acids, in particular succinic acid (SA), which was originally isolated from bovine rumen, and is capable of utilizing glycerol as a carbon source; and variant strains derived there from retaining said capability; as well as to methods of producing organic acids, in particular succinic acid by making use of said microorganism.
- SA succinic acid
- SA succinic acid
- THF tetrahydrofuran
- BDO 1,4-butanediol
- GBL gamma-butyrolactone
- pyrrolidones WO-A-2006/066839
- a SA-producing bacterium isolated from bovine rumen was described by Lee et al (2002a).
- the bacterium is a non-motile, non-spore-forming, mesophilic and capnophilic gram-negative rod or coccobacillus.
- Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to genus Mannheimia as a novel species, and has been named Mannheimia succiniciproducens MBEL55E. Under 100% CO 2 conditions, it grows well in the pH range of 6.0-7.5 and produces succinic acid, acetic acid and formic acid at a constant ratio of 2:1:1. When M.
- succiniciproducens MBEL55E was cultured anaerobically under CO 2 -saturation with glucose as carbon source, 19.8 g/L of glucose were consumed and 13.3 g/L of SA were produced in 7.5 h of incubation.
- a significant drawback of said organism is, however, its inability to metabolize glycerol, which, as a constituent of triacyl glycerols (TAGs), becomes readily available e. g. as by-product in the transesterification reaction of Biodiesel production (Dharmadi et al., 2006).
- TAGs triacyl glycerols
- E. coli is able to ferment glycerol under very specific conditions such as acidic pH, avoiding accumulation of the fermentation gas hydrogen, and appropriate medium composition.
- Dharmadi et al 2006, Yazdani and Gonzalez 2007 Many microorganisms are able to metabolize glycerol in the presence of external electron acceptors (respiratory metabolism), few are able to do so fermentatively (i.e. in the absence of electron acceptors).
- the fermentative metabolism of glycerol has been studied in great detail in several species of the Enterobacteriaceae family, such as Citrobacter freundii and Klebsiella pneumoniae. Dissimilation of glycerol in these organisms is strictly linked to their capacity to synthesize the highly reduced product 1,3-propanediol (1,3-PDO) (Dharmadi et al 2006). The conversion of glycerol into succinic acid using Anaerobiospirillum succiniciproducens has been reported (Lee et al. 2001).
- Carboxylation reactions of oxaloacetate catalyzed by the enzymes phopshoenolpyruvate carboxylase (PEPC), phopshoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PycA) are utilizing HCO 3 - as a source of CO 2 (Peters-Wendisch, PG et al). Therefore hydrogencarbonate sources such as NaHCO 3 , KHCO 3 , NH 4 HCO 3 and so on can be applied to fermentation and cultivation media to improve the availibility of HCO 3 - in the metabolisations of substrates to succinic acid.
- the production of succinic acid from glucose has not been found to be dependent on the addition of HCO 3 - in the prior art so far.
- Biomass production by anaerobic organisms is limited by the amount of ATP produced from fermentative pathways. Biomass yield of glycerol in anaerobic organisms is lower than of saccharides, like hexoses such as glucose, fructose, pentoses such as xylose arabinose or disaccharides such as sucrose or maltose (Lee et al. 2001, Dharmadi 2007).
- Saccharides theoretically can be converted to succinic acid with a significantly lower yield than glycerol due to the lower reduction state of saccharides compared to the polyol glycerol.
- the combination of saccharides with glycerol have been found to function in an succinic acid producing anaerobic organisms (Lee et al. 2001), however without reaching succinic acid titers beyond 28g/l.
- a first embodiment of the invention relates to a bacterial strain, designated DD1, which may be isolated from bovine rumen, and is capable of utilizing glycerol (including crude glycerol) as a carbon source; and variant strains derived there from retaining said capability.
- DD1 a bacterial strain, designated DD1
- glycerol including crude glycerol
- said strain has the ability to produce succinic acid from glycerol (including crude glycerol), in particular, under anaerobic conditions.
- the novel strain has a 16S rDNA of SEQ ID NO:1 or a sequence which shows a sequence homology of at least 96, 97, 98, 99 or 99.9 % and/or a 23S rDNA of SEQ ID NO:2 or a sequence which shows a sequence homology of at least 95, 96, 97, 98, 99 or 99.9 %.
- Identity or “homology” between two nucleotide sequences means identity of the residues over the complete length of the aligned sequences, such as, for example, the identity calculated (for rather similar sequences) with the aid of the program needle from the bioinformatics software package EMBOSS (Version 5.0.0, http://emboss.sourceforge.net/what/) with the default parameters which are:
- the DD1 sequence (see also SEQ ID NO:2) represents the sequence information as obtained by sequencing the PCR amplified 23S rDNA of DD1. Sequencing experiments resulted in an unambiguous sequence information indicating that the 23S rDNA information derivable from DD1 may be used a s distinguishing feature of the DD1 strain. Said DD1 sequence differs in at least 6 sequence positions from each individual MBEL55E sequence.
- the most significant difference is an insert of about 133 bp into each of the MBEL55E sequences (near position 1325), which is missing in the DD1 sequence. Further significant, specific sequence differences are at positions 451, 1741, 2040, 2041, 2045 and 2492 (numbering as used in the alignment).
- said strain shows at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or all of said additional features.
- DD1 was, for example, further analyzed for the capability to co-metabolize a saccharide and the polyol glycerol. It was found that DD1 is capable to co-metabolize maltose and glycerol resulting in biomass formation, succinic acid formation and simultaneous maltose and glycerol utilisation.
- acid in the context of organic mono or dicarboxylic acids as referred to herein, i.p. acetic, lactic and succinic acid
- salts thereof as for example alkali metal salts, like Na and K salts, or earth alkali salts, like Mg and Ca salts, or ammonium salts; or anhydrides of said acids.
- crude glycerol has to be understood as untreated glycerol-containing stream as it accrues in processes in which glycerol is a by product, as for example the production of bio diesel or bio ethanol. Unless otherwise stated the term “glycerol” as used herein also encompasses “crude glycerol”.
- the invention relates to a bacterial strain DD1 as deposited with DSMZ and having the deposit number DSM 18541 and variant or mutant strains derived there from. Said variants and mutants retain at least said ability to produce succinic acid (SA) from glycerol, sucrose,maltose, D-glucose, D-fructose and/or D-xylose.
- SA succinic acid
- they may also have a 16S rDNA of SEQ ID NO:1 or a sequence which shows a sequence homology of at least 96, 97, 98, 99 or 99.9 % and/or a 23S rDNA of SEQ ID NO:2 or a sequence which shows a sequence homology of at least 95, 96, 97, 98, 99 or 99.9 %.
- Variants or mutants of said DD1 strain may have a 23S rDNA different from that of SEQ ID NO:2, while maintaining at least one of the sequence differences as discussed above which distinguishes the 23S rDNA sequence from that of the MBEL 55E strain.
- the 132 bp insert is missing in such variants or mutants as well, optionally combined with one or more of the other specific sequence differences depicted in the alignment of Annex 1.
- the bacterial strain of the invention is converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a yield coefficient YP/S of at least 0.5 g/g up to about 1,28 g/g; as for example a yield coefficient YP/S of at least 0,6 g/g, of at least 0.7 g/g, of at least 0.75 g/g, of at least 0.8 g/g, of at least 0.85 g/g, of at least 0.9 g/g, of at least 0.95 g/g, of at least 1.0 g/g, of at least 1.05 g/g, of at least 1.1 g/g, of at least 1.15 g/g, of at least 1.20 g/g, of at least 1.22 g/g, or of
- the bacterial strain of the invention is converting at least 28 g/L of glycerol to at least 28.1 g/L succinic acid, with a yield coefficient YP/S of at least 1.0 g/g, or of >1.0 g/g, or of > 1.05 g/g, or of >1.1 g/g, or of >1.15 g/g, or of >1.20 g/g, or of >1.22 g/g, or of >1.24 g/g, up to about 1,28 g/g.
- 28 g/L of glycerol may be converted to up to about 40 or up to about 35 g/L succinic acid.
- the bacterial strain of the invention is converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0.6 g gDCW -1 h -1 succinic acid, or of at least of at least 0.65, of at least 0.7 g gDCW -1 h -1 , of at least 0.75 g gDCW -1 h -1 , or of at least 0.77 g gDCW -1 h -1 succinic acid.
- the bacterial strain of the invention is converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space time yield for succinic acid of at least 2.2 g/(L h) or of at least 2.5, at least 2.75, at least 3, at least 3.25, at least 3.5 or at least 3.7 g/(L*h) succinic acid.
- the bacterial strain of the invention is converting at least 28 g/L of at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space-time-yield for succinic acid of at least 2.2 g/(L h), or of at least 2.5, at least 2.75, at least 3, at least 3.25, at least 3.5 or at least 3.7 g/(L*h).
- the bacterial strain of the invention is converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0,6 g gDCW -1 h -1 or of at least of at least 0.65 or of at least 0.7 g gDCW -1 h -1 succinic acid, or of at least 0.77 g gDCW -1 h -1 succinic acid, and a space-time-yield for succinic acid of at least 2.2 g/(L h), or of at least 2.5, at least 2.75, at least 3, at least 3.25, at least 3.5 or at least 3.7 g/(L*h).
- the carbon source is glycerol or a mixture of glycerol and at least one further carbon source selected from sucrose, maltose, D-fructose, D-galactose, D-mannose, D-glucose, D-xylose, and L-arabinose.
- Yield or Yield
- STY Space-Time-Yield
- Yield and YiP/S are herein used as synonyms.
- the specific productivity yield describes the amount of a product, like succinic acid that is produced per h and L fermentation broth per g of dry biomass.
- the amount of dry cell weight stated as DCW describes the quantity of biologically active microorganism in a biochemical reaction. The value is given as g product per g DCW per h (i.e. g gDCW -1 h -1 ).
- a further embodiment of the invention relates to a process for the fermentative production of an organic acid or a salt or derivative thereof, which process comprises the steps of:
- Said process may be performed discontinuously or continuously and the course of the acid production may be monitored by conventional means, as for example HPLC or GC analysis.
- SA succinic acid
- Anaerobic conditions may be established by means of conventional techniques, as for example by degassing the constituents of the reaction medium and maintaining anaerobic conditions by introducing carbon dioxide or nitrogen or mixtures thereof and optionally hydrogen at a flow rate of, for example, 0.1 to 1 or 0.2 to 0.5 vvm.
- Aerobic conditions may be established by means of conventional techniques, as for example by introducing air or oxygen at a flow rate of, for example, 0.1 to 1 or 0.2 to 0.5 vvm.
- said assimilable carbon source is preferably selected from glycerol, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose and mixtures thereof or compositions containing at least one of said compounds, or is selected from decomposition products of starch, cellulose, hemicellulose and/or lignocellulose.
- the initial concentration of the assimilable carbon source is preferably adjusted to a value in a range of 5 to 100 g/l and may be maintained in said range during cultivation.
- the pH of the reaction medium may be controlled by addition of suitable bases as for example, NH 4 OH, NH 4 HCO 3 , (NH 4 ) 2 CO 3 , NaOH, Na 2 CO 3 , NaHCO 3 , KOH, K 2 CO 3 , KHCO 3 , Mg(OH) 2 , MgCO 3 , Mg(HCO 3 ) 2 , Ca(OH) 2 , CaCO 3 , Ca(HCO 3 ) 2 , CaO, CH 6 N 2 O 2 , C 2 H 7 N, or other bases and mixtures thereof.
- suitable bases as for example, NH 4 OH, NH 4 HCO 3 , (NH 4 ) 2 CO 3 , NaOH, Na 2 CO 3 , NaHCO 3 , KOH, K 2 CO 3 , KHCO 3 , Mg(OH) 2 , MgCO 3 , Mg(HCO 3 ) 2 , Ca(OH) 2 , CaCO 3 , Ca(HCO 3 ) 2 , Ca
- Particularly preferred conditions for producing SA are:
- the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- the carbon source is glycerol or a mixture of glycerol and at least one further carbon source selected from sucrose, maltose, D-fructose, D-galactose, D-mannose, D-glucose, D-xylose, and L-arabinose.
- Succinc acid and/or succinic acid salts produced may be isolated in conventional manner by methods known in the art, as for example cristallization, filtration, electrodialysis, chromatography. For example, they may be isolated by precipitating as a calcium succinate product in the fermentor during the fermentation by using calcium hydroxide, - oxide, - carbonate or hydrogencarbonate for neutralization and filtration of the precipitate.
- the desired succinic acid product is recovered from the precipitated calcium or succinate by acidification of the succinate with sulfuric acid followed by filtration to remove the calcium sulfate (gypsum) or which precipitates.
- the resulting solution may be further purified by means of ion exchange chromatography in order to remove undesired residual ions.
- Another embodiment of the invention relates to a process for the production of succinic acid and/or succinic acid salts, in particular ammonium salts, which method comprises the fermentative production of succinic acid as defined above and controlling the pH with a suitable base, in particular inorganic base, like ammonia, or an aqueous solution thereof.
- Another embodiment of the invention relates to a process for the production of tetrahydrofuran (THF) and/or 1,4-butanediol (BDO) and/or gamma-butyrolactone (GBL) which comprises
- Lower alkyl preferably represent a straight chain or branched C 1 -C 6 -, preferably C 1 -C 4 -alkyl residue, in particular methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, as well as n-pentyl and n-nexyl and branched analogues thereof.
- said glycerol which is used as assimilable carbon source, is crude glycerol.
- the SA is hydrogenated in a manner known per se using processes, apparatus and assistants, such as solvents, familiar to the person skilled in the art.
- a continuous or batch wise liquid phase hydrogenation is carried out in the presence of a heterogeneous catalyst suitable for the acid hydrogenation.
- the optimal process parameters can be established by the person skilled in the art without unacceptable effort.
- the reaction temperature is in the range from about 100 to about 300°C, preferably in the range from about 130 to 285°C, and the pressure is from about 20 to 350 bar, for example from 100 to 250 bar.
- Catalysts usable for the hydrogenation reaction are known to the person skilled in the art.
- various palladium/rhenium/carbon catalysts may be used.
- Solvents usable for the hydrogenation reaction are known to the person skilled in the art.
- an aqueous solvent medium may be used.
- the esterification process which may comprise a reactive distillation can be performed using an apparatus known per se in various designs.
- an esterification plant which is operated in continuous mode
- which comprises a rectification column with an appropriate number of theoretical stages achieved by installation of trays or packings.
- the aqueous charge comprising the ammonium salt of SA is fed into the top of the column from a reservoir vessel as soon as a steady-state temperature profile has formed in the column as a result of feeding-in alkanol that is evaporated in the evaporator loop adherent to the sump of the column.
- the reaction forms a countercurrent flow of descending, ammonium salt-containing liquid and condensate, and ascending, alkanol-containing vapor phase.
- a homogeneous catalyst may be added to the ammonium salt initial charge.
- heterogeneous catalysts may be provided in the column internals.
- the carboxylic ester formed is liquid under the process conditions and passes via the lower end of the column into the sump of the distillation column and is continuously withdrawn from the sump.
- Gaseous components for example azeotropic mixtures comprising alkanol-water and/or ammonia, are removed from the reaction column and hence from the reaction equilibrium at the top of the column.
- Suitable process parameter ranges for the esterification process according to the invention can be determined easily by the person skilled in the art depending on the configuration of the apparatus used, for example type of column internals used, type and amount of the reactants, type and amount of the catalyst used if appropriate. For instance, without being restrictive thereto, individual parameters may be set within the following parameter ranges:
- SA esters prepared in accordance with the invention are hydrogenated in a manner known per se using processes, apparatus and assistants, such as catalysts, familiar to the person skilled in the art.
- a continuous or batchwise gas phase hydrogenation is carried out in the presence of a heterogeneous catalyst suitable for the ester hydrogenation.
- the optimal process parameters can be established by the person skilled in the art for the particular ester without unacceptable effort.
- the reaction temperature is in the range from about 100 to about 300°C, preferably in the range from about 200 to 280°C, and the pressure is from about 5 to 100 bar, for example from 10 to 50 bar.
- the molar ratio of reactant to hydrogen is set within the range from about 1:100 to about 1:2000, for example from 1:800 to 1:1500.
- Catalysts usable for the inventive hydrogenation reaction are known to the person skilled in the art.
- various copper catalysts may be used.
- the prior art describes, for example, the use of reduced copper chromite catalysts which are obtainable under the name 85/1 from Davy Process Technology Ltd., England.
- catalysts particularly suitable in accordance with the invention are supported copper oxide catalysts, the copper oxide being applied to alumina or silica support materials.
- the examples of the hydrogenation of succinic esters to BDO (1,4-Butanediol) /GBL (gamma-butyrlactone) /THF with copper catalysts are also described in the following thesis: Schlander, Jan., Feb. 2000, University of Düsseldorf, "Gasphasenhydrtechnik von Maleinkladimethylester zu 1,4-Butandiol, gamma-Butyrolacton und Tetrahydrofuran an Kupfer-Katalysatoren".
- a fermentation as used according to the present invention can be performed in stirred fermenters, bubble columns and loop reactors.
- a comprehensive overview of the possible method types including stirrer types and geometric designs can be found in "Chmiel: Bioreatechnik:One in die Biovonstechnik, Band 1".
- typical variants available are the following variants known to those skilled in the art or explained, for example, in “Chmiel, Hammes and Bailey: Biochemical Engineering", such as batch, fed batch, repeated fed batch or else continuous fermentation with and without recycling of the biomass.
- sparging with air, oxygen, carbon dioxide, hydrogen, nitrogen or appropriate gas mixtures can/must be effected in order to achieve good yields.
- the fermentation broth can be pretreated; for example, the biomass of the broth can be removed.
- Processes for removing the biomass are known to those skilled in the art, for example filtration, sedimentation and flotation. Consequently, the biomass can be removed, for example, with centrifuges, separators, decanters, filters or in flotation apparatus.
- washing of the biomass is often advisable, for example in the form of a diafiltration.
- the selection of the method is dependent upon the biomass content in the fermenter broth and the properties of the biomass, and also the interaction of the biomass with the product of value.
- the fermentation broth can be sterilized or pasteurized.
- the fermentation broth is concentrated. Depending on the requirement, this concentration can be done batchwise or continuously.
- the pressure and temperature range should be selected such that firstly no product damage occurs, and secondly minimal use of apparatus and energy is necessary. The skillful selection of pressure and temperature levels for a multistage evaporation in particular enables saving of energy.
- stirred tanks In apparatus terms, stirred tanks, falling-film evaporators, thin-film evaporators, forced-flash circulation evaporators and other evaporator types can be utilized in natural or forced circulation mode.
- fertilization broth is understood to mean an aqueous solution which is based on a fermentative process and has not been worked up or has been worked up, for example, as described herein.
- Samples were taken from bovine rumen, digested sludge from a municipal sewage plant and pomace, the residue from wine making. These habitats are characterized by relatively high concentrations of organic substances and a CO 2 -rich atmosphere without oxygen. More detailed information on the samples, their origin and handling is given below.
- Enrichment cultivations were performed on different media containing D-glucose, D-xylose and L-arabinose as sole carbon source.
- the media composition is described below: Table 1: Medium composition for enrichment cultivations.
- Compound Concentration [g/L] C-source a 15 Bacto yeast extrakt (Becton Dickinson) 5 Bacto peptone (Becton Dickinson) 5 (NH 4 ) 2 SO 4 1 CaCl 2 *2H 2 O 0.2 MgCl 2 *6H 2 O 0.2 NaCl 1 K 2 HPO 4 3 L-Cystein (reducing agent) 0.24 MgCO 3 b 15 Lasalocid c 16 mg/L Monensin c 10 mg/L Amphotericin B d 2.5 mg/L Rumen liquor (optional) e 5 Extract from digested sludge (optional) f 10 Extract from pomace (optional) f 10 Bacto-Agar (for solid media only) 12 a D-glucose,
- MgCO 3 and water (0.75 g and 40 mL) were autoclaced in 100 mL-serum bottles (121 °C, 20 min).
- Yeast extract, peptone, C-source, NH 4 SO 4 and K 2 HPO 4 were all separately autoclaved.
- Mg- and Na-chlorides one stock solution was prepared which was autoclaved. To ensure that no oxygen was present the following standard procedures were used:
- Rumen samples and digested sludge were used undiluted as inoculum.
- 50 g of solid pomace were diluted in 100 mL 0.9 % NaCl solution, filtered to remove rough particles and then used as inoculum.
- Isolation of pure cultures from the enrichment cultivations was achieved by repeated streaking on agar plates.
- Agent C-source [g/L] succinic [g/L] lactic [g/L] formic [g/L] acetic [g/L] propionic [g/L] ethanol [g/L] 1 24 glucose MgCO 3 - - 0.0 0.0 3.7 0.6 2.8 0.0 0.0 2 24 glucose MgCO 3 - - 0.0 0.0 3.6 0.4 2.7 0.0 0.0 3 24 glucose MgCO 3 - - 0.0 0.0 3.9 0.4 2.6 0.0 0.0 4 24 xylose MgCO 3 - - 0.0 2.3 3.8 0.2 5.7 0.0 0.0 5 24 xylose MgCO 3 - - 0.0 0.0 3.4 0.0 2.7 0.5 0.0 6 24 xylose MgCO 3 - - 0.0 1.8 3.4 0.0 2.7 0.0 0.0 7 17 arabinose MgCO 3 - - 1.4 0.9 7.6 0.0 1.3 1.0 0.0 8 17 arabinose MgCO 3 - -
- results obtained in enrichment cultures from pomace are summarized in the following table. Enrichment of SA producers from pomace was only successful if pomace from red grapes (S Georgtburgunder type) were used. It is absolutely necessary to add amphotericin B to the enrichment medium to suppress ethanol production, presumably caused by wine yeasts. Glucose and arabinose were both suitable C-sources but xylose was not. Incubation times that were necessary to unequivocally detect SA production were substantially higher than with sample material from rumen and digested sludge. Table 5: Results of enrichment cultivations for SA producers from pomace. exp no grape type a inctime [h] C-source Buffer anti-obiotics red.
- Agent C-source [g/L] succinic [g/L] lactic [g/L] formic [g/L] acetic [g/L] ethanol [g/L] 1 red 59 gluose MgCO 3 las+mon L-Cystein 10.8 0.0 0.0 0.0 0.1 2.0 2 red 59 gluose MgCO 3 las+mon L-Cystein 10.8 0.0 0.0 0.0 0.1 2.0 3 red 59 xylose MgCO 3 las+mon L-Cystein 0.0 0.1 0.1 0.0 1.6 4 red 59 xylose MgCO 3 las+mon L-Cystein 12.7 0.1 0.1 0.0 0.0 1.5 5 red 59 arabinose MgCO 3 las+mon L-Cystein 13.4 0.1 0.1 0.0 0.0 1.6 6 red 59 arabinose MgCO 3 las+mon L-Cystein 13.3 0.0 0.1 0.0 0.0 1.5 7 white 59 gluose MgCO 3 las
- Said table indicates that with each of the three sample materials it is possible to receive enrichment cultures producing SA.
- Enrichment cultures originating from digested sludge showed higher space time yields than those from rumen and pomace (0.4 vs. 0.2 and 0.1 g/[L h]).
- SA-producing isolates were exclusively obtained from SA-producing enrichment cultures with rumen material as inoculum.
- isolation of SA producers from digested sludge and pomace requires more sophisticated strategies.
- Example 2 Cell bank preparation of DD1
- Composition of the cultivation media is described in table 8.
- Table 8 Composition of solid and liquid media for the preparation of DD1 cell banks.
- Compound Concentration [g/L] Concentration of stock solution [g/L] Glucose varying a 650 Bacto yeast extrakt (Becton Dickinson) 5 - Bacto peptone (Becton Dickinson) 5 - (NH 4 ) 2 SO 4 1 500 CaCl 2 *2H 2 O 0.2 20 MgCl 2 *6H 2 O 0.2 20 NaCl 1 100 K 2 HPO 4 3 500 MgCO 3 varying b - Bacto-Agar (for solid media only) 12 a Glucose concentrations were 15 g/L (in plates) and 20 or 50 g/L (in liquid media) b MgCO 3 (Riedel-de Haen, product number 13117 by Sigma-Aldrich Laborchemikalien GmbH) concentrations were 5 g/L (in plates) and 0 or 30 g/L (
- One vial of the MCB was used to inoculate a 100 mL-serum bottle with gas tight butyl rubber stopper (see above) containing 50 mL of the liquid medium with 50 g/L glucose. Incubation was performed for 10 h at 37°C in a shaking incubator (rotary speed: 180 rpm, shaking diameter: 2.5 cm). At the end of the cultivation the glucose concentration was 20 g/L and the pH around 6.5. Aliquots of 0.5 mL cell suspension and 0.5 mL sterile glycerol were filled in cryovials, mixed and stored at -80 °C as WCB. Purity checks were the same as for the MCB. HPLC conditions were the same as those described in example 1.
- strain DD1 The taxonomic characterization of strain DD1 was performed via 16S - and 23S rDNA analysis which was conducted as described below:
- the ae2 editor (Maidak et al., 1999) was used to align the 16S rDNA sequence of strain DD1 against those of representative members of the ⁇ -subclass of the Proteobacteria available from the EMBL and RDP databases.
- PHYLIP Physical Inference Package, version 3.5c., distributed by J. Felsenstein, Department of Genome Sciences, University of Washington, Seattle, USA
- Pairwise evolutionary distances were calculated using the method of Jukes and Cantor (1969), the phylogenetic tree was constructed from these distances using the neighbor-joining method (Saitou & Nei, 1987).
- the 16S rDNA-based phylogenetic tree is depicted in Figure 1 .
- strain DD1 On the basis of the 16S rDNA analysis the closest relative of strain DD1 is "Mannheimia succiniciproducens" MBEL 55E with a similarity of 99.8 %.
- This strain was isolated by scientists of the Korea Advanced Institute of Science and Technology (KAIST) from bovine rumen (Lee et al., 2002a; Lee et al., 2002b).
- the amplified 23S rDNA fragment from DD1 was aligned to the 23S rDNA sequences from the "Mannheimia succiniciproducens" MBEL 55E (complete genome sequence accession number AE016827) to indicate the difference between the strains.
- Figure 2 shows the 16S rDNA sequence of strain DD1.
- Figure 3 shows the 23S rDNA sequence of strain DD1 and an alignment to the 23S rDNA of " Mannheimia succiniciproducens " MBEL 55E (complete genome sequence accession number AE016827) is shown in Annex 1.
- One vial of the WCB (example 2) was used to inoculate a 100 mL-serum bottle with gas tight butyl rubber stopper (see above) containing 50 mL of the liquid medium with 50 g/L glucose (composition and preparation as described in example 2). Incubation was performed for 15 h at 37 °C and 170 rpm (shaking diameter: 2.5 cm). At the end of the cultivation the glucose concentration had decreased to about 17 g/L (Measurement via HPLC, conditions as described in example 1). To examine the cell morphology of DD1 single cells were observed using light microscopy.
- Cells of DD1 appear as rods that occur singly, in pairs or short chains (see figure 4 ). After 24 h of incubation colonies were circular, white-yellow, translucent and 0.5-1 ⁇ m (aerobic growth) and 1-2 ⁇ m (anaerobic growth) in diameter.
- Composition of the cultivation medium is described in table 9. Table 9: Composition of the medium for the tests for utilization of different C-sources.
- Yeast extract, polypeptone and MgCO 3 were autoclaved together. After cooling down the missing components were added as sterile stock solutions. Glucose and the other C-sources, ammonium sulfate and K 2 HPO 4 were all separately autoclaved. Ca-, Mg- and Na-chlorides were autoclaved together. Na 2 S*9H 2 O was added to a final concentration of 1 mg/L to ensure anaerobic conditions.
- one vial of the WCB was used to inoculate a 100 mL-serum bottle with gas tight butyl rubber stopper (see above) containing 50 mL of the liquid medium described in table 9 but with 20 g/L glucose and a CO 2 -atmosphere with 0.8 bar overpressure. Incubation was performed for 13 h at 37 °C and 160 rpm (shaking diameter: 2.5 cm).
- the cell suspension was centrifuged (Biofuge primo R, Heraeus,) with 5000 g for 5 minutes and the cell pellet was washed and then resuspended in 50 mL medium without a carbon source and without MgCO 3 to generate a glucose-free inoculum (all steps at room temperature and in the anaerobic chamber).
- the main cultures were grown in 100 mL-serum bottles containing in 50 mL liquid medium with 10 g/L of the respective C-source (D-mannitol, D-fructose, D-xylose, sucrose, maltose, lactose, xylitol, inositol, D-sorbitol, glycerol, L-arabinose, D-galactose or D-mannose) and a CO 2 -atmosphere with 0.8 bar overpressure.
- the respective C-source D-mannitol, D-fructose, D-xylose, sucrose, maltose, lactose, xylitol, inositol, D-sorbitol, glycerol, L-arabinose, D-galactose or D-mannose
- CO 2 -atmosphere with 0.8 bar overpressure.
- Said table shows that the C-source utilization pattern of the two strains differs with respect to glycerol.
- DD1 can metabolize glycerol which is not used by MBEL 55E.
- D-glucose and D-fructose DD1 utilizes D-xylose, L-arabinose, D-galactose and D-mannose.
- D-xylose D-xylose
- L-arabinose D-galactose
- D-mannose D-mannose
- Example 6 SA and by-product formation from glycerol and different hexoses and pentoses
- DD1's succinic acid (SA) productivity on glycerol, D-xylose, L-arabinose, D-galactose and D-mannose was evaluated in serum bottle trials with 10 g/L of the respective C-source (10 g/L glucose as reference).
- composition and preparation of the cultivation media were the same as in example 2 (seed culture) and example 5 (main cultures).
- Table 11 shows that in all cases substantial SA-amounts are formed.
- SA production from glycerol (glyc) instead of sucrose (suc), D-glucose (gluc), D-fructose (fruc), D-xylose (xyl), L-arabinose (ara), D-galactose,(gal) or D-mannose (man) by DD1 has two obvious advantages: i) a substantially higher yield, ii) a substantially lower formic and acetic acid formation.
- the SA productivity (space time yield) with glycerol is slightly lower than with the sugars.
- DD1's SA productivity with glycerol is substantially higher than the value obtained with Anaerobiospirillum succiniciproducens by Lee et al., 2001 (0.14 g SA/[L h]).
- the medium composition is described in the following table 12.
- Table 12 Medium composition for the test on SA formation from different crude glycerols.
- Compound Concentration [g/L] Concentration of stock solution [g/L] C-source varying a varying Bacto yeast extrakt (Becton Dickinson) 5 100 Bacto peptone (Becton Dickinson) 5 100 (NH 4 ) 2 SO 4 1 500 CaCl 2 *2H 2 O 0.2 20 MgCl 2 *6H 2 O 0.2 20 NaCl 1 100 K 2 HPO 4 3 500 MgCO 3 (Riedel-de Haen 13117) 30 - a Concentrations were 50 g/L of glucose in the seed culture and 10 g/L of the respective glycerol in the main culture
- MgCO 3 and water were sterilized in 100 mL-serum bottles (121 °C, 20 min). After cooling down separate sterile solutions of the other compounds were added. Yeast extract, peptone, ammonium sulfate and K 2 HPO 4 were all separately sterilized by filtration of the respective stock solution.
- Yeast extract, peptone, ammonium sulfate and K 2 HPO 4 were all separately sterilized by filtration of the respective stock solution.
- Ca-, Mg- and Na-chlorides one stock solution was prepared which was sterilized by filtration. Glucose and the different glycerols were all separately sterilized (121 °C, 20 min).
- the seed culture was grown in a 100 mL-serum bottle with gas tight butyl rubber stopper (see above) containing 50 mL of the medium described in table 12 with 50 g/L glucose and a CO 2 -atmosphere with an overpressure of 0.8 bar. Inoculation was conducted with 1 mL of the WCB (example 2). Incubation was performed for 15 h at 37 °C and 170 rpm (shaking diameter: 2.5 cm). At the end of the cultivation the glucose concentration had decreased to about 17 g/L.
- the cell suspension was centrifuged (Biofuge primo R, Heraeus) with 5000 g for 5 minutes and the cell pellet was washed and then resuspended in 50 mL of the medium without glucose and without MgCO 3 to generate a glucose-free inoculum.
- the main cultures were grown in 100 mL-serum bottles containing in 50 mL of the medium with 10 g/L of the respective glycerol and a CO 2 --atmosphere with 0.8 bar overpressure. Inoculation was performed with 2.0 mL of the glucose-free inoculum. The bottles were incubated for 9 h at 37 °C, and 170 rpm (shaking diameter: 2.5 cm).
- Table 13 SA and by-product formation from different glycerols by DD1.
- Glycerol type C1 C2 C3 P1 Producer a ecoMotion Biopetrol Glacon Chemie Sigma-Aldrich Purity [%] b 90 42 76 99 t c [h] c 9 9 9 9 ⁇ C GI [g/L] d -6.3 -6.9 -6.5 -5.4 ⁇ C SA [g/L] e +7.6 +8.4 +7.4 +6.2 ⁇ C LA [g/L] e 0 +0.1 +0.1 +0.1 ⁇ C FA [g/L] e +0.3 +0.3 +0.3 +0.3 ⁇ C AA [g/L] e +0.3 +0.5 +0.3 +0.3 +0.3 STY [g/(L h)] f 0.8 0.9 0.8 0.7 Yield [g/g] f 1.2 1.2 1.1 a ecoMotion GmbH, Stemberg, Germany, Biopetrol Schwarzhe
- Table 13 shows that after 9 h the SA concentration and hence the STY obtained with the crude glycerols C1 to C3 (7.4 to 8.4 g SA/L and 0.8 to 0.9 g SA/[L h]) is in all cases higher than the respective values obtained with the pure glycerol P1 (6.2 g SA/L and 0.7 g SA/[L h]).
- the crude glycerols have therefore in addition to the lower price the advantage of better productivity.
- the Yields obtained with the crude glycerols C1 to C3 (1.1 to 1.2 g SA/g glycerol) are similar to the respective value obtained with the pure glycerol P1 (1.1 g SA/g glycerol).
- Example 8 Ammonia and glucose tolerance of DD1
- a common approach for the fermentative production of succinic acid and/or succinic acid ammonium salts from glucose would be a NH 3 -controlled fed batch cultivation with a certain initial glucose level. This set-up requires both NH 3 NH 4 OH- and glucose tolerance of the strain. To test DD1 for these properties batch cultivations with NH 4 OH as pH-control agent and varying glucose levels were performed.
- Composition of the cultivation medium is described in table 14.
- Table 14 Medium composition for pH-controlled batch cultivations with varying glucose levels.
- Compound Concentration [g/L] Concentration of stock solution [g/L] Glucose Varying a 650 Bacto yeast extrakt (Becton Dickinson) 5 - Bacto peptone (Becton Dickinson) 5 - (NH 4 ) 2 SO4 1 500 CaCl 2 *2H 2 O 0.2 20 MgCl 2 *6H 2 O 0.2 20 NaCl 1 100 K 2 HPO 4 3 500 L-Cystein 0.24 120 MgCO 3 (Riedel-de Haen 13117) 2 - a
- the initial glucose concentration in the preculture was 50 g/L and in the fermentors 25, 50 or 75, respectively
- Yeast extract, peptone and MgCO 3 were autoclaved together in the fermentors and serum bottles.
- Glucose, ammonium sulfate and K 2 HPO 4 were all separately autoclaved.
- Ca-, Mg- and Na-chlorides were autoclaved together. After cooling down the fermentors and serum bottles the missing components were added as sterile stock solutions. For the precultures the same medium composition was used but MgCO 3 was adjusted to 30 g/L.
- Precultures were grown anaerobically in 100 mL-serum bottles with gas tight butyl rubber stoppers (Ochs GmbH, Bovenden/Lengêt, Germany) containing 50 mL preculture medium at 37 °C in a shaking incubator (rotary speed: 160 rpm, shaking diameter: 2.5 cm). Inoculation of the precultures was performed with 1 mL of a DD1-working cell bank in the anaerobic chamber (MAKS MG 500, meintrup-dws). Immediately after the inoculation the gas atmosphere (80 % N 2 , 15 % CO 2 and 5 % H 2 ) was substituted by pure CO 2 with an overpressure of about 0.8 bar.
- DD1 has therefore a strong synthesis potential for succinic acid and/or succinic acid ammonium salts which are favourable for the chemical conversion to THF/BDO/GBL and pyrrolidones ( WO-A-2006/066839 ).
- the initial SA production rate in the trials with 75 g/L of glucose is slightly lower than in the trials with 50 and 25 g/L. However, between 6 and 12 h there is no such difference anymore indicating that substrate inhibition is not an issue at glucose levels of up to 75 g/L.
- FIG. 6 shows that the two trials at 37 °C and pH 6.5 are very similar with respect to both, glucose consumption and SA production indicating a low variability.
- the trials, which were performed at pH 6.5 show that between 34.5 and 39.5 °C the cultivation temperature has no impact on the process performance.
- the trials at 37 °C indicate that a pH-reduction by 0.5 units results in a clear and a pH-increase by 0.5 units results in a slight drop of the SA productivity.
- further cultivations of DD1 were - if pH-control was possible - performed at pH 6.5.
- DD1 Enrichment and isolation of DD1 was performed in a cultivation medium containing 5 g/L yeast extract and 5 g/L peptone. Therefore the first experiments with DD1 were conducted in a medium with these compounds. Since they contribute to cost for raw materials and introduce additional impurities, different media compositions were tested in which yeast extract and peptone are reduced and substituted by the cheaper corn steep liquor (Solulys L48L, Roquette), respectively.
- the initial media composition of the trials is indicated by figures (representing the concentration, i. e. 2, 5, 15 or 25 g/L) and letters (representing the respective complex compound, i. e. yeast extract, peptone or corn steep liquor).
- yeast extract - and peptone - concentration were the same as those in example 8 'Ammonia and glucose tolerance of DD1'.
- the batch concentration of glucose was 50 g/L in all trials.
- Anaeorbic seed cultures were grown in 100 mL-serum bottles with gas tight butyl rubber stoppers (see above) containing 50 mL medium with 50 g/L of glucose and 30 g/L of MgCO 3 and a CO2-atmosphere with an overpressure of 0.8 bar at 37 °C and 160 rpm (shaking diameter: 2.5 cm) for 16 h. Inoculation was performed with 1 mL of the WCB (example 2). 7.5 mL of these precultures were used to inoculate the aerobic main cultures.
- Aerobic main cultures 150 mL medium with 60 g/L of glucose and 80 g/L of MgCO 3 ) were grown at 37 °C and 200 rpm (shaking diameter: 2.5 cm) in 500 mL Erlenmeyer flasks with two baffles and cotton plugs. Substrate consumption and product formation were measured by HPLC as described in example 1.
- the results are shown in figure 9 .
- the results clearly show aerobic glucose consumption by strain DD1.
- the main products are acetic and lactic acid which are the dominating products of aerobically grown cells of "Mannheimia succiniciproducens" MBEL 55E, too (Lee et al., 2002a).
- Initial SA levels are introduced by the anaerobic preculture and are widely consumed after 15 h of cultivation.
- the data clearly show that DD1 is oxygen tolerant.
- Example 12 Test of DD1 under conditions described by KAIST
- DD1 The closest relative of DD1 is "Mannheimia succiniciproducens" MBEL 55E, a strain isolated by KAIST (see above). To compare DD1 with said strain the cultivation experiment described by KAIST (Fig. 2b in Lee et al., 2002a and Fig. 3 in Lee et al., 2002b) was performed with DD1.
- the composition of the cultivation medium was identical to the respective experiment of Lee et al., 2002b and is described in the following table 15.
- Table 15 Medium composition for batch cultivations of DD1 under the conditions described by Lee et al., 2002b.
- Yeast extract, peptone and MgCO 3 were autoclaved together in the fermentors and serum bottles.
- Glucose, ammonium sulfate and potassium phosphate were all separately autoclaved.
- Ca-, Mg- and Na-chlorides were autoclaved together. After cooling down the fermentors and serum bottles the missing components were added as sterile stock solutions. For the seed cultures the same medium was used.
- the seed culture was grown anaerobically in a 100 mL-serum bottle with gas tight butyl rubber stoppers containing 50 mL medium at 39 °C in a shaking incubator (rotary speed: 160 rpm, shaking diameter: 2.5 cm). Inoculation of the seed culture was performed with 1 mL of the WCB (example 2) in the anaerobic chamber (MAKS MG 500, meintrup-dws). Immediately after the inoculation the gas atmosphere (80 % N 2 , 15 % CO 2 and 5 % H 2 ) was substituted by pure CO 2 with an overpressure of about 0.8 bar.
- the fermentor was inoculated with 30 mL to start the cultivation in the fermentor (Sixfors, Infors Switzerland) containing 300 mL cultivation medium which had been gassed over night with CO 2 to ensure oxygen-free conditions.
- the cultivation temperature was maintained at 39 °C and the pH at 6.5 with 5 M NaOH.
- the CO 2 -gas stream was adjusted to 0.25 vvm.
- the stirrer speed was adjusted to 500 rpm.
- Glucose consumption and SA and by-product formation were measured by HPLC as described in example 1.
- the synthetic growth medium for DD1 was developed in relation to other synthetic growth media for rumen bacteria (Nili and Brooker, 1995, McKinlay et al, 2005), previous in house experience with other bacteria and by performing single omission experiments.
- the medium contained 50 g/L glucose, 1 g/L (NH 4 ) 2 SO 4 , 0.2 g/L CaCl 2 *2H 2 O, 0.2 g/L MgCl 2 *6H 2 O, 1 g/L NaCl, 3 g/L K 2 HPO 4 , 1 mg/L nicotinic acid, 1.5 mg/L pantothenic acid, 5 mg/L pyridoxine, 5 mg/L riboflavin, 5 mg/L biotin, 1.5 mg/L thiamin HCl, 0.26 g/L lysine, 0.15 g/L threonine, 0.05 g/L methionine, 0.71 g/L glutamic acid, 0.06 g/L his
- Serum bottles containing 50 mL of complex or synthetic medium were autoclaved with water and 30g/L MgCO 3 as the buffer system.
- Glucose, ammonium sulfate and potassium phosphate were sterilized, separately.
- Ca-, Mg- and Na-chlorides were sterilized together.
- Vitamins and amino acids were assembled in various stock solutions and filter sterilized. After cooling down the serum bottles the components were added as sterile stock solutions.
- Standard complex medium was prepared as described in example 12 without using polypeptone and starting at 50 g/L glucose and 30 g/L MgCO 3 .
- complex medium was used for seed cultures and some main culture control experiments.
- the seed culture was grown in complex medium anaerobically using a 100 mL-serum bottle with gas tight butyl rubber stoppers containing 50 mL medium at 37 °C in a shaking incubator (rotary speed: 170 rpm, shaking diameter: 2.5 cm). Inoculation of the first seed culture was performed aerobically with 1 mL of the WCB (example 2) under sterile conditions. Immediately after inoculation the aerobic gas atmosphere was substituted by pure CO 2 with an overpressure of about 0.8 bar.
- the incubation of the second seed culture occurred for 20 h as described for the first seed culture, before using 2 mL of the second culture again in order to inoculate the main culture, which was incubated for another 20 h.
- the vitamin or amino acid of interest was omitted in the second seed culture and the main culture. Glucose consumption and Succinic acid formation were measured by HPLC as described in example 1.
- DD1 was grown in the following fashion. Cells from a frozen stock solution were streaked on an BHI-Agar plate (Becton Dickinson). Cells were scraped off and suspended in fresh BHI medium and incubated in an anaerobic serum bottle at 37°C for 5.5 h. Cells were inoculated in the medium containing the compounds described in table 17 using 100 mL serum bottles. The start OD at 600 nm was 0.1 (determined in a 1 mL path). The medium components 1-7 were autoclaved together, compound 8 was autoclaved in the serum bottle, compounds 9 and 10 were autoclaved separately and added to the final medium.
- Serum bottles were sparged at least three times with CO 2 through butyl-rubber stoppers and left with a CO 2 overpressure of 0.8 bar. Serum bottles were incubated at 200 rpm and 37°C. After 24 h serum bottles were opened and metabolites were determined by HPLC as described in example 1.
- Table 17 Medium composition Compound Concentration [g/L] 1 Bacto yeast ec360 (Becton Dickinson) 5 2 Polypeptone peptone (Becton Dickinson) 10 3 (NH 4 ) 2 SO 4 2 4 CaCl 2 *2H 2 O 0.2 5 MgCl 2 *6H 2 O 0.2 6 NaCl 2 7 K 2 HPO 4 3 8 MgCO 3 (Riedel-de Haen 13117) 50 9 NaHCO 3 25 10 Glycerol 70 Table 18: Results of example 14 Glycerol metabolisation t c [h] c 24 ⁇ C GI [g/L] d -28.4 ⁇ C SA [g/L] e +35.3 ⁇ C LA [g/L] e 0 ⁇ C FA [g/L] e +2.4 ⁇ C AA [g/L] e +2.5 STY [g/(L h)] f 1.47 Yield [g/g] f 1.24 Ratio SA/FA g
- DD1 produced 35.3 g/L succinic acid from 28.4 g/L glycerol in 24 h, leading to a space time yield of 1.47 g/L succinic acid per h, which is superior to other documented examples of glycerol metabolisation (Lee et al. 2001).
- the yield of 1.24 g/g was close to the described theoretical yield of 1.29 g succinic acid per g of glycerol, if the turnover of 1M glycerol and 1M CO 2 to 1M succinic acid is achieved (Song and Lee, 2006).
- DD1 productivity of DD1 in the presence of two carbon sources was determined.
- DD1 was grown in the presence of the disaccharide maltose and glycerol simultaneously.
- Table 19 Medium preparation for example 15 Compound Concentration [g/L] Maltose * H 2 O 22 Glycerol 56.82 Bacto yeast extract 10 (NH 4 ) 2 SO 4 2 CaCl 2 *2H 2 O 0.2 MgCl 2 *6H 2 O 0.2 NaCl 2 K 2 HPO 4 3 NaHCO 3 8.4 MgC03 50 Antifoam Polypropylenglycol 1200 0.1
- the seed culture was inoculated with a 2 mL frozen culture grown anaerobically in a 200 mL serum bottle with gas tight butyl rubber stoppers containing 50 mL medium at 37 °C in a shaking incubator (rotary speed: 160 rpm, shaking diameter: 2.5 cm).
- the bottle was sparged by pure CO 2 with an overpressure of about 0.8 bar.
- the fermentor was inoculated with 50 mL to start the cultivation in the fermentor containing 1 L cultivation medium which had been gassed with CO 2 to ensure oxygen-free conditions.
- the cultivation temperature was maintained at 37 °C and the pH at 6.5 without addition of bases except the buffer MgCO 3 in the medium.
- the CO 2 -gas stream was adjusted to 0.2 vvm.
- the stirrer speed was adjusted to 300 rpm.
- Maltose and glycerol consumption and SA and by-product formation were measured by HPLC as described in example 1.
- Cells were grown at 37°C and biomass was determined taking a sample and dissolving the residual MgCO 3 by the addtition of 1M HCl. After dissolving MgCO 3 cells were washed with water and dried by lyophilization. Dry biomass was determined by weighing.
- the succinic acid yield was determined as 1.2 g succinic acid per g of carbon source for the sum of glycerol and maltose. This yield is also superior to strains described in literature (Lee et al, 2002b, Lee et al, 2001, Song and Lee, 2006).
- a bacterial strain DD1 was deposited with DSMZ on August 11, 2006 having the deposit number DSM 18541.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
- The present invention relates to a novel bacterial strain designated DD1, which has the ability to produce organic acids, in particular succinic acid (SA), which was originally isolated from bovine rumen, and is capable of utilizing glycerol as a carbon source; and variant strains derived there from retaining said capability; as well as to methods of producing organic acids, in particular succinic acid by making use of said microorganism.
- The fermentative production of succinic acid (SA) from biomass has already drawn much attention because said acid represents an important constituent of synthetic resins or is a source of further valuable low-molecular chemical compounds, in particular tetrahydrofuran (THF), 1,4-butanediol (BDO), gamma-butyrolactone (GBL) and pyrrolidones (
WO-A-2006/066839 ). - A SA-producing bacterium isolated from bovine rumen was described by Lee et al (2002a). The bacterium is a non-motile, non-spore-forming, mesophilic and capnophilic gram-negative rod or coccobacillus. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to genus Mannheimia as a novel species, and has been named Mannheimia succiniciproducens MBEL55E. Under 100% CO2 conditions, it grows well in the pH range of 6.0-7.5 and produces succinic acid, acetic acid and formic acid at a constant ratio of 2:1:1. When M. succiniciproducens MBEL55E was cultured anaerobically under CO2-saturation with glucose as carbon source, 19.8 g/L of glucose were consumed and 13.3 g/L of SA were produced in 7.5 h of incubation.
- A significant drawback of said organism is, however, its inability to metabolize glycerol, which, as a constituent of triacyl glycerols (TAGs), becomes readily available e. g. as by-product in the transesterification reaction of Biodiesel production (Dharmadi et al., 2006).
- The fermentative production of succinic acid from glycerol has been described in the scientific literature (Lee et al., 2001; Dharmadi et al., 2006) and with glycerol higher yields [mass of SA produced/mass of raw material consumed] than with common sugars like glucose were achieved (Lee et al., 2001). However, the space time yield obtained with glycerol was substantially lower than with glucose (0.14 vs. 1.0 g SA/[L h]) and no crude glycerol was used.
- Only in a few cases anaerobic metabolisation of glycerol to fermentation products have been described. E. coli is able to ferment glycerol under very specific conditions such as acidic pH, avoiding accumulation of the fermentation gas hydrogen, and appropriate medium composition. (Dharmadi et al 2006, Yazdani and Gonzalez 2007) Many microorganisms are able to metabolize glycerol in the presence of external electron acceptors (respiratory metabolism), few are able to do so fermentatively (i.e. in the absence of electron acceptors). The fermentative metabolism of glycerol has been studied in great detail in several species of the Enterobacteriaceae family, such as Citrobacter freundii and Klebsiella pneumoniae. Dissimilation of glycerol in these organisms is strictly linked to their capacity to synthesize the highly reduced
product 1,3-propanediol (1,3-PDO) (Dharmadi et al 2006). The conversion of glycerol into succinic acid using Anaerobiospirillum succiniciproducens has been reported (Lee et al. 2001). This study demonstrated that succinic acid could be produced with little formation of by-product acetic acid by using glycerol as a carbon source, thus facilitating purification of succinic acid. The highest yield was obtained by intermittently feeding glycerol and yeast extract, a strategy that resulted in the production of about 19 g/L of succinic acid. It was noted, however, that unidentified nutritional components present in yeast extract were needed for glycerol fermentation to take place. - Carboxylation reactions of oxaloacetate catalyzed by the enzymes phopshoenolpyruvate carboxylase (PEPC), phopshoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PycA) are utilizing HCO3 - as a source of CO2 (Peters-Wendisch, PG et al). Therefore hydrogencarbonate sources such as NaHCO3, KHCO3, NH4HCO3 and so on can be applied to fermentation and cultivation media to improve the availibility of HCO3 - in the metabolisations of substrates to succinic acid. The production of succinic acid from glucose has not been found to be dependent on the addition of HCO3 - in the prior art so far.
- Biomass production by anaerobic organisms is limited by the amount of ATP produced from fermentative pathways. Biomass yield of glycerol in anaerobic organisms is lower than of saccharides, like hexoses such as glucose, fructose, pentoses such as xylose arabinose or disaccharides such as sucrose or maltose (Lee et al. 2001, Dharmadi 2007).
- Saccharides, however, theoretically can be converted to succinic acid with a significantly lower yield than glycerol due to the lower reduction state of saccharides compared to the polyol glycerol. The combination of saccharides with glycerol have been found to function in an succinic acid producing anaerobic organisms (Lee et al. 2001), however without reaching succinic acid titers beyond 28g/l.
- There is, therefore, a need for further bacterial strains, which have the ability to produce organic acids, in particular SA, from glycerol. In particular, such strains should produce said acids with high productivity from glycerol, especially if crude glycerol e. g. from bio diesel production can be used without prior purification.
- It is an object of the present invention to provide a bacterial strain having the ability to produce succinic acid from glycerol, especially crude glycerol.
- Said object was solved by the present inventors who surprisingly isolated a novel bacterial strain, designated DD1, having the desired metabolic characteristic.
-
- Figure 1
- shows the phylogenetic tree for DD1
- Figure 2
- shows the 16S rDNA sequence (SEQ ID NO:1) of DD1
- Figure 3
- shows the 23S rDNA sequence (SEQ ID NO:2) of DD1; its alignment to the corresponding six individual sequences of "M. succiniciproducens" MBEL55E; where differences between the DD1 sequence (bottom) and the MBEL55E sequences are highlighted is shown in the
separate Annex 1; - Figure 4
- shows a light microscopic picture of DD1
- Figure 5
- shows NH4OH-controlled batch cultivations of DD1 at different initial glucose concentrations
- Figure 6
- shows NH4OH-controlled batch cultivations of DD1 at different temperature- and pH-values.
- Figure 7
- shows NH4OH-controlled batch cultivations of DD1. Figures represent initial levels [g/L] of yeast extract (Y), peptone (P) and corn steep liquor (C).
- Figure 8
- shows byproducts as obtained in NH4OH-controlled batch cultivations of DD1 with and without peptone.
- Figure 9
- shows the results of aerobic batch cultivations of DD1 with glucose as C-source.
- Figure 10
- shows the results of an anaerobic batch cultivation of DD1 under CO2-saturation conditions with glucose as described by Lee et al., 2002a and 2002b.
- A first embodiment of the invention relates to a bacterial strain, designated DD1, which may be isolated from bovine rumen, and is capable of utilizing glycerol (including crude glycerol) as a carbon source; and variant strains derived there from retaining said capability.
- Preferably said strain has the ability to produce succinic acid from glycerol (including crude glycerol), in particular, under anaerobic conditions.
- In particular, the novel strain has a 16S rDNA of SEQ ID NO:1 or a sequence which shows a sequence homology of at least 96, 97, 98, 99 or 99.9 % and/or a 23S rDNA of SEQ ID NO:2 or a sequence which shows a sequence homology of at least 95, 96, 97, 98, 99 or 99.9 %.
- "Identity" or "homology" between two nucleotide sequences means identity of the residues over the complete length of the aligned sequences, such as, for example, the identity calculated (for rather similar sequences) with the aid of the program needle from the bioinformatics software package EMBOSS (Version 5.0.0, http://emboss.sourceforge.net/what/) with the default parameters which are:
- gapopen (penalty to open a gap): 10.0
- gapextend (penalty to extend a gap): 0.5
- datafile (scoring matrix file included in package): EDNAFUL
- An alignment of the 23S rDNA sequence of Strain DD1 to the corresponding six individual sequences of "M. succiniciproducens" MBEL55E is shown in
Annex 1. Therein, the differences between the DD1 sequence (bottom) and the six 23S rDNA sequences of MBEL55E sequences are highlighted. The DD1 sequence (see also SEQ ID NO:2) represents the sequence information as obtained by sequencing the PCR amplified 23S rDNA of DD1. Sequencing experiments resulted in an unambiguous sequence information indicating that the 23S rDNA information derivable from DD1 may be used a s distinguishing feature of the DD1 strain. Said DD1 sequence differs in at least 6 sequence positions from each individual MBEL55E sequence. The most significant difference is an insert of about 133 bp into each of the MBEL55E sequences (near position 1325), which is missing in the DD1 sequence. Further significant, specific sequence differences are at positions 451, 1741, 2040, 2041, 2045 and 2492 (numbering as used in the alignment). - The strain of the present invention also preferably shows at least one of the following additional metabolic characteristics:
- a) production of succinic acid from sucrose; in particular, under anaerobic conditions;
- b) production of succinic acid from maltose; in particular, under anaerobic conditions;
- c) production of succinic acid from D-fructose; in particular, under anaerobic conditions;
- d) production of succinic acid from D-galactose; in particular, under anaerobic conditions;
- e) production of succinic acid from D-mannose; in particular, under anaerobic conditions;
- f) production of succinic acid from D-glucose; in particular, under anaerobic conditions;
- g) production of succinic acid from D-xylose; in particular, under anaerobic conditions;
- h) production of succinic acid from L-arabinose; in particular, under anaerobic conditions;
- i) no utilization of of xylitol, inositol and sorbitol;
- j) growth both under aerobic and anaerobic conditions;
- k) growth at initial glucose concentrations of 75 g/L or more;
- l) ammonia tolerance.
- In particular, said strain shows at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or all of said additional features.
- DD1 was, for example, further analyzed for the capability to co-metabolize a saccharide and the polyol glycerol. It was found that DD1 is capable to co-metabolize maltose and glycerol resulting in biomass formation, succinic acid formation and simultaneous maltose and glycerol utilisation.
- The term "acid" (in the context of organic mono or dicarboxylic acids as referred to herein, i.p. acetic, lactic and succinic acid) has to be understood in its broadest sense and also encompasses salts thereof, as for example alkali metal salts, like Na and K salts, or earth alkali salts, like Mg and Ca salts, or ammonium salts; or anhydrides of said acids.
- The term "crude glycerol" has to be understood as untreated glycerol-containing stream as it accrues in processes in which glycerol is a by product, as for example the production of bio diesel or bio ethanol. Unless otherwise stated the term "glycerol" as used herein also encompasses "crude glycerol".
- In a preferred embodiment the invention relates to a bacterial strain DD1 as deposited with DSMZ and having the deposit number DSM 18541 and variant or mutant strains derived there from. Said variants and mutants retain at least said ability to produce succinic acid (SA) from glycerol, sucrose,maltose, D-glucose, D-fructose and/or D-xylose. In particular, they may also have a 16S rDNA of SEQ ID NO:1 or a sequence which shows a sequence homology of at least 96, 97, 98, 99 or 99.9 % and/or a 23S rDNA of SEQ ID NO:2 or a sequence which shows a sequence homology of at least 95, 96, 97, 98, 99 or 99.9 %. Variants or mutants of said DD1 strain may have a 23S rDNA different from that of SEQ ID NO:2, while maintaining at least one of the sequence differences as discussed above which distinguishes the 23S rDNA sequence from that of the MBEL 55E strain. As for example, the 132 bp insert is missing in such variants or mutants as well, optionally combined with one or more of the other specific sequence differences depicted in the alignment of
Annex 1. - According to another embodiment the bacterial strain of the invention is converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a yield coefficient YP/S of at least 0.5 g/g up to about 1,28 g/g; as for example a yield coefficient YP/S of at least 0,6 g/g, of at least 0.7 g/g, of at least 0.75 g/g, of at least 0.8 g/g, of at least 0.85 g/g, of at least 0.9 g/g, of at least 0.95 g/g, of at least 1.0 g/g, of at least 1.05 g/g, of at least 1.1 g/g, of at least 1.15 g/g, of at least 1.20 g/g, of at least 1.22 g/g, or of at least 1.24 g/g
- According to still another embodiment the bacterial strain of the invention is converting at least 28 g/L of glycerol to at least 28.1 g/L succinic acid, with a yield coefficient YP/S of at least 1.0 g/g, or of >1.0 g/g, or of > 1.05 g/g, or of >1.1 g/g, or of >1.15 g/g, or of >1.20 g/g, or of >1.22 g/g, or of >1.24 g/g, up to about 1,28 g/g. For example, 28 g/L of glycerol may be converted to up to about 40 or up to about 35 g/L succinic acid.
- According to still another embodiment the bacterial strain of the invention is converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0.6 g gDCW-1 h-1 succinic acid, or of at least of at least 0.65, of at least 0.7 g gDCW-1 h-1, of at least 0.75 g gDCW-1 h-1, or of at least 0.77 g gDCW-1 h-1 succinic acid.
- According to still another embodiment the bacterial strain of the invention is converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space time yield for succinic acid of at least 2.2 g/(L h) or of at least 2.5, at least 2.75, at least 3, at least 3.25, at least 3.5 or at least 3.7 g/(L*h) succinic acid.
- According to still another embodiment the bacterial strain of the invention is converting at least 28 g/L of at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space-time-yield for succinic acid of at least 2.2 g/(L h), or of at least 2.5, at least 2.75, at least 3, at least 3.25, at least 3.5 or at least 3.7 g/(L*h).
- According to another embodiment the bacterial strain of the invention is converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0,6 g gDCW-1 h-1 or of at least of at least 0.65 or of at least 0.7 g gDCW-1 h-1 succinic acid, or of at least 0.77 g gDCW-1 h-1 succinic acid, and a space-time-yield for succinic acid of at least 2.2 g/(L h), or of at least 2.5, at least 2.75, at least 3, at least 3.25, at least 3.5 or at least 3.7 g/(L*h).
- In another embodiment of the claimed bacterial strains as defined above the carbon source is glycerol or a mixture of glycerol and at least one further carbon source selected from sucrose, maltose, D-fructose, D-galactose, D-mannose, D-glucose, D-xylose, and L-arabinose.
- The different yield parameters as described herein ("Yield" or YP/S; "Specific Productivity Yield"; or Space-Time-Yield (STY)) are well known in the art and are determined as described for example by Song and Lee, 2006.
- "Yield" and "YP/S" (each expressed in mass of product produced/mass of material consumed) are herein used as synonyms.
- The specific productivity yield describes the amount of a product, like succinic acid that is produced per h and L fermentation broth per g of dry biomass. The amount of dry cell weight stated as DCW describes the quantity of biologically active microorganism in a biochemical reaction. The value is given as g product per g DCW per h (i.e. g gDCW-1 h-1).
- A further embodiment of the invention relates to a process for the fermentative production of an organic acid or a salt or derivative thereof, which process comprises the steps of:
- a) incubating a bacterial strain as defined in one of the preceding claims in a medium containing an assimilable carbon source and cultivating said strain at a temperature in the range of about 10 to 60 or 20 to 50 or 30 to 45 °C at a pH of 5.0 to 9.0 or 5.5 to 8.0 or 6.0 to 7.0 in the presence of carbon dioxide; and
- b) obtaining said organic acid or salt or derivative thereof from the medium.
- Said process may be performed discontinuously or continuously and the course of the acid production may be monitored by conventional means, as for example HPLC or GC analysis.
- Preferably, by said process succinic acid (SA) is produced, preferably under anaerobic conditions. Anaerobic conditions may be established by means of conventional techniques, as for example by degassing the constituents of the reaction medium and maintaining anaerobic conditions by introducing carbon dioxide or nitrogen or mixtures thereof and optionally hydrogen at a flow rate of, for example, 0.1 to 1 or 0.2 to 0.5 vvm.
- Aerobic conditions may be established by means of conventional techniques, as for example by introducing air or oxygen at a flow rate of, for example, 0.1 to 1 or 0.2 to 0.5 vvm.
- If appropriate a slight over pressure of 0.1 to 1.5 bar may be applied.
- In said process said assimilable carbon source is preferably selected from glycerol, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose and mixtures thereof or compositions containing at least one of said compounds, or is selected from decomposition products of starch, cellulose, hemicellulose and/or lignocellulose.
- The initial concentration of the assimilable carbon source is preferably adjusted to a value in a range of 5 to 100 g/l and may be maintained in said range during cultivation.
- The pH of the reaction medium may be controlled by addition of suitable bases as for example, NH4OH, NH4HCO3, (NH4)2CO3, NaOH, Na2CO3, NaHCO3, KOH, K2CO3, KHCO3, Mg(OH)2, MgCO3, Mg(HCO3)2, Ca(OH)2, CaCO3, Ca(HCO3)2, CaO, CH6N2O2, C2H7N, or other bases and mixtures thereof. The physical condition of the base can either be an aqueous solution, aqueous suspension, gaseous or solid.
- Particularly preferred conditions for producing SA are:
- Carbon source: Glucose, xylose or maltose and/or glycerol (including crude glycerol) Temperature: 30 to 45 °C
- pH: 6.0 to 7.0, controlled by a base as described above, preferably by a HCO3 - source such as Na2CO3, NaHCO3, Mg(HCO3)2, Ca(HCO3)2 or, Mg(OH)2, MgCO3,, Ca(OH)2, CaCO3. supplied gas: CO2
- In another embodiment the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- a) incubating a bacterial strain in a medium containing at least one assimilatable carbon source and cultivating said strain under conditions favoring the formation of the desired organic acid;
- b) obtaining said organic acid or salt or derivative thereof from the medium;
- In another embodiment the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- a) incubating a bacterial strain in a medium containing at least one assimilatable carbon source and cultivating said strain under conditions favoring the formation of the desired organic acid;
- b) obtaining said organic acid or salt or derivative thereof from the medium;
- In another embodiment the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- a) incubating a bacterial strain in a medium containing at least one assimilatable carbon source and cultivating said strain under conditions favoring the formation of the desired organic acid;
- b) obtaining said organic acid or salt or derivative thereof from the medium;
- In another embodiment the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- a) incubating a bacterial strain in a medium containing at least one assimilatable carbon source and cultivating said strain under conditions favoring the formation of the desired organic acid;
- b) obtaining said organic acid or salt or derivative thereof from the medium;
- In another embodiment the present invention provides a process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:
- a) incubating a bacterial strain in a medium containing at least one assimilatable carbon source and cultivating said strain under conditions favoring the formation of the desired organic acid;
- b) obtaining said organic acid or salt or derivative thereof from the medium;
- In another embodiment of the above identified processes of producing succinic acid the carbon source is glycerol or a mixture of glycerol and at least one further carbon source selected from sucrose, maltose, D-fructose, D-galactose, D-mannose, D-glucose, D-xylose, and L-arabinose.
- Further preferred conditions will be derivable from the attached examples and figures.
- Succinc acid and/or succinic acid salts produced may be isolated in conventional manner by methods known in the art, as for example cristallization, filtration, electrodialysis, chromatography. For example, they may be isolated by precipitating as a calcium succinate product in the fermentor during the fermentation by using calcium hydroxide, - oxide, - carbonate or hydrogencarbonate for neutralization and filtration of the precipitate.
- The desired succinic acid product is recovered from the precipitated calcium or succinate by acidification of the succinate with sulfuric acid followed by filtration to remove the calcium sulfate (gypsum) or which precipitates. The resulting solution may be further purified by means of ion exchange chromatography in order to remove undesired residual ions.
- Another embodiment of the invention relates to a process for the production of succinic acid and/or succinic acid salts, in particular ammonium salts, which method comprises the fermentative production of succinic acid as defined above and controlling the pH with a suitable base, in particular inorganic base, like ammonia, or an aqueous solution thereof.
- Another embodiment of the invention relates to a process for the production of tetrahydrofuran (THF) and/or 1,4-butanediol (BDO) and/or gamma-butyrolactone (GBL) which comprises
- a) the fermentative production of succinic acid and/or succinic acid salts, e. g. ammonium salts as defined above, and
- b1) either the direct catalytic hydrogenation of the obtained free acid to THF and/or BDO and/or GBL or
- b2) the chemical esterification of obtained free succinic acid and/or succinic acid ammonium salts to its corresponding di-loweralkyl ester and subsequent catalytic hydrogenation of said ester to THF and/or BDO and/or GBL.
- Lower alkyl preferably represent a straight chain or branched C1-C6-, preferably C1-C4-alkyl residue, in particular methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, as well as n-pentyl and n-nexyl and branched analogues thereof.
- Another embodiment of the invention relates to a process for the production of pyrrolidones which comprises
- a) the fermentative production of succinic acid ammonium salts as defined above, and
- b) the chemical conversion of succinic acid ammonium salts to pyrrolidones in a manner known per se, for example as described in
WO-A-2006/066839 (which document is herewith incorporated by reference). - In a preferred embodiment, said glycerol, which is used as assimilable carbon source, is crude glycerol.
- Suitable experimental conditions for performing direct catalytic hydrogenation are well known, and for example, described in
US 4,550,185 , incorporated herewith by reference. - The SA is hydrogenated in a manner known per se using processes, apparatus and assistants, such as solvents, familiar to the person skilled in the art. In particular, a continuous or batch wise liquid phase hydrogenation is carried out in the presence of a heterogeneous catalyst suitable for the acid hydrogenation. The optimal process parameters can be established by the person skilled in the art without unacceptable effort. For example, the reaction temperature is in the range from about 100 to about 300°C, preferably in the range from about 130 to 285°C, and the pressure is from about 20 to 350 bar, for example from 100 to 250 bar.Catalysts usable for the hydrogenation reaction are known to the person skilled in the art. For example, various palladium/rhenium/carbon catalysts may be used. Solvents usable for the hydrogenation reaction are known to the person skilled in the art. For example, an aqueous solvent medium may be used.
- Suitable experimental conditions for performing the chemical esterification, followed by direct catalytic hydrogenation are well known, and for example, described in European Patent application
06007118.0 - The esterification process which may comprise a reactive distillation can be performed using an apparatus known per se in various designs.
- For example an esterification plant which is operated in continuous mode can be used which comprises a rectification column with an appropriate number of theoretical stages achieved by installation of trays or packings. The aqueous charge comprising the ammonium salt of SA is fed into the top of the column from a reservoir vessel as soon as a steady-state temperature profile has formed in the column as a result of feeding-in alkanol that is evaporated in the evaporator loop adherent to the sump of the column. The reaction forms a countercurrent flow of descending, ammonium salt-containing liquid and condensate, and ascending, alkanol-containing vapor phase. To catalyze the esterification reaction, a homogeneous catalyst may be added to the ammonium salt initial charge. Alternatively, heterogeneous catalysts may be provided in the column internals. The carboxylic ester formed is liquid under the process conditions and passes via the lower end of the column into the sump of the distillation column and is continuously withdrawn from the sump. Gaseous components, for example azeotropic mixtures comprising alkanol-water and/or ammonia, are removed from the reaction column and hence from the reaction equilibrium at the top of the column.
- Further modifications of the above-described specific embodiments can be implemented by the person skilled in the art without unacceptable effort.
- Suitable process parameter ranges for the esterification process according to the invention can be determined easily by the person skilled in the art depending on the configuration of the apparatus used, for example type of column internals used, type and amount of the reactants, type and amount of the catalyst used if appropriate. For instance, without being restrictive thereto, individual parameters may be set within the following parameter ranges:
- Column temperature: 0-300°C, in particular 40-250°C, or 70-200°C
- Pressure: from 0.1 to 6 bar, in particular standard pressure
- Residence time: a few seconds (for example from 1 to 60) up to days (for example from 1 to 5), in particular from a few minutes (for example from 1 to 60) to a few hours (for example from 1 to 15), more preferably from a few minutes (for example from 5 to 20) to 2 h.
- The SA esters prepared in accordance with the invention are hydrogenated in a manner known per se using processes, apparatus and assistants, such as catalysts, familiar to the person skilled in the art.
- In particular, a continuous or batchwise gas phase hydrogenation is carried out in the presence of a heterogeneous catalyst suitable for the ester hydrogenation. The optimal process parameters can be established by the person skilled in the art for the particular ester without unacceptable effort. For example, the reaction temperature is in the range from about 100 to about 300°C, preferably in the range from about 200 to 280°C, and the pressure is from about 5 to 100 bar, for example from 10 to 50 bar. The molar ratio of reactant to hydrogen is set within the range from about 1:100 to about 1:2000, for example from 1:800 to 1:1500.
- Catalysts usable for the inventive hydrogenation reaction are known to the person skilled in the art. For example, various copper catalysts may be used. The prior art describes, for example, the use of reduced copper chromite catalysts which are obtainable under the name 85/1 from Davy Process Technology Ltd., England. However, catalysts particularly suitable in accordance with the invention are supported copper oxide catalysts, the copper oxide being applied to alumina or silica support materials. The examples of the hydrogenation of succinic esters to BDO (1,4-Butanediol) /GBL (gamma-butyrlactone) /THF with copper catalysts are also described in the following thesis: Schlander, Jan., Feb. 2000, University of Karlsruhe, "Gasphasenhydrierung
von Maleinsäuredimethylester zu 1,4-Butandiol, gamma-Butyrolacton und Tetrahydrofuran an Kupfer-Katalysatoren". - A fermentation as used according to the present invention can be performed in stirred fermenters, bubble columns and loop reactors. A comprehensive overview of the possible method types including stirrer types and geometric designs can be found in "Chmiel: Bioprozesstechnik: Einführung in die Bioverfahrenstechnik,
Band 1". In the process, typical variants available are the following variants known to those skilled in the art or explained, for example, in "Chmiel, Hammes and Bailey: Biochemical Engineering", such as batch, fed batch, repeated fed batch or else continuous fermentation with and without recycling of the biomass. Depending on the production strain, sparging with air, oxygen, carbon dioxide, hydrogen, nitrogen or appropriate gas mixtures can/must be effected in order to achieve good yields. - Before the chemical conversion in the fermentation broth in the process according to the invention, the fermentation broth can be pretreated; for example, the biomass of the broth can be removed. Processes for removing the biomass are known to those skilled in the art, for example filtration, sedimentation and flotation. Consequently, the biomass can be removed, for example, with centrifuges, separators, decanters, filters or in flotation apparatus. For maximum recovery of the product of value, washing of the biomass is often advisable, for example in the form of a diafiltration. The selection of the method is dependent upon the biomass content in the fermenter broth and the properties of the biomass, and also the interaction of the biomass with the product of value. In one embodiment, the fermentation broth can be sterilized or pasteurized.
- In a further embodiment, the fermentation broth is concentrated. Depending on the requirement, this concentration can be done batchwise or continuously. The pressure and temperature range should be selected such that firstly no product damage occurs, and secondly minimal use of apparatus and energy is necessary. The skillful selection of pressure and temperature levels for a multistage evaporation in particular enables saving of energy.
- In apparatus terms, stirred tanks, falling-film evaporators, thin-film evaporators, forced-flash circulation evaporators and other evaporator types can be utilized in natural or forced circulation mode.
- Consequently, the term "fermentation broth" is understood to mean an aqueous solution which is based on a fermentative process and has not been worked up or has been worked up, for example, as described herein.
- The present invention will be described in greater detail by means of the following examples. The following examples are for illustrative purposes and are not intendet to limit the scope of the invention.
- For the isolation a four-step approach was used, comprising the steps of sampling, enrichment cultivation, isolation of pure cultures and test of pure cultures for succinic acid (SA) production.
- Samples were taken from bovine rumen, digested sludge from a municipal sewage plant and pomace, the residue from wine making. These habitats are characterized by relatively high concentrations of organic substances and a CO2-rich atmosphere without oxygen. More detailed information on the samples, their origin and handling is given below.
- a) Rumen content was taken from a canulated Holstein cow at the Institut für Tierernährung, University of Hohenheim. In situ-pH and -temperature were 6.7 and 37 °C, respectively. The material was filtered through sterile filter cloth, gassed with CO2 and immediately cooled on ice for the transport and processed on the same day.
- b) Digested sludge was taken from the digestion tower of the municipal sewage plant in Mannheim-Sandhofen. In situ-pH and -temperature were 7.1 and 36.3 °C, respectively. The samples were cooled on ice and processed on the same day. The main components of the gas phase in the sludge are methane and carbon dioxide.
- c) Pomace samples were collected in November 2005 from a field in the south west of Germany. Pomace from red grapes (Spätburgunder) was taken from the middle of a big stash. This zone should be anaerobic. Pomace from white grapes (Müller-Thurgau) was taken from a storage container in which the alcoholic fermentation was already in progress.
- Enrichment cultivations were performed on different media containing D-glucose, D-xylose and L-arabinose as sole carbon source. The media composition is described below:
Table 1: Medium composition for enrichment cultivations. Compound Concentration [g/L] C- source a15 Bacto yeast extrakt (Becton Dickinson) 5 Bacto peptone (Becton Dickinson) 5 (NH4)2 SO4 1 CaCl2*2H2O 0.2 MgCl2*6H2O 0.2 NaCl 1 K2HPO4 3 L-Cystein (reducing agent) 0.24 MgCO 3 b15 Lasalocid c16 mg/ L Monensin c 10 mg/L Amphotericin Bd 2.5 mg/L Rumen liquor (optional)e 5 Extract from digested sludge (optional)f 10 Extract from pomace (optional)f 10 Bacto-Agar (for solid media only) 12 a D-glucose, D-xylose or L-arabinose
b MgCO3 (Riedel-de Haen, product number: 13117 by Sigma-Aldrich Laborchemikalien GmbH, Seelze, Germany).
c Stock solution in ethanol.
d Stock solution in dimethyl sulfoxide
e Rumen liquid was centrifuged. The supernatant was sterile filtered, the sterile filtrate was added to the enrichment trials with rumen content as inoculum.
f 10 g digested sludge or pomace were mixed with 25 mL distilled water and stirred intensively for 15 min. Rough particles were separated using a filter fleece. The suspensions were sterile filtered, the sterile filtrates were added to the respective enrichment trials. - MgCO3 and water (0.75 g and 40 mL) were autoclaced in 100 mL-serum bottles (121 °C, 20 min). Yeast extract, peptone, C-source, NH4SO4 and K2HPO4 were all separately autoclaved. For Ca-, Mg- and Na-chlorides one stock solution was prepared which was autoclaved. To ensure that no oxygen was present the following standard procedures were used:
- Cultivation media were gassed with sterile and oxygen-free CO2 after autoclaving.
- An anaerobic box (Meintrup DWS Laborgeräte GmbH, Lähden-Holte, Germany) was used for experiments which had to be performed under anaerobic conditions.
- The incubation of the agar plates occurred in anaerobic jars. To ensure anaerobic conditions Anaerocult®A (Merck) was used.
- Rumen samples and digested sludge were used undiluted as inoculum. 50 g of solid pomace were diluted in 100 mL 0.9 % NaCl solution, filtered to remove rough particles and then used as inoculum.
- 100 mL serum bottles (Zscheile & Klinger, Hamburg, Germany) were filled with 50 mL medium and 2 mL of the respective inoculum, closed with butyl rubber stoppers (Ochs GmbH, Bovenden/Lenglern, Germany) and gassed with CO2. An overpressure of about 0.8 bar was adjusted. The bottles were incubated in a shaking incubator (160 rpm, shaking diameter: 2.5 cm) at 37 °C.
- Consumption of glucose, xylose and arabinose and formation of succinic acid and by-products were quantified via HPLC analyses of the undiluted cell free supernatants of the cultivation broth using RI-detection. Broth samples were taken with a sterile syringe through the butyl rubber plug, cell separation was performed by filtration (0.22 µm). A 300 x 7.8 mm I. D. Column Aminex HPX-87 H (Biorad) and 5 mm H2SO4 were used as stationary and mobile phase, respectively. The column temperature was 30 °C, the flow rate was 0.5 mL min-1.
- Isolation of pure cultures from the enrichment cultivations was achieved by repeated streaking on agar plates.
- The pure cultures were tested in liquid culture for SA production. Sugar consumption and SA and side product formation were quantified by HPLC. Cultivation and HPLC conditions were the same as those described in the above section 'Enrichment cultivation'.
- The following table summarizes those experimental conditions, which are recommendable for the enrichment of succinic acid (SA) producers.
Table 2: Recommended experimental conditions for the production of SA-producers. Rumen content Digested sludge Pomace C-source L-arabinose L-arabinosea D-glucose, L-arabinose Buffer MgCO3 MgCO3 MgCO3 Antibiotics lasalocid, monensin lasalocid, monensin amphotericin B Incubation time < 16 h < 24 h < 50 h a glucose and xylose were not tested in trials with digested sludge - For enrichment of SA producers from rumen content the best C-source is arabinose (3/3 enrichment cultures showing SA production, 0/3 with glucose, 2/3 with xylose). The results are summarized in the following table. Addition of the ionophoric antibiotics lasalocid and monensin to the enrichment medium resulted in substantially higher SA production (1.9-5.4 vs. 0.9-1.2 g/L in 17 h) and lower production of lactic and propionic acid. These results therefore confirm that SA producing microorganisms can indeed be favored by adding these compounds to the enrichment medium (Lee et al., 2002a). MgCO3-buffered enrichment cultures showed higher SA production than trials with TRIS (1.9-5.4 vs. 1.2-1.4 g/L in 17 h). Presumably this is caused by i) the higher buffer capacity of MgCO3, ii) its lower osmotic stress due to lower solubility and iii) by liberation of CO2 from the carbonate-ion, which is necessary for the SA biosynthesis.
Table 3: Results of enrichment cultivations for SA producers from rumen content. exp no inctime [h] C-source Buffer anti-obiotics red. Agent C-source [g/L] succinic [g/L] lactic [g/L] formic [g/L] acetic [g/L] propionic [g/L] ethanol [g/L] 1 24 glucose MgCO3 - - 0.0 0.0 3.7 0.6 2.8 0.0 0.0 2 24 glucose MgCO3 - - 0.0 0.0 3.6 0.4 2.7 0.0 0.0 3 24 glucose MgCO3 - - 0.0 0.0 3.9 0.4 2.6 0.0 0.0 4 24 xylose MgCO3 - - 0.0 2.3 3.8 0.2 5.7 0.0 0.0 5 24 xylose MgCO3 - - 0.0 0.0 3.4 0.0 2.7 0.5 0.0 6 24 xylose MgCO3 - - 0.0 1.8 3.4 0.0 2.7 0.0 0.0 7 17 arabinose MgCO3 - - 1.4 0.9 7.6 0.0 1.3 1.0 0.0 8 17 arabinose MgCO3 - - 1.9 0.9 7.4 0.0 1.3 1.0 0.0 9 17 arabinose MgCO3 - - 1.2 1.2 6.8 0.0 1.5 1.2 0.0 10 17 arabinose MgCO3 las+mon - 1.5 3.3 0.4 3.8 3.7 0.0 2.8 11 17 arabinose MgCO3 las+mon - 0.4 1.9 1.8 3.8 3.7 0.0 3.3 12 17 arabinose MgCO3 las+mon - 2.4 5.4 0.0 2.9 3.6 0.0 1.8 13 17 arabinose TRIS las+mon - 7.2 1.2 1.3 0.0 1.4 0.4 1.5 14 17 arabinose TRIS las+mon - 8.0 1.4 1.3 0.0 1.3 0.4 1.4 15 17 arabinose TRIS las+mon - 8.8 1.4 1.2 0.0 1.1 0.3 1.2 - For enrichment of SA producers from digested sludge the only C-source tested was arabinose. The results are summarized in the following table. These experiments indicated that short incubation times of 24 h or lower are necessary to prevent substrate depletion and SA consumption, presumably by propionic acid producing bacteria:
- succinate2- + H2O → propionate + HCO3 - (Janssen, 1991).
- Results obtained in enrichment cultures from pomace are summarized in the following table. Enrichment of SA producers from pomace was only successful if pomace from red grapes (Spätburgunder type) were used. It is absolutely necessary to add amphotericin B to the enrichment medium to suppress ethanol production, presumably caused by wine yeasts. Glucose and arabinose were both suitable C-sources but xylose was not. Incubation times that were necessary to unequivocally detect SA production were substantially higher than with sample material from rumen and digested sludge.
Table 5: Results of enrichment cultivations for SA producers from pomace. exp no grape typea inctime [h] C-source Buffer anti-obiotics red. Agent C-source [g/L] succinic [g/L] lactic [g/L] formic [g/L] acetic [g/L] ethanol [g/L] 1 red 59 gluose MgCO3 las+mon L-Cystein 10.8 0.0 0.0 0.0 0.1 2.0 2 red 59 gluose MgCO3 las+mon L-Cystein 10.8 0.0 0.0 0.0 0.1 2.0 3 red 59 xylose MgCO3 las+mon L-Cystein 0.0 0.1 0.1 0.0 0.0 1.6 4 red 59 xylose MgCO3 las+mon L-Cystein 12.7 0.1 0.1 0.0 0.0 1.5 5 red 59 arabinose MgCO3 las+mon L-Cystein 13.4 0.1 0.1 0.0 0.0 1.6 6 red 59 arabinose MgCO3 las+mon L-Cystein 13.3 0.0 0.1 0.0 0.0 1.5 7 white 59 gluose MgCO3 las+mon L-Cystein 0.0 0.0 0.0 0.0 0.6 6.2 8 white 59 gluose MgCO3 las+mon L-Cystein 0.1 0.0 0.0 0.0 0.6 5.9 9 white 59 xylose MgCO3 las+mon L-Cystein 12.8 0.0 0.2 0.0 0.0 1.5 10 white 59 xylose MgCO3 las+mon L-Cystein 13.0 0.0 0.2 0.0 0.0 1.6 11 white 59 arabinose MgCO3 las+mon L-Cystein 13.3 0.0 0.2 0.0 0.1 1.7 12 white 59 arabinose MgCO3 las+mon L-Cystein 13.4 0.0 0.2 0.0 0.1 1.8 13 red 50 gluose MgCO3 amph. B L-Cystein 4.4 0.0 1.1 1.3 2.7 1.3 14 red 50 gluose MgCO3 amph. B L-Cystein 0.0 6.9 0.0 0.3 3.2 0.4 15 red 50 xylose MgCO3 amph. B L-Cystein 0.9 0.0 3.7 3.7 2.5 1.9 16 red 50 xylose MgCO3 amph. B L-Cystein 5.9 0.0 1.8 1.8 2.5 1.2 17 red 50 arabinose MgCO3 amph. B L-Cystein 13.5 0.0 0.0 0.0 1.0 0.0 18 red 50 arabinose MgCO3 amph. B L-Cystein 6.2 4.5 0.0 0.3 2.6 0.2 19 white 48 gluose MgCO3 amph. B L-Cystein 0.0 0.0 3.8 2.1 2.9 1.6 20 white 48 gluose MgCO3 amph. B L-Cystein 0.0 0.0 3.7 1.7 5.5 1.8 21 white 48 xylose MgCO3 amph. B L-Cystein 7.5 0.0 1.1 2.3 2.4 1.9 22 white 48 xylose MgCO3 amph. B L-Cystein 6.8 0.0 0.7 0.0 4.4 0.8 23 white 48 arabinose MgCO3 amph. B L-Cystein 6.2 0.0 0.6 0.2 2.8 1.2 24 white 48 arabinose MgCO3 amph. B L-Cystein 0.3 0.0 2.4 3.5 3.8 3.5 a red = pomace from red grapes (Spatburgunder type) asinoculum; white = pomace from white grapes (MüllerThurgau) as inoculum - The best results obtained in enrichment cultures for SA-producers are listed in the following table 6.
Table 6: Best results in enrichment cultivations for SA producers. Sample material Rumen Digested sludge Pomace C-source L-arabinose L-arabinose L-arabinose SA [g/L] 7.1 6.9 8.4 STY [g/(L h)]a 0.2 0.4 0.1 Yield [g/g]a 0.5 0.5 0.6 a Space time yield and yield for succinic acid. - Said table indicates that with each of the three sample materials it is possible to receive enrichment cultures producing SA. Enrichment cultures originating from digested sludge showed higher space time yields than those from rumen and pomace (0.4 vs. 0.2 and 0.1 g/[L h]). However, SA-producing isolates were exclusively obtained from SA-producing enrichment cultures with rumen material as inoculum. Apparently isolation of SA producers from digested sludge and pomace requires more sophisticated strategies.
- The best isolates (=pure cultures) showing SA production in pure culture experiments and their characteristics are summarized in the following table. The highest SA concentration (8.8 g/L) and space time yield (0.6 g/[L h]) were achieved with DD1, a rumen isolate.
Table 7: Characteristics of the best succinc acid (SA) producing isolates. Isolate DD1 DD1a DD2 Origin rumen rumen rumen C-source, enr.b L-arabinose L-arabinose L-arabinose C-source, pureb L-arabinose D-glucose L-arabinose SA [g/L] 8.8 7.3 3.5 STY [g/(L h)]c 0.6 0.5 0.1 Yield [g/g]c 0.6 0.5 0.3 by products [g/L] - formic acid 3.3 3.7 - - acetic acid 4.5 4.2 2.7 - lactic acid - - 1.5 - ethanol - - 2.7 a Isolate DD1 was tested twice in pure culture, once with glucose and once with arabinose.
b C-source, enr. = C-source during enrichment, C-source, pure= C-source during pure culture experiment.
c space time yield and yield for succinic acid. - The established procedure is suitable for enrichment of SA-producers from rumen, digested slugde and pomace. However, SA-producing isolates were exclusively obtained from SA-producing enrichment cultures with rumen material as inoculum. The most promising isolate is the rumen bacterium DD1. It uses glucose and arabinose for SA production. Under not yet optimized conditions almost 9 g/L of SA are produced from 15 g/L of arabinose.
Figure 4 shows a picture of DD1 taken with a light microscope. - Composition of the cultivation media is described in table 8.
Table 8: Composition of solid and liquid media for the preparation of DD1 cell banks. Compound Concentration [g/L] Concentration of stock solution [g/L] Glucose varyinga 650 Bacto yeast extrakt (Becton Dickinson) 5 - Bacto peptone (Becton Dickinson) 5 - (NH4)2SO4 1 500 CaCl2*2H2O 0.2 20 MgCl2*6H2O 0.2 20 NaCl 1 100 K2HPO4 3 500 MgCO3 varyingb - Bacto-Agar (for solid media only) 12 a Glucose concentrations were 15 g/L (in plates) and 20 or 50 g/L (in liquid media)
b MgCO3 (Riedel-de Haen, product number 13117 by Sigma-Aldrich Laborchemikalien GmbH) concentrations were 5 g/L (in plates) and 0 or 30 g/L (in liquid media) - 5 g yeast extract, 5 g peptone, MgCO3 and (for solid media) 12 g Bacto-Agar were mixed in 900 mL destilled water and autoclaved (20 min). After cooling down to about 65 °C the missing components were added as sterile stock solutions. Glucose, ammonium sulfate and K2HPO4 were all separately autoclaved. Ca-, Mg- and Na-chlorides were autoclaved together.
- Two agar plates were freshly inoculated with DD1 and incubated at 37 °C in an anaerobic jar (Anaerocult A, Merck) over night. The biomass was taken off the plates and resuspended in the MgCO3-free liquid medium with 20 g/L glucose to adjust OD600≈1.0. Inoculation was performed with 0.5 mL of this cell suspension. Cultivations were performed in 100 mL-serum bottles with gas tight butyl rubber stoppers (Ochs GmbH, Bovenden/Lenglern, Germany) containing 50 mL of the liquid medium with 20 g/L glucose and 30 g/L MgCO3 and a CO2-atmosphere with 0.8 bar overpressure. The serum bottles (in total 10) were incubated at 37 °C, a rotary speed of 160 rpm and a shaking diameter of 2.5 cm.
- To monitor glucose consumption the cultivation of one bottle was stopped and sampling and HPLC analysis were performed after 0, 3, 4, 5, 7, 8 and 8.5 h. After 8.5 h (the glucose concentration was 3.4 g/L) the cultivation was stopped. Aliquots of 0.5 mL cell suspension and 0.5 mL sterile glycerol were filled in cryovials, mixed and stored for 13 h at-20 and afterwards at -80 °C as MCB. The MCB was tested for purity by streaking a loop of the last cryovial on agar plates for contamination control and checking in liquid culture (media as described table 8) the product spectrum and for contamination (by microscopy). HPLC conditions were the same as those described in example 1.
- One vial of the MCB was used to inoculate a 100 mL-serum bottle with gas tight butyl rubber stopper (see above) containing 50 mL of the liquid medium with 50 g/L glucose. Incubation was performed for 10 h at 37°C in a shaking incubator (rotary speed: 180 rpm, shaking diameter: 2.5 cm). At the end of the cultivation the glucose concentration was 20 g/L and the pH around 6.5. Aliquots of 0.5 mL cell suspension and 0.5 mL sterile glycerol were filled in cryovials, mixed and stored at -80 °C as WCB. Purity checks were the same as for the MCB. HPLC conditions were the same as those described in example 1.
- The taxonomic characterization of strain DD1 was performed via 16S - and 23S rDNA analysis which was conducted as described below:
- Extraction of genomic DNA, PCR-mediated amplification of the 16S rDNA and purification of PCR products were carried out as described by Rainey et al., 1996. A DNA fragment containing the 23S rDNA was amplified by the same method, using the forward primer 5'- AGTAATAACGAACGACACAG-3' and the reverse primer 5'-AGCCGATTCCCTGACTAC-3'. Purified PCR products were sequenced using the CEQ™DTCS-Quick Start kit (Beckman Coulter) as directed in the manufacturer's protocol. The CEQ™8000 Genetic Analysis System was used for electrophoresis of the sequence reaction products. The ae2 editor (Maidak et al., 1999) was used to align the 16S rDNA sequence of strain DD1 against those of representative members of the γ-subclass of the Proteobacteria available from the EMBL and RDP databases. For the construction of the phylogenetic tree procedures of PHYLIP (Phylogeny Inference Package, version 3.5c., distributed by J. Felsenstein, Department of Genome Sciences, University of Washington, Seattle, USA) were used: Pairwise evolutionary distances were calculated using the method of Jukes and Cantor (1969), the phylogenetic tree was constructed from these distances using the neighbor-joining method (Saitou & Nei, 1987).
- The 16S rDNA-based phylogenetic tree is depicted in
Figure 1 . On the basis of the 16S rDNA analysis the closest relative of strain DD1 is "Mannheimia succiniciproducens" MBEL 55E with a similarity of 99.8 %. This strain was isolated by scientists of the Korea Advanced Institute of Science and Technology (KAIST) from bovine rumen (Lee et al., 2002a; Lee et al., 2002b). The amplified 23S rDNA fragment from DD1 was aligned to the 23S rDNA sequences from the "Mannheimia succiniciproducens" MBEL 55E (complete genome sequence accession number AE016827) to indicate the difference between the strains. -
Figure 2 shows the 16S rDNA sequence of strain DD1.Figure 3 shows the 23S rDNA sequence of strain DD1 and an alignment to the 23S rDNA of "Mannheimia succiniciproducens" MBEL 55E (complete genome sequence accession number AE016827) is shown inAnnex 1. - One vial of the WCB (example 2) was used to inoculate a 100 mL-serum bottle with gas tight butyl rubber stopper (see above) containing 50 mL of the liquid medium with 50 g/L glucose (composition and preparation as described in example 2). Incubation was performed for 15 h at 37 °C and 170 rpm (shaking diameter: 2.5 cm). At the end of the cultivation the glucose concentration had decreased to about 17 g/L (Measurement via HPLC, conditions as described in example 1). To examine the cell morphology of DD1 single cells were observed using light microscopy. To characterize the colony morphology of DD1 a loop of the cell suspension was streaked on Brain Heart Infusion plates (Bacto Brain Heart Infusion, product number: 237500 solidified with 12 g/L Bacto Agar, product number: 214010; both by Becton, Dickinson and Company) and incubated aerobically and anaerobically (Anaerocult A, Merck) at 37 °C.
- Cells of DD1 appear as rods that occur singly, in pairs or short chains (see
figure 4 ). After 24 h of incubation colonies were circular, white-yellow, translucent and 0.5-1 µm (aerobic growth) and 1-2 µm (anaerobic growth) in diameter. - Utilization of different C-sources by DD1 was tested under the conditions described by Lee et al., 2002a.
- Composition of the cultivation medium is described in table 9.
Table 9: Composition of the medium for the tests for utilization of different C-sources. Compound Concentration [g/L] Concentration of stock solution [g/L] C- source 10 250 Bacto yeast extrakt (Becton Dickinson) 5 100 Polypeptone peptone (Becton Dickinson) 10 100 (NH4)2 SO4 2 500 CaCl2*2H2O 0.2 20 MgCl2*6H2O 0.2 20 NaCl 2 100 K2HPO4 3 500 MgCO3 (Riedel-de Haen 13117) 10 - - Yeast extract, polypeptone and MgCO3 were autoclaved together. After cooling down the missing components were added as sterile stock solutions. Glucose and the other C-sources, ammonium sulfate and K2HPO4 were all separately autoclaved. Ca-, Mg- and Na-chlorides were autoclaved together. Na2S*9H2O was added to a final concentration of 1 mg/L to ensure anaerobic conditions.
- For growing the seed culture one vial of the WCB was used to inoculate a 100 mL-serum bottle with gas tight butyl rubber stopper (see above) containing 50 mL of the liquid medium described in table 9 but with 20 g/L glucose and a CO2-atmosphere with 0.8 bar overpressure. Incubation was performed for 13 h at 37 °C and 160 rpm (shaking diameter: 2.5 cm). The cell suspension was centrifuged (Biofuge primo R, Heraeus,) with 5000 g for 5 minutes and the cell pellet was washed and then resuspended in 50 mL medium without a carbon source and without MgCO3 to generate a glucose-free inoculum (all steps at room temperature and in the anaerobic chamber).
- The main cultures were grown in 100 mL-serum bottles containing in 50 mL liquid medium with 10 g/L of the respective C-source (D-mannitol, D-fructose, D-xylose, sucrose, maltose, lactose, xylitol, inositol, D-sorbitol, glycerol, L-arabinose, D-galactose or D-mannose) and a CO2-atmosphere with 0.8 bar overpressure. For the test for glycerol utilization the quality 'Glycerol 99 %, puriss.' (Riedel-de Haen, product numer: 15523-1 L-R by Sigma-Aldrich Laborchemikalien GmbH, Seelze, Germany) was used. Inoculation was performed with 1.5 mL of the glucose-free inoculum. The bottles were incubated at 37 °C, and 160 rpm (shaking diameter: 2.5 cm). Utilization of the respective C-source by DD1 was regarded as positive when at least 3 g/L of the C-source were consumed within 24 h. To verify the results obtained in the
main culture 1 mL of the respective main culture was used to inoculate 50 mL of fresh cultivation medium with 10 g/L of the respective C-source. The results were therefore confirmed in two subsequent main cultivations. Consumption of the C-sources was quantified via HPLC as described in example 1. When glycerol was measured the column temperature was adjusted to 50 °C to achieve a sufficient separation of SA, lactic acid and glycerol which have similar retention times. - The results are summarized in the following table 10.
Table 10: Utilization of different C-sources by DD1 and MBEL 55E. C-source DD1a MBEL 55Eb Mannitol + + Fructose + + Xylose + + Sucrose + + Maltose + + Lactose + + Xylitol - - I nositol - - Sorbitol - - Glycerol + - Arabinose + ND Galactose + ND Mannose + ND a Analyses for consumption of each C-source after 24 h Cultivations were conducted as duplicates
b data from data from Lee et al, 2002a ND= not determined - Said table shows that the C-source utilization pattern of the two strains differs with respect to glycerol. DD1 can metabolize glycerol which is not used by MBEL 55E.
- In addition to sucrose, D-glucose and D-fructose DD1 utilizes D-xylose, L-arabinose, D-galactose and D-mannose. Hence all types of monosaccharides in lignoellulose (Kamm et al., 2006; Lee, 1997) are utilized by DD1. Utilization of L-arabinose, D-galactose and D-mannose by MBEL55E was not tested by Lee et al., 2002a.
- DD1's succinic acid (SA) productivity on glycerol, D-xylose, L-arabinose, D-galactose and D-mannose was evaluated in serum bottle trials with 10 g/L of the respective C-source (10 g/L glucose as reference).
- Composition and preparation of the cultivation media were the same as in example 2 (seed culture) and example 5 (main cultures).
- Growth of the seed culture in liquid medium with 50 g/L glucose and 30 g/L MgCO3 was done as described in example 2. Preparation of the glucose-free inoculum was performed as described in example 5.
- Growth of the main cultures with 10 g/L glycerol, sucrose, D-xylose, D-Fructose, L-arabinose, D-galactose, D-mannose or D-glucose and 10 g/L MgCO3 was done as described in example 5. Consumption of the respective C-source and production of SA and by-products were quantified by HPLC as described in example 5.
- In the following table 11 the results are summarized.
Table 11: SA and by-product formation from glycerol and different sugars by DD1. glyc suc gluc fruc xyl ara gal man tc [h]a 9 4 4 4 6 6 6 5 ΔCCS [g/L]b -5.3 -9.8 -9.3 -9.4 -7.6 -7.8 -7.1 -8.1 ΔCSA [g/L]c +6.4 +5.8 +5.7 +4.8 +4.6 +4.9 +4.5 +4.9 ΔCLA [g/L]c 0 +0.1 0 +0.4 0 0 0 0 ΔCFA [g/L]c +0.4 +2.0 +1.8 +2.3 +1.9 +1.6 +1.2 +1.8 ΔCAA [g/L]c +0.3 +2.8 +2.8 +2.8 +2.6 +2.4 +2.1 +2.7 STY [g/(L h)]d 0.7 1.5 1.4 1.2 0.8 0.8 0.8 1.0 Yield [g/g]d 1.2 0.6 0.6 0.5 0.6 0.6 0.6 0.6 a cultivation time
b consumption of carbon source
c formation of succinic, lactic, formic and acetic acid
d space time yield and yield for succinic acid - Table 11 shows that in all cases substantial SA-amounts are formed. SA production from glycerol (glyc) instead of sucrose (suc), D-glucose (gluc), D-fructose (fruc), D-xylose (xyl), L-arabinose (ara), D-galactose,(gal) or D-mannose (man) by DD1 has two obvious advantages: i) a substantially higher yield, ii) a substantially lower formic and acetic acid formation. On the other hand the SA productivity (space time yield) with glycerol is slightly lower than with the sugars. However, DD1's SA productivity with glycerol is substantially higher than the value obtained with Anaerobiospirillum succiniciproducens by Lee et al., 2001 (0.14 g SA/[L h]).
- Especially the substantially higher Yield achieved with glycerol is a very interesting result: It can contribute to a clear reduction of production cost for fermentative succinic acid, succinic acid salts and BDO/GBL/THF or pyrrolidones made from it, respectively - in particular if the cheap crude glycerol from biodiesel plants can be applied.
- DD1's SA productivity on different crude glycerols (C1 to C3) was evaluated in serum bottle trials with 10 g/L of the respective glycerol (10 g/L pure glycerol [P1] as reference).
- The medium composition is described in the following table 12.
Table 12: Medium composition for the test on SA formation from different crude glycerols. Compound Concentration [g/L] Concentration of stock solution [g/L] C-source varyinga varying Bacto yeast extrakt (Becton Dickinson) 5 100 Bacto peptone (Becton Dickinson) 5 100 (NH4)2 SO4 1 500 CaCl2*2H2O 0.2 20 MgCl2*6H2O 0.2 20 NaCl 1 100 K2HPO4 3 500 MgCO3 (Riedel-de Haen 13117) 30 - a Concentrations were 50 g/L of glucose in the seed culture and 10 g/L of the respective glycerol in the main culture - MgCO3 and water (1.5 g and 40 mL) were sterilized in 100 mL-serum bottles (121 °C, 20 min). After cooling down separate sterile solutions of the other compounds were added. Yeast extract, peptone, ammonium sulfate and K2HPO4 were all separately sterilized by filtration of the respective stock solution. For Ca-, Mg- and Na-chlorides one stock solution was prepared which was sterilized by filtration. Glucose and the different glycerols were all separately sterilized (121 °C, 20 min). For the reference trial with pure glycerol (P1) the quality 'Glycerol 99 %, puriss.' (Riedel-de Haen, product numer: 15523-1 L-R) by Honeywell Specialty Chemicals Seelze GmbH, Seelze, Germany, was used.
- The seed culture was grown in a 100 mL-serum bottle with gas tight butyl rubber stopper (see above) containing 50 mL of the medium described in table 12 with 50 g/L glucose and a CO2-atmosphere with an overpressure of 0.8 bar. Inoculation was conducted with 1 mL of the WCB (example 2). Incubation was performed for 15 h at 37 °C and 170 rpm (shaking diameter: 2.5 cm). At the end of the cultivation the glucose concentration had decreased to about 17 g/L.
- The cell suspension was centrifuged (Biofuge primo R, Heraeus) with 5000 g for 5 minutes and the cell pellet was washed and then resuspended in 50 mL of the medium without glucose and without MgCO3 to generate a glucose-free inoculum.
- The main cultures were grown in 100 mL-serum bottles containing in 50 mL of the medium with 10 g/L of the respective glycerol and a CO2--atmosphere with 0.8 bar overpressure. Inoculation was performed with 2.0 mL of the glucose-free inoculum. The bottles were incubated for 9 h at 37 °C, and 170 rpm (shaking diameter: 2.5 cm).
- Consumption of the respective C-source (glucose in seed culture, glycerol in main culture) and production of SA and by-products was measured by HPLC as described in example 5.
- In the following table 13 the results are summarized.
Table 13: SA and by-product formation from different glycerols by DD1. Glycerol type C1 C2 C3 P1 Producera ecoMotion Biopetrol Glacon Chemie Sigma-Aldrich Purity [%]b 90 42 76 99 tc [h]c 9 9 9 9 ΔCGI [g/L]d -6.3 -6.9 -6.5 -5.4 ΔCSA [g/L]e +7.6 +8.4 +7.4 +6.2 ΔCLA [g/L]e 0 +0.1 +0.1 +0.1 ΔCFA [g/L]e +0.3 +0.3 +0.3 +0.3 ΔCAA [g/L]e +0.3 +0.5 +0.3 +0.3 STY [g/(L h)]f 0.8 0.9 0.8 0.7 Yield [g/g]f 1.2 1.2 1.1 1.1 a ecoMotion GmbH, Stemberg, Germany,
Biopetrol Schwarzheide GmbH, Schwarzheide, Germany,
Glacon Chemie, Merseburg, Germany,
Riedel de Haen (product number 15523-1 L-R) by Sigma-Aldrich Laborchemikalien GmbH, Seelze, Germany
b Producer's analysis
c cultivation time
d consumption of glycerol
e formation of succinic, lactic, formic and acetic acid
f space time yield and yield for succinic acid - Table 13 shows that after 9 h the SA concentration and hence the STY obtained with the crude glycerols C1 to C3 (7.4 to 8.4 g SA/L and 0.8 to 0.9 g SA/[L h]) is in all cases higher than the respective values obtained with the pure glycerol P1 (6.2 g SA/L and 0.7 g SA/[L h]). The crude glycerols have therefore in addition to the lower price the advantage of better productivity. The Yields obtained with the crude glycerols C1 to C3 (1.1 to 1.2 g SA/g glycerol) are similar to the respective value obtained with the pure glycerol P1 (1.1 g SA/g glycerol).
- A common approach for the fermentative production of succinic acid and/or succinic acid ammonium salts from glucose would be a NH3-controlled fed batch cultivation with a certain initial glucose level. This set-up requires both NH3NH4OH- and glucose tolerance of the strain. To test DD1 for these properties batch cultivations with NH4OH as pH-control agent and varying glucose levels were performed.
- Composition of the cultivation medium is described in table 14.
Table 14: Medium composition for pH-controlled batch cultivations with varying glucose levels. Compound Concentration [g/L] Concentration of stock solution [g/L] Glucose Varyinga 650 Bacto yeast extrakt (Becton Dickinson) 5 - Bacto peptone (Becton Dickinson) 5 - (NH4)2 SO4 1 500 CaCl2*2H2O 0.2 20 MgCl2*6H2O 0.2 20 NaCl 1 100 K2HPO4 3 500 L-Cystein 0.24 120 MgCO3 (Riedel-de Haen 13117) 2 - a The initial glucose concentration in the preculture was 50 g/L and in the fermentors - Yeast extract, peptone and MgCO3 were autoclaved together in the fermentors and serum bottles. Glucose, ammonium sulfate and K2HPO4 were all separately autoclaved. Ca-, Mg- and Na-chlorides were autoclaved together. After cooling down the fermentors and serum bottles the missing components were added as sterile stock solutions. For the precultures the same medium composition was used but MgCO3 was adjusted to 30 g/L.
- Precultures were grown anaerobically in 100 mL-serum bottles with gas tight butyl rubber stoppers (Ochs GmbH, Bovenden/Lenglern, Germany) containing 50 mL preculture medium at 37 °C in a shaking incubator (rotary speed: 160 rpm, shaking diameter: 2.5 cm). Inoculation of the precultures was performed with 1 mL of a DD1-working cell bank in the anaerobic chamber (MAKS MG 500, meintrup-dws). Immediately after the inoculation the gas atmosphere (80 % N2, 15 % CO2 and 5 % H2) was substituted by pure CO2 with an overpressure of about 0.8 bar. After 16 to 18 h of incubation two bottles were pooled in the anaerobic box and in each
case 15 mL were used to inoculate the fermentors (Sixfors, Infors, Switzerland) containing 300 mL cultivation medium which had been gassed over night with CO2 to ensure oxygen-free conditions. Cultivation temperature was 37 °C, the pH of 6.5 was maintained with 25 % NH4OH. CO2-gas stream and stirrer speed were adjusted to 0.1 L/min and 500 rpm, respectively. Consumption of glucose and production of SA were quantified by HPLC as described in example 1. - The results are shown in
figure 5 . - In NH4OH-controlled batch cultivations with glucose up to 40 g/L SA are formed within 48 h. DD1 has therefore a strong synthesis potential for succinic acid and/or succinic acid ammonium salts which are favourable for the chemical conversion to THF/BDO/GBL and pyrrolidones (
WO-A-2006/066839 ). - The initial SA production rate in the trials with 75 g/L of glucose is slightly lower than in the trials with 50 and 25 g/L. However, between 6 and 12 h there is no such difference anymore indicating that substrate inhibition is not an issue at glucose levels of up to 75 g/L.
- In this experiment cultivation temperature and -pH were varied in NH4OH-controlled batch cultivations with 75 g/L glucose.
- Apart from the constant glucose concentration medium composition and preparation were the same as those in example 8 'Ammonia and glucose tolerance of DD1'.
- Apart from the different cultivation temperatures and -pH-values tested the experimental conditions of the cultivations and HPLC analyses were identical to those in example 8 'Ammonia and glucose tolerance of DD1'.
- The results are shown in
figure 6. Figure 6 shows that the two trials at 37 °C and pH 6.5 are very similar with respect to both, glucose consumption and SA production indicating a low variability. On the basis of this variability the trials, which were performed at pH 6.5 show that between 34.5 and 39.5 °C the cultivation temperature has no impact on the process performance. However, the trials at 37 °C indicate that a pH-reduction by 0.5 units results in a clear and a pH-increase by 0.5 units results in a slight drop of the SA productivity. On the basis of these results further cultivations of DD1 were - if pH-control was possible - performed at pH 6.5. - Enrichment and isolation of DD1 was performed in a cultivation medium containing 5 g/L yeast extract and 5 g/L peptone. Therefore the first experiments with DD1 were conducted in a medium with these compounds. Since they contribute to cost for raw materials and introduce additional impurities, different media compositions were tested in which yeast extract and peptone are reduced and substituted by the cheaper corn steep liquor (Solulys L48L, Roquette), respectively. The initial media composition of the trials is indicated by figures (representing the concentration, i. e. 2, 5, 15 or 25 g/L) and letters (representing the respective complex compound, i. e. yeast extract, peptone or corn steep liquor).
- Apart from the respective modification of the yeast extract - and peptone - concentration and the additional corn steap liquor medium composition and - preparation were the same as those in example 8 'Ammonia and glucose tolerance of DD1'. The batch concentration of glucose was 50 g/L in all trials.
- The experimental conditions were identical to those in example 8 'Ammonia and glucose tolerance of DD1'. All cultivations were performed at 37 °C, the cultivations in fermentors were maintained at pH 6.5 with 25 % NH4OH. HPLC analyses were performed as described in example 8.
- The results are shown in
figure 7 . Comparison of the trials '5Y5P' and '5Y' shows that peptone can be omitted without any negative effect on the SA production. The partial substitution of yeast extract by CSL does not result in reduced succinic acid production, either (trial '5Y' vs. trials '2Y15C'). However, the complete substitution of yeast extract by CSL results in moderate productivity losses. - The by-product spectrum of the trials '5Y5P' and '5Y' is shown in
figure 8. Figure 8 shows that omission of peptone in the cultivation medium results in substantially lower concentrations of formic and acetic acid, whereas the concentrations of lactic acid were comparable in both trials. This experiment indicates potential for medium improvement by i) reduction of raw material cost, ii) reduction of impurities introduced by the medium compounds and iii) reduction of side product formation during the cultivation. - Since the fermentative SA production is a process that depends on anaerobic conditions, the cultivation of DD1 for SA production has to be performed in the absence of oxygen. However, it is very important to know if DD1 tolerates the presence of oxygen, too. If this is the case the strain can be handled under aerobic conditions which makes the lab work a lot easier and faster. Therefore strain DD1 was tested in shake flask experiments with glucose.
- Medium composition and preparation were the same as described in table 8.
- Anaeorbic seed cultures were grown in 100 mL-serum bottles with gas tight butyl rubber stoppers (see above) containing 50 mL medium with 50 g/L of glucose and 30 g/L of MgCO3 and a CO2-atmosphere with an overpressure of 0.8 bar at 37 °C and 160 rpm (shaking diameter: 2.5 cm) for 16 h. Inoculation was performed with 1 mL of the WCB (example 2). 7.5 mL of these precultures were used to inoculate the aerobic main cultures.
- Aerobic main cultures (150 mL medium with 60 g/L of glucose and 80 g/L of MgCO3) were grown at 37 °C and 200 rpm (shaking diameter: 2.5 cm) in 500 mL Erlenmeyer flasks with two baffles and cotton plugs. Substrate consumption and product formation were measured by HPLC as described in example 1.
- The results are shown in
figure 9 . The results clearly show aerobic glucose consumption by strain DD1. The main products are acetic and lactic acid which are the dominating products of aerobically grown cells of "Mannheimia succiniciproducens" MBEL 55E, too (Lee et al., 2002a). Initial SA levels are introduced by the anaerobic preculture and are widely consumed after 15 h of cultivation. The data clearly show that DD1 is oxygen tolerant. - The closest relative of DD1 is "Mannheimia succiniciproducens" MBEL 55E, a strain isolated by KAIST (see above). To compare DD1 with said strain the cultivation experiment described by KAIST (Fig. 2b in Lee et al., 2002a and
Fig. 3 in Lee et al., 2002b) was performed with DD1. - The composition of the cultivation medium was identical to the respective experiment of Lee et al., 2002b and is described in the following table 15.
Table 15: Medium composition for batch cultivations of DD1 under the conditions described by Lee et al., 2002b. Compound Concentration [g/L] Concentration of stock solution [g/L] Glucose 20 650 Bacto yeast extrakt (Becton Dickinson) 5 - Polypeptone peptone (Becton Dickinson) 5 - (NH4)2SO4 1 500 CaCl2*2H2O 0.2 20 MgCl2*6H2O 0.2 20 NaCl 1 100 K2HPO4 3 500 MgCO3 (Riedel-de Haen 13117) 10 - - Yeast extract, peptone and MgCO3 were autoclaved together in the fermentors and serum bottles. Glucose, ammonium sulfate and potassium phosphate were all separately autoclaved. Ca-, Mg- and Na-chlorides were autoclaved together. After cooling down the fermentors and serum bottles the missing components were added as sterile stock solutions. For the seed cultures the same medium was used.
- The seed culture was grown anaerobically in a 100 mL-serum bottle with gas tight butyl rubber stoppers containing 50 mL medium at 39 °C in a shaking incubator (rotary speed: 160 rpm, shaking diameter: 2.5 cm). Inoculation of the seed culture was performed with 1 mL of the WCB (example 2) in the anaerobic chamber (MAKS MG 500, meintrup-dws). Immediately after the inoculation the gas atmosphere (80 % N2, 15 % CO2 and 5 % H2) was substituted by pure CO2 with an overpressure of about 0.8 bar. After 9 h of incubation the fermentor was inoculated with 30 mL to start the cultivation in the fermentor (Sixfors, Infors Switzerland) containing 300 mL cultivation medium which had been gassed over night with CO2 to ensure oxygen-free conditions. The cultivation temperature was maintained at 39 °C and the pH at 6.5 with 5 M NaOH. The CO2-gas stream was adjusted to 0.25 vvm. The stirrer speed was adjusted to 500 rpm.
- Glucose consumption and SA and by-product formation were measured by HPLC as described in example 1.
- The results are summarized in
figure 10 . Within 5 h of incubation 18.9 g/L of glucose are consumed and 12.3 g/L of succinic acid, 4.5 g/L of acetic acid and 3.3 g/L of formic acid are produced by DD1, indicating a product spectrum which is similar to the one of MBEL55E. However, the space time yield obtained with DD1 for succinic acid is 2.5 g/(L h), which is clearly higher than the one of strain MBEL55E (1.8 g/[L h], Lee et al., 2002b). The Yield is 0.7 g succinic acid/g glucose which is similar to the one of strain MBEL55E. - It is favorable to use a synthetic medium without complex ingredients for the fermentation of DD1 in order to improve downstream processing and design a lean synthetic medium for cost efficient fermentation. Therefore, a synthetic medium was designed for DD1. Meanwhile, a synthetic medium had also been published for the close relative Mannheimia succiniciproducens (Song et al, 2008). Essential and stimulatory compounds had been determined for growth of DD1. Comparing the results with Mannheimia succiniciproducens obvious differences were observed, hinting to a more economic growth medium suitable for the strain DD1.
- The synthetic growth medium for DD1 was developed in relation to other synthetic growth media for rumen bacteria (Nili and Brooker, 1995, McKinlay et al, 2005), previous in house experience with other bacteria and by performing single omission experiments. Finally, the medium contained 50 g/L glucose, 1 g/L (NH4)2SO4, 0.2 g/L CaCl2*2H2O, 0.2 g/L MgCl2*6H2O, 1 g/L NaCl, 3 g/L K2HPO4, 1 mg/L nicotinic acid, 1.5 mg/L pantothenic acid, 5 mg/L pyridoxine, 5 mg/L riboflavin, 5 mg/L biotin, 1.5 mg/L thiamin HCl, 0.26 g/L lysine, 0.15 g/L threonine, 0.05 g/L methionine, 0.71 g/L glutamic acid, 0.06 g/L histidine, 0.07 g/L tryptophane, 0.13 g/L phenylalanine, 0.06 g/L tyrosine, 0.5 g/L serine, 0.5 g/L glycine, 0.5 g/L cysteine, 0.1 g/L ß-Alanine, 0.27 g/L alanine, 0.19 g/L valine, 0.23 g/L leucine, 0.16 g/L isoleucine, 0.33 g/L aspartic acid, 0.1 g/L asparagine, 0.13 g/L proline, 0.15 g/L arginine and 0.1 g/L glutamine.
- Serum bottles containing 50 mL of complex or synthetic medium were autoclaved with water and 30g/L MgCO3 as the buffer system. Glucose, ammonium sulfate and potassium phosphate were sterilized, separately. Ca-, Mg- and Na-chlorides were sterilized together. Vitamins and amino acids were assembled in various stock solutions and filter sterilized. After cooling down the serum bottles the components were added as sterile stock solutions.
- Standard complex medium was prepared as described in example 12 without using polypeptone and starting at 50 g/L glucose and 30 g/L MgCO3. For seed cultures and some main culture control experiments complex medium was used.
- The seed culture was grown in complex medium anaerobically using a 100 mL-serum bottle with gas tight butyl rubber stoppers containing 50 mL medium at 37 °C in a shaking incubator (rotary speed: 170 rpm, shaking diameter: 2.5 cm). Inoculation of the first seed culture was performed aerobically with 1 mL of the WCB (example 2) under sterile conditions. Immediately after inoculation the aerobic gas atmosphere was substituted by pure CO2 with an overpressure of about 0.8 bar. After 8 h of
incubation 2 ml of the first seed culture was centrifuged and washed three times using a sterile wash solution containing 2 g/L (NH4)2SO4, 0.4 g/L CaCl2*2H2O, 0.4 g/L MgCl2*6H2O, 2 g/L NaCl and 6 g/L K2HPO4 before inoculation into the second seed culture 100 mL-serum bottle. - The incubation of the second seed culture occurred for 20 h as described for the first seed culture, before using 2 mL of the second culture again in order to inoculate the main culture, which was incubated for another 20 h. In order to determine essential or stimulatory compounds, the vitamin or amino acid of interest was omitted in the second seed culture and the main culture. Glucose consumption and Succinic acid formation were measured by HPLC as described in example 1.
- The results are summarized in table 16. It was observed that the medium ommitting biotin and thiamin HCl did not sustain growth and succinic acid production. Biotin and thiamin HCl were therefore shown to be essential compounds for growth of DD1. Concentrations of biotin lower than 0.6 mg/L were sufficient for growth of DD1. The amino acid cysteine was found to be not essential for growth off DD1, as the omitting of cysteine lead to similar succinic acid production as in the cysteine containing control.
- In contrast to these results, biotin was described as not essential but stimulatory and cysteine as essential for growth of Mannheimia succiniciproducens (Song et al, 2008). Thiamin HCl is essential for both organisms. A strain prototrophic for cysteine is expected to have a leaner and cheaper production medium for succinic acid production.
Table 16: Glucose consumption and succinic acid production by DD1 grown in synthetic medium Growth conditions Glucose consumption [g/L] Succinic Acid production [g/L] Complete synthetic medium 49.93 30.35 Synthetic medium without biotin 0.8 0.08 Synthetic medium without thiamin HCl 6.27 0.81 Synthetic medium without cysteine 48.88 30.01 - The productivity of the strain DD1 in the presence of gylcerol as a carbon source was further analyzed utilizing the following optimized medium and incubation conditions:
- DD1 was grown in the following fashion. Cells from a frozen stock solution were streaked on an BHI-Agar plate (Becton Dickinson). Cells were scraped off and suspended in fresh BHI medium and incubated in an anaerobic serum bottle at 37°C for 5.5 h. Cells were inoculated in the medium containing the compounds described in table 17 using 100 mL serum bottles. The start OD at 600 nm was 0.1 (determined in a 1 mL path). The medium components 1-7 were autoclaved together,
compound 8 was autoclaved in the serum bottle, compounds 9 and 10 were autoclaved separately and added to the final medium. Serum bottles were sparged at least three times with CO2 through butyl-rubber stoppers and left with a CO2 overpressure of 0.8 bar. Serum bottles were incubated at 200 rpm and 37°C. After 24 h serum bottles were opened and metabolites were determined by HPLC as described in example 1. Table 17: Medium compositionCompound Concentration [g/L] 1 Bacto yeast ectrakt (Becton Dickinson) 5 2 Polypeptone peptone (Becton Dickinson) 10 3 (NH4)2SO4 2 4 CaCl2*2H2O 0.2 5 MgCl2*6H2O 0.2 6 NaCl 2 7 K2HPO4 3 8 MgCO3 (Riedel-de Haen 13117) 50 9 NaHCO 325 10 Glycerol 70 Table 18: Results of example 14 Glycerol metabolisation tc [h]c 24 ΔCGI [g/L]d -28.4 ΔCSA [g/L]e +35.3 ΔCLA [g/L]e 0 ΔCFA [g/L]e +2.4 ΔCAA [g/L]e +2.5 STY [g/(L h)]f 1.47 Yield [g/g]f 1.24 Ratio SA/FAg 14.7 Ratio SA/AAg 14.1 c cultivation time.
d consumption of glycerol.
e formation of succinic, lactic, formic and acetic acid.
f space time yield and yield for succinic acid.
g ratio g/L succinic acid per g side product formic acid (FA) and acetic acid (AA) - The following results were obtained as described in table 18. DD1 produced 35.3 g/L succinic acid from 28.4 g/L glycerol in 24 h, leading to a space time yield of 1.47 g/L succinic acid per h, which is superior to other documented examples of glycerol metabolisation (Lee et al. 2001). The yield of 1.24 g/g was close to the described theoretical yield of 1.29 g succinic acid per g of glycerol, if the turnover of 1M glycerol and 1M CO2 to 1M succinic acid is achieved (Song and Lee, 2006).
- The productivity of DD1 in the presence of two carbon sources was determined. DD1 was grown in the presence of the disaccharide maltose and glycerol simultaneously.
- Cells from a frozen stock solution were streaked on a BHI-Agar plate (Becton Dickinson). Cells were scraped off and suspended in fresh BHI medium and incubated in an anaerobic serum bottle at 37°C for 5,5 h. The medium is described in table 19. 200 mL serum bottles were used. Cells were inoculated with a start OD of 0.1 (determined in a 1 mL path with a pharmacia photometer at 600 nm). Serum bottles were sparged at least three times with CO2 through butyl-rubber stoppers and left with a CO2 overpressure of 0.8 bar. Serum bottles were incubated at 200 rpm and 37°C.
Table 19: Medium preparation for example 15 Compound Concentration [g/L] Maltose * H2O 22 Glycerol 56.82 Bacto yeast extract 10 (NH4)2SO4 2 CaCl2*2H2O 0.2 MgCl2*6H2O 0.2 NaCl 2 K2HPO4 3 NaHCO3 8.4 MgC03 50 Antifoam Polypropylenglycol 1200 0.1 - The seed culture was inoculated with a 2 mL frozen culture grown anaerobically in a 200 mL serum bottle with gas tight butyl rubber stoppers containing 50 mL medium at 37 °C in a shaking incubator (rotary speed: 160 rpm, shaking diameter: 2.5 cm). The bottle was sparged by pure CO2 with an overpressure of about 0.8 bar. After 8 h of incubation the fermentor was inoculated with 50 mL to start the cultivation in the fermentor containing 1 L cultivation medium which had been gassed with CO2 to ensure oxygen-free conditions. The cultivation temperature was maintained at 37 °C and the pH at 6.5 without addition of bases except the buffer MgCO3 in the medium. The CO2-gas stream was adjusted to 0.2 vvm. The stirrer speed was adjusted to 300 rpm. Maltose and glycerol consumption and SA and by-product formation were measured by HPLC as described in example 1. Cells were grown at 37°C and biomass was determined taking a sample and dissolving the residual MgCO3 by the addtition of 1M HCl. After dissolving MgCO3 cells were washed with water and dried by lyophilization. Dry biomass was determined by weighing.
- The results are summarized in table 20. Within 16 h of incubation 36.5 g/L of glycerol and 11.2 g/L maltose are consumed and 57.54 g/L of succinic acid, 3.41 g/L of acetic acid and 3.7 g/L of formic acid are formed by DD1.The space time yield obtained with DD1 for succinic acid is 3.4 g/(L h), which is clearly higher than previously reported for the strain MBEL55E and Anaerobiospirillum succiniciproducens and is superior to other strains described in literature (Lee et al, 2002b, Lee et al, 2001, Song and Lee, 2006).
- The succinic acid yield was determined as 1.2 g succinic acid per g of carbon source for the sum of glycerol and maltose. This yield is also superior to strains described in literature (Lee et al, 2002b, Lee et al, 2001, Song and Lee, 2006).
- The space time yield of 3.7 g/(L h) succinic acid is superior to strains described in literature (Song et al, 2006)
- In addition the specific productivity for succinic acid of 0.77 [g gDCW-1 h- 1]h was found to be superior to strains described in literature (Song et al, 2006).
Table 20: Results of example 15 Glycerol and maltose as carbon sources tc [h]b 16 Biomass BTM [g/L] 4.7 ΔCGlycerol [g/L]d -36.5 ΔCSuccinic cacid[g/L]e 57.54 ΔC Maltose [g/L]d -11.2 ΔCFA [g/L]e 3.7 ΔCAA [g/L]e 3.41 STY [g/(L h)]f 3.4 Yield succinate [g/g]g 1.2 Specific productivity for SA [g gDCW-1 h-1]h 0.77 b cultivation time
c dry biomass as determined by solubilisation of MgCO3
d consumption of glycerol or maltose
e formation of succinic, formic and acetic acid
f space time yield g succinic acid per (L *h)
g yield g succinic acid per g substrate (sum of maltose and glycerol)
h Specific productivity g succinic acid per g biomass (dry cell weight) per h -
- 1. Strain DD1 of the present invention has very promising features:
- Attractive productivity parameters on glycerol (SA titer: up to 57 g/L, space time yield of 3.4 g/(L h) succinic acid, a specific productivity for succinic acid of 0.77 g /(g DCW h) and a carbon yield of up to 1.24 g/g carbon consumed.
- Glucose and glycerol levels of at least 75 g/L and 70 g/L respectively are tolerated.
- D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose are efficiently converted into SA, indicating suitability for SA production with a biorefinery approach
- Glycerol, especially the unpurified material from bio diesel plants, is also efficiently used for SA production; Yields space time yields specific productivities and product/byproduct-ratios are substantially higher and better than with D-glucose and other sugars.
- NH3/NH4OH for pH-control is tolerated, production of succinic acid and/or succinic acid ammonium salts is therefore possible
- D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose are efficiently converted into SA, indicating suitability for SA production with a biorefinery approach
- Glycerol, especially the unpurified material from bio diesel plants, is also efficiently used for SA production; Yields and product/byproduct-ratios are substantially higher than with D-glucose and other sugars.
- The combination of separate carbon sources are efficiently converted into succinic acid
- Aerobic cell growth is possible, which is a clear advantage for the general handling of the strain in the lab, especially for further strain development
- The cultivation medium was substantially improved without productivity losses.
-
- 1. The strain has an excellent potential for the production of succinic acid and/or succinic acid salts, e. g. ammonium salts, which can be converted to THF/BDO/GBL and pyrrolidones.
- 2. Production of succinic acid for monomer applications is another attractive option.
-
- Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering. Biotech Bioeng 94: 821-829.
- Janssen PH (1991) Characterization of a succincate-fermenting anaerobic bacterium isolated from a glycolate-degrading mixed culture. Arch Microbiol 155: 288-293.
- Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Mammalian Protein Metabolism,
- Kamm B, Kamm M, Schmidt M, Hirth T, Schulze M (2006) Lignocellulose-based chemical products and product family trees. In: Kamm B, Gruber, PR, Kamm M (eds.) Biorefineries - Industrial Processes and products. Status Quo and future directions. Vol. 2. Wiley-VCH, Weinheim.
- Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotech 56: 1-24.
- Lee PC, Lee SY, Hong SA, Chang HN (2002a) Isolation and characterization of a new Succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL 55E, from bovine rumen. Appl Microbiol Biotechnol 58: 663-668.
- Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotech Bioeng 72: 41-48.
- Lee SY, Chang HN, Lee PC, Lee WG (2002b) Organic acid producing microorganism and process for preparing organic acids employing the same.
WO 02/00846 A1 - Maidak BL, Cole JR, Parker Jr TC, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (Ribosomal Database Project). Nucl Acids Res 27:171-173.
- McKinlay J, Zeikus J, Vieille C (2005) Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl Environ Microbiol 71: 6651-6656.
- Nili N, Brooker J (1995) A defined medium for rumen bacteria and identification of strains impaired in de-novo biosynthesis of certain amino-acids. Lett Appl Microbiol 21: 69-74.
- Peters-Wendisch, PG et al. ARCHIVES OF MICROBIOLOGY 165 387-396 1996.
- Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distict actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46: 1088-1092.
- Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.
- Song H and Lee S (2006) Production of succinic acid by bacterial fermentation. Enz Microb Tech 39: 352-361.
- Song H, Kim T, Choi B, Choi S, Nielsen L, Chang H, Lee S (2008) Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence. Appl Microbiol Biotechnol 79: 263-272.
- Yazdani S, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opinion Biotechnol 18: 213-219.
-
conversion of a carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0.6 g gDCW-1 h-1 succinic acid or of at least of at least 0.65 or of at least 0.7 g g DCW-1 h-1 succinic acid, or of at least 0.75 g gDCW-1 h-1 succinic acid, or of at least 0.77 g gDCW-1 h-1 succinic acid.
exp no | inctime [h] | C-source | Buffer | anti-obiotics | red. Agent | C-source [g/L] | succinic [g/L] | lactic [g/L] | formic [g/L] | acetic [g/L] | propionic [g/L] | ethanol [g/L] |
1 | 8 | arabinose | MgCO3 | las+mon | - | 13.3 | 0.2 | 0.1 | 0.2 | 0.2 | 0.0 | 1.1 |
2 | 8 | arabinose | MgCO3 | las+mon | - | 13.4 | 0.2 | 0.1 | 0.2 | 0.2 | 0.0 | 1.1 |
3 | 8 | arabinose | MgCO3 | las+mon | - | 13.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.0 | 1.1 |
1 | 24 | arabinose | MgCO3 | las+mon | - | 0.0 | 1.6 | 1.2 | 3.5 | 3.9 | 0.4 | 3.5 |
2 | 24 | arabinose | MgCO3 | las+mon | - | 0.0 | 1.6 | 1.3 | 3.4 | 4.0 | 0.4 | 3.5 |
3 | 24 | arabinose | MgCO3 | las+mon | - | 0.0 | 1.7 | 1.3 | 3.1 | 3.8 | 0.4 | 3.4 |
1 | 30 | arabinose | MgCO3 | las+mon | - | 0.0 | 0.0 | 1.3 | 3.4 | 4.0 | 1.4 | 3.1 |
2 | 30 | arabinose | MgCO3 | las+mon | - | 0.0 | 0.9 | 1.4 | 3.4 | 4.1 | 0.9 | 3.2 |
3 | 30 | arabinose | MgCO3 | las+mon | - | 0.0 | 0.0 | 1.4 | 3.0 | 4.0 | 1.4 | 3.1 |
Claims (24)
- A bacterial strain, being a member of the family Pasteurellaceae, originally isolated from rumen, capable of utilizing glycerol as a carbon source and variant and mutant strains derived there from retaining said capability.
- The strain of claim 1 having the ability to produce succinic acid from glycerol.
- The strain of one of the preceding claims, having a 16S rDNA of SEQ ID NO: 1; or a sequence, which shows a sequence homology of at least 96, 97, 98, 99 or 99.9 %.
- The strain of one of the preceding claims, having a 23S rDNA of SEQ ID NO: 2; or a sequence, which shows a sequence homology of at least 95, 96, 97, 98, 99 or 99.9%.
- The strain of one of the preceding claims, showing at least one of the following additional metabolic characteristics:a) production of succinic acid from sucrose;b) production of succinic acid from maltosec) production of succinic acid from D-fructose;d) production of succinic acid from D-galactose;e) production of succinic acid from D-mannose;f) production of succinic acid from D-glucose;g) production of succinic acid from D-xylose;h) production of succinic acid from L-arabinose;i) no utilization of xylitol, inositol, sorbitol;j) growth both under aerobic and anaerobic conditions;k) growth at initial glucose concentrations of 75 g/l or morel) growth at initial glycerol concentrations of 70 g/l or morem) ammonia tolerance.
- The strain of one of the preceding claims, converting sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a yield coefficient YP/S of at least 0.5 g/g.
- The strain of one of the preceding claims, having at least one of the following characteristicsa) converting at least 28 g/L of glycerol to at least 28.1 g/L succinic acid, with a yield coefficient YP/S of at least 1.0 g/g;b) converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0.6 g gDCW-1 h-1 succinic acid;c) converting a at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space time yield for succinic acid of at least 2.2 g/(L h) succinic acid;d) converting at least 28 g/L of at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space-time-yield for succinic acid of at least 2.2 g/(L h);e) converting at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0,6 g gDCW-1 h-1 succinic acid and a space-time-yield for succinic acid of at least 2.2 g/(L h).
- A process for the fermentative production of an organic acid or a salt or derivative thereof, which process comprises the steps of:a) incubating a bacterial strain as defined in one of the preceding claims in a medium containing an assimilable carbon source and cultivating said strain under conditions favouring the formation of the desired organic acid; andb) obtaining said organic acid or salt or derivative thereof from the medium.
- The process of claim 8, wherein fermentation is performed at a temperature in the range of about 10 to 60 °C at a pH of 5.0 to 9.0 in the presence of carbon dioxide.
- The process of claim 8 or 9, wherein said organic acid is succinic acid.
- The process of one of the claims 8 to 10, wherein the assimilable carbon source is selected from glycerol, sucrose, maltose, D-fructose, D-galactose, D-mannose, D-glucose, D-xylose, L-arabinose, decomposition products of starch, cellulose, hemicelluloses and lignocellulose; and mixtures thereof.
- The process of claim 11, wherein the carbon source is glycerol or a mixture of glycerol and at least one further carbon source selected from sucrose, maltose, D-fructose, D-galactose, D-mannose, D-glucose, D-xylose, and L-arabinose.
- The process of one of the claims 8 to 12, wherein the concentration of the assimilable carbon source is adjusted to a value in a range of 5 to 80 g/l.
- A process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:a) incubating a bacterial strain in a medium containing at least one assimilatable carbon source and cultivating said strain under conditions favoring the formation of the desired organic acid;b) obtaining said organic acid or salt or derivative thereof from the medium; additionally characterized by at least one of the following features:c) conversion of at least 28 g/L of glycerol to at least 28.1 g/L succinic acid, with a yield coefficient YP/S of at least 1.0 g/g;d) conversion of at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0.6 g gDCW-1 h-1 succinic acid;e) conversion of at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space time yield for succinic acid of at least 2.2 g/(L h) succinic acid;f) conversion of at least 28 g/L of at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space-time-yield for succinic acid of at least 2.2 g/(L h);g) conversion of at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a specific productivity yield of at least 0,6 g gDCW-1 h-1 succinic acid and a space-time-yield for succinic acid of at least 2.2 g/(L h).
- A process for the fermentative production of succinic acid or a salt or derivative thereof, which process comprises the steps of:a) incubating a bacterial strain in a medium containing at least one assimilatable carbon source and cultivating said strain under conditions favoring the formation of the desired organic acid;b) obtaining said organic acid or salt or derivative thereof from the medium; additionally characterized byc) conversion of at least one carbon source selected from sucrose, maltose, D-fructose, D-glucose, D-xylose, L-arabinose, D-galactose, D-mannose, and/or glycerol to succinic acid with a space time yield for succinic acid of at least 2.2 g/(L h) succinic acid, in particular at least 2.5, 2.75, 3 or 3.25 g/(Lh) succinic acid.
- The process of claim 14 or 15, wherein said bacterial strain is a strain as defined in anyone of the claims 1 to 7.
- The process of one of the claims 8 to 16, performed discontinuously or continuously.
- A process for the production of succinic acid and/or succinic acid ammonium salts which method comprises the fermentative production of succinic acid according to one of the claims 8 to 17 and controlling the pH with ammonia or an aqueous solution thereof, or NH4HCO3, (NH4)2CO3, NaOH, Na2CO3, NaHCO3, KOH, K2CO3, KHCO3, Mg(OH)2, MgCO3, MgH(CO3)2, Ca(OH)2, CaCO3, Ca(HCO3)2, CaO, CH6N2O2, C2H7N and mixtures thereof.
- A process for the production of tetrahydrofuran (THF) and/or 1,4-butanediol (BDO) and/or gamma-butyrolactone (GBL), which comprisesa) the fermentative production of succinic acid and/or succinic acid salts, as defined in claim 18, andb1) either the direct catalytic hydrogenation of the obtained free acid to THF and/or BDO and/or GBL orb2) the chemical esterification of obtained free succinic acid and/or succinic acid salts to its corresponding di-loweralkyl ester and subsequent catalytic hydrogenation of said ester to THF and/or BDO and/or GBL.
- A process for the production of pyrrolidones which comprisesa) the fermentative production of succinic acid ammonium salts as defined in claim 18, andb) the chemical conversion of succinic acid ammonium salts to pyrrolidones in a manner known per se.
- A process of anyone of the claims 12 to 20, wherein said glycerol, which is used as assimilable carbon source, is obtained by ester cleavage of triacylglycerides.
- The process of claim 21, wherein glycerol is a waste product as obtained from the manufacture of bio diesel.
- The use of a bacterial strain as defined in one of the claims 1 to 7 for the fermentative production of an organic fine chemical.
- The use of claim 23, wherein the organic fine chemical is succinic acid or a salt or derivative thereof.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07114574 | 2007-08-17 | ||
EP08785561.5A EP2185682B1 (en) | 2007-08-17 | 2008-08-14 | Carboxylic acid producing member of the pasteurellaceae |
PCT/EP2008/006714 WO2009024294A1 (en) | 2007-08-17 | 2008-08-14 | Microbial succinic acid producer mannheimia succini producens ddl |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08785561.5A Division EP2185682B1 (en) | 2007-08-17 | 2008-08-14 | Carboxylic acid producing member of the pasteurellaceae |
EP08785561.5A Division-Into EP2185682B1 (en) | 2007-08-17 | 2008-08-14 | Carboxylic acid producing member of the pasteurellaceae |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2505637A1 true EP2505637A1 (en) | 2012-10-03 |
EP2505637B1 EP2505637B1 (en) | 2019-10-09 |
Family
ID=39790987
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12162854.9A Active EP2505637B1 (en) | 2007-08-17 | 2008-08-14 | Novel microbial succinic acid producer |
EP08785561.5A Not-in-force EP2185682B1 (en) | 2007-08-17 | 2008-08-14 | Carboxylic acid producing member of the pasteurellaceae |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08785561.5A Not-in-force EP2185682B1 (en) | 2007-08-17 | 2008-08-14 | Carboxylic acid producing member of the pasteurellaceae |
Country Status (9)
Country | Link |
---|---|
US (2) | US8574875B2 (en) |
EP (2) | EP2505637B1 (en) |
JP (3) | JP5564426B2 (en) |
KR (1) | KR101575912B1 (en) |
CN (2) | CN102317432B (en) |
BR (1) | BRPI0815409B1 (en) |
CA (1) | CA2696666C (en) |
ES (2) | ES2764410T3 (en) |
WO (1) | WO2009024294A1 (en) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100780324B1 (en) | 2006-07-28 | 2007-11-29 | 한국과학기술원 | Novel pure succinic acid-producing mutants and methods for producing succinic acid using the same |
KR101575912B1 (en) | 2007-08-17 | 2015-12-08 | 바스프 에스이 | Carboxylic acid producing member of the Pasteurellaceae |
EP2350162B1 (en) | 2008-09-29 | 2017-11-15 | Basf Se | Aliphatic polyesters |
US8937135B2 (en) | 2008-09-29 | 2015-01-20 | Basf Se | Biodegradable polymer mixture |
CA2737582C (en) | 2008-09-29 | 2018-05-15 | Basf Se | Method for coating paper |
WO2010069804A1 (en) | 2008-12-19 | 2010-06-24 | Basf Se | Method for producing a composite component by multi-component injection molding |
EP2204443B1 (en) | 2008-12-23 | 2015-11-25 | Basf Se | Bacterial cells exhibiting formate dehydrogenase activity for the manufacture of suc-cinic acid |
EP2202294B1 (en) * | 2008-12-23 | 2015-10-21 | Basf Se | Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid |
KR101823695B1 (en) | 2009-02-16 | 2018-03-14 | 바스프 에스이 | Novel microbial succinic acid producers and purification of succinic acid |
CA2779361A1 (en) | 2009-11-09 | 2011-05-12 | Basf Se | Method for producing shrink films |
KR101177343B1 (en) | 2010-01-06 | 2012-08-30 | 주식회사 단석산업 | Method of pretreatment of glycerine containing waste generating from bio-diesel preparation for using carbon source of culture medium of microorganism in preparation of bio-ethanol |
ES2432642T3 (en) * | 2010-02-12 | 2013-12-04 | Purac Biochem Bv | Succinic acid production process |
CN102869723A (en) | 2010-03-24 | 2013-01-09 | 巴斯夫欧洲公司 | Process for producing cling films |
US20110237743A1 (en) * | 2010-03-24 | 2011-09-29 | Basf Se | Process for producing clingfilms |
CA2792699A1 (en) | 2010-03-24 | 2011-09-29 | Basf Se | Process for film production |
KR101221557B1 (en) | 2010-08-30 | 2013-01-14 | 한국과학기술원 | Novel Engineered Microorganism Producing Succinic Acid with High Yield by Utilizing Both Sucrose and Glycerol at the Same Time and Method for Preparing Succinic Acid Using the Same |
JP5920728B2 (en) * | 2010-10-22 | 2016-05-18 | 国立大学法人東北大学 | Organic acid fermentation method using cellulose-containing waste by rumen liquor |
CN103201342A (en) | 2010-10-27 | 2013-07-10 | 巴斯夫欧洲公司 | Use of polymer blends for producing slit film tapes |
EP2688956A1 (en) | 2011-03-23 | 2014-01-29 | Basf Se | Polyesters based on 2-methylsuccinic acid |
KR101776680B1 (en) * | 2011-04-11 | 2017-09-08 | 한국생산기술연구원 | Medium for high production of succinic acid |
GB201106686D0 (en) | 2011-04-20 | 2011-06-01 | Univ Manchester | Production of succinic acid |
US9034945B2 (en) | 2011-06-30 | 2015-05-19 | Basf Se | Item produced via thermoforming |
BR112014001382B1 (en) | 2011-07-21 | 2020-11-10 | Archer Daniels Midland Company | production method of compound derived from c4 acid |
JP6204912B2 (en) | 2011-07-22 | 2017-09-27 | ミリアント・コーポレイションMyriant Corporation | Organic acid fermentation of glycerol |
US9540661B2 (en) | 2012-07-09 | 2017-01-10 | Basf Se | Method for the complete anaerobic digestion of polymer mixtures |
EP2870202A1 (en) | 2012-07-09 | 2015-05-13 | Basf Se | Method for complete anaerobic degradation of polymer mixtures |
WO2014009176A1 (en) | 2012-07-10 | 2014-01-16 | Basf Se | Method for complete anaerobic degradation of polymer mixtures |
US9657316B2 (en) | 2012-08-27 | 2017-05-23 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing 1,4-butanediol related thereto |
CN103014075B (en) * | 2012-09-20 | 2014-07-16 | 江南大学 | Method for producing 2,3-butanediol by use of safe strain-fermented biodiesel byproduct crude glycerin |
US9932611B2 (en) | 2012-10-22 | 2018-04-03 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing succinate related thereto |
WO2014099725A1 (en) | 2012-12-17 | 2014-06-26 | Genomatica, Inc. | Microorganisms and methods for enhancing the availability of reducing equivalents in the presence of methanol, and for producing adipate, 6-aminocaproate, hexamethylenediamine or caprolactam related thereto |
HUE034786T2 (en) | 2013-05-08 | 2018-02-28 | Basf Se | Process for continuously preparing di-c1-3-alkyl succinates |
CA2920814A1 (en) * | 2013-08-30 | 2015-03-05 | Basf Se | Modified microorganism for improved production of alanine |
JP2017505134A (en) | 2014-02-07 | 2017-02-16 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Modified microorganisms for improved fine chemical production in sucrose |
MY191429A (en) * | 2014-02-07 | 2022-06-27 | Basf Se | Modified microorganism with improved biomass separation behaviour |
KR102304834B1 (en) * | 2014-02-07 | 2021-09-27 | 바스프 에스이 | Improved microorganisms for succinic acid production |
KR20160134760A (en) | 2014-03-19 | 2016-11-23 | 바스프 에스이 | The use of glycerol with limited feed of carbohydrates for fermentation |
JP6608392B2 (en) | 2014-05-08 | 2019-11-20 | ビーエーエスエフ ソシエタス・ヨーロピア | Genetically modified microorganisms for improved production of fine chemicals in sucrose |
ES2691694T3 (en) | 2014-05-09 | 2018-11-28 | Basf Se | Article manufactured by thermoforming |
WO2015169660A1 (en) | 2014-05-09 | 2015-11-12 | Basf Se | Injection-moulded article |
GB201413768D0 (en) * | 2014-08-04 | 2014-09-17 | Univ Singapore | Bacterial strain |
CA2972303C (en) | 2015-01-09 | 2023-06-20 | Basf Se | Process for preparing tetrahydrofuran, butane-1,4-diol or gamma-butyrolactone |
CN106591398A (en) * | 2017-01-23 | 2017-04-26 | 中国科学院合肥物质科学研究院 | Method for obtaining SA by using biodiesel by-product crude glycerol to perform high added-value conversion |
WO2018211093A1 (en) | 2017-05-19 | 2018-11-22 | Basf Se | Process for producing an organic compound |
EP3668926B8 (en) | 2017-08-15 | 2022-03-30 | Basf Se | Injection materials containing surface modified silicates |
EP3502241A1 (en) | 2017-12-21 | 2019-06-26 | Basf Se | Modified microorganism for improved production of succinate |
KR102129379B1 (en) | 2018-10-10 | 2020-07-02 | 한국과학기술원 | A recombinant microorganism into which a high activity malate dehydrogenase for producing succinic acid and a method for producing succinic acid using the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4550185A (en) | 1983-12-22 | 1985-10-29 | E. I. Du Pont De Nemours And Company | Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst |
WO2002000846A1 (en) | 2000-06-29 | 2002-01-03 | Bioinformatix, Inc. | Organic acid producing microorganism and process for preparing organic acids employing the same |
WO2005052135A1 (en) * | 2003-11-27 | 2005-06-09 | Korea Advanced Institute Of Science And Technology | Novel rumen bacteria variants and process for preparing succinic acid employing the same |
WO2006066839A2 (en) | 2004-12-21 | 2006-06-29 | Basf Aktiengesellschaft | Method for producing pyrrolidones from succinates from fermentation broths |
WO2006083410A2 (en) * | 2004-12-22 | 2006-08-10 | Michigan Biotechnology Institute | Recombinant microorganisms for increased production of organic acids |
WO2008013405A1 (en) | 2006-07-28 | 2008-01-31 | Korea Advanced Institute Of Science And Technology | Novel engineered microorganism producing homo-succinic acid and method for preparing succinic acid using the same |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5504004A (en) * | 1994-12-20 | 1996-04-02 | Michigan Biotechnology Institute | Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms |
US5573931A (en) * | 1995-08-28 | 1996-11-12 | Michigan Biotechnology Institute | Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants |
US6001590A (en) | 1995-09-12 | 1999-12-14 | Kirin Beer Kabushiki Kaisha | Promoter and terminator sequences of formate dehydrogenase gene of Candida boidinii |
KR100329019B1 (en) * | 1999-04-13 | 2002-03-18 | 윤덕용 | Method for Manufacturing Organic Acid by High-Efficiency Fermentation |
US6951643B2 (en) * | 2001-07-24 | 2005-10-04 | Oklahoma State University | Direct-fed microbial |
MXPA04004194A (en) | 2001-11-02 | 2005-03-31 | Rice University | Recycling system for manipulation of intracellular nadh availability. |
US7163812B2 (en) * | 2003-08-06 | 2007-01-16 | Board Of Trustees Of Michigan State University | Actinobacillus succinogenes shuttle vector and methods of use |
WO2006020663A2 (en) * | 2004-08-09 | 2006-02-23 | Rice University | Aerobic succinate production in bacteria |
US20060073577A1 (en) | 2004-09-17 | 2006-04-06 | San Ka-Yiu | High succinate producing bacteria |
KR100679638B1 (en) * | 2005-08-19 | 2007-02-06 | 한국과학기술원 | Microorganisms transformed with a gene encoding formate dehydrogenase D or E and a method for producing succinic acid using the same |
EP1842843A1 (en) | 2006-04-04 | 2007-10-10 | Basf Aktiengesellschaft | Process for the synthesis of carboxylic acid alkyl esters |
JP5602982B2 (en) | 2006-07-03 | 2014-10-08 | 三菱化学株式会社 | Method for producing succinic acid |
WO2008013996A2 (en) * | 2006-07-27 | 2008-01-31 | Gevo Inc. | Engineered microorganisms for increasing product yield in biotransformations, related methods and systems |
WO2008143704A2 (en) * | 2006-12-01 | 2008-11-27 | Gevo, Inc. | Engineered microorganisms for producing n-butanol and related methods |
KR101575912B1 (en) * | 2007-08-17 | 2015-12-08 | 바스프 에스이 | Carboxylic acid producing member of the Pasteurellaceae |
CN101945997B (en) * | 2008-02-21 | 2014-12-03 | 巴斯夫欧洲公司 | Process for the production of gamma-aminobutyric acid |
EP2204443B1 (en) * | 2008-12-23 | 2015-11-25 | Basf Se | Bacterial cells exhibiting formate dehydrogenase activity for the manufacture of suc-cinic acid |
EP2202294B1 (en) | 2008-12-23 | 2015-10-21 | Basf Se | Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid |
KR101823695B1 (en) * | 2009-02-16 | 2018-03-14 | 바스프 에스이 | Novel microbial succinic acid producers and purification of succinic acid |
-
2008
- 2008-08-14 KR KR1020107005763A patent/KR101575912B1/en not_active Expired - Fee Related
- 2008-08-14 ES ES12162854T patent/ES2764410T3/en active Active
- 2008-08-14 WO PCT/EP2008/006714 patent/WO2009024294A1/en active Application Filing
- 2008-08-14 CN CN200880112009.4A patent/CN102317432B/en not_active Expired - Fee Related
- 2008-08-14 CA CA2696666A patent/CA2696666C/en active Active
- 2008-08-14 EP EP12162854.9A patent/EP2505637B1/en active Active
- 2008-08-14 BR BRPI0815409-0A patent/BRPI0815409B1/en not_active IP Right Cessation
- 2008-08-14 US US12/673,714 patent/US8574875B2/en active Active
- 2008-08-14 JP JP2010520496A patent/JP5564426B2/en not_active Expired - Fee Related
- 2008-08-14 CN CN201310483385.7A patent/CN103589662A/en active Pending
- 2008-08-14 ES ES08785561.5T patent/ES2587402T3/en active Active
- 2008-08-14 EP EP08785561.5A patent/EP2185682B1/en not_active Not-in-force
-
2013
- 2013-10-03 US US14/045,096 patent/US9631211B2/en active Active
-
2014
- 2014-03-25 JP JP2014061610A patent/JP2014158474A/en active Pending
-
2015
- 2015-11-06 JP JP2015218570A patent/JP2016047063A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4550185A (en) | 1983-12-22 | 1985-10-29 | E. I. Du Pont De Nemours And Company | Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst |
WO2002000846A1 (en) | 2000-06-29 | 2002-01-03 | Bioinformatix, Inc. | Organic acid producing microorganism and process for preparing organic acids employing the same |
WO2005052135A1 (en) * | 2003-11-27 | 2005-06-09 | Korea Advanced Institute Of Science And Technology | Novel rumen bacteria variants and process for preparing succinic acid employing the same |
WO2006066839A2 (en) | 2004-12-21 | 2006-06-29 | Basf Aktiengesellschaft | Method for producing pyrrolidones from succinates from fermentation broths |
WO2006083410A2 (en) * | 2004-12-22 | 2006-08-10 | Michigan Biotechnology Institute | Recombinant microorganisms for increased production of organic acids |
WO2008013405A1 (en) | 2006-07-28 | 2008-01-31 | Korea Advanced Institute Of Science And Technology | Novel engineered microorganism producing homo-succinic acid and method for preparing succinic acid using the same |
Non-Patent Citations (23)
Title |
---|
"Chmiel: Biopro- zesstechnik: Einfuhrung in die Bioverfahrenstechnik, Band 1", IN THE PROCESS, vol. 1 |
DATABASE EM-PRO 18 September 2004 (2004-09-18), XP002498827, accession no. AE016827 * |
DHARMADI Y; MURARKA A; GONZALEZ R: "Anaerobic fermentation of glycerol by Es- cherichia coli: A new platform for metabolic engineering", BIOTECH BIOENG, vol. 94, 2006, pages 821 - 829, XP002536157, DOI: doi:10.1002/BIT.21025 |
GUETLER M.V. ET AL: "ACTINOBACILLUS SUCCINOGENES SP. NOV., A NOVEL SUCCINIC-ACID-PRODUCING STRAIN FROM THE BOVINE RUMEN", INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, vol. 49, no. 1, 1 January 1999 (1999-01-01), pages 207 - 216, XP009158765 |
HONG SOON HO ET AL: "The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens", NATURE BIOTECHNOLOGY, vol. 22, no. 10, October 2004 (2004-10-01), pages 1275 - 1281, XP002498825, ISSN: 1087-0156 * |
JANSSEN PH: "Characterization of a succincate-fermenting anaerobic bacterium isolated from a glycolate-degrading mixed culture", ARCH MICROBIOL, vol. 155, 1991, pages 288 - 293 |
JUKES TH; CANTOR CR: "Mammalian Protein Metabolism", vol. 3, 1969, ACADEMIC PRESS, article "Evolution of protein molecules", pages: 21 - 132 |
KAMM B; KAMM M; SCHMIDT M; HIRTH T; SCHULZE M: "Biorefineries - Industrial Processes and products. Status Quo and future directions", vol. 2, 2006, WILEY-VCH, article "Lignocellulose-based chemical products and product family trees" |
LEE J: "Biological conversion of lignocellulosic biomass to ethanol", J BIOTECH, vol. 56, 1997, pages 1 - 24, XP004126073, DOI: doi:10.1016/S0168-1656(97)00073-4 |
LEE P C ET AL: "Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 58, no. 5, April 2002 (2002-04-01), pages 663 - 668, XP002498823, ISSN: 0175-7598 * |
LEE PC; LEE SY; HONG SA; CHANG HN: "Isolation and characterization of a new Succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL 55E, from bovine rumen", APPL MICROBIOL BIOTECHNOL, vol. 58, 2002, pages 663 - 668 |
LEE PC; LEE WG; LEE SY; CHANG HN: "Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source", BIOTECH BIOENG, vol. 72, 2001, pages 41 - 48, XP002498824, DOI: doi:10.1002/1097-0290(20010105)72:1<41::AID-BIT6>3.0.CO;2-N |
LEE PYUNG CHEON ET AL: "Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source", BIOTECHNOLOGY AND BIOENGINEERING, vol. 72, no. 1, 5 January 2001 (2001-01-05), pages 41 - 48, XP002498824, ISSN: 0006-3592 * |
MAIDAK BL; COLE JR; PARKER JR TC; GARRITY GM; LARSEN N; LI B; LILBURN TG; MCCAUGHEY MJ; OLSEN GJ; OVERBEEK R: "A new version of the RDP (Ribosomal Database Project", NUCL ACIDS RES, vol. 27, 1999, pages 171 - 173, XP002166433, DOI: doi:10.1093/nar/27.1.171 |
MCKINLAY J; ZEIKUS J; VIEILLE C: "Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium", APPL ENVIRON MICROBIOL, vol. 71, 2005, pages 6651 - 6656 |
NILI N; BROOKER J: "A defined medium for rumen bacteria and identification of strains impaired in de-novo biosynthesis of certain amino-acids", LETT APPL MICROBIOL, vol. 21, 1995, pages 69 - 74 |
PETERS-WENDISCH, PG ET AL., ARCHIVES OF MICROBIOLOGY, vol. 165, 1996, pages 387 - 396 |
RAINEY FA; WARD-RAINEY N; KROPPENSTEDT RM; STACKEBRANDT E: "The genus No- cardiopsis represents a phylogenetically coherent taxon and a distict actinomycete lineage: proposal of Nocardiopsaceae fam. nov", INT J SYST BACTERIOL, vol. 46, 1996, pages 1088 - 1092 |
SAITOU N; NEI M: "The neighbor-joining method: a new method for reconstructing phylogenetic trees", MOL BIOL EVOL, vol. 4, 1987, pages 406 - 425, XP001154601 |
SONG ET AL: "Production of succinic acid by bacterial fermentation", ENZYME AND MICROBIAL TECHNOLOGY, STONEHAM, MA, US, vol. 39, no. 3, 3 July 2006 (2006-07-03), pages 352 - 361, XP005459365, ISSN: 0141-0229 * |
SONG H; KIM T; CHOI B; CHOI S; NIELSEN L; CHANG H; LEE S: "Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence", APPL MICROBIOL BIOTECHNOL, vol. 79, 2008, pages 263 - 272, XP019623578 |
SONG H; LEE S: "Production of succinic acid by bacterial fermentation", ENZ MI- CROB TECH, vol. 39, 2006, pages 352 - 361, XP025095191, DOI: doi:10.1016/j.enzmictec.2005.11.043 |
YAZDANI S; GONZALEZ R: "Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry", CURR OPINION BIOTECHNOL, vol. 18, 2007, pages 213 - 219, XP022110183, DOI: doi:10.1016/j.copbio.2007.05.002 |
Also Published As
Publication number | Publication date |
---|---|
JP2014158474A (en) | 2014-09-04 |
US9631211B2 (en) | 2017-04-25 |
CN102317432A (en) | 2012-01-11 |
ES2587402T3 (en) | 2016-10-24 |
EP2185682A1 (en) | 2010-05-19 |
CN102317432B (en) | 2015-11-25 |
BRPI0815409B1 (en) | 2023-01-24 |
KR20100070327A (en) | 2010-06-25 |
CA2696666C (en) | 2019-07-09 |
JP2016047063A (en) | 2016-04-07 |
US20140030778A1 (en) | 2014-01-30 |
BRPI0815409A2 (en) | 2014-10-21 |
US8574875B2 (en) | 2013-11-05 |
KR101575912B1 (en) | 2015-12-08 |
EP2505637B1 (en) | 2019-10-09 |
ES2764410T3 (en) | 2020-06-03 |
WO2009024294A8 (en) | 2009-10-29 |
CN103589662A (en) | 2014-02-19 |
WO2009024294A1 (en) | 2009-02-26 |
CA2696666A1 (en) | 2009-02-26 |
US20110008851A1 (en) | 2011-01-13 |
WO2009024294A9 (en) | 2010-11-04 |
JP2010536329A (en) | 2010-12-02 |
EP2185682B1 (en) | 2016-05-18 |
JP5564426B2 (en) | 2014-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2185682B1 (en) | Carboxylic acid producing member of the pasteurellaceae | |
US9932612B2 (en) | Microbial succinic acid producers and purification of succinic acid | |
US8685684B2 (en) | Process for the production of bio-fuels and/or bio-chemicals from biomass fermentation | |
CN100338221C (en) | Preparation of lactic acid from a pentose-containing substrate | |
US20080182306A1 (en) | Bacillus subtilis mutant strain and a fermentation method for producing acetoin using this organism | |
US20170073665A1 (en) | Genetically Modified Microorganism for Improved Production of Fine Chemicals on Sucrose | |
US9850506B2 (en) | Modified microorganism for improved production of fine chemicals on sucrose | |
US7083955B2 (en) | Preparation of lactic acid from a pentose-containing substrate | |
CN115093977B (en) | Aureobasidium pullulan strain EP01 producing fumaric acid and methods of use thereof | |
CN113614221A (en) | Lactobacillus bioconversion process | |
ES2715930T3 (en) | Novel microbial producers of succinic acid and purification of succinic acid | |
EP3502241A1 (en) | Modified microorganism for improved production of succinate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2185682 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
17P | Request for examination filed |
Effective date: 20130403 |
|
17Q | First examination report despatched |
Effective date: 20130806 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602008061397 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C12N0001200000 Ipc: C12N0001320000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C12N 1/32 20060101AFI20190325BHEP Ipc: C12P 7/46 20060101ALI20190325BHEP Ipc: C12R 1/01 20060101ALI20190325BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190430 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2185682 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008061397 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1188825 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1188825 Country of ref document: AT Kind code of ref document: T Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200109 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200210 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200110 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200109 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2764410 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200603 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008061397 Country of ref document: DE |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200209 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
26N | No opposition filed |
Effective date: 20200710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200814 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200814 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191009 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220823 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220819 Year of fee payment: 15 Ref country code: GB Payment date: 20220823 Year of fee payment: 15 Ref country code: ES Payment date: 20220908 Year of fee payment: 15 Ref country code: DE Payment date: 20220527 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220824 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008061397 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230814 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230814 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240301 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230815 |