EP2477047A1 - System and method for measuring downhole parameters - Google Patents
System and method for measuring downhole parameters Download PDFInfo
- Publication number
- EP2477047A1 EP2477047A1 EP11165709A EP11165709A EP2477047A1 EP 2477047 A1 EP2477047 A1 EP 2477047A1 EP 11165709 A EP11165709 A EP 11165709A EP 11165709 A EP11165709 A EP 11165709A EP 2477047 A1 EP2477047 A1 EP 2477047A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrodes
- insulating cover
- electrode
- downhole tool
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 82
- 230000008878 coupling Effects 0.000 claims abstract description 13
- 238000010168 coupling process Methods 0.000 claims abstract description 13
- 238000005859 coupling reaction Methods 0.000 claims abstract description 13
- 239000012530 fluid Substances 0.000 claims description 40
- 238000005553 drilling Methods 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 151
- 238000005755 formation reaction Methods 0.000 description 75
- 238000005259 measurement Methods 0.000 description 31
- 238000004891 communication Methods 0.000 description 13
- 239000011810 insulating material Substances 0.000 description 12
- 238000009413 insulation Methods 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 239000004696 Poly ether ether ketone Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229920002530 polyetherether ketone Polymers 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000005219 brazing Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- -1 PEEKTM Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011499 joint compound Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/20—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/20—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current
- G01V3/24—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current using AC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/26—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/18—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
- G01V3/26—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
- G01V3/265—Operating with fields produced by spontaneous potentials, e.g. electrochemicals or produced by telluric currents
Definitions
- the present invention relates to techniques for performing well bore operations. More particularly, the present invention relates to techniques for determining downhole characteristics, such as electrical parameters of downhole fluids and/or subterranean formations.
- Oil rigs are positioned at wellsites for performing a variety of oilfield operations, such as drilling a wellbore, performing downhole testing and producing located hydrocarbons.
- Downhole drilling tools are advanced into the earth from a surface rig to form a wellbore.
- Drilling muds are often pumped into the wellbore as the drilling tool advances into the earth.
- the drilling muds may be used, for example, to remove cuttings, to cool a drill bit at the end of the drilling tool and/or to provide a protective lining along a wall of the wellbore (or borehole).
- casing is typically cemented into place to line at least a portion of the wellbore.
- production tools may be positioned about the wellbore to draw fluids to the surface.
- drilling tool may be removed so that a wireline testing tool may be lowered into the well bore to take additional measurements and/or to sample downhole fluids.
- production equipment may be lowered into the wellbore to assist in drawing the hydrocarbons from a subsurface reservoir to the surface.
- the downhole measurements taken by the drilling, testing, production and/or other wellsite tools may be used to determine downhole conditions and/or to assist in locating subsurface reservoirs containing valuable hydrocarbons.
- Such wellsite tools may be used to measure downhole parameters, such as temperature, pressure, viscosity, resistivity, etc. Such measurements may be useful in directing the oilfield operations and/or for analyzing downhole conditions.
- measurements may be taken using current injection when the borehole is filled with a conductive fluid or mud.
- a non-conductive fluid such as oil-based mud (OBM) with a very high resistivity compared to that of the formation such that a thin layer of mud between a measurement electrode and the formation, high impedance is generated between the electrode and the formation.
- OBM oil-based mud
- Another example mounts one or more button voltage electrodes on an insulating pad, such as is used in the Oil Base Micro Imager tool (OBMITM) of SCHLUMBERGERTM.
- Stability problems may sometimes occur in cases where a measurement electrode touches the formation, or if the mud has conductive bubbles in it which form a low-impedance electrical connection between the measurement electrode and the formation.
- High impedance between the electrode and the formation can suddenly reduce to very small impedance or vice versa, which may lead to a change in the measurement that is not due to a change in formation parameters. For example a small change from 0.10 mm to 0.00 mm mud thickness can lead to a significant change in impedance.
- both the magnitude and the phase of the impedance can change drastically.
- protruding elements for example protruding wear plates
- existing protruding devices may be subject to damage in downhole conditions, may still have problems with measurements where conductive bubbles are present in the mud, and may be subject to large standoff variations during the logging process.
- the invention relates to a sensing apparatus for measuring downhole parameters of a wellsite, the wellsite having a downhole tool positionable in a well bore extending into a subterranean formation.
- the sensing apparatus includes at least one source positionable about the downhole tool, at least one sensor electrode positionable about a front face of the downhole tool for measuring electrical signals from the source, and a raised insulating cover positionable along the front face of the downhole tool for defining at least one surface thereon to be in contact with a borehole wall.
- the raised insulating cover extends over at least a portion of the sensor electrode whereby the sensor electrode is positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith.
- the sensing apparatus may also include a base positionable in the downhole tool for supporting the sensing electrode and the raised insulating cover thereon, an insulating layer positionable about at least a portion of the sensor electrode (the raised insulating portion supported by the insulating layer), at least one seal between the raised insulating cover and the insulating layer, and/or a conductive layer positionable about at least a portion of the electrode in non-contact therewith (the raised insulating portion supported by the conductive layer). At least a portion of the insulating layer may be positioned between at least a portion of the at least one sensor electrode and the raised insulating cover.
- the insulating layer may be integral with the raised insulating cover.
- the insulating layer may have at least one cavity for receiving the source.
- the insulating layer may have at least one hole for receiving the sensor electrode.
- the source may be a source electrode positionable about the downhole tool a distance from the sensing electrode for electrical communication therewith, or positioned in a mandrel of the downhole tool.
- a source electrode portion of the raised insulating cover may extend over at least a portion of the source.
- the raised insulating cover may have an outer surface for covering the sensor electrode.
- the raised insulating cover may have a sidewall extending over at least a portion of a sidewall of the sensor electrode.
- the raised insulating cover may have a lip on an outer perimeter thereof.
- the sensor electrode may include at least one guard electrode and/or at least one button electrode.
- the sensing apparatus may also include at least one wear plate.
- the raised insulating cover may extend over the at least one wear plate.
- the raised insulating cover may have a mud scraper thereon.
- the raised insulating cover may provide a standoff between a wall of the wellbore and the sensor electrode.
- the portion of the raised insulating cover that may face a borehole may have a thickness of about 0.30 to 3.00 mm.
- the sensor electrode may be a metalized coating or a solid component.
- the at least one source may have an oval body surrounding the sensor electrode.
- the sensor electrode and the source may be configured to couple capacitively to the formation for measurement thereof.
- the raised insulating cover may be made of a ceramic material. Portions of the raised insulating cover may be made of different materials.
- the invention may relate to a system for measuring downhole parameters of the wellsite.
- the wellsite has a wellbore extending into a subterranean formation.
- the system includes a downhole tool deployable from a rig into the wellbore, and at least one sensing apparatus positionable about the downhole tool.
- the sensing apparatus includes at least one source positionable about the downhole tool, at least one sensor electrode positionable about a front face of the downhole tool for measuring electrical signals from the source, and a raised insulating cover positionable along the front face of the downhole tool for defining at least one contact surface thereon.
- the raised insulating cover extends over at least a portion of the sensor electrode whereby the electrode is positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith.
- the source may include at least one source electrode positioned on the downhole tool, or a mandrel of the downhole tool.
- the downhole tool may be a logging, wireline, drilling, coiled tubing, drill stem tester, production, casing, pipe and/or completions tool.
- the system may also include a base for supporting the sensing apparatus, the base extendable from the downhole tool via an arm.
- the invention may also relate to a method for measuring downhole parameters of a wellsite.
- the method may involve providing a downhole tool with a sensing apparatus, deploying the downhole tool into the well bore, positioning the at least one contact surface of the raised insulating cover adjacent the wall of the well bore such that the one sensor electrode is positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith; passing an electronic signal through the subterranean formation via the source; and measuring at least one downhole parameter of the formation from the electronic signal.
- the step of passing may involve passing the electronic signal from the source to the sensor electrode.
- the step of passing may involve passing the electronic signal through the raised insulating cover.
- the sensing apparatus may include an insulating layer and the step of passing may involve passing the electronic signal through the insulating layer.
- the invention may relate to a method for measuring downhole parameters of the wellsite.
- the method may involve providing a downhole tool with the sensor pad, deploying the downhole tool into the wellbore, positioning the contact surface of the raised insulating cover adjacent a wall of the wellbore such that the electrodes are positionable adjacent to subterranean formation for electrically coupling thereto without direct contact therewith, passing an electronic signal through the subterranean formation via the electrodes, and measuring at least one downhole parameter of the formation from the electronic signal.
- the method may also involve passing an electronic signal from the source electrode to the sensor electrode, passing the electronic signal through the raised insulating cover, and passing the electronic signal through the insulating layer.
- the system preferably comprises a downhole tool positionable in the borehole, a tool pad positionable on the downhole tool, and a plurality of electrodes mounted on the tool pad and configured to face a wall of the borehole.
- the sensor pad further comprises an insulating layer extending over at least a portion of the electrodes facing the wall of the borehole.
- the plurality of electrodes of the sensor pad may be configured to couple capacitively to the formation to measure its electrical properties. Moreover, the electrodes may be mounted in a blind hole formed in the sensor pad.
- the electrodes may comprise at least one button electrode and at least one return electrode with an optional source electrode and/or a guard electrode. As an example, the at least one button electrode may be less than two centimeters in diameter.
- the electrodes may comprise a series of interconnected spaced sub-electrodes configured to operate as a single electrode.
- a wear plate may be provided for maintaining a minimum standoff between the sensor pad and the wall of the borehole.
- the insulating layer may be formed by depositing an insulating material over at least a portion of the electrodes, or by modifying the surface properties of the electrodes to become insulating.
- the insulating layer may comprise a face of the sensor pad formed from an insulating material.
- the electrodes comprises at least one button electrode and at least one return electrode
- the insulating layer may extend over a substantial portion of the at least one button electrode facing the wall of the borehole.
- the insulating material may extend between the series of interconnected spaced sub-electrodes.
- the insulating material may have different thicknesses depending on the nature of the sub-electrode. As an example, the insulating layer may have a thickness of not more about than 3.00 mm in front of the electrode(s) or portion(s) of electrode(s).
- the invention may also relate to the sensor pad for measuring electrical properties of an underground formation as described herein, wherein the downhole tool is either a wireline tool and/or a logging while drilling tool.
- the downhole tool may include various selected components from the group including a mandrel, a standoff keeper, a fin, a skid, and a stabilizer.
- the invention may also relate to a method for measuring the electrical properties of an underground formation surrounding a borehole.
- the method preferably comprises the steps of positioning a downhole tool with a sensor pad thereon in the borehole, the sensor pad having insulation thereon; positioning the sensor pad in the borehole adjacent a wall of the borehole, the sensor pad having a plurality of electrodes for measuring the electrical properties of the formation mounted in the insulation on the sensor pad and configured to face the wall of the borehole, and having an insulating layer extending over at least a portion of the electrodes facing the wall of the borehole; and configuring at least one of the electrodes to measure the electrical properties of the formation through the insulating layer.
- the method may further comprise the step of configuring at least one of the electrodes to couple capacitively to the formation to measure the electrical properties of the formation.
- the method may further comprise using the sensor pad for measuring electrical properties of an underground formation as described herein.
- Figures 1A and 1B are schematic views of a wellsite having a cased wellbore and a system for measuring downhole parameters therein.
- Figure 1A depicts a drilling downhole tool.
- Figure 1B depicts a wireline downhole tool.
- Figure 2A is a schematic view of a portion of a downhole tool with a sensor pad thereon.
- Figure 2B is a cross-sectional view of the downhole tool of Figure 2A taken along line 2B-2B.
- Figure 3 is a cross-sectional view of a portion of the downhole tool of Figures 2A and 2B taken along line 3-3, depicting a sensor pad.
- Figure 4 is a cross-sectional view of the portion of the downhole tool of Figure 3 , depicting an alternate sensor pad.
- Figure 5 is an exploded cross-sectional view of a portion of the sensor pad of Figure 3 .
- Figure 6 is a perspective view of a multi guard electrode.
- Figure 7 is a perspective view of a ring guard electrode.
- Figure 8 is a transparent front view of a sensor pad having the ring guard electrode of Figure 7 .
- Figure 9 is a transparent front view of a sensor pad having the multi guard electrode of Figure 6 .
- Figure 10 is a cross-sectional view of another alternate sensor pad.
- Figures 11A and 11B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting a sensor pad with a raised insulating cover.
- Figures 12A and 12B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting an alternate sensor pad and raised insulating cover.
- Figures 13A and 13B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting another alternate sensor pad and raised insulating cover.
- Figures 14A and 14B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting another alternate sensor pad and raised insulating cover.
- Figures 15A and 15B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting another alternate sensor pad and raised insulating cover.
- Figures 16A and 16B are cross-sectional views of a portion of a wireline downhole tool and a drilling downhole tool, respectively, each depicting another alternate sensor pad with a raised insulating cover.
- Figures 17A and 17B are flowcharts depicting a method of measuring downhole parameters.
- the invention relates to techniques for measuring downhole parameters.
- a downhole tool with a sensor pad is configured to minimize a distance between the sensor electrode and a wall of the wellbore, eliminate direct contact with the formation and/or highly conductive bubbles in the mud, and to protect components thereof.
- This configuration may also be used to provide accuracy of measurement, optimized measurement processes, reduced clogging, minimized components, reduced size, increased surface area for measurement, constant flow of fluids during measurement, optimized shape of measurement sensor pad/system, compatibility with existing wellsite equipment, operability in downhole conditions (e.g., at high temperatures and/or pressures), etc.
- FIGs 1A and 1B are schematic views of a wellsite 100 having an oil rig 102 with a downhole tools 104' and 104, respectively, suspended into a wellbore (or borehole) 106 therebelow,
- the downhole tool 104' is a conventional drilling tool.
- the wellbore 106 has been drilled by the drilling downhole tool.
- the drilling tool 104' includes a plurality of drill pipe 50 with a drill bit 52 at an end thereof.
- the drilling tool also has a conventional logging while drilling (“LWD”) tool 54 which may be in communication with a surface unit 114 via communication link 124, and a sensor pad 116.
- LWD logging while drilling
- a drilling mud, and/or a wellbare fluid 108 may have been pumped into the wellbore 106 and may line a wall thereof.
- the drilling tool 104' may be removed, and a casing 110 may also be positioned in a portion of the wellbore 106 and cemented into place therein by a cement 111 as shown in Figure 1B .
- the downhole tool 104 is shown as a wireline logging tool lowered into the wellbore 106 to take various measurements.
- the downhole tool 104 may be inserted into the well before or after placement of the casing 110 into the wellbore.
- the downhole tool 104 may include a conventional logging device 112, a sensor pad 116, one or more telemetry devices 118, and an electronics package 120.
- the conventional logging device 112 may be provided with various sensors, measurement devices, communication devices, sampling devices and/or other devices for performing wellbore operations.
- the downhole tool 104 may include one or more sensors for determining one or more downhole parameters, such as wellbore fluid parameters, wellbore, integrity parameters and/or formation parameters. For example, as the downhole tool 104 is lowered, the logging device 112 may use devices, such as resistivity or other logging devices, to measure downhole parameters and/or properties.
- the downhole tool 104 may be conveyed into the wellbore 106 on a wireline 122.
- the downhole tool 104 is shown as being conveyed into the wellbore 106 on a wireline 122, it should be appreciated that any suitable conveyance may be used, such as a slick line, a coiled tubing, a drill string, a casing string, a logging tool and the like.
- the downhole tool 104 may be operatively connected to the surface unit 114 for communication therebetween.
- the downhole tool 104 may be wired via the wireline 122, as shown, and/or wirelessly linked via the one or more telemetry devices 118.
- the one or more telemetry devices 118 may include any telemetry devices, such as electromagnetic devices, for passing signals to a surface unit 114 as indicated by communication link 124. Further, it should be appreciated that any communication device or system may be used to communicate between the downhole tool 104 and the surface unit 114. Signals may be passed between the downhole tool 104 and the surface unit 114 and/or other locations for communication therebetween. Data may be passed to the surface by the communication link 124, and/or stored inside the downhole tool 104 for download upon retrieval to the surface.
- any communication device or system may be used to communicate between the downhole tool 104 and the surface unit 114. Signals may be passed between the downhole tool 104 and the surface unit 114 and/or other locations for communication therebetween. Data may be passed to the surface by the communication link 124, and/or stored inside the downhole tool 104 for download upon retrieval to the surface.
- the downhole tool 104 is depicted as the wireline tool 104 having the sensor pad 116 thereon, it will be appreciated that the sensor pad 116 may be positioned downhole on a variety of one or more tools.
- the sensor pad 116 may be placed downhole on a variety of downhole tools, such as a drilling, coiled tubing, drill stem tester, production, casing, pipe, completions, or other downhole tool.
- downhole tools such as a drilling, coiled tubing, drill stem tester, production, casing, pipe, completions, or other downhole tool.
- only one sensor pad 116 is shown, it should be appreciated that one or more sensor pads 116 and/or portions of the sensor pads 116 may be located at several locations in the wellbore 106.
- the sensor pad 116 is a sensing component located on the downhole tool 104 and positionable adjacent a wall of the wellbore for measurement thereof.
- the sensor pad 116 is preferably positioned about an outer surface of the downhole tool 104 so that the downhole fluid and/or the formation may pass therealong for measurement thereof.
- the one or more sensors 116 may be positioned at various locations about the wellsite 100 as desired for performing fluid measurement.
- the sensor pad(s) 116 may be located on the downhole tool 104 within a mandrel, a standoff keeper, a fin, a skid, a stabilizer and the like as will be described further herein.
- the electronics package 120 may include any components and/or devices suitable for operating, monitoring, powering, calculating, calibrating, and analyzing components of the downhole tool 104.
- the electronics package 120 may include, for example, a power source, a processor, a storage device, a signal conversion (digitizer, mixer, amplifier, etc.), a signal switching device (switch, multiplexer, etc.), a receiver device and/or a transmission device, and the like (not shown).
- the electronics package 120 may be operatively coupled to the sensor pad 116.
- the power source in the electronics package 120 may apply a voltage to the sensor pad 116.
- the power source may be provided by a battery power supply or other conventional means of providing power.
- the power source may be an existing power source used in the downhole tool 104.
- the power source may be positioned, for example, in the downhole tool 104 and wired to the sensor pad 116 for providing power thereto as shown.
- the power source may be provided for use with the sensor pad 116 and/or other downhole devices.
- the electronics package 120 is shown as one separate unit from the sensor pad 116, it should be appreciated that any portion of the electronics package 120 may be included within the sensor pad 116. Further, the components of the electronics package 120 may be located at various locations about the downhole tool 104, the surface unit 114 and/or the wellsite 100.
- the sensor pad 116 may also be wired or wirelessly connected to any of the features of the downhole tool 104, and/or surface unit 114, such as communication links 124, processors, power sources or other features thereof.
- the sensor pad 116 may be capable of determining one or more downhole parameters, such as one or more downhole fluid parameters and/or one or more formation parameters.
- the downhole fluids may include any downhole fluids such as downhole mud (e.g., oil and/or water based), hydrocarbons, water and/or other downhole fluids.
- the sensor pad 116 may determine the downhole parameters of the downhole fluids and/or the downhole formations as the downhole tool 104 passes through the wellbore 106.
- the sensor pad 116 may be positioned on the downhole tool 104 in such a manner that the sensor pad 116 is capable of measuring fluids and/or downhole formations as the downhole tool 104 passes through the wellbore 106 under the harsh conditions of the downhole environment. Further, the sensor pad 116 may be positioned in such a manner that reduces clogging of downhole fluids as the downhole fluids pass the sensor pad 116.
- the sensor pad 116 is positioned on an outer surface 126 of the downhole tool 104.
- the sensor pad 116 may have an insulating layer covering one or more electrodes in the sensor pad 116 as will be described in more detail below.
- the sensor pad 116 may be flush with the outer surface 126 of the downhole tool 104. Further, the sensor pad 116 may be recessed a distance below the outer surface 126 to provide additional protection thereto, or protruded a distance therefrom to access fluid and/or formation.
- the sensor pad 116 may also be positioned at various angles and locations as desired.
- FIG 2A shows a schematic view of a downhole tool usable as the downhole tool 104 located in the wellbore 106 and within a downhole formation 200.
- the downhole tool 104 is a wireline microresistivity tool containing the sensor pads 116.
- the sensor pads 116 may be located on the outer surface 126 (as shown in Figure 1 ), or located on one or more arms 204 which extend from downhole tool 104 (as shown in Figures 2A and 2B ).
- the arms 204 may be configured to place the sensor pads 116 as close to the formation wall 206, or against a mud layer 108 on the formation wall 206, as possible.
- the arms 204 may be actuatable, or spring loaded in order to bias the sensor pads 116 against the formation wall 206.
- Figure 2B shows a cross-sectional view of the downhole tool 104 in Figure 2A taken along line 2B-2B.
- the downhole tool 104 may include one or more sensor pads 116 located around a tool mandrel 202.
- Each of the sensor pads 116 may be configured to measure the downhole parameters, such as the downhole fluid and/or parameters of the formation 200. While the sensor pads 116 of Figure 2B are depicted as being flat, it will be appreciated that a front face of the sensor face may be rounded to conform to the wellbore wall 206.
- Figure 3 shows a schematic view of a portion of the downhole tool 104 of Figure 2A taken along line 3-3. This view shows the sensor pad 116 supported on the mandrel 202.
- the sensor pad 116 may be used for measuring electrical properties of the formation layers 200 in a hydrocarbon well, or wellbore 106.
- the sensor pad 116 may comprise an insulating layer 300, or insulating front face, covering an arrangement of electrodes 302.
- the electrodes 302 may comprise one or more button (or return electrodes) electrodes 304 and one or more source electrodes 306 (or return electrodes).
- the electrodes 302 may be in the form of coatings or solid components.
- the electrodes 302 e.g., the button electrodes 304, the source electrode 306, the guard electrode 400 as described herein
- the electrodes 302 may be, for example, a coating metallized onto an insulator section (e.g., insulating layer 300) and/or solid components positioned in the insulator section.
- Each of the electrodes 302 may be held in place with conventional fixture mechanisms, such as screws, glue, epoxy, locking means, press-fitting, (over)-molding, plating (electrode, coin), coating or the like.
- the button electrodes 304 may have any suitable diameter. In one example, the button electrodes 304 are less than or equal to about 2.00 cm in diameter.
- the insulating layer 300 may cover the entire front face of the sensor pad 116 thereby covering and sealing the electrodes 302.
- the insulating layer 300 may further extend down a portion of the sides of the sensor pad 116.
- the sensor pad 116 may be held by a tool pad 308.
- the tool pad 308 may have a tool pad base (or base) 310 having one or more tool pad walls 312.
- the sensor pad 116 may include a sensor pad base 316.
- the sensor pad base 316 may be configured to secure the electrodes 302 and the insulating layer 300 to the tool pad 308.
- a back face 314 of the sensor pad 116 and/or sensor pad base 316 may be located proximate and/or secured to the tool pad base 310.
- the sensor pad base 316 may adhere to the tool pad 308 using any conventional means.
- the sensor pad base 316 may extend partially along the one or more pad walls 312. A portion of the insulating layer 300 extending along the side of the sensor pad 116 may meet the sensor pad base 316 within the one or more pad walls 312. Because the insulating layer 300 completely covers the electrodes 302, only a perimeter between the insulating layer 300 and the sensor pad base 316 may need to be sealed in order to seal the electrodes 302 from wellbore fluids, as will be described in more detail below.
- the insulating layer 300 and/or the sensor pad base 316 may be any suitable insulating material, such as PEEK (polyetheretherketone), capable of allowing electrical communication between components, such as the electrodes 302, of the sensor pad 116. Such electrical communication may be, for example, capacitive coupling between the electrodes 302.
- the PEEK material may be a metal material capable of impeding and/or stopping current flow therethrough at selected frequencies as desired. For example, the PEEK material may prohibit current flow at lower frequencies, but allow current flow at higher frequencies.
- the insulating layer 300 and/or the sensor pad base 316 may be any suitable material for impeding or stopping current including, but not limited to, Sapphire, ceramics, polyimide resin, plastic, and the like.
- a seal 318 such as through a perimeter seal or O-ring, through adhesive bonding, through welding or brazing etc., may be used for sealing the sensor pad 116 from unwanted borehole fluids.
- the sensor pad 116 may also incorporate one or more wear plates 320.
- the one or more wear plates 320 may ensure some standoff S between the formation 200 and the electrodes 302. Further the one or more wear plates 320 may prevent the electrodes 302 and/or the insulating layer 300 from touching the formation 200, and/or being damaged or worn by the formation 200.
- the wear plates 320 may extend a distance beyond the face of the insulating layer 300 toward the formation 200 to protect the insulating layer 300 and/or the electrodes 302.
- the wear plates 320 may be flush with an outer face of the insulating layer 300, and/or be slightly recessed from the outer face.
- the wear plates 320 may maintain a minimum standoff S between the insulating layer 300 of the sensor pad 116 and the formation wall 206.
- Wellbore fluid 326 (such as mud 108) may be present between the sensor pad 116 and the wall 206 of the wellbore.
- the seal 318 may seal the electrodes 302 and any electronics of the sensor pad 116 from the borehole environment.
- the seal 318 may be accomplished using one perimeter seal between the sensor pad base 316, the insulating layer 300 and an interior of the one or more pad walls 312.
- the seal 318 is shown as an O-ring, it may be any suitable device for sealing the interior of the sensor pad 116.
- Figures 3 and 4 show the sensor pad 116 having the insulating layer 300 on a front face 402 extending over all of the electrodes 302.
- Figure 4 shows the sensor pad 116 of Figure 3 having one or more guard electrodes 400 around a button electrode 304.
- the electrodes 302 may be secured to the insulating layer 300 in the manner described below. While at least a portion of the sensor pads 116 may have electrodes mounted into the front face 402, as shown in Figures 3 and 4 , the insulating layer 300 (or the front face) may cover the electrodes 302.
- the electrodes 302 may optionally be completely covered with the insulating layer 300 to help eliminate the need for the individual electrode mounting to seal against borehole fluid entry.
- the electrodes 302 may form a circuit which may include one or more of the source electrodes 306 (or returns) and the button electrodes 304 (or sensor electrode). Between the source electrodes 306 and the button electrodes 304 there may be an insulating material. As shown, the insulating material is part of the insulating layer 300.
- the electrodes 302 may be communicatively linked to the electronics package 120 ( Figure 1 ). The electrodes 302 may be arranged in a variety of configurations, and should not be limited to the configuration shown in the drawings, primarily depending on the parameters to be measured by the downhole tool 104.
- the button electrodes 304 may be used to measure a voltage with respect to a ground, or another electrode 302, and/or may be used to measure a current 324 between at least one of the source electrodes 306 and the button electrodes 304 (or another source electrode 306). From the voltage and the current electrical properties, or parameters, measured via the button electrodes 304, various downhole parameters of, for example, the wellbore fluid and/or the formation may be determined. The electrical properties may include, for example, conductivity and permittivity. In certain applications, the button electrodes 304 may measure the amplitude and phase of the voltage and the current 324. From the amplitude and phase of the voltage and the current 324, the complex impedance may be calculated for the wellbore fluid and/or the formation. With the complex impedance known, various electrical properties may be calculated.
- the button electrodes 304 may be used to measure the amplitude of the voltage and the current 324. From the amplitude of the voltage and the current 324, the impedance amplitude may be calculated. With the impedance amplitudes known electrical properties such as absolute conductivity and impedivity may be calculated. In another example, the button electrodes 304 may be used to measure the phase of the voltage and the current 324. From phase of the voltage and the current 324, the impedance phase may be calculated. With the impedance phase known, the ratio of conductivity and permittivity may be calculated. Measurements taken via the button electrodes 304 may be taken at several frequencies to optimize response.
- the source (or return) electrode(s) 306, and possibly the button (or sensor) electrode(s) 304 may be any conventional electrode capable of generating a current 324 across the fluid 326 and/or formation 200 with measurable effects.
- a power source e.g., included in the electronics package 120 of Figure 1
- the current 324 flows out of one of the electrodes 302, for example the source electrodes 306, and can be measured by the button electrodes 304.
- Current may be passed through the mud and/or formation for measurement thereof as shown.
- the current 324 from the electrodes may be used to determine various parameters.
- an AC voltage V may be applied between two electrodes to generate a resultant current I that can be measured at the sensor electrode, for example a mud button or a formation button electrode.
- Data concerning the measured current may be used to determine fluid or other downhole parameters, such as impedivity, resistivity, impedance, conductivity, complex conductivity, complex permittivity, tangent delta, and combinations thereof, as well as other parameters of the wellbore fluid.
- the data may be analyzed to determine characteristics of the wellbore fluid, such as the type of fluid (e.g., hydrocarbon, mud, contaminants, etc.)
- a processor e.g., located in the logging device 112, the electronics package 120 of Figure 1
- the data may be communicated to the surface unit 114 and/or other location for storage and/or analysis. Such analysis may be performed with other inputs, such as historical or measured data about this or other wellsites. Reports and/or other outputs may be generated from the data.
- the data may be used to make decisions and/or adjust operations at the wellsite. In some cases, the data may be fed back to the wellsite for real-time decision making and/or operation.
- the electrodes 302 may couple capacitively through the insulating layer 300 (or insulating surface) then through the fluid 326 (or mud), if present, and into the formation 200.
- the electrode-formation coupling may be reduced because another capacitor (the insulating layer 300) has been added to the series with the existing mud impedance.
- the insulating layer 300 may be used to handle rapid and relatively large impedance changes between the electrodes 302 and the formation 200 by preventing the electrodes 302 from touching the formation 200, or where there may be conductive paths through the mud.
- the thickness of the insulating layer 300 may be, for example, between about 0.25 mm and 5.00 mm. Further, the thickness of the insulating layer 300 may be, for example, between about 1.00 mm and 2.50 mm. Thinner insulating layer 300 may be used, for example, to reduce the standoff S. A smaller standoff S may lead to a higher measurement image resolution. A higher measurement signal may be used to generate better signal to noise ratio (where noise includes thermal noise and other spurious signals). A thicker insulating layer 300 may be used to provide a more stable capacitive coupling between the electrodes 302 and the formation 200 and, therefore, a more stable measurement. Furthermore, a thicker insulating layer 300 may be used to increase strength and resist wear over time. A thicker insulating layer 300 may also be used to prevent fracture and loss of sealing capabilities.
- the thickness of the insulating layer 300 may vary over certain areas of the sensor pad 116.
- the thickness range of the insulating layer 300 may be about 1.00 to 2.50 mm in front of the button electrodes 304 and up to an extra 1.00 mm, or between about 1.00 to 3.50 mm, in front of the source electrodes 306.
- An insulating layer 300 thickness of at least about 2.00 to 3.00 mm may prevent fracturing, breaking and/or wearing off of the insulating layer 300 during downhole operations.
- the minimum thickness can be a function of the diameter of the electrodes 302.
- the thickness of the insulating layer 300 in front of an electrode 302 having a relatively large surface area on the face of the sensor pad 116 may be greater than in front of an electrode 302 having a relatively small surface area on the face of the sensor pad 116.
- the changing of the insulating layer 300 thickness may prevent premature fracturing, breaking and/or wearing of the insulating layer 300.
- the insulating layer 300 thickness in front of the guard electrodes 400 and button electrodes 304 may be important; whereas, the layer thickness in front of the source electrodes 306 may be less significant.
- the insulating layer 300 thickness in front of the source electrodes 306 may be similar to the insulating layer 300 thickness in front of the button electrodes 304 and the guard electrode 400.
- the insulating layer 300 comprising a front portion 402, or front face, of the sensor pad 116 may be formed from an insulating material, as discussed above.
- the front portion 402 may be constructed from insulating material.
- the insulating layer 300 may be constructed with one or more blind holes 500.
- the blind holes 500 may be formed for housing a portion, and/or all of the electrodes 302 (such as the source electrode(s) 306, the button electrodes 304 and/or the guard electrodes 400).
- the electrodes 302 may be mounted in blind holes 500 formed in the sensor pad 116 during assembly.
- the method of construction of these sensor pads 116 is shown in Figure 5 .
- the borehole wall faces the front face 402 of the insulating layer 300, which is shown as a complete surface without holes for the electrodes 302.
- FIG. 5 shows detail of the construction of the sensor pad 116 having the electrodes 302 and front face 402 of the insulating layer 300.
- the blind holes 500 are formed in the front face 402 of the insulating layer 300.
- the forming of the blind holes 500 may leave a base section 504 of the insulating layer 300 with the required thickness t.
- the required thickness may be a thickness that permits electrical communication through the insulating layer 300 and between the electrodes 302 in order to allow measurement of electrical properties.
- the electrodes 302 may then be inserted into the blind holes 500 so as to seat against the base section 504.
- the blind holes 500 may be drilled in the front face 402 of the insulating layer 300, or formed by any suitable method such as by molding, cutting, and the like.
- Each of the blind holes 500 may vary in depth d depending on the required thickness t of the insulating layer 300 in front of the respective electrodes 302.
- the blind holes 500 may house any of the electrodes 302 behind the front face 402 of the insulating layer 300.
- the blind holes 500 may address problems found in the prior art.
- the thin insulating layer 300 may prevent the electrodes 302 from touching the formation layer 200, as shown in Figures 3 and 4 .
- conductive bubbles in the fluid 326, or mud may no longer form low impedance paths between the electrodes 302 and the formation 200.
- the mechanical sealing issues associated with holes that extend all the way through the insulating layer 300 may be avoided.
- FIG 6 shows a perspective view of an electrode 302 usable as the guard electrode 400 of Figure 4 .
- Each of the electrodes 302 extending into the blind holes 500 and contacting the insulating layer 300 may be a solid electrode, as shown in Figure 5 .
- the electrode 302 may be a multi guard electrode broken up into smaller sub-electrodes 600 that contact the insulating layer 300 as shown in Figure 6 . Therefore, each of the electrodes 302 may comprise a series of interconnected spaced sub-electrodes 600 electrically linked together, for example at an anterior portion of the sensor pad 116.
- the guard electrode 700 is often in the form of a metal ring.
- the guard electrode 700 may be sub-divided into several sub electrodes 600 as shown in Figure 6 .
- Figures 8 and 9 show transparent front views of the sensor pad 116 of Figure 2A .
- Figure 8 shows the sensor pad 116 having two large source electrodes 306, a ring type guard electrode 400, and the button electrodes 304 having sub-electrodes 600a.
- the front face 402 of the insulating layer 300 used to house the electrodes 302 may have a complementary shape to house the electrodes 302.
- the front face 402 may have one or more ribs 800 which fit in the gaps between sub-electrodes 600a for the button electrodes 304. These ribs 800 may give extra strength to the front face 402 and allow for thinner layers in front of the electrodes 302.
- Figure 8 shows a front face 402 arrangement which is capable of housing the ring guard electrode 700 as shown in Figure 7 .
- Figure 9 shows a front face 402 arrangement which is capable of housing the series of sub-electrodes 600 of the multi guard electrode 400 of Figure 6 .
- Figure 9 shows the sensor pad 116 having the source electrodes 306 subdivided into sub-electrodes 600c, the multi guard electrode 400 being subdivided into sub-electrodes 600a, and the button electrodes 304 having the sub electrodes 600b.
- the front face 402 of the insulating layer 300 used to house the electrodes 400 may have a complementary shape to house the electrodes 302.
- the front face 402 may have one or more ribs 900 which fit in the gaps between sub electrodes 600a,b,c for the button electrodes 304, the guard electrodes 400 and/or the source electrodes 306. These ribs 900 may give extra strength to the front face 402 and allow for thinner layers in front of the electrodes 302.
- Figures 8 and 9 show where blind holes 500 for button electrodes 304, blind holes 500 for source electrodes 306 (which can also be sub-divided) and blind holes 500 for the guard electrode 400 have been drilled into the front face 402.
- the front face 402 may be, for example, less than about 2.00 mm thick where the button electrode 304 and guard electrodes 400 are received and less than about 3.00 mm thick where the source electrodes 306 are received.
- the region of the front face 402 where no blind holes 500 are present may have an increased thickness, for example, at least about 4.00 mm thick.
- the insulating layer 300 may be part of the front face 402.
- the insulating layer 300 may also be formed by depositing an insulating material such as hard paint, plastic, PEEKTM, ceramic and the like over the electrodes 302.
- the insulating layer 300 may be formed having a modified electrode surface property 1000, as shown in Figure 10 .
- the modified electrode surface property 1000 may allow the electrodes 302 to become the insulating layer 300, or a portion thereof.
- the modified electrode surface property 1000 may be formed, for example, by anodization.
- the sub-divided electrodes can also be formed by completely separate but electrically connected sub-electrodes. Further, some of the electrodes 302, may use the modified electrode surface property 1000 while others may be covered by the insulating layer 300 as described above.
- FIGS 11A - 16B show various additional versions of a sensor apparatus for measuring formation parameters.
- the sensor apparatus may comprise a sensor pad 116 having a raised insulating cover 1100-1600, respectively.
- the sensor pad 116 is positioned on the tool pad 308 (or 308'), which is supported by the mandrel 202 (or 202') of the downhole tool 104 (or 104').
- the sensor pad 116 may have at least one wear plate 320, the insulating layer 300 or conductive layer 300', and electrodes 302 thereon.
- the electrodes 302 may include one or more button electrodes 304 positioned along a central portion of the front face 402 of the sensor pad 116 and at least one source electrode 306 or source 306' positioned relative thereto.
- the raised insulating cover 1100-1600 may be used to provide a hardened, protective layer over the electrodes 302.
- the raised insulating cover 1100-1600 may be used to provide an insulating coating that allows passage of electrical signals therethrough like, for example, the insulating layer 300.
- the raised insulating cover 1100-1600 may also be made durable for providing wear protection like, for example, the wear plate 320.
- a typical purpose of the raised insulating cover 1100 may be to resist permanent or intermittent contact between the electrodes 304, 306, 400 and the rough surface of the formation, surrounded by wellbore fluid.
- the raised insulating cover 1100-1600 may extend over various portions of the front face 402 of the sensor pad 116 to provide direct contact with the formation 200. This configuration may be used to place the electrodes closer to the wellbore wall 206 without direct contact therewith. This configuration may also be used to limit the wellbore fluid 326 (or mud layer) between the sensor pad 116 and wellbore wall 206, to provide a constant layer of insulation between the electrodes 302 and the formation 200, and to provide additional protection to the electrodes. In some examples, the raised insulating cover may have a thickness T of between about 0.30 to 3.00 mm.
- Figure 11A shows a front view of the pad 116.
- Figure 11B shows a cross-sectional view of the sensor pad 116 of Figure 11A taken along line 11B-11B.
- the insulating layer 300 may be positioned along the front face 402 of the sensor pad 116 with button electrodes 304 and the source electrodes 306 recessed into the front face 402 thereof.
- a raised insulating cover 1100 extends over portions of the front face 402. The raised insulating cover 1100 extends a distance beyond the front face 402 for contact with the wellbore wall 206. In this position, the raised insulating cover 1100 provides initial contact with the wellbore wall 206.
- standoff S provides a gap between the electrodes 302 and the wellbore wall 206 to prevent direct contact therewith.
- the wear plates 320 may also have the same standoff S with the wellbore wall 206.
- the raised insulating cover 1100 may extend over various portions of the front face 402 and the electrodes 302 for providing protection thereto. In this version, the raised insulating cover 1100 extends over an outer face of the source electrode 306 to form a front cover thereon.
- the source electrodes 306 are positioned in an electrode cavity 1104 extending into the front face 402 of the insulating layer 300, and recessed a distance therein.
- a source electrode portion 1106 of the raised insulating cover 1100 is positioned in electrode cavity 1104 and extends over an outer surface of the source electrodes 306.
- the source electrode portion 1106 may seal and protect the source electrode 306 within the insulating layer 300.
- the source electrode portion 1106 may protrude a distance beyond the insulating layer 300 to provide initial contact with the wellbore wall 206 while protecting the source electrode 306.
- the source electrode portion 1106 has a flat body with a tapered perimeter extending thereabout.
- the source electrode portion 1106 of Figure 11A has a rectangular dimension to cover and conform to the shape of the underlying rectangular source electrode 306, but may be of any dimension sufficient to protect and seal the source electrode 306.
- the source electrode portion 1106 may be tapered, flat, rounded, concave, convex or any other shape.
- the outer surface of the source electrode portion may be defined to conform to the wellbore wall 206, or to facilitate passage through the wellbore. Tapering along the raised insulating cover 1100 may be used, for example, to prevent the raised insulating cover 1100 from breaking off and/or damaging the sensor pad 116 as the tool 104 passes along rough surfaces along the wellbore wall 206.
- the raised insulating cover 1100 extends over an outer face and a sidewall of the button electrode 304 to form a front and side cover thereabout.
- the button electrodes 304 are positioned in an electrode hole 1107 extending through the front face 402 of the insulating layer 300.
- a button electrode portion 1108 of the raised insulating cover 1100 is positioned over the electrode hole 1107 and extends over the outer face and sidewall of the button electrodes 304.
- the button electrode portion 1108 may seal and protect the button electrode 304 within the insulating layer 300 and therefore seal and protect the interior of the pad 116.
- the button electrode portion 1108 preferably protrudes a distance from the insulating layer 300 to provide initial contact with the wellbore wall 206 while protecting the button electrode 304.
- the open space between the insulating layer 300 and the tool pad 308 may be filled with liquid and/or other components such as electronic parts e.g. integrated circuits, capacitors, resistors etc. and/or mechanical parts e.g. screws, washers, plastic sheets, etcetera.
- At least one of the electrodes 302 may be attached to the raised insulating cover.
- At least one of the electrodes 302 may be attached to a supporting part positioned in the open space between the insulating layer 300 and the tool pad 308.
- the button electrode portion 1108 has a cup-shaped body having an inlet 1110 adapted to receive the button electrode 304.
- the button electrode portion 1108 of Figure 11B has a tapered outer surface on an outer end 1111, and a lip 1112 extending about a perimeter of an opposite end thereof. The lip 1112 is positioned in a shoulder 1114 of the insulating layer 300 to secure the button electrode portion 1108 therein.
- the button electrode portion 1108 may be of any dimension sufficient to protect and seal one or more button electrodes 304 (and/or guard electrodes 400).
- the button electrode portion 1108 may be tapered, flat, concave, convex or any other shape.
- the outer surface of the button electrode portion may be defined to conform to the wellbore wall 206, or to facilitated passage through the wellbore.
- the raised insulating cover 1100 may extend over portions of the front face 402 and/or electrodes 302 in a modular configuration as shown in Figures 11A and 11B , or the entire face in a unitary configuration as will be described with respect to Figures 14A and 14B below.
- the raised insulating cover 1100 may also extend a distance into the insulating layer 300 to provide additional protection and/or to be secured by the insulating layer 300 in position.
- the raised insulating cover 1100 may take a variety of shapes to conform to the electrodes 304, 306, 400.
- the raised insulating cover 1100 may also take a variety of shapes to position the sensor pad 116 relative to the wellbore wall 206.
- the raised insulating cover 1100 may comprise, for example, a hardened material that permits the passage of electrical signals therethrough while providing sufficient hardness to protect the electrodes 302 in a downhole environment.
- the material may be constituted, for example, from mineral material or technical ceramic (e.g., diamond, zircon, alumina, and the like), or out of an insulating composite material (e.g., glass or ceramic fiber plastics). The choice of material may depend on the hardness, the abrasion resistance, the resilience, the dielectric constant, the chemical resistance or other material properties.
- the raised insulating cover 1100 may be made up of (at least in part), for example, the same material as the insulating layer 300.
- the raised insulating cover 1100 may also be attached to the insulating layer 300 to form a continuous and sealed layer.
- the attachment between the insulating layer 300 and the raised insulating cover 1100 may be conventional means, such as fastener (e.g., screws or bolts), elastomeric or thermoplastic over-molding, gluing, welding, brazing, etc.
- Seals 1117 may optionally be provided to ensure pressure tightness between components.
- the raised insulating cover 1100 may be made of one or more different materials.
- the button electrode portion 1108 as shown in Figure 11B may have lip 1112 of a material, such as metal, that is different from the remainder of the raised insulating cover 1100.
- a different material like a metal may provide an easier way of attachment between the button electrode portion 1108 and the insulating layer 300.
- the lip or sidewall may therefore be brazed, welded, glued, overmolded, or otherwise secured to the insulating material portion of the raised insulating cover 1100 at end 1111 facing the wellbore wall.
- a metallic or conductive material may be used for the portions of the button electrode portion 1108, such as the lips 1102 and a portion of the sidewall adjacent thereto, to add the function of guarding the button electrode 304.
- the raised insulating cover 1100 may optionally be provided with various conductive portions, for example, for attachment and sealing with insulating layer 300.
- the electrodes 302 may be, for example, a metallization on the insulating layer 300 and/or raised insulating cover 1100.
- This metallization may be done on or along an insulator, such as a single or multi-layered electronic board, on or along the insulating layer 300 or on the back face of the raised insulating cover 1100.
- the raised insulating cover 1100 in any configuration may be positioned on a back face of the cavity 1104 or a surface of the insulating layer 300 for enabling positioning of the metallization electrode 302 on or along the insulating layer 300 and/or raised insulating cover 1100.
- the electrodes 302 may be attached to the raised insulating cover 1100 and the insulting layer 300 through insulating material deposition, such as projection coating, bath coating, paint coating, etc.
- the raised insulating cover 1100 may fully or partially cover an arrangement of various electrodes 302.
- the raised insulating cover 1100 may have one or more portions, such as the source electrode portion 1106, the button electrode portion 1108 and/or other portions. In some cases, one or more types of electrodes may be covered by the various portions.
- the button electrode portion 1108 may also cover one or more guard electrodes 400 positioned adjacent to the button electrode 304.
- Figures 12A and 12B show a variation of the sensor pad 116 of Figures 11A and 11B with a raised insulating cover 1200.
- the raised insulating cover 1200 is similar to the raised insulation cover 1100, except that the raised insulating cover 1200 covers only a portion of the electrodes 302. As shown in this configuration, the raised insulating cover 1200 may extend over part or all of the electrodes 304, 306, 400 and/or the insulating layer 300.
- the insulating layer 300 of Figures 12A and 12B covers a portion of the front face 402 of the sensor pad 116, including the electrodes 304, 306, 400.
- the raised insulating cover 1200 is positioned on the insulating layer 300 over the electrodes 304, 306, 400. As also shown by this configuration, the raised insulting cover 1200 may be layered over the electrodes and the insulating layer 300 or other materials.
- the raised insulating cover 1200 and insulating layer 300 may be configured with materials to provide the desired capacitive coupling therethrough, while achieving the desired protection and/or wear resistance.
- the source electrode portion 1206 of the raised insulating cover 1200 extends over a portion of the source electrode 306. As shown, the source electrode portion 1206 covers a central portion of the source electrodes 306, but leaves outer portions uncovered. These outer portions may be covered by the insulating layer 300.
- Button electrode portions 1208 of the raised insulating cover 1200 extends over a portion of the button electrodes 304.
- the button electrode portions 1208 may cover only portions of the sensor pad 116 that are needed to provide the standoff S and/or to protect the button electrodes 304.
- two button electrode portion 1206 cover outer portions of the button electrodes 304, but leaves central portions uncovered. These central portions may be covered by the insulating layer 300.
- While specific configurations of the raised insulating cover 1200 are shown positioned over the insulating layer 300 and portions of the electrodes 304, 306, 400, various shapes of the raised insulating cover 1200 may be positioned over various portions of the insulating layer 300 and/or one or more electrodes 304, 306, 400.
- the raised insulating cover 1200 may also extend over the wear plates 320.
- Figures 13A and 13B show another variation of the sensor pad 116 and raised insulating cover 1100 of Figures 11A and 11B with a raised insulating cover 1300.
- the raised insulating cover 1300 is similar to the raised insulation cover 1100, except that the raised insulating cover 1300 covers different portions of the electrodes 302.
- portions of the raised insulating cover 1300 may cover front and/or sides of the electrodes 302.
- the button insulating portion 1308 extends over an outer face of the button electrode 304.
- the button insulating portion 1308 has a flat body with a tapered outer surface.
- the source insulating portion 1306 extends over outer and side surfaces of the source electrodes 306.
- the source insulating portion 1306 has a cup-shaped body with an inlet 1310 adapted to receive the source electrode 306, a tapered outer surface on an outer end 1311, and a lip 1312 positioned in a shoulder 1114 of the insulating layer 300 to secure the source electrode portion 1306 therein.
- Seals 1117 may be provided between the raised outer cover 1300 and the insulating layer 300 as shown.
- the raised insulating cover 1300 may be provided with additional features, such as a mud scraper 1303.
- the mud scraper 1303 may be a plurality of teeth positioned on an outer surface of the raised insulating cover 1300.
- the mud scraper 1303 may be used to scrape against the wellbore wall 206 to remove or displace the layer of mud or mud cake that may be present adjacent to the surface of the formation 200.
- Figures 14A and 14B show another variation of the sensor pad 116 and raised insulating cover 1100 of Figures 11A and 11B , with a unitary raised insulating cover 1400.
- the raised insulating cover 1400 is similar to the raised insulation cover 1100, except that the raised insulating cover 1400 covers the entire front face 402 of the sensor pad 116.
- the raised insulating cover 1400 and the insulating layer 300 may be combined into a unitary structure.
- the insulating cover 1400 and insulating layer 300 both extend over the front face 402 of the sensor pad 116.
- the electrode cavities 1404 extend into an inner surface 1420 of the raised insulating cover 1400 for receiving the source electrodes 306.
- a hole 1407 also extends into the inner surface 1420 of the raised insulating cover 1400 for receiving the button electrodes 304, but is terminated by the raised insulating cover 1400 which covers an end thereof.
- the raised insulating cover 1400 may be a single entity constructed of a single material.
- the electrodes 304, 306, 400 may be inserted into the unitary structure.
- the raised insulating cover 1400 may be made of multiple components of the same material and integrated to form a unitary structure.
- the insulating layer 300 may be incorporated into the raised insulating cover 1400, or used in conjunction therewith.
- Figures 15A and 15B show another variation of the sensor pad 116 and raised insulating cover 1500 positioned on a downhole drilling tool 104'.
- the sensor pad 116 may be used in combination with any downhole tool, such as the downhole drilling tool 104' as depicted.
- the sensor pad 116 is shown positioned on a tool base 308' within a mandrel 202' of the downhole drilling tool 104'.
- the sensor pad 116 also has an insulating layer 300 for supporting source electrodes 306 and button electrodes 304.
- the sensor pad 116 may also have at least one guard electrode.
- the raised insulating cover 1500 is similar to the raised insulating cover 1100, except that the raised insulating cover 1500 has concentric source and button electrode portions 1406,1408. As further demonstrated by this configuration, one or more electrodes 302 may be in any configuration about the sensor pad 116. In this version, the source electrode 306 has an oval shape on a front face 402 of the sensor pad 116. A source electrode portion 1506 of the raised insulating cover 1500 extends over the source electrode 306. The source electrode portion 1506 is depicted as a cover over an outer surface of the source electrodes 306 similar to the cover configuration of the source electrode portion 1106 of Figure 11B .
- the button electrodes 304 are positioned within an inner perimeter of the source electrode 306 at any angle to an axis of the downhole tool 104'.
- the button electrode portion 1508 of the raised insulating cover 1500 extends over the button electrode 304.
- the button electrode portion 1508 is depicted as covering front and side portions of the button electrodes 304 (similar to the configuration of the button electrode portion 1108 of Figure 11B ).
- Figures 16A-16B show various configurations of a downhole tool 104 with a sensor pad 116 and a conductive mandrel 202.
- the downhole tool is a wireline tool 104 with a sensor pad 116 positioned on a tool pad 308 extending towards a wellbore wall 206.
- Wear plates 302 are also provided for additional protection of the sensor pad 116.
- the sensor pad 116 has an electrode 304 positioned in a conductive layer 300', and a raised insulating cover 1600 positioned thereon.
- the electrode 304 is positioned in a hole 1610 in the conductive layer 300'.
- the electrode 304 is supported by the raised insulating cover 1600 in non-contact with the conductive layer 300'.
- the raised insulating cover 1600 is in a semi-module configuration positioned along the front face 402 and over the hole 1610.
- the raised insulating cover 1600 has an end 1670 and a sidewall 1672 extending therefrom.
- the end 1670 covers an end of the electrode 304, and the sidewall 1672 extends over a portion of a sidewall of the electrode 304.
- the raised insulating cover 1600 may be sealed or connected to the conductive layer 300'.
- the raised insulating cover 1600 defines a standoff S between the front face 402 and the flat end 1670. Seals 1117 are positioned between the raised insulating cover 1600 and the conductive layer 300'. Insulation, such as insulating layer 300, may optionally be positioned about the electrode 304.
- the source electrode 306 is positioned in the mandrel 202.
- An insulator 1676 is positioned between the source electrode and the mandrel 202.
- the insulator 1676 may be made of the same material as the insulating layer 300 or the raised insulating cover 1600.
- the insulator 1676 may be positioned about the electrode 306 for isolating the source electrode 306 from metal portions of the downhole tool 104.
- the source electrode 306 may be used to pass current through the wellbore and/or formation. As shown, the current may be received by the button electrode 304 for measurement thereof.
- the downhole tool is a tool 104' with a sensor pad 116 formed in a metal drilling collar (or mandrel) 202'.
- the sensor pad 116 is integral with the drilling collar 202', with the drilling collar 202' acting as the base (e.g., 308 of Figure 11B ).
- the sensor pad 116 has a button electrode 304 and guard electrodes 400 positioned in a raised insulating cover 1600.
- the button electrode 304 is positioned in a hole 1110 in the raised insulating cover 1600.
- the electrodes 304, 400 are supported by the raised insulating cover 1600 in non-contact with the drill collar 202'. Insulation, such as insulating layer 300, may optionally be positioned about the button electrode 304 and guard electrode 400.
- the raised insulating cover 1600 is in a front and side cover configuration positioned over along the front face 402 and over the hole 1610.
- the raised insulating cover 1600 has a tapered end 1671 and a sidewall 1672 extending therefrom.
- the tapered end 1671 covers an end of the electrode 304 with the sidewall 1672 extending over a portion, of a sidewall of the electrode 304.
- the raised insulating cover 1600 defines a standoff S between the front face 402 and the flat end 1671.
- Seals 1117 are positioned between the raised insulating cover 1600 and the drill collar 202'. Seals as provided herein may be provided by o-ring or other seals, or by, for example, brazing the raised insulating cover 1600 to the metal conductive layer 300'.
- the mandrel 202' acts as source.
- the button and guard electrodes 304, 400 receive current from the mandrel 202'.
- the button electrode 304 may then be used to measure the current.
- Figure 16B depicts a version without a source without a source electrode
- a source electrode and insulation may optionally be provided in the mandrel 202'.
- the mandrel 202' acts as a source, with portions of the source which are closer to the button and guard electrodes contributing more current that the portions that are farther.
- Figures 11A-16B show various configurations of a sensor pad 116 with electrodes 304, 306, 400, an insulating layer 300, conductive layer 300' and a raised insulating cover 1100-1600, respectively. It will be appreciated that various combinations of the sensor pad 116 and its components may be used on various downhole tools. For example, a downhole drilling tool 104' may be provided with a sensor pad with the unitary configuration of Figures 14A and 14B , a mud scraper 1303 of Figures 13A and 13B , and/or other features previously described herein.
- the sensor pad 116 may be used to gather downhole data.
- Figures 17A and 17B are flowcharts depicting methods (1700a, 1700b) for measuring downhole parameters.
- the method (1700a) involves positioning (1702) a sensor pad in the borehole adjacent a wall of the borehole.
- the sensor pad may have an arrangement of electrodes for measuring the electrical properties of the formation mounted on the sensor pad and configured to face the wall of the borehole, and having an insulating layer extending over a substantial portion of at least one electrode facing the wall of the borehole.
- the flow continues at block (1704) wherein the electrodes may be configured to measure the electrical properties of the formation through the insulating layer.
- the flow may optionally continue at block (1706) wherein at least one of the electrodes may be configured to couple capacitively to the formation to measure the electrical properties of the formation.
- the method (1700b) involves providing (1740) a downhole tool with a sensor pad (and/or sensing apparatus), deploying (1741) the downhole tool into the wellbore; positioning (1742) a raised insulating portion of the sensor pad (and/or sensing apparatus) adjacent a wall of the wellbore, passing (1744) an electronic signal from a source (and/or source electrode) through the formation and to the at least one sensor electrode, and measuring (1746) at least one downhole parameter of the formation from the electronic signal.
- the sensor pad may be positioned with at least one contact surface of the raised insulating cover adjacent the wall of the wellbore such that the electrodes are positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith.
- the sensor pad (and/or sensing apparatus) may have an arrangement of electrodes for measuring the electrical properties embedded in an insulating layer or conductive layer, and an insulating layer and/or raised insulating cover extending over the electrodes.
- the steps may be performed in any order, and repeated as desired.
- the raised insulating cover and/or insulating cover may be positioned about various portions of the front face of the sensor pad to protect the electrodes.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
- The present invention relates to techniques for performing well bore operations. More particularly, the present invention relates to techniques for determining downhole characteristics, such as electrical parameters of downhole fluids and/or subterranean formations.
- Oil rigs are positioned at wellsites for performing a variety of oilfield operations, such as drilling a wellbore, performing downhole testing and producing located hydrocarbons. Downhole drilling tools are advanced into the earth from a surface rig to form a wellbore. Drilling muds are often pumped into the wellbore as the drilling tool advances into the earth. The drilling muds may be used, for example, to remove cuttings, to cool a drill bit at the end of the drilling tool and/or to provide a protective lining along a wall of the wellbore (or borehole). During or after drilling, casing is typically cemented into place to line at least a portion of the wellbore. Once the wellbore is formed, production tools may be positioned about the wellbore to draw fluids to the surface.
- During drilling, measurements are often taken to determine downhole conditions. In some cases, the drilling tool may be removed so that a wireline testing tool may be lowered into the well bore to take additional measurements and/or to sample downhole fluids. Once the drilling operation is complete, production equipment may be lowered into the wellbore to assist in drawing the hydrocarbons from a subsurface reservoir to the surface.
- The downhole measurements taken by the drilling, testing, production and/or other wellsite tools may be used to determine downhole conditions and/or to assist in locating subsurface reservoirs containing valuable hydrocarbons. Such wellsite tools may be used to measure downhole parameters, such as temperature, pressure, viscosity, resistivity, etc. Such measurements may be useful in directing the oilfield operations and/or for analyzing downhole conditions.
- Various techniques have been developed for measuring downhole parameters as described, for example, in
US Patent/Application No. 6801039 ,6191588 ,6919724 ,7066282 ,6891377 ,5677631 ,5574371 ,4567759 , and3816811 . In some cases, techniques have been generated for determining parameters of the formations surrounding the borehole. For example, micro-resistivity measurements of borehole walls may be taken to generate images of formations surrounding the borehole. Such micro-resistivity measurements may be taken using downhole tools, such as a Fullbore Micro Imager (FMI™) of SCHLUMBERGER™ and an Earth Imager™ of BAKER ATLAS™. In one example, measurements may be taken using current injection when the borehole is filled with a conductive fluid or mud. Where a non-conductive fluid is present, such as oil-based mud (OBM) with a very high resistivity compared to that of the formation such that a thin layer of mud between a measurement electrode and the formation, high impedance is generated between the electrode and the formation. Another example mounts one or more button voltage electrodes on an insulating pad, such as is used in the Oil Base Micro Imager tool (OBMI™) of SCHLUMBERGER™. - Stability problems may sometimes occur in cases where a measurement electrode touches the formation, or if the mud has conductive bubbles in it which form a low-impedance electrical connection between the measurement electrode and the formation. High impedance between the electrode and the formation can suddenly reduce to very small impedance or vice versa, which may lead to a change in the measurement that is not due to a change in formation parameters. For example a small change from 0.10 mm to 0.00 mm mud thickness can lead to a significant change in impedance. In general, both the magnitude and the phase of the impedance can change drastically.
- It may be desirable in some cases to provide a minimum distance or stand-off between a measurement pad and the borehole wall. Attempts have been made to provide protruding elements, for example protruding wear plates, on the sensor pad to touch the formation and keep the pad's front face away from the formation. However, existing protruding devices may be subject to damage in downhole conditions, may still have problems with measurements where conductive bubbles are present in the mud, and may be subject to large standoff variations during the logging process.
- The invention contained herein is provided to address deficiencies with existing techniques.
- In at least one aspect, the invention relates to a sensing apparatus for measuring downhole parameters of a wellsite, the wellsite having a downhole tool positionable in a well bore extending into a subterranean formation. The sensing apparatus includes at least one source positionable about the downhole tool, at least one sensor electrode positionable about a front face of the downhole tool for measuring electrical signals from the source, and a raised insulating cover positionable along the front face of the downhole tool for defining at least one surface thereon to be in contact with a borehole wall. The raised insulating cover extends over at least a portion of the sensor electrode whereby the sensor electrode is positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith.
- The sensing apparatus may also include a base positionable in the downhole tool for supporting the sensing electrode and the raised insulating cover thereon, an insulating layer positionable about at least a portion of the sensor electrode (the raised insulating portion supported by the insulating layer), at least one seal between the raised insulating cover and the insulating layer, and/or a conductive layer positionable about at least a portion of the electrode in non-contact therewith (the raised insulating portion supported by the conductive layer). At least a portion of the insulating layer may be positioned between at least a portion of the at least one sensor electrode and the raised insulating cover. The insulating layer may be integral with the raised insulating cover. The insulating layer may have at least one cavity for receiving the source. The insulating layer may have at least one hole for receiving the sensor electrode.
- The source may be a source electrode positionable about the downhole tool a distance from the sensing electrode for electrical communication therewith, or positioned in a mandrel of the downhole tool. A source electrode portion of the raised insulating cover may extend over at least a portion of the source. The raised insulating cover may have an outer surface for covering the sensor electrode. The raised insulating cover may have a sidewall extending over at least a portion of a sidewall of the sensor electrode. The raised insulating cover may have a lip on an outer perimeter thereof. The sensor electrode may include at least one guard electrode and/or at least one button electrode.
- The sensing apparatus may also include at least one wear plate. The raised insulating cover may extend over the at least one wear plate. The raised insulating cover may have a mud scraper thereon. The raised insulating cover may provide a standoff between a wall of the wellbore and the sensor electrode. The portion of the raised insulating cover that may face a borehole may have a thickness of about 0.30 to 3.00 mm. The sensor electrode may be a metalized coating or a solid component. The at least one source may have an oval body surrounding the sensor electrode. The sensor electrode and the source may be configured to couple capacitively to the formation for measurement thereof. The raised insulating cover may be made of a ceramic material. Portions of the raised insulating cover may be made of different materials.
- In another aspect, the invention may relate to a system for measuring downhole parameters of the wellsite. The wellsite has a wellbore extending into a subterranean formation. The system includes a downhole tool deployable from a rig into the wellbore, and at least one sensing apparatus positionable about the downhole tool. The sensing apparatus includes at least one source positionable about the downhole tool, at least one sensor electrode positionable about a front face of the downhole tool for measuring electrical signals from the source, and a raised insulating cover positionable along the front face of the downhole tool for defining at least one contact surface thereon. The raised insulating cover extends over at least a portion of the sensor electrode whereby the electrode is positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith.
- The source may include at least one source electrode positioned on the downhole tool, or a mandrel of the downhole tool. The downhole tool may be a logging, wireline, drilling, coiled tubing, drill stem tester, production, casing, pipe and/or completions tool. The system may also include a base for supporting the sensing apparatus, the base extendable from the downhole tool via an arm.
- In another aspect, the invention may also relate to a method for measuring downhole parameters of a wellsite. The method may involve providing a downhole tool with a sensing apparatus, deploying the downhole tool into the well bore, positioning the at least one contact surface of the raised insulating cover adjacent the wall of the well bore such that the one sensor electrode is positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith; passing an electronic signal through the subterranean formation via the source; and measuring at least one downhole parameter of the formation from the electronic signal.
- The step of passing may involve passing the electronic signal from the source to the sensor electrode. The step of passing may involve passing the electronic signal through the raised insulating cover. The sensing apparatus may include an insulating layer and the step of passing may involve passing the electronic signal through the insulating layer.
- In yet another aspect, the invention may relate to a method for measuring downhole parameters of the wellsite. The method may involve providing a downhole tool with the sensor pad, deploying the downhole tool into the wellbore, positioning the contact surface of the raised insulating cover adjacent a wall of the wellbore such that the electrodes are positionable adjacent to subterranean formation for electrically coupling thereto without direct contact therewith, passing an electronic signal through the subterranean formation via the electrodes, and measuring at least one downhole parameter of the formation from the electronic signal. The method may also involve passing an electronic signal from the source electrode to the sensor electrode, passing the electronic signal through the raised insulating cover, and passing the electronic signal through the insulating layer.
- Other aspects of the invention relate to a sensor pad for measuring electrical properties of an underground formation surrounding a borehole. The system preferably comprises a downhole tool positionable in the borehole, a tool pad positionable on the downhole tool, and a plurality of electrodes mounted on the tool pad and configured to face a wall of the borehole. The sensor pad further comprises an insulating layer extending over at least a portion of the electrodes facing the wall of the borehole.
- The plurality of electrodes of the sensor pad may be configured to couple capacitively to the formation to measure its electrical properties. Moreover, the electrodes may be mounted in a blind hole formed in the sensor pad. The electrodes may comprise at least one button electrode and at least one return electrode with an optional source electrode and/or a guard electrode. As an example, the at least one button electrode may be less than two centimeters in diameter. The electrodes may comprise a series of interconnected spaced sub-electrodes configured to operate as a single electrode.
- Further, a wear plate may be provided for maintaining a minimum standoff between the sensor pad and the wall of the borehole. Even further, the insulating layer may be formed by depositing an insulating material over at least a portion of the electrodes, or by modifying the surface properties of the electrodes to become insulating. The insulating layer may comprise a face of the sensor pad formed from an insulating material. Where the electrodes comprises at least one button electrode and at least one return electrode, the insulating layer may extend over a substantial portion of the at least one button electrode facing the wall of the borehole. Where the electrodes comprise a series of interconnected spaced sub-electrodes configured to operate as a single electrode, the insulating material may extend between the series of interconnected spaced sub-electrodes. The insulating material may have different thicknesses depending on the nature of the sub-electrode. As an example, the insulating layer may have a thickness of not more about than 3.00 mm in front of the electrode(s) or portion(s) of electrode(s).
- The invention may also relate to the sensor pad for measuring electrical properties of an underground formation as described herein, wherein the downhole tool is either a wireline tool and/or a logging while drilling tool. As an example, the downhole tool may include various selected components from the group including a mandrel, a standoff keeper, a fin, a skid, and a stabilizer.
- The invention may also relate to a method for measuring the electrical properties of an underground formation surrounding a borehole. The method preferably comprises the steps of positioning a downhole tool with a sensor pad thereon in the borehole, the sensor pad having insulation thereon; positioning the sensor pad in the borehole adjacent a wall of the borehole, the sensor pad having a plurality of electrodes for measuring the electrical properties of the formation mounted in the insulation on the sensor pad and configured to face the wall of the borehole, and having an insulating layer extending over at least a portion of the electrodes facing the wall of the borehole; and configuring at least one of the electrodes to measure the electrical properties of the formation through the insulating layer.
- The method may further comprise the step of configuring at least one of the electrodes to couple capacitively to the formation to measure the electrical properties of the formation. In addition, the method may further comprise using the sensor pad for measuring electrical properties of an underground formation as described herein.
- These together with other aspects, features, and advantages of the present disclosure, along with the various features of novelty, which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. The above aspects and advantages are neither exhaustive nor individually or jointly critical to the spirit or practice of the disclosure. Other aspects, features, and advantages of the present disclosure will become readily apparent to those skilled in the art from the following detailed description in combination with the accompanying drawing. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not restrictive.
- To assist those of ordinary skill in the relevant art in making and using the subject matter hereof, reference is made to the appended drawings, which are not intended to be drawn to scale, and in which like reference numerals are intended to refer to similar elements for consistency. For purposes of clarity, not every component may be labeled in every drawing.
-
Figures 1A and1B are schematic views of a wellsite having a cased wellbore and a system for measuring downhole parameters therein.Figure 1A depicts a drilling downhole tool.Figure 1B depicts a wireline downhole tool. -
Figure 2A is a schematic view of a portion of a downhole tool with a sensor pad thereon. -
Figure 2B is a cross-sectional view of the downhole tool ofFigure 2A taken alongline 2B-2B. -
Figure 3 is a cross-sectional view of a portion of the downhole tool ofFigures 2A and 2B taken along line 3-3, depicting a sensor pad. -
Figure 4 is a cross-sectional view of the portion of the downhole tool ofFigure 3 , depicting an alternate sensor pad. -
Figure 5 is an exploded cross-sectional view of a portion of the sensor pad ofFigure 3 . -
Figure 6 is a perspective view of a multi guard electrode. -
Figure 7 is a perspective view of a ring guard electrode. -
Figure 8 is a transparent front view of a sensor pad having the ring guard electrode ofFigure 7 . -
Figure 9 is a transparent front view of a sensor pad having the multi guard electrode ofFigure 6 . -
Figure 10 is a cross-sectional view of another alternate sensor pad. -
Figures 11A and 11B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting a sensor pad with a raised insulating cover. -
Figures 12A and 12B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting an alternate sensor pad and raised insulating cover. -
Figures 13A and 13B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting another alternate sensor pad and raised insulating cover. -
Figures 14A and 14B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting another alternate sensor pad and raised insulating cover. -
Figures 15A and15B are front and cross-sectional views, respectively, of a portion of a downhole tool depicting another alternate sensor pad and raised insulating cover. -
Figures 16A and16B are cross-sectional views of a portion of a wireline downhole tool and a drilling downhole tool, respectively, each depicting another alternate sensor pad with a raised insulating cover. -
Figures 17A and17B are flowcharts depicting a method of measuring downhole parameters. - The description that follows includes exemplary sensor pad, methods, techniques, and instruction sequences that embody techniques of the present inventive subject matter. However, it is understood that the described embodiments may be practiced without these specific details. Presently preferred embodiments of the disclosure are shown in the above-identified Figures and described in detail below.
- The invention relates to techniques for measuring downhole parameters. A downhole tool with a sensor pad is configured to minimize a distance between the sensor electrode and a wall of the wellbore, eliminate direct contact with the formation and/or highly conductive bubbles in the mud, and to protect components thereof. This configuration may also be used to provide accuracy of measurement, optimized measurement processes, reduced clogging, minimized components, reduced size, increased surface area for measurement, constant flow of fluids during measurement, optimized shape of measurement sensor pad/system, compatibility with existing wellsite equipment, operability in downhole conditions (e.g., at high temperatures and/or pressures), etc.
-
Figures 1A and1B are schematic views of awellsite 100 having anoil rig 102 with adownhole tools 104' and 104, respectively, suspended into a wellbore (or borehole) 106 therebelow, As shown inFigure 1A , the downhole tool 104' is a conventional drilling tool. Thewellbore 106 has been drilled by the drilling downhole tool. The drilling tool 104' includes a plurality ofdrill pipe 50 with adrill bit 52 at an end thereof. The drilling tool also has a conventional logging while drilling ("LWD")tool 54 which may be in communication with asurface unit 114 viacommunication link 124, and asensor pad 116. A drilling mud, and/or awellbare fluid 108, may have been pumped into thewellbore 106 and may line a wall thereof. Once drilling is complete, the drilling tool 104' may be removed, and acasing 110 may also be positioned in a portion of thewellbore 106 and cemented into place therein by acement 111 as shown inFigure 1B . - As also shown in
Figure 1B , thedownhole tool 104 is shown as a wireline logging tool lowered into thewellbore 106 to take various measurements. Thedownhole tool 104 may be inserted into the well before or after placement of thecasing 110 into the wellbore. Thedownhole tool 104 may include aconventional logging device 112, asensor pad 116, one ormore telemetry devices 118, and an electronics package 120. - The
conventional logging device 112 may be provided with various sensors, measurement devices, communication devices, sampling devices and/or other devices for performing wellbore operations. Thedownhole tool 104 may include one or more sensors for determining one or more downhole parameters, such as wellbore fluid parameters, wellbore, integrity parameters and/or formation parameters. For example, as thedownhole tool 104 is lowered, thelogging device 112 may use devices, such as resistivity or other logging devices, to measure downhole parameters and/or properties. - As shown, the
downhole tool 104 may be conveyed into thewellbore 106 on awireline 122. Although thedownhole tool 104 is shown as being conveyed into thewellbore 106 on awireline 122, it should be appreciated that any suitable conveyance may be used, such as a slick line, a coiled tubing, a drill string, a casing string, a logging tool and the like. Thedownhole tool 104 may be operatively connected to thesurface unit 114 for communication therebetween. Thedownhole tool 104 may be wired via thewireline 122, as shown, and/or wirelessly linked via the one ormore telemetry devices 118. The one ormore telemetry devices 118 may include any telemetry devices, such as electromagnetic devices, for passing signals to asurface unit 114 as indicated bycommunication link 124. Further, it should be appreciated that any communication device or system may be used to communicate between thedownhole tool 104 and thesurface unit 114. Signals may be passed between thedownhole tool 104 and thesurface unit 114 and/or other locations for communication therebetween. Data may be passed to the surface by thecommunication link 124, and/or stored inside thedownhole tool 104 for download upon retrieval to the surface. - While the
downhole tool 104 is depicted as thewireline tool 104 having thesensor pad 116 thereon, it will be appreciated that thesensor pad 116 may be positioned downhole on a variety of one or more tools. For example, thesensor pad 116 may be placed downhole on a variety of downhole tools, such as a drilling, coiled tubing, drill stem tester, production, casing, pipe, completions, or other downhole tool. Although only onesensor pad 116 is shown, it should be appreciated that one ormore sensor pads 116 and/or portions of thesensor pads 116 may be located at several locations in thewellbore 106. - The
sensor pad 116 is a sensing component located on thedownhole tool 104 and positionable adjacent a wall of the wellbore for measurement thereof. Thesensor pad 116 is preferably positioned about an outer surface of thedownhole tool 104 so that the downhole fluid and/or the formation may pass therealong for measurement thereof. However, it will be appreciated that the one ormore sensors 116 may be positioned at various locations about thewellsite 100 as desired for performing fluid measurement. Further, the sensor pad(s) 116 may be located on thedownhole tool 104 within a mandrel, a standoff keeper, a fin, a skid, a stabilizer and the like as will be described further herein. - The electronics package 120 may include any components and/or devices suitable for operating, monitoring, powering, calculating, calibrating, and analyzing components of the
downhole tool 104. Thus, the electronics package 120 may include, for example, a power source, a processor, a storage device, a signal conversion (digitizer, mixer, amplifier, etc.), a signal switching device (switch, multiplexer, etc.), a receiver device and/or a transmission device, and the like (not shown). The electronics package 120 may be operatively coupled to thesensor pad 116. The power source in the electronics package 120 may apply a voltage to thesensor pad 116. The power source may be provided by a battery power supply or other conventional means of providing power. In some cases, the power source may be an existing power source used in thedownhole tool 104. The power source may be positioned, for example, in thedownhole tool 104 and wired to thesensor pad 116 for providing power thereto as shown. Optionally, the power source may be provided for use with thesensor pad 116 and/or other downhole devices. Although the electronics package 120 is shown as one separate unit from thesensor pad 116, it should be appreciated that any portion of the electronics package 120 may be included within thesensor pad 116. Further, the components of the electronics package 120 may be located at various locations about thedownhole tool 104, thesurface unit 114 and/or thewellsite 100. Thesensor pad 116 may also be wired or wirelessly connected to any of the features of thedownhole tool 104, and/orsurface unit 114, such ascommunication links 124, processors, power sources or other features thereof. - The
sensor pad 116 may be capable of determining one or more downhole parameters, such as one or more downhole fluid parameters and/or one or more formation parameters. The downhole fluids may include any downhole fluids such as downhole mud (e.g., oil and/or water based), hydrocarbons, water and/or other downhole fluids. Thesensor pad 116 may determine the downhole parameters of the downhole fluids and/or the downhole formations as thedownhole tool 104 passes through thewellbore 106. Thesensor pad 116 may be positioned on thedownhole tool 104 in such a manner that thesensor pad 116 is capable of measuring fluids and/or downhole formations as thedownhole tool 104 passes through thewellbore 106 under the harsh conditions of the downhole environment. Further, thesensor pad 116 may be positioned in such a manner that reduces clogging of downhole fluids as the downhole fluids pass thesensor pad 116. - As shown, the
sensor pad 116 is positioned on anouter surface 126 of thedownhole tool 104. Thesensor pad 116 may have an insulating layer covering one or more electrodes in thesensor pad 116 as will be described in more detail below. Thesensor pad 116 may be flush with theouter surface 126 of thedownhole tool 104. Further, thesensor pad 116 may be recessed a distance below theouter surface 126 to provide additional protection thereto, or protruded a distance therefrom to access fluid and/or formation. Thesensor pad 116 may also be positioned at various angles and locations as desired. -
Figure 2A shows a schematic view of a downhole tool usable as thedownhole tool 104 located in thewellbore 106 and within adownhole formation 200. As depicted, thedownhole tool 104 is a wireline microresistivity tool containing thesensor pads 116. Thesensor pads 116 may be located on the outer surface 126 (as shown inFigure 1 ), or located on one ormore arms 204 which extend from downhole tool 104 (as shown inFigures 2A and 2B ). Thearms 204 may be configured to place thesensor pads 116 as close to theformation wall 206, or against amud layer 108 on theformation wall 206, as possible. Thus, thearms 204 may be actuatable, or spring loaded in order to bias thesensor pads 116 against theformation wall 206. -
Figure 2B shows a cross-sectional view of thedownhole tool 104 inFigure 2A taken alongline 2B-2B. As shown, thedownhole tool 104 may include one ormore sensor pads 116 located around atool mandrel 202. Each of thesensor pads 116 may be configured to measure the downhole parameters, such as the downhole fluid and/or parameters of theformation 200. While thesensor pads 116 ofFigure 2B are depicted as being flat, it will be appreciated that a front face of the sensor face may be rounded to conform to thewellbore wall 206. -
Figure 3 shows a schematic view of a portion of thedownhole tool 104 ofFigure 2A taken along line 3-3. This view shows thesensor pad 116 supported on themandrel 202. Thesensor pad 116 may be used for measuring electrical properties of the formation layers 200 in a hydrocarbon well, orwellbore 106. Thesensor pad 116 may comprise aninsulating layer 300, or insulating front face, covering an arrangement ofelectrodes 302. Theelectrodes 302 may comprise one or more button (or return electrodes)electrodes 304 and one or more source electrodes 306 (or return electrodes). - The
electrodes 302 may be in the form of coatings or solid components. The electrodes 302 (e.g., thebutton electrodes 304, thesource electrode 306, theguard electrode 400 as described herein) may be, for example, a coating metallized onto an insulator section (e.g., insulating layer 300) and/or solid components positioned in the insulator section. Each of theelectrodes 302 may be held in place with conventional fixture mechanisms, such as screws, glue, epoxy, locking means, press-fitting, (over)-molding, plating (electrode, coin), coating or the like. Thebutton electrodes 304 may have any suitable diameter. In one example, thebutton electrodes 304 are less than or equal to about 2.00 cm in diameter. - The insulating
layer 300 may cover the entire front face of thesensor pad 116 thereby covering and sealing theelectrodes 302. The insulatinglayer 300 may further extend down a portion of the sides of thesensor pad 116. Thesensor pad 116 may be held by atool pad 308. As shown inFigure 3 , thetool pad 308 may have a tool pad base (or base) 310 having one or moretool pad walls 312. - The
sensor pad 116 may include asensor pad base 316. Thesensor pad base 316 may be configured to secure theelectrodes 302 and the insulatinglayer 300 to thetool pad 308. Aback face 314 of thesensor pad 116 and/orsensor pad base 316 may be located proximate and/or secured to thetool pad base 310. Thesensor pad base 316 may adhere to thetool pad 308 using any conventional means. - As shown in
Figure 3 , thesensor pad base 316 may extend partially along the one ormore pad walls 312. A portion of the insulatinglayer 300 extending along the side of thesensor pad 116 may meet thesensor pad base 316 within the one ormore pad walls 312. Because the insulatinglayer 300 completely covers theelectrodes 302, only a perimeter between the insulatinglayer 300 and thesensor pad base 316 may need to be sealed in order to seal theelectrodes 302 from wellbore fluids, as will be described in more detail below. - The insulating
layer 300 and/or thesensor pad base 316 may be any suitable insulating material, such as PEEK (polyetheretherketone), capable of allowing electrical communication between components, such as theelectrodes 302, of thesensor pad 116. Such electrical communication may be, for example, capacitive coupling between theelectrodes 302. In some versions, the PEEK material may be a metal material capable of impeding and/or stopping current flow therethrough at selected frequencies as desired. For example, the PEEK material may prohibit current flow at lower frequencies, but allow current flow at higher frequencies. Although described as PEEK, it should be appreciated that the insulatinglayer 300 and/or thesensor pad base 316 may be any suitable material for impeding or stopping current including, but not limited to, Sapphire, ceramics, polyimide resin, plastic, and the like. - A
seal 318, such as through a perimeter seal or O-ring, through adhesive bonding, through welding or brazing etc., may be used for sealing thesensor pad 116 from unwanted borehole fluids. Thesensor pad 116 may also incorporate one ormore wear plates 320. The one ormore wear plates 320 may ensure some standoff S between theformation 200 and theelectrodes 302. Further the one ormore wear plates 320 may prevent theelectrodes 302 and/or the insulatinglayer 300 from touching theformation 200, and/or being damaged or worn by theformation 200. Thewear plates 320 may extend a distance beyond the face of the insulatinglayer 300 toward theformation 200 to protect the insulatinglayer 300 and/or theelectrodes 302. Further, because the insulatinglayer 300 protects theelectrodes 302, thewear plates 320 may be flush with an outer face of the insulatinglayer 300, and/or be slightly recessed from the outer face. Thewear plates 320 may maintain a minimum standoff S between the insulatinglayer 300 of thesensor pad 116 and theformation wall 206. Wellbore fluid 326 (such as mud 108) may be present between thesensor pad 116 and thewall 206 of the wellbore. - The
seal 318 may seal theelectrodes 302 and any electronics of thesensor pad 116 from the borehole environment. Theseal 318 may be accomplished using one perimeter seal between thesensor pad base 316, the insulatinglayer 300 and an interior of the one ormore pad walls 312. Although, theseal 318 is shown as an O-ring, it may be any suitable device for sealing the interior of thesensor pad 116. -
Figures 3 and4 show thesensor pad 116 having the insulatinglayer 300 on afront face 402 extending over all of theelectrodes 302.Figure 4 shows thesensor pad 116 ofFigure 3 having one ormore guard electrodes 400 around abutton electrode 304. Theelectrodes 302 may be secured to the insulatinglayer 300 in the manner described below. While at least a portion of thesensor pads 116 may have electrodes mounted into thefront face 402, as shown inFigures 3 and4 , the insulating layer 300 (or the front face) may cover theelectrodes 302. Theelectrodes 302 may optionally be completely covered with the insulatinglayer 300 to help eliminate the need for the individual electrode mounting to seal against borehole fluid entry. - The
electrodes 302 may form a circuit which may include one or more of the source electrodes 306 (or returns) and the button electrodes 304 (or sensor electrode). Between thesource electrodes 306 and thebutton electrodes 304 there may be an insulating material. As shown, the insulating material is part of the insulatinglayer 300. Theelectrodes 302 may be communicatively linked to the electronics package 120 (Figure 1 ). Theelectrodes 302 may be arranged in a variety of configurations, and should not be limited to the configuration shown in the drawings, primarily depending on the parameters to be measured by thedownhole tool 104. - The
button electrodes 304 may be used to measure a voltage with respect to a ground, or anotherelectrode 302, and/or may be used to measure a current 324 between at least one of thesource electrodes 306 and the button electrodes 304 (or another source electrode 306). From the voltage and the current electrical properties, or parameters, measured via thebutton electrodes 304, various downhole parameters of, for example, the wellbore fluid and/or the formation may be determined. The electrical properties may include, for example, conductivity and permittivity. In certain applications, thebutton electrodes 304 may measure the amplitude and phase of the voltage and the current 324. From the amplitude and phase of the voltage and the current 324, the complex impedance may be calculated for the wellbore fluid and/or the formation. With the complex impedance known, various electrical properties may be calculated. - In another example, the
button electrodes 304 may be used to measure the amplitude of the voltage and the current 324. From the amplitude of the voltage and the current 324, the impedance amplitude may be calculated. With the impedance amplitudes known electrical properties such as absolute conductivity and impedivity may be calculated. In another example, thebutton electrodes 304 may be used to measure the phase of the voltage and the current 324. From phase of the voltage and the current 324, the impedance phase may be calculated. With the impedance phase known, the ratio of conductivity and permittivity may be calculated. Measurements taken via thebutton electrodes 304 may be taken at several frequencies to optimize response. - The source (or return) electrode(s) 306, and possibly the button (or sensor) electrode(s) 304 may be any conventional electrode capable of generating a current 324 across the fluid 326 and/or
formation 200 with measurable effects. A power source (e.g., included in the electronics package 120 ofFigure 1 ) may be operatively connected to theelectrodes 302 for applying a voltage thereacross. As voltage is applied, the current 324 flows out of one of theelectrodes 302, for example thesource electrodes 306, and can be measured by thebutton electrodes 304. Current may be passed through the mud and/or formation for measurement thereof as shown. - The current 324 from the electrodes may be used to determine various parameters. In an example involving a fluid passing between a pair of electrodes, an AC voltage V may be applied between two electrodes to generate a resultant current I that can be measured at the sensor electrode, for example a mud button or a formation button electrode. The complex impedance Z may be determined from the measured current I based on the following:
where its magnitude |Z| based on Ohms law and phase φz are defined as follows:
and where exp (iφz) based on Euler's formula is defined as follows:
The magnitude and phase of the impedivity (sometimes referred to as the complex impedivity) of a fluid ζ is defined as follows:
Equation (5) may be derived from Z by the relations as follows:
Equation (6) may also be written as follows:
The phase (or dielectric angle) of the fluid ζ is derived as follows:
where: - |ζ| is the magnitude of the impedivity,
- φζ is the phase angle of the impedivity, and
- k is a constant for the device.
- Data concerning the measured current may be used to determine fluid or other downhole parameters, such as impedivity, resistivity, impedance, conductivity, complex conductivity, complex permittivity, tangent delta, and combinations thereof, as well as other parameters of the wellbore fluid. The data may be analyzed to determine characteristics of the wellbore fluid, such as the type of fluid (e.g., hydrocarbon, mud, contaminants, etc.) A processor (e.g., located in the
logging device 112, the electronics package 120 ofFigure 1 ) may be used to analyze the data. Optionally, the data may be communicated to thesurface unit 114 and/or other location for storage and/or analysis. Such analysis may be performed with other inputs, such as historical or measured data about this or other wellsites. Reports and/or other outputs may be generated from the data. The data may be used to make decisions and/or adjust operations at the wellsite. In some cases, the data may be fed back to the wellsite for real-time decision making and/or operation. - The
electrodes 302 may couple capacitively through the insulating layer 300 (or insulating surface) then through the fluid 326 (or mud), if present, and into theformation 200. The electrode-formation coupling may be reduced because another capacitor (the insulating layer 300) has been added to the series with the existing mud impedance. The insulatinglayer 300 may be used to handle rapid and relatively large impedance changes between theelectrodes 302 and theformation 200 by preventing theelectrodes 302 from touching theformation 200, or where there may be conductive paths through the mud. - The thickness of the insulating
layer 300 may be, for example, between about 0.25 mm and 5.00 mm. Further, the thickness of the insulatinglayer 300 may be, for example, between about 1.00 mm and 2.50 mm. Thinner insulatinglayer 300 may be used, for example, to reduce the standoff S. A smaller standoff S may lead to a higher measurement image resolution. A higher measurement signal may be used to generate better signal to noise ratio (where noise includes thermal noise and other spurious signals). A thicker insulatinglayer 300 may be used to provide a more stable capacitive coupling between theelectrodes 302 and theformation 200 and, therefore, a more stable measurement. Furthermore, a thicker insulatinglayer 300 may be used to increase strength and resist wear over time. A thicker insulatinglayer 300 may also be used to prevent fracture and loss of sealing capabilities. - The thickness of the insulating
layer 300 may vary over certain areas of thesensor pad 116. For example, the thickness range of the insulatinglayer 300 may be about 1.00 to 2.50 mm in front of thebutton electrodes 304 and up to an extra 1.00 mm, or between about 1.00 to 3.50 mm, in front of thesource electrodes 306. An insulatinglayer 300 thickness of at least about 2.00 to 3.00 mm may prevent fracturing, breaking and/or wearing off of the insulatinglayer 300 during downhole operations. The minimum thickness can be a function of the diameter of theelectrodes 302. For example, the thickness of the insulatinglayer 300 in front of anelectrode 302 having a relatively large surface area on the face of thesensor pad 116 may be greater than in front of anelectrode 302 having a relatively small surface area on the face of thesensor pad 116. The changing of the insulatinglayer 300 thickness may prevent premature fracturing, breaking and/or wearing of the insulatinglayer 300. - For high-frequency microresistivity imaging, the insulating
layer 300 thickness in front of theguard electrodes 400 andbutton electrodes 304 may be important; whereas, the layer thickness in front of thesource electrodes 306 may be less significant. However, the insulatinglayer 300 thickness in front of thesource electrodes 306 may be similar to the insulatinglayer 300 thickness in front of thebutton electrodes 304 and theguard electrode 400. - Referring now to
Figure 5 , the insulatinglayer 300 comprising afront portion 402, or front face, of thesensor pad 116 may be formed from an insulating material, as discussed above. Thefront portion 402 may be constructed from insulating material. The insulatinglayer 300 may be constructed with one or moreblind holes 500. Theblind holes 500 may be formed for housing a portion, and/or all of the electrodes 302 (such as the source electrode(s) 306, thebutton electrodes 304 and/or the guard electrodes 400). Theelectrodes 302 may be mounted inblind holes 500 formed in thesensor pad 116 during assembly. The method of construction of thesesensor pads 116 is shown inFigure 5 . The borehole wall faces thefront face 402 of the insulatinglayer 300, which is shown as a complete surface without holes for theelectrodes 302. -
Figure 5 shows detail of the construction of thesensor pad 116 having theelectrodes 302 andfront face 402 of the insulatinglayer 300. InFigure 5 , theblind holes 500 are formed in thefront face 402 of the insulatinglayer 300. The forming of theblind holes 500 may leave abase section 504 of the insulatinglayer 300 with the required thickness t. The required thickness may be a thickness that permits electrical communication through the insulatinglayer 300 and between theelectrodes 302 in order to allow measurement of electrical properties. Theelectrodes 302 may then be inserted into theblind holes 500 so as to seat against thebase section 504. Theblind holes 500 may be drilled in thefront face 402 of the insulatinglayer 300, or formed by any suitable method such as by molding, cutting, and the like. Each of theblind holes 500 may vary in depth d depending on the required thickness t of the insulatinglayer 300 in front of therespective electrodes 302. - The
blind holes 500 may house any of theelectrodes 302 behind thefront face 402 of the insulatinglayer 300. Thus, theblind holes 500 may address problems found in the prior art. First, the thin insulatinglayer 300 may prevent theelectrodes 302 from touching theformation layer 200, as shown inFigures 3 and4 . Second, conductive bubbles in the fluid 326, or mud, may no longer form low impedance paths between theelectrodes 302 and theformation 200. Finally, the mechanical sealing issues associated with holes that extend all the way through the insulatinglayer 300 may be avoided. -
Figure 6 shows a perspective view of anelectrode 302 usable as theguard electrode 400 ofFigure 4 . Each of theelectrodes 302 extending into theblind holes 500 and contacting the insulatinglayer 300 may be a solid electrode, as shown inFigure 5 . However, if theelectrode 302 is a large electrode, theelectrode 302 may be a multi guard electrode broken up intosmaller sub-electrodes 600 that contact the insulatinglayer 300 as shown inFigure 6 . Therefore, each of theelectrodes 302 may comprise a series of interconnected spaced sub-electrodes 600 electrically linked together, for example at an anterior portion of thesensor pad 116. - Large, thin insulating
layers 300 onlarge electrode 302 surfaces may be vulnerable to breaking, wearing, tearing and the like. Therefore, it may be useful to break uplarge electrodes 302 proximate the insulatinglayer 300 into thesub electrodes 600 which are linked together. Thebutton electrodes 304 may already be relatively small and, therefore, may be less likely to benefit from sub-division. However, theguard electrode 700, as shown inFigure 7 , is often in the form of a metal ring. Theguard electrode 700 may be sub-divided intoseveral sub electrodes 600 as shown inFigure 6 . -
Figures 8 and 9 show transparent front views of thesensor pad 116 ofFigure 2A .Figure 8 shows thesensor pad 116 having twolarge source electrodes 306, a ringtype guard electrode 400, and thebutton electrodes 304 having sub-electrodes 600a. Thefront face 402 of the insulatinglayer 300 used to house theelectrodes 302 may have a complementary shape to house theelectrodes 302. As shown inFigure 8 , thefront face 402 may have one ormore ribs 800 which fit in the gaps between sub-electrodes 600a for thebutton electrodes 304. Theseribs 800 may give extra strength to thefront face 402 and allow for thinner layers in front of theelectrodes 302. -
Figure 8 shows afront face 402 arrangement which is capable of housing thering guard electrode 700 as shown inFigure 7 . By contrast,Figure 9 shows afront face 402 arrangement which is capable of housing the series ofsub-electrodes 600 of themulti guard electrode 400 ofFigure 6 .Figure 9 shows thesensor pad 116 having thesource electrodes 306 subdivided into sub-electrodes 600c, themulti guard electrode 400 being subdivided into sub-electrodes 600a, and thebutton electrodes 304 having thesub electrodes 600b. Thefront face 402 of the insulatinglayer 300 used to house theelectrodes 400 may have a complementary shape to house theelectrodes 302. As shown inFigure 9 , thefront face 402 may have one ormore ribs 900 which fit in the gaps betweensub electrodes 600a,b,c for thebutton electrodes 304, theguard electrodes 400 and/or thesource electrodes 306. Theseribs 900 may give extra strength to thefront face 402 and allow for thinner layers in front of theelectrodes 302. -
Figures 8 and 9 show whereblind holes 500 forbutton electrodes 304,blind holes 500 for source electrodes 306 (which can also be sub-divided) andblind holes 500 for theguard electrode 400 have been drilled into thefront face 402. Thefront face 402 may be, for example, less than about 2.00 mm thick where thebutton electrode 304 andguard electrodes 400 are received and less than about 3.00 mm thick where thesource electrodes 306 are received. The region of thefront face 402 where noblind holes 500 are present may have an increased thickness, for example, at least about 4.00 mm thick. - Further changes may be made within the scope of the disclosure. In the examples above, the insulating
layer 300 may be part of thefront face 402. The insulatinglayer 300 may also be formed by depositing an insulating material such as hard paint, plastic, PEEK™, ceramic and the like over theelectrodes 302. - Alternatively, the insulating
layer 300 may be formed having a modifiedelectrode surface property 1000, as shown inFigure 10 . The modifiedelectrode surface property 1000 may allow theelectrodes 302 to become the insulatinglayer 300, or a portion thereof. The modifiedelectrode surface property 1000 may be formed, for example, by anodization. The sub-divided electrodes can also be formed by completely separate but electrically connected sub-electrodes. Further, some of theelectrodes 302, may use the modifiedelectrode surface property 1000 while others may be covered by the insulatinglayer 300 as described above. -
Figures 11A - 16B show various additional versions of a sensor apparatus for measuring formation parameters. The sensor apparatus may comprise asensor pad 116 having a raised insulating cover 1100-1600, respectively. In each of these Figures, thesensor pad 116 is positioned on the tool pad 308 (or 308'), which is supported by the mandrel 202 (or 202') of the downhole tool 104 (or 104'). Thesensor pad 116 may have at least onewear plate 320, the insulatinglayer 300 or conductive layer 300', andelectrodes 302 thereon. Theelectrodes 302 may include one ormore button electrodes 304 positioned along a central portion of thefront face 402 of thesensor pad 116 and at least onesource electrode 306 or source 306' positioned relative thereto. - The raised insulating cover 1100-1600 may be used to provide a hardened, protective layer over the
electrodes 302. The raised insulating cover 1100-1600 may be used to provide an insulating coating that allows passage of electrical signals therethrough like, for example, the insulatinglayer 300. The raised insulating cover 1100-1600 may also be made durable for providing wear protection like, for example, thewear plate 320. A typical purpose of the raised insulatingcover 1100 may be to resist permanent or intermittent contact between theelectrodes - The raised insulating cover 1100-1600 may extend over various portions of the
front face 402 of thesensor pad 116 to provide direct contact with theformation 200. This configuration may be used to place the electrodes closer to thewellbore wall 206 without direct contact therewith. This configuration may also be used to limit the wellbore fluid 326 (or mud layer) between thesensor pad 116 andwellbore wall 206, to provide a constant layer of insulation between theelectrodes 302 and theformation 200, and to provide additional protection to the electrodes. In some examples, the raised insulating cover may have a thickness T of between about 0.30 to 3.00 mm. -
Figure 11A shows a front view of thepad 116.Figure 11B shows a cross-sectional view of thesensor pad 116 ofFigure 11A taken alongline 11B-11B. The insulatinglayer 300 may be positioned along thefront face 402 of thesensor pad 116 withbutton electrodes 304 and thesource electrodes 306 recessed into thefront face 402 thereof. A raised insulatingcover 1100 extends over portions of thefront face 402. The raised insulatingcover 1100 extends a distance beyond thefront face 402 for contact with thewellbore wall 206. In this position, the raised insulatingcover 1100 provides initial contact with thewellbore wall 206. - As illustrated in
Figures 11B ,12B ,13B ,14B ,15B ,16A and16B , standoff S provides a gap between theelectrodes 302 and thewellbore wall 206 to prevent direct contact therewith. Thewear plates 320 may also have the same standoff S with thewellbore wall 206. - The raised insulating
cover 1100 may extend over various portions of thefront face 402 and theelectrodes 302 for providing protection thereto. In this version, the raised insulatingcover 1100 extends over an outer face of thesource electrode 306 to form a front cover thereon. Thesource electrodes 306 are positioned in anelectrode cavity 1104 extending into thefront face 402 of the insulatinglayer 300, and recessed a distance therein. Asource electrode portion 1106 of the raised insulatingcover 1100 is positioned inelectrode cavity 1104 and extends over an outer surface of thesource electrodes 306. Thesource electrode portion 1106 may seal and protect thesource electrode 306 within the insulatinglayer 300. Thesource electrode portion 1106 may protrude a distance beyond the insulatinglayer 300 to provide initial contact with thewellbore wall 206 while protecting thesource electrode 306. - The
source electrode portion 1106 has a flat body with a tapered perimeter extending thereabout. Thesource electrode portion 1106 ofFigure 11A has a rectangular dimension to cover and conform to the shape of the underlyingrectangular source electrode 306, but may be of any dimension sufficient to protect and seal thesource electrode 306. Thesource electrode portion 1106 may be tapered, flat, rounded, concave, convex or any other shape. The outer surface of the source electrode portion may be defined to conform to thewellbore wall 206, or to facilitate passage through the wellbore. Tapering along the raised insulatingcover 1100 may be used, for example, to prevent the raised insulatingcover 1100 from breaking off and/or damaging thesensor pad 116 as thetool 104 passes along rough surfaces along thewellbore wall 206. - The raised insulating
cover 1100 extends over an outer face and a sidewall of thebutton electrode 304 to form a front and side cover thereabout. Thebutton electrodes 304 are positioned in anelectrode hole 1107 extending through thefront face 402 of the insulatinglayer 300. Abutton electrode portion 1108 of the raised insulatingcover 1100 is positioned over theelectrode hole 1107 and extends over the outer face and sidewall of thebutton electrodes 304. Thebutton electrode portion 1108 may seal and protect thebutton electrode 304 within the insulatinglayer 300 and therefore seal and protect the interior of thepad 116. Thebutton electrode portion 1108 preferably protrudes a distance from the insulatinglayer 300 to provide initial contact with thewellbore wall 206 while protecting thebutton electrode 304. The open space between the insulatinglayer 300 and thetool pad 308 may be filled with liquid and/or other components such as electronic parts e.g. integrated circuits, capacitors, resistors etc. and/or mechanical parts e.g. screws, washers, plastic sheets, etcetera. At least one of theelectrodes 302 may be attached to the raised insulating cover. At least one of theelectrodes 302 may be attached to a supporting part positioned in the open space between the insulatinglayer 300 and thetool pad 308. - The
button electrode portion 1108 has a cup-shaped body having aninlet 1110 adapted to receive thebutton electrode 304. Thebutton electrode portion 1108 ofFigure 11B has a tapered outer surface on anouter end 1111, and alip 1112 extending about a perimeter of an opposite end thereof. Thelip 1112 is positioned in ashoulder 1114 of the insulatinglayer 300 to secure thebutton electrode portion 1108 therein. Thebutton electrode portion 1108 may be of any dimension sufficient to protect and seal one or more button electrodes 304 (and/or guard electrodes 400). Thebutton electrode portion 1108 may be tapered, flat, concave, convex or any other shape. The outer surface of the button electrode portion may be defined to conform to thewellbore wall 206, or to facilitated passage through the wellbore. - The raised insulating
cover 1100 may extend over portions of thefront face 402 and/orelectrodes 302 in a modular configuration as shown inFigures 11A and 11B , or the entire face in a unitary configuration as will be described with respect toFigures 14A and 14B below. The raised insulatingcover 1100 may also extend a distance into the insulatinglayer 300 to provide additional protection and/or to be secured by the insulatinglayer 300 in position. The raised insulatingcover 1100 may take a variety of shapes to conform to theelectrodes cover 1100 may also take a variety of shapes to position thesensor pad 116 relative to thewellbore wall 206. - The raised insulating
cover 1100 may comprise, for example, a hardened material that permits the passage of electrical signals therethrough while providing sufficient hardness to protect theelectrodes 302 in a downhole environment. The material may be constituted, for example, from mineral material or technical ceramic (e.g., diamond, zircon, alumina, and the like), or out of an insulating composite material (e.g., glass or ceramic fiber plastics). The choice of material may depend on the hardness, the abrasion resistance, the resilience, the dielectric constant, the chemical resistance or other material properties. - The raised insulating
cover 1100 may be made up of (at least in part), for example, the same material as the insulatinglayer 300. The raised insulatingcover 1100 may also be attached to the insulatinglayer 300 to form a continuous and sealed layer. The attachment between the insulatinglayer 300 and the raised insulatingcover 1100 may be conventional means, such as fastener (e.g., screws or bolts), elastomeric or thermoplastic over-molding, gluing, welding, brazing, etc.Seals 1117 may optionally be provided to ensure pressure tightness between components. - The raised insulating
cover 1100 may be made of one or more different materials. For example, thebutton electrode portion 1108 as shown inFigure 11B may havelip 1112 of a material, such as metal, that is different from the remainder of the raised insulatingcover 1100. A different material like a metal may provide an easier way of attachment between thebutton electrode portion 1108 and the insulatinglayer 300. The lip or sidewall may therefore be brazed, welded, glued, overmolded, or otherwise secured to the insulating material portion of the raised insulatingcover 1100 atend 1111 facing the wellbore wall. In another example, a metallic or conductive material may be used for the portions of thebutton electrode portion 1108, such as the lips 1102 and a portion of the sidewall adjacent thereto, to add the function of guarding thebutton electrode 304. The raised insulatingcover 1100 may optionally be provided with various conductive portions, for example, for attachment and sealing with insulatinglayer 300. - The electrodes 302 (e.g., the
button electrodes 304, thesource electrode 306, theguard electrode 400 as described herein) may be, for example, a metallization on the insulatinglayer 300 and/or raised insulatingcover 1100. This metallization may be done on or along an insulator, such as a single or multi-layered electronic board, on or along the insulatinglayer 300 or on the back face of the raised insulatingcover 1100. When using metallization, the raised insulating cover 1100 (in any configuration) may be positioned on a back face of thecavity 1104 or a surface of the insulatinglayer 300 for enabling positioning of themetallization electrode 302 on or along the insulatinglayer 300 and/or raised insulatingcover 1100. - For raised insulating
covers 1100 with a flat body configuration (e.g., 1106 ofFigure 11B ), theelectrodes 302 may be attached to the raised insulatingcover 1100 and theinsulting layer 300 through insulating material deposition, such as projection coating, bath coating, paint coating, etc. - The raised insulating
cover 1100 may fully or partially cover an arrangement ofvarious electrodes 302. The raised insulatingcover 1100 may have one or more portions, such as thesource electrode portion 1106, thebutton electrode portion 1108 and/or other portions. In some cases, one or more types of electrodes may be covered by the various portions. For example, thebutton electrode portion 1108 may also cover one ormore guard electrodes 400 positioned adjacent to thebutton electrode 304. -
Figures 12A and 12B show a variation of thesensor pad 116 ofFigures 11A and 11B with a raised insulatingcover 1200. The raised insulatingcover 1200 is similar to the raisedinsulation cover 1100, except that the raised insulatingcover 1200 covers only a portion of theelectrodes 302. As shown in this configuration, the raised insulatingcover 1200 may extend over part or all of theelectrodes layer 300. - The insulating
layer 300 ofFigures 12A and 12B covers a portion of thefront face 402 of thesensor pad 116, including theelectrodes cover 1200 is positioned on the insulatinglayer 300 over theelectrodes insulting cover 1200 may be layered over the electrodes and the insulatinglayer 300 or other materials. The raised insulatingcover 1200 and insulatinglayer 300 may be configured with materials to provide the desired capacitive coupling therethrough, while achieving the desired protection and/or wear resistance. - The
source electrode portion 1206 of the raised insulatingcover 1200 extends over a portion of thesource electrode 306. As shown, thesource electrode portion 1206 covers a central portion of thesource electrodes 306, but leaves outer portions uncovered. These outer portions may be covered by the insulatinglayer 300. -
Button electrode portions 1208 of the raised insulatingcover 1200 extends over a portion of thebutton electrodes 304. Thebutton electrode portions 1208 may cover only portions of thesensor pad 116 that are needed to provide the standoff S and/or to protect thebutton electrodes 304. As shown, twobutton electrode portion 1206 cover outer portions of thebutton electrodes 304, but leaves central portions uncovered. These central portions may be covered by the insulatinglayer 300. - While specific configurations of the raised insulating
cover 1200 are shown positioned over the insulatinglayer 300 and portions of theelectrodes cover 1200 may be positioned over various portions of the insulatinglayer 300 and/or one ormore electrodes cover 1200 may also extend over thewear plates 320. -
Figures 13A and 13B show another variation of thesensor pad 116 and raised insulatingcover 1100 ofFigures 11A and 11B with a raised insulatingcover 1300. The raised insulatingcover 1300 is similar to the raisedinsulation cover 1100, except that the raised insulatingcover 1300 covers different portions of theelectrodes 302. As demonstrated by these Figures (as well asFigures 11A and 11B ), portions of the raised insulatingcover 1300 may cover front and/or sides of theelectrodes 302. As shown inFigure 13B , thebutton insulating portion 1308 extends over an outer face of thebutton electrode 304. Like the configuration of thesource insulating portion 1106 ofFigure 11B , thebutton insulating portion 1308 has a flat body with a tapered outer surface. - As also shown in
Figure 13B , thesource insulating portion 1306 extends over outer and side surfaces of thesource electrodes 306. Like the configuration of thebutton insulating portion 1108 ofFigure 11B , thesource insulating portion 1306 has a cup-shaped body with aninlet 1310 adapted to receive thesource electrode 306, a tapered outer surface on anouter end 1311, and alip 1312 positioned in ashoulder 1114 of the insulatinglayer 300 to secure thesource electrode portion 1306 therein.Seals 1117 may be provided between the raisedouter cover 1300 and the insulatinglayer 300 as shown. - As also demonstrated by
Figures 13A and 13B , the raised insulatingcover 1300 may be provided with additional features, such as amud scraper 1303. Themud scraper 1303 may be a plurality of teeth positioned on an outer surface of the raised insulatingcover 1300. Themud scraper 1303 may be used to scrape against thewellbore wall 206 to remove or displace the layer of mud or mud cake that may be present adjacent to the surface of theformation 200. -
Figures 14A and 14B show another variation of thesensor pad 116 and raised insulatingcover 1100 ofFigures 11A and 11B , with a unitary raised insulating cover 1400. The raised insulating cover 1400 is similar to the raisedinsulation cover 1100, except that the raised insulating cover 1400 covers the entirefront face 402 of thesensor pad 116. - As demonstrated by these Figures the raised insulating cover 1400 and the insulating
layer 300 may be combined into a unitary structure. In this case, the insulating cover 1400 and insulatinglayer 300 both extend over thefront face 402 of thesensor pad 116. Theelectrode cavities 1404 extend into aninner surface 1420 of the raised insulating cover 1400 for receiving thesource electrodes 306. Ahole 1407 also extends into theinner surface 1420 of the raised insulating cover 1400 for receiving thebutton electrodes 304, but is terminated by the raised insulating cover 1400 which covers an end thereof. - In the configuration of
Figures 14A and 14B , the raised insulating cover 1400 may be a single entity constructed of a single material. Theelectrodes layer 300 may be incorporated into the raised insulating cover 1400, or used in conjunction therewith. -
Figures 15A and15B show another variation of thesensor pad 116 and raised insulating cover 1500 positioned on a downhole drilling tool 104'. As demonstrated by these Figures thesensor pad 116 may be used in combination with any downhole tool, such as the downhole drilling tool 104' as depicted. Thesensor pad 116 is shown positioned on a tool base 308' within a mandrel 202' of the downhole drilling tool 104'. Thesensor pad 116 also has an insulatinglayer 300 for supportingsource electrodes 306 andbutton electrodes 304. In addition thesensor pad 116 may also have at least one guard electrode. - The raised insulating cover 1500 is similar to the raised insulating
cover 1100, except that the raised insulating cover 1500 has concentric source and button electrode portions 1406,1408. As further demonstrated by this configuration, one ormore electrodes 302 may be in any configuration about thesensor pad 116. In this version, thesource electrode 306 has an oval shape on afront face 402 of thesensor pad 116. Asource electrode portion 1506 of the raised insulating cover 1500 extends over thesource electrode 306. Thesource electrode portion 1506 is depicted as a cover over an outer surface of thesource electrodes 306 similar to the cover configuration of thesource electrode portion 1106 ofFigure 11B . - The
button electrodes 304 are positioned within an inner perimeter of thesource electrode 306 at any angle to an axis of the downhole tool 104'. Thebutton electrode portion 1508 of the raised insulating cover 1500 extends over thebutton electrode 304. Thebutton electrode portion 1508 is depicted as covering front and side portions of the button electrodes 304 (similar to the configuration of thebutton electrode portion 1108 ofFigure 11B ). -
Figures 16A-16B show various configurations of adownhole tool 104 with asensor pad 116 and aconductive mandrel 202. In the version depicted inFigure 16A , the downhole tool is awireline tool 104 with asensor pad 116 positioned on atool pad 308 extending towards awellbore wall 206. Wearplates 302 are also provided for additional protection of thesensor pad 116. - The
sensor pad 116 has anelectrode 304 positioned in a conductive layer 300', and a raised insulatingcover 1600 positioned thereon. Theelectrode 304 is positioned in ahole 1610 in the conductive layer 300'. Theelectrode 304 is supported by the raised insulatingcover 1600 in non-contact with the conductive layer 300'. - The raised insulating
cover 1600 is in a semi-module configuration positioned along thefront face 402 and over thehole 1610. The raised insulatingcover 1600 has anend 1670 and asidewall 1672 extending therefrom. Theend 1670 covers an end of theelectrode 304, and thesidewall 1672 extends over a portion of a sidewall of theelectrode 304. The raised insulatingcover 1600 may be sealed or connected to the conductive layer 300'. The raised insulatingcover 1600 defines a standoff S between thefront face 402 and theflat end 1670.Seals 1117 are positioned between the raised insulatingcover 1600 and the conductive layer 300'. Insulation, such as insulatinglayer 300, may optionally be positioned about theelectrode 304. - In this version, the
source electrode 306 is positioned in themandrel 202. Aninsulator 1676 is positioned between the source electrode and themandrel 202. Theinsulator 1676 may be made of the same material as the insulatinglayer 300 or the raised insulatingcover 1600. Theinsulator 1676 may be positioned about theelectrode 306 for isolating thesource electrode 306 from metal portions of thedownhole tool 104. - The
source electrode 306 may be used to pass current through the wellbore and/or formation. As shown, the current may be received by thebutton electrode 304 for measurement thereof. - In the version depicted in
Figure 16B , the downhole tool is a tool 104' with asensor pad 116 formed in a metal drilling collar (or mandrel) 202'. In this version thesensor pad 116 is integral with the drilling collar 202', with the drilling collar 202' acting as the base (e.g., 308 ofFigure 11B ). - The
sensor pad 116 has abutton electrode 304 andguard electrodes 400 positioned in a raised insulatingcover 1600. Thebutton electrode 304 is positioned in ahole 1110 in the raised insulatingcover 1600. Theelectrodes cover 1600 in non-contact with the drill collar 202'. Insulation, such as insulatinglayer 300, may optionally be positioned about thebutton electrode 304 andguard electrode 400. - The raised insulating
cover 1600 is in a front and side cover configuration positioned over along thefront face 402 and over thehole 1610. The raised insulatingcover 1600 has a taperedend 1671 and asidewall 1672 extending therefrom. Thetapered end 1671 covers an end of theelectrode 304 with thesidewall 1672 extending over a portion, of a sidewall of theelectrode 304. The raised insulatingcover 1600 defines a standoff S between thefront face 402 and theflat end 1671.Seals 1117 are positioned between the raised insulatingcover 1600 and the drill collar 202'. Seals as provided herein may be provided by o-ring or other seals, or by, for example, brazing the raised insulatingcover 1600 to the metal conductive layer 300'. - In the version of
Figure 16B , the mandrel 202' acts as source. The button andguard electrodes button electrode 304 may then be used to measure the current. WhileFigure 16B depicts a version without a source without a source electrode, a source electrode and insulation (similar to those ofFigure 16A ) may optionally be provided in the mandrel 202'. The mandrel 202' acts as a source, with portions of the source which are closer to the button and guard electrodes contributing more current that the portions that are farther. -
Figures 11A-16B show various configurations of asensor pad 116 withelectrodes layer 300, conductive layer 300' and a raised insulating cover 1100-1600, respectively. It will be appreciated that various combinations of thesensor pad 116 and its components may be used on various downhole tools. For example, a downhole drilling tool 104' may be provided with a sensor pad with the unitary configuration ofFigures 14A and 14B , amud scraper 1303 ofFigures 13A and 13B , and/or other features previously described herein. - In operation, the
sensor pad 116 may be used to gather downhole data.Figures 17A and17B are flowcharts depicting methods (1700a, 1700b) for measuring downhole parameters. As shown inFigure 17A , the method (1700a) involves positioning (1702) a sensor pad in the borehole adjacent a wall of the borehole. The sensor pad may have an arrangement of electrodes for measuring the electrical properties of the formation mounted on the sensor pad and configured to face the wall of the borehole, and having an insulating layer extending over a substantial portion of at least one electrode facing the wall of the borehole. The flow continues at block (1704) wherein the electrodes may be configured to measure the electrical properties of the formation through the insulating layer. The flow may optionally continue at block (1706) wherein at least one of the electrodes may be configured to couple capacitively to the formation to measure the electrical properties of the formation. - As shown in
Figure 17B , the method (1700b) involves providing (1740) a downhole tool with a sensor pad (and/or sensing apparatus), deploying (1741) the downhole tool into the wellbore; positioning (1742) a raised insulating portion of the sensor pad (and/or sensing apparatus) adjacent a wall of the wellbore, passing (1744) an electronic signal from a source (and/or source electrode) through the formation and to the at least one sensor electrode, and measuring (1746) at least one downhole parameter of the formation from the electronic signal. The sensor pad may be positioned with at least one contact surface of the raised insulating cover adjacent the wall of the wellbore such that the electrodes are positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith. The sensor pad (and/or sensing apparatus) may have an arrangement of electrodes for measuring the electrical properties embedded in an insulating layer or conductive layer, and an insulating layer and/or raised insulating cover extending over the electrodes. The steps may be performed in any order, and repeated as desired. - While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. Many variations, modifications, additions and improvements are possible. For example, the raised insulating cover and/or insulating cover may be positioned about various portions of the front face of the sensor pad to protect the electrodes.
- Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
Claims (15)
- A system for measuring downhole parameters of a well site, the wellsite having a wellbore extending into a subterranean formation, the system comprising:a downhole tool deployable from a rig into the wellbore;at least one source positionable about the downhole tool;at least one sensor electrode positionable about a front face of the downhole tool for measuring electrical signals from the at least one source; anda raised insulating cover positioned along the front face defining at least one surface thereon to be in contact with a borehole wall, the raised insulating cover extending over at least a portion of the at least one sensor electrode whereby the at least one sensor electrode is' positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith.
- The system of Claim 1, further comprising an insulating layer positionable about the at least one sensor electrode.
- The system of any preceding Claim, further comprising a conductive layer positionable about the at least one sensor electrode without direct contact therewith.
- The system of any preceding Claim, wherein the source is a mandrel of the downhole tool.
- The system of any preceding Claim, wherein the source is a source electrode positionable about the downhole tool.
- The system of any preceding Claim, wherein the raised insulating cover has a tapered edge.
- The system of any preceding Claim, wherein the raised insulating cover extends over the source electrode.
- The system of any preceding Claim, wherein the downhole tool is one of a logging, wireline, drilling, coiled tubing, drill stem tester, production, casing, pipe and completions tool and combinations thereof.
- The system of any preceding Claim, wherein the raised insulating cover extends over the front face of the downhole tool.
- The system of any preceding Claim, wherein the raised insulating cover provides a standoff between the wellbore wall and the at least one sensor electrode.
- The system of any preceding Claim, wherein portions of the raised insulating cover comprise different materials.
- The system of any preceding Claim, wherein the electrical signals are measured in the presence of a non-conductive wellbore fluid.
- A method for measuring downhole parameters of a wellsite, the wellsite having a wellbore extending into a subterranean formation, the method comprising:deploying the downhole tool into the wellbore, the downhole tool comprising:at least one source positionable about the downhole tool;at least one sensor electrode positionable about a front face of the downhole tool for measuring electrical signals from the at least one source; anda raised insulating cover positionable along the front face for defining at least one surface thereon to be in contact with a borehole wall, the raised insulating cover extending over at least a portion of the at least one sensor electrode whereby the at least one sensor electrode is positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith;positioning the at least one contact surface of the raised insulating cover adjacent a wall of the wellbore such that the at least one sensor electrode is positionable adjacent to the subterranean formation for electrically coupling thereto without direct contact therewith;passing an electrical signal through the subterranean formation via the at least one source; andmeasuring at least one downhole parameter of the formation from the electrical signal.
- The method of Claim 13, wherein the step of passing comprises passing the electrical signal from the at least one source to the at least one sensor electrode.
- The method of Claim 13 or 14, wherein the step of passing further comprises passing the electrical signal through the raised insulating cover.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11165709.4A EP2477047B1 (en) | 2010-12-20 | 2011-05-11 | System and method for measuring downhole parameters |
MX2013006794A MX2013006794A (en) | 2010-12-20 | 2011-12-07 | System and method for measuring downhole parameters. |
US13/995,500 US9841525B2 (en) | 2010-12-20 | 2011-12-07 | System and method for measuring downhole parameters |
PCT/IB2011/055532 WO2012085726A1 (en) | 2010-12-20 | 2011-12-07 | System and method for measuring downhole parameters |
BR112013015445A BR112013015445A2 (en) | 2010-12-20 | 2011-12-07 | system for measuring wellbore parameters of a wellbore, the wellbore having a wellbore extending to an underground formation, and method for measuring wellbore parameters of a wellbore |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10195925.2A EP2498105B1 (en) | 2010-12-20 | 2010-12-20 | Apparatus and method for measuring electrical properties of an underground formation |
EP11165709.4A EP2477047B1 (en) | 2010-12-20 | 2011-05-11 | System and method for measuring downhole parameters |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2477047A1 true EP2477047A1 (en) | 2012-07-18 |
EP2477047B1 EP2477047B1 (en) | 2013-11-20 |
Family
ID=43901584
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10195925.2A Not-in-force EP2498105B1 (en) | 2010-12-20 | 2010-12-20 | Apparatus and method for measuring electrical properties of an underground formation |
EP11165709.4A Not-in-force EP2477047B1 (en) | 2010-12-20 | 2011-05-11 | System and method for measuring downhole parameters |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10195925.2A Not-in-force EP2498105B1 (en) | 2010-12-20 | 2010-12-20 | Apparatus and method for measuring electrical properties of an underground formation |
Country Status (5)
Country | Link |
---|---|
US (2) | US9400339B2 (en) |
EP (2) | EP2498105B1 (en) |
BR (2) | BR112013015187A2 (en) |
MX (2) | MX2013006794A (en) |
WO (2) | WO2012085725A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU174391U1 (en) * | 2017-06-21 | 2017-10-11 | Общество с ограниченной ответственностью "КАРСАР" | Borehole Microscanner Shoe |
US9841525B2 (en) | 2010-12-20 | 2017-12-12 | Schlumberger Technology Corporation | System and method for measuring downhole parameters |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9057247B2 (en) | 2012-02-21 | 2015-06-16 | Baker Hughes Incorporated | Measurement of downhole component stress and surface conditions |
MX350393B (en) * | 2012-07-13 | 2017-09-06 | Halliburton Energy Services Inc | Apparatus and method for temperature independent balancing of a tool. |
EP2755063A1 (en) * | 2013-01-11 | 2014-07-16 | Services Pétroliers Schlumberger | Method and system for calibrating a downhole imaging tool |
US9213125B2 (en) * | 2013-03-22 | 2015-12-15 | Oliden Technology, Llc | Well logging apparatus and system |
WO2015030808A1 (en) * | 2013-08-30 | 2015-03-05 | Halliburton Energy Services, Inc. | Lwd resistivity imaging tool with adjustable sensor pads |
US10001006B2 (en) * | 2013-12-30 | 2018-06-19 | Halliburton Energy Services, Inc. | Ranging using current profiling |
WO2015147800A1 (en) * | 2014-03-25 | 2015-10-01 | Halliburton Energy Services, Inc. | Permanent em monitoring systems using capacitively coupled source electrodes |
CN104343438B (en) * | 2014-09-10 | 2018-07-31 | 北京纳特斯拉科技有限公司 | Measure the rotating excitation field rangefinder and its measurement method of drilling well relative distance |
US10302796B2 (en) | 2014-11-26 | 2019-05-28 | Halliburton Energy Services, Inc. | Onshore electromagnetic reservoir monitoring |
EP3035085A1 (en) * | 2014-12-19 | 2016-06-22 | Services Pétroliers Schlumberger | Device for measuring resistivity in a wellbore |
AU2015382417B2 (en) | 2015-02-13 | 2018-10-18 | Halliburton Energy Services, Inc. | Downhole fluid characterization methods and systems employing a casing with a multi-electrode configuration |
US10705242B2 (en) * | 2015-02-26 | 2020-07-07 | Halliburton Energy Services, Inc. | Downhole sensor deployment assembly |
AU2015406114A1 (en) * | 2015-08-17 | 2017-12-21 | Halliburton Energy Services, Inc. | Method and article for evaluating mud effect in imaging tool measurement |
EP3170969A1 (en) * | 2015-11-17 | 2017-05-24 | Services Pétroliers Schlumberger | Encapsulated sensors and electronics |
WO2017086956A1 (en) * | 2015-11-18 | 2017-05-26 | Halliburton Energy Services, Inc. | Monitoring water floods using potentials between casing-mounted electrodes |
CN105891890B (en) | 2016-03-31 | 2017-09-05 | 山东大学 | A shield-mounted non-contact frequency-domain electrical method real-time advanced detection system and method |
WO2018063184A1 (en) * | 2016-09-28 | 2018-04-05 | Halliburton Energy Services, Inc. | Current injection via capacitive coupling |
CN108318927B (en) * | 2017-01-16 | 2021-04-27 | 中国石油集团长城钻探工程有限公司 | Resistivity Scanning Imaging Plate Integrated Transmitting and Receiver Electrode System |
WO2018156125A1 (en) * | 2017-02-22 | 2018-08-30 | Halliburton Energy Services, Inc. | Enhancement of dynamic range of electrode measurements |
US10689968B2 (en) | 2018-05-24 | 2020-06-23 | Schlumberger Technology Corporation | Apparatus for borehole imaging including a void-containing guard electrode |
WO2020086874A1 (en) | 2018-10-26 | 2020-04-30 | Schlumberger Technology Corporation | Well logging tool and interpretation framework that employs a system of artificial neural networks for quantifying mud and formation electromagnetic properties |
CN110486006B (en) * | 2019-08-21 | 2022-06-14 | 中国海洋石油集团有限公司 | Resistivity measurement polar plate and manufacturing method thereof |
US11746642B2 (en) | 2019-11-08 | 2023-09-05 | Halliburton Energy Services, Inc. | Electromagnetic imager design |
GB2627902B (en) * | 2022-03-11 | 2025-01-01 | Qinetiq Ltd | Capacitive-resistive imaging system |
GB2616472B (en) * | 2022-03-11 | 2024-09-11 | Qinetiq Ltd | Capacitive-resistive imaging system |
WO2024229515A1 (en) * | 2023-05-08 | 2024-11-14 | Imdex Technologies Pty Ltd | Method and system for verifying a borehole measurement device |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816811A (en) | 1973-01-12 | 1974-06-11 | R Cmelik | Fluid mixture analyzer using a capacitive probe and voltage divider |
US4511842A (en) * | 1981-10-13 | 1985-04-16 | Schlumberger Technology Corporation | Electromagnetic logging device and method with dielectric guiding layer |
US4567759A (en) | 1982-10-27 | 1986-02-04 | Schlumberger Technology Corporation | Method and apparatus for producing an image log of a wall of a borehole penetrating an earth formation |
EP0426563A2 (en) * | 1989-11-01 | 1991-05-08 | Schlumberger Limited | Method and apparatus for logging spontaneous potential |
US5191290A (en) * | 1988-04-01 | 1993-03-02 | Halliburton Logging Services, Inc. | Logging apparatus for measurement of earth formation resistivity |
US5574371A (en) | 1994-10-27 | 1996-11-12 | Schlumberger Technology Corporation | Method and apparatus for measuring mud resistivity in a wellbore including a probe having a bottom electrode for propagating a current from and to the bottom electrode in a direction approximately parallel to a longitudinal axis of the probe |
US5677631A (en) | 1996-06-07 | 1997-10-14 | Western Atlas International, Inc. | Coaxial two port waveguide flowline sensor |
US6191588B1 (en) | 1998-07-15 | 2001-02-20 | Schlumberger Technology Corporation | Methods and apparatus for imaging earth formation with a current source, a current drain, and a matrix of voltage electrodes therebetween |
WO2001077710A1 (en) * | 2000-04-07 | 2001-10-18 | Schlumberger Technology B.V. | Method and apparatus for investigating the wall of a borehole |
US6801039B2 (en) | 2002-05-09 | 2004-10-05 | Baker Hughes Incorporated | Apparatus and method for measuring mud resistivity using a defocused electrode system |
US6891377B2 (en) | 2000-04-07 | 2005-05-10 | Schlumberger Technology Corporation | Conductive pad around electrodes for investigating the wall of a borehole in a geological formation |
US7066282B2 (en) | 2003-12-23 | 2006-06-27 | Schlumberger Technology Corporation | Apparatus and methods for measuring formation characteristics in presence of conductive and non-conductive muds |
WO2008143616A1 (en) * | 2007-05-21 | 2008-11-27 | Halliburton Energy Services, Inc. | High resolution voltage sensing array |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3706980A (en) | 1970-04-27 | 1972-12-19 | Drexelbrook Controls | Rf system for measuring the level of materials |
DE3316837C2 (en) | 1983-05-07 | 1986-06-26 | Dornier System Gmbh, 7990 Friedrichshafen | Device for generating shock waves by means of a spark gap for the contact-free crushing of concrements in the bodies of living beings |
US4857852A (en) * | 1986-06-20 | 1989-08-15 | Schlumberger Technology Corp. | Induction well logging apparatus with transformer coupled phase sensitive detector |
JP3094170B2 (en) | 1991-03-27 | 2000-10-03 | 株式会社小松製作所 | Electrode structure of metal particle detection sensor |
US5467759A (en) | 1995-01-09 | 1995-11-21 | Golden Key Futura, Inc. | Archery rest assembly |
US7242194B2 (en) | 2000-04-07 | 2007-07-10 | Schlumberger Technology Corporation | Formation imaging while drilling in non-conductive fluids |
CA2329672C (en) | 2000-12-27 | 2009-12-22 | Donald W. Kirk | Bifurcated electrode of use in electrolytic cells |
EP1355171B1 (en) | 2002-04-17 | 2007-02-07 | Services Petroliers Schlumberger | Phase discrimination for micro electrical measurement in non-conductive fluid |
EP1439388A1 (en) | 2003-01-20 | 2004-07-21 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Device for measuring the quality and/or the degradation of a fluid, especially of edible oil |
GB2401185B (en) | 2003-05-02 | 2005-07-13 | Schlumberger Holdings | An improved shielded apparatus for electrically exploring geological formations through which a borehole passes |
US6957708B2 (en) * | 2003-07-08 | 2005-10-25 | Baker Hughes Incorporated | Electrical imaging in conductive and non-conductive mud |
GB2404738B (en) | 2003-08-04 | 2005-09-28 | Schlumberger Holdings | System and method for sensing using diamond based microelectrodes |
US7258005B2 (en) | 2004-02-06 | 2007-08-21 | David Scott Nyce | Isolated capacitive fluid level sensor |
US7586310B2 (en) * | 2004-06-18 | 2009-09-08 | Schlumberger Technology Corporation | While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics and other useful information |
US7598742B2 (en) * | 2007-04-27 | 2009-10-06 | Snyder Jr Harold L | Externally guided and directed field induction resistivity tool |
EP2126612A4 (en) * | 2007-02-23 | 2010-07-07 | Warren Michael Levy | Fluid level sensing device and methods of using same |
US7689363B2 (en) | 2007-05-15 | 2010-03-30 | Baker Hughes Incorporated | Dual standoff resistivity imaging instrument, methods and computer program products |
US8098071B2 (en) | 2007-08-29 | 2012-01-17 | Baker Hughes Incorporated | Resistivity imaging using phase sensitive detection with a floating reference signal |
US7520160B1 (en) | 2007-10-04 | 2009-04-21 | Schlumberger Technology Corporation | Electrochemical sensor |
US8027794B2 (en) | 2008-02-11 | 2011-09-27 | Schlumberger Technology Corporaton | System and method for measuring properties of liquid in multiphase mixtures |
EP2498105B1 (en) * | 2010-12-20 | 2014-08-27 | Services Pétroliers Schlumberger | Apparatus and method for measuring electrical properties of an underground formation |
-
2010
- 2010-12-20 EP EP10195925.2A patent/EP2498105B1/en not_active Not-in-force
-
2011
- 2011-05-11 EP EP11165709.4A patent/EP2477047B1/en not_active Not-in-force
- 2011-12-07 MX MX2013006794A patent/MX2013006794A/en active IP Right Grant
- 2011-12-07 US US13/995,501 patent/US9400339B2/en active Active
- 2011-12-07 WO PCT/IB2011/055521 patent/WO2012085725A1/en active Application Filing
- 2011-12-07 BR BR112013015187A patent/BR112013015187A2/en not_active IP Right Cessation
- 2011-12-07 BR BR112013015445A patent/BR112013015445A2/en not_active IP Right Cessation
- 2011-12-07 US US13/995,500 patent/US9841525B2/en not_active Expired - Fee Related
- 2011-12-07 WO PCT/IB2011/055532 patent/WO2012085726A1/en active Application Filing
- 2011-12-07 MX MX2013007041A patent/MX2013007041A/en active IP Right Grant
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3816811A (en) | 1973-01-12 | 1974-06-11 | R Cmelik | Fluid mixture analyzer using a capacitive probe and voltage divider |
US4511842A (en) * | 1981-10-13 | 1985-04-16 | Schlumberger Technology Corporation | Electromagnetic logging device and method with dielectric guiding layer |
US4567759A (en) | 1982-10-27 | 1986-02-04 | Schlumberger Technology Corporation | Method and apparatus for producing an image log of a wall of a borehole penetrating an earth formation |
US5191290A (en) * | 1988-04-01 | 1993-03-02 | Halliburton Logging Services, Inc. | Logging apparatus for measurement of earth formation resistivity |
EP0426563A2 (en) * | 1989-11-01 | 1991-05-08 | Schlumberger Limited | Method and apparatus for logging spontaneous potential |
US5574371A (en) | 1994-10-27 | 1996-11-12 | Schlumberger Technology Corporation | Method and apparatus for measuring mud resistivity in a wellbore including a probe having a bottom electrode for propagating a current from and to the bottom electrode in a direction approximately parallel to a longitudinal axis of the probe |
US5677631A (en) | 1996-06-07 | 1997-10-14 | Western Atlas International, Inc. | Coaxial two port waveguide flowline sensor |
US6191588B1 (en) | 1998-07-15 | 2001-02-20 | Schlumberger Technology Corporation | Methods and apparatus for imaging earth formation with a current source, a current drain, and a matrix of voltage electrodes therebetween |
WO2001077710A1 (en) * | 2000-04-07 | 2001-10-18 | Schlumberger Technology B.V. | Method and apparatus for investigating the wall of a borehole |
US6891377B2 (en) | 2000-04-07 | 2005-05-10 | Schlumberger Technology Corporation | Conductive pad around electrodes for investigating the wall of a borehole in a geological formation |
US6919724B2 (en) | 2000-04-07 | 2005-07-19 | Schlumberger Technology Corporation | Method and apparatus for investigating the wall of a borehole |
US6801039B2 (en) | 2002-05-09 | 2004-10-05 | Baker Hughes Incorporated | Apparatus and method for measuring mud resistivity using a defocused electrode system |
US7066282B2 (en) | 2003-12-23 | 2006-06-27 | Schlumberger Technology Corporation | Apparatus and methods for measuring formation characteristics in presence of conductive and non-conductive muds |
WO2008143616A1 (en) * | 2007-05-21 | 2008-11-27 | Halliburton Energy Services, Inc. | High resolution voltage sensing array |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9841525B2 (en) | 2010-12-20 | 2017-12-12 | Schlumberger Technology Corporation | System and method for measuring downhole parameters |
RU174391U1 (en) * | 2017-06-21 | 2017-10-11 | Общество с ограниченной ответственностью "КАРСАР" | Borehole Microscanner Shoe |
Also Published As
Publication number | Publication date |
---|---|
EP2477047B1 (en) | 2013-11-20 |
US20130293235A1 (en) | 2013-11-07 |
BR112013015187A2 (en) | 2016-09-13 |
US9400339B2 (en) | 2016-07-26 |
US20130293234A1 (en) | 2013-11-07 |
MX2013007041A (en) | 2013-08-26 |
MX2013006794A (en) | 2013-09-13 |
EP2498105B1 (en) | 2014-08-27 |
US9841525B2 (en) | 2017-12-12 |
WO2012085725A1 (en) | 2012-06-28 |
WO2012085726A1 (en) | 2012-06-28 |
EP2498105A1 (en) | 2012-09-12 |
BR112013015445A2 (en) | 2016-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2477047B1 (en) | System and method for measuring downhole parameters | |
US8776878B2 (en) | Sensor for determining downhole parameters and methods for using same | |
CA2625102C (en) | Apparatus and method for detecting fluid entering a wellbore | |
CA2797673C (en) | Pdc sensing element fabrication process and tool | |
EP2362210B1 (en) | Fluid sensor and method of using same | |
US7388380B2 (en) | While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics and other useful information | |
US20150260874A1 (en) | System and Method for Imaging Subterranean Formations | |
US9360444B2 (en) | Fluid sensor and method of using same | |
US12066589B2 (en) | System and method for characterizing subterranean formations | |
WO2008151275A1 (en) | Single-dipole high frequency electric imager | |
US7301345B2 (en) | While-drilling methodology for estimating formation pressure based upon streaming potential measurements | |
US7586310B2 (en) | While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics and other useful information | |
US20170285212A1 (en) | System and method for measuring downhole parameters | |
US10184873B2 (en) | Vibrating wire viscometer and cartridge for the same | |
US9677394B2 (en) | Downhole fluid sensor with conductive shield and method of using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20130118 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130614 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BLOEMENKAMP, RICHARD Inventor name: HAYMAN, ANDREW Inventor name: JACOB, GREGOIRE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 641962 Country of ref document: AT Kind code of ref document: T Effective date: 20131215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011003816 Country of ref document: DE Effective date: 20140116 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 641962 Country of ref document: AT Kind code of ref document: T Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140320 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011003816 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
26N | No opposition filed |
Effective date: 20140821 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011003816 Country of ref document: DE Effective date: 20140821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140511 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140531 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140531 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140221 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110511 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20170523 Year of fee payment: 7 Ref country code: GB Payment date: 20170530 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170731 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131120 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011003816 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180511 |