EP2466142A2 - Concentric multi-stage centrifugal pump with start stage - Google Patents
Concentric multi-stage centrifugal pump with start stage Download PDFInfo
- Publication number
- EP2466142A2 EP2466142A2 EP11194070A EP11194070A EP2466142A2 EP 2466142 A2 EP2466142 A2 EP 2466142A2 EP 11194070 A EP11194070 A EP 11194070A EP 11194070 A EP11194070 A EP 11194070A EP 2466142 A2 EP2466142 A2 EP 2466142A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- stage
- pump
- drive
- pump stage
- impeller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 description 21
- 230000008901 benefit Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D1/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D1/003—Having contrarotating parts
Definitions
- This disclosure relates to a pump, and more particularly to a high speed centrifugal pump, with the addition of a start stage.
- selective details may find application in related pump environments.
- Centrifugal pumps are generally well known in the art.
- an axial inlet provides fluid to a rotating impeller.
- a first stage impeller is driven by a rotating drive shaft so that the first stage impeller imparts energy to the fluid which exits generally radially from the first stage.
- axially spaced bearings are disposed along an outer surface of the shaft to support the shaft and impeller within the pump housing.
- the impeller is located within a pumping cavity of the housing and seals are provided on front and rear faces of the impeller so that the pressure build-up from the rotating impeller is imparted to the fluid within the pump cavity.
- a stationary diffuser is provided at a radial outer location of the impeller and receives the fluid from the impeller. The diffuser converts high velocity fluid energy into lower velocity fluid energy thereby increasing the pressure of the fluid as the fluid is directed to a discharge passage.
- centrifugal pumps are used in a wide variety of applications.
- One such application is providing high pressure fuel flow to a jet engine, for example.
- This environment requires a minimal pump packaging volume, and also a minimal weight.
- Optimizing pump performance and particularly optimizing pump performance at engine start-up in order to build the desired or required system pressure and flow is desired. However, once the start-up pressure and flow is established, it is important to limit the impact of the starting components on operation of the pump.
- a centrifugal pump assembly includes a first pump stage, a second pump stage independently rotatable relative to the first pump stage, and a drive assembly that rotates the first and second pump stages to a first speed and then rotates the second pump stage at a different speed than the first pump stage.
- the second pump stage becomes freely rotating at a selectable operating condition.
- the second impeller stage may rotate faster at start-up and then rotate at approximately one-half of the speed of the first pump stage speed.
- the second pump stage rotates at a slower speed based on a fluidic drive provided by the driven first stage speed.
- a first pump stage is an inner impeller stage, and the second pump stage is preferably a concentric, outer impeller stage.
- the drive assembly includes a main drive shaft connected to and selectively rotating the first pump stage.
- the drive assembly includes a separate drive member for rotating the second pump stage independently of the first pump stage.
- the separate drive member is an electric motor drive.
- the electric motor drive many be concentrically located about the main drive shaft and adapted to rotate the second pump stage at a different speed than the main drive shaft rotates the first pump stage.
- the outer stage may rotate at a high speed to increase the pressure.
- the second, outer stage rotates slower since the outer impeller stage is only fluidically coupled to the inner impeller stage.
- a method of operating the centrifugal pump assembly includes providing first and second pump stages. The method includes independently driving the first and second pump stages.
- a positive drive for the second pump stage may be turned off and the second pump stage allowed to freely rotate.
- the concentric outer stage can be driven with not only the fluidic drive but also the second, outer stage drive motor and continue to drive the second pump stage if so desired.
- the driving step includes using an electric drive motor for rotating the second pump stage so that the first and second pump stages may be driven at different speeds.
- a primary benefit is a reduction in disk drag associated with the high speed centrifugal pump using multiple stages.
- Another benefit is associated with the minimal pump packaging volume, for example by placing the first and second pump stages disposed in concentric fashion.
- Still another advantage resides in the reduced weight while providing for start-up.
- Figure 1 is a cross-sectional view of a preferred embodiment of the present disclosure.
- a pump assembly and more particularly a centrifugal pump assembly 100, includes a housing 102 having an inlet 104 shown here as an axial inlet that communicates with a pump cavity or chamber 106.
- Received in the pump chamber is a rotary pump 110 and specifically a multi-stage rotary pump provided by a first or inner impeller stage 112 and a second or outer impeller stage 114.
- the first stage is in fluid communication with the inlet so that an axial passage 116 receives the fluid from the inlet 104 and through rotation of the inner impeller stage, provides fluid at a higher pressure to radial outlet 118.
- the inner impeller stage 112 is positively driven by a portion of the drive assembly 120, and more particularly by drive shaft 122 that rotates the inner impeller stage at a desired speed.
- the drive shaft 122 is supported and axially spaced locations by first and second bearings 124, 126 that support the drive shaft for relative rotation with respect to the housing 102.
- seals 128 are typically provided and extend between the outer surface of the drive shaft and an inner wall of the passage in the housing that receives the drive shaft 122.
- a first impeller seal 140 is provided adjacent the inlet 104 and seals between the inner, front surface of the inner impeller stage 112 and the inlet 104 while a second or rear seal 142 is disposed along a rear surface or rear face of the inner impeller stage 112 and the housing 102.
- the second or outer impeller stage 114 is also received within the pump chamber 106.
- the outer impeller stage 114 is concentrically located relative to the inner impeller stage 112. That is, a radially extending passage 144 receives fluid from the outlet 118 of the inner impeller stage, and imparts additional energy from the outer impeller stage 114 before the fluid exits and communicates with a stationary diffuser 150 that leads to discharge passage 152.
- the outer impeller stage 114 includes a recess 154 dimensioned to closely receive the outer radial dimension of the inner impeller stage 112.
- An axially extending portion of the outer impeller stage has a first portion 156 that is received in the pump chamber in radially spaced location relative to the inlet end of the inner impeller stage.
- the first axial portion 156 is supported by an outer stage bearing 158 that supports the outer impeller stage for relative rotation with respect to the housing 102.
- seal 160 is interposed between the first axial portion 156 and an inner surface that defines the pump chamber in the housing.
- a second axial portion 162 extends rearwardly and is supported by a second outer stage bearing 164 and receives a seal 166 between the second axial portion and the pump housing 102.
- a second portion of the drive assembly 120 is provided by an outer stage drive motor 180 which is in this particular instance is an electric drive motor.
- This drive motor 180 provides for positive independent driving movement of the outer impeller stage 114 relative to the inner impeller stage 112.
- the drive motor 180 provides for positive independent driving movement of the outer impeller stage 114 relative to the inner impeller stage 112.
- the drive motor 180 provides for positive independent driving movement of the outer impeller stage 114 relative to the inner impeller stage 112.
- the drive motor 180 to positively drive the outer impeller stage 114 at a different speed than the inner impeller stage.
- the inner and outer impeller stages 112, 114 could be driven at the same speed if so desired.
- the outer stage can be positively driven or rotated at a fast speed at start-up in order to build a desired pressure. Once the desired pressure is reached, then one of two actions can be taken.
- the outer stage drive motor 180 can be turned off so that the outer impeller stage rotates freely and the drive energy imposed on the outer stage is provided by a fluid coupling fluidic forces provided by the driven inner impeller stage 112.
- the inner impeller stage 112 may be rotating at a first speed N1 while the outer stage may be rotating at a reduced, second rotational speed N2.
- N2 is approximately one-half the rotational speed of N1.
- the electric motor drive 180 is capable of being switched on for starting and then turned off for normal operation of the outer impeller stage 114.
- the electric drive motor 180 that drives the outer impeller stage 114 builds the required system pressure and flow.
- the electric drive motor 180 may be switched off. Thereafter, the outer stage 114 is allowed to act as a free rotating disk, and driven only by the fluidic coupling provided by fluid rotation caused by the inner impeller stage 112 and thereby improves the operating efficiency of the pump 100.
- the fluid is first pressurized by the inner impeller stage, exits outlet 118, and is fed to inlet of the radial passage 144 of the outer impeller stage.
- the energized fluid enters the stationary diffuser and ultimately reaches the discharge or outlet of the fluid pump.
- the concentric arrangement provides for a compact package of a high speed centrifugal pump that includes a start stage.
- reduced impeller fluid friction drag due to a free rotating disk action during normal operation is achieved.
- pump performance can be optimized relative to the ratio of impeller drive speeds (i.e., N1 vs. N2).
- pump performance can be optimized via the ratio of pressure rise from each impeller stage. All of this is achieved in a pump package volume that is minimized and a multistage pump that has a reduced weight while still incorporating a start stage.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
A multi-stage concentric centrifugal pump includes a start stage. An inner impeller stage is driven by drive shaft while an electric motor drive is selectively switched on for starting, and off for normal operation to drive an outer impeller stage. The electric motor driven outer stage builds required system pressure and flow at engine starting, and then permits the electric motor to be switched off and allow the outer stage to act as a free rotating disk to improve operating efficiency of the pump.
Description
- This disclosure relates to a pump, and more particularly to a high speed centrifugal pump, with the addition of a start stage. However, selective details may find application in related pump environments.
- Centrifugal pumps are generally well known in the art. Generally speaking, an axial inlet provides fluid to a rotating impeller. A first stage impeller is driven by a rotating drive shaft so that the first stage impeller imparts energy to the fluid which exits generally radially from the first stage. Typically, axially spaced bearings are disposed along an outer surface of the shaft to support the shaft and impeller within the pump housing. The impeller is located within a pumping cavity of the housing and seals are provided on front and rear faces of the impeller so that the pressure build-up from the rotating impeller is imparted to the fluid within the pump cavity. A stationary diffuser is provided at a radial outer location of the impeller and receives the fluid from the impeller. The diffuser converts high velocity fluid energy into lower velocity fluid energy thereby increasing the pressure of the fluid as the fluid is directed to a discharge passage.
- Such centrifugal pumps are used in a wide variety of applications. One such application is providing high pressure fuel flow to a jet engine, for example. This environment requires a minimal pump packaging volume, and also a minimal weight. Optimizing pump performance and particularly optimizing pump performance at engine start-up in order to build the desired or required system pressure and flow is desired. However, once the start-up pressure and flow is established, it is important to limit the impact of the starting components on operation of the pump.
- Therefore, a need exists for a compact package of a high-speed centrifugal pump that also has reduced weight and satisfies start stage requirements for the system.
- A centrifugal pump assembly includes a first pump stage, a second pump stage independently rotatable relative to the first pump stage, and a drive assembly that rotates the first and second pump stages to a first speed and then rotates the second pump stage at a different speed than the first pump stage.
- In one embodiment, the second pump stage becomes freely rotating at a selectable operating condition.
- The second impeller stage may rotate faster at start-up and then rotate at approximately one-half of the speed of the first pump stage speed.
- In one arrangement, the second pump stage rotates at a slower speed based on a fluidic drive provided by the driven first stage speed.
- A first pump stage is an inner impeller stage, and the second pump stage is preferably a concentric, outer impeller stage.
- The drive assembly includes a main drive shaft connected to and selectively rotating the first pump stage.
- The drive assembly includes a separate drive member for rotating the second pump stage independently of the first pump stage.
- In one arrangement, the separate drive member is an electric motor drive.
- The electric motor drive many be concentrically located about the main drive shaft and adapted to rotate the second pump stage at a different speed than the main drive shaft rotates the first pump stage.
- Consequently, at start-up, the outer stage may rotate at a high speed to increase the pressure.
- After start-up, the second, outer stage rotates slower since the outer impeller stage is only fluidically coupled to the inner impeller stage.
- A method of operating the centrifugal pump assembly includes providing first and second pump stages. The method includes independently driving the first and second pump stages.
- Once start-up speed is attained, a positive drive for the second pump stage may be turned off and the second pump stage allowed to freely rotate.
- In another arrangement, the concentric outer stage can be driven with not only the fluidic drive but also the second, outer stage drive motor and continue to drive the second pump stage if so desired.
- The driving step includes using an electric drive motor for rotating the second pump stage so that the first and second pump stages may be driven at different speeds.
- A primary benefit is a reduction in disk drag associated with the high speed centrifugal pump using multiple stages.
- Another benefit is associated with the minimal pump packaging volume, for example by placing the first and second pump stages disposed in concentric fashion.
- Still another advantage resides in the reduced weight while providing for start-up.
- Still other benefits and advantages of the present disclosure will become apparent upon reading and understanding the following detailed description.
-
Figure 1 is a cross-sectional view of a preferred embodiment of the present disclosure. - As shown in
Figure 1 , a pump assembly, and more particularly acentrifugal pump assembly 100, includes ahousing 102 having aninlet 104 shown here as an axial inlet that communicates with a pump cavity orchamber 106. Received in the pump chamber is arotary pump 110 and specifically a multi-stage rotary pump provided by a first orinner impeller stage 112 and a second orouter impeller stage 114. The first stage is in fluid communication with the inlet so that anaxial passage 116 receives the fluid from theinlet 104 and through rotation of the inner impeller stage, provides fluid at a higher pressure toradial outlet 118. - The
inner impeller stage 112 is positively driven by a portion of thedrive assembly 120, and more particularly bydrive shaft 122 that rotates the inner impeller stage at a desired speed. Preferably thedrive shaft 122 is supported and axially spaced locations by first andsecond bearings housing 102. In addition,seals 128 are typically provided and extend between the outer surface of the drive shaft and an inner wall of the passage in the housing that receives thedrive shaft 122. In addition, afirst impeller seal 140 is provided adjacent theinlet 104 and seals between the inner, front surface of theinner impeller stage 112 and theinlet 104 while a second orrear seal 142 is disposed along a rear surface or rear face of theinner impeller stage 112 and thehousing 102. Thus, as thefirst impeller stage 112 is rotated by thedrive shaft 122, fluid from theinlet 104 proceeds throughpassages 116 to theoutlets 118. - Also received within the
pump chamber 106 is the second orouter impeller stage 114. Preferably, theouter impeller stage 114 is concentrically located relative to theinner impeller stage 112. That is, a radially extendingpassage 144 receives fluid from theoutlet 118 of the inner impeller stage, and imparts additional energy from theouter impeller stage 114 before the fluid exits and communicates with astationary diffuser 150 that leads todischarge passage 152. Theouter impeller stage 114 includes arecess 154 dimensioned to closely receive the outer radial dimension of theinner impeller stage 112. An axially extending portion of the outer impeller stage has afirst portion 156 that is received in the pump chamber in radially spaced location relative to the inlet end of the inner impeller stage. The firstaxial portion 156 is supported by an outer stage bearing 158 that supports the outer impeller stage for relative rotation with respect to thehousing 102. In addition,seal 160 is interposed between the firstaxial portion 156 and an inner surface that defines the pump chamber in the housing. Similarly, a secondaxial portion 162 extends rearwardly and is supported by a second outer stage bearing 164 and receives aseal 166 between the second axial portion and thepump housing 102. - A second portion of the
drive assembly 120 is provided by an outerstage drive motor 180 which is in this particular instance is an electric drive motor. Thisdrive motor 180 provides for positive independent driving movement of theouter impeller stage 114 relative to theinner impeller stage 112. There are situations where it is desirable to use thedrive motor 180 to positively drive theouter impeller stage 114 at a different speed than the inner impeller stage. Of course, one skilled in the art will also appreciate that the inner andouter impeller stages stage drive motor 180, the outer stage can be positively driven or rotated at a fast speed at start-up in order to build a desired pressure. Once the desired pressure is reached, then one of two actions can be taken. First, the outerstage drive motor 180 can be turned off so that the outer impeller stage rotates freely and the drive energy imposed on the outer stage is provided by a fluid coupling fluidic forces provided by the driveninner impeller stage 112. Under such an arrangement, theinner impeller stage 112 may be rotating at a first speed N1 while the outer stage may be rotating at a reduced, second rotational speed N2. Typically, N2 is approximately one-half the rotational speed of N1. Thus, theelectric motor drive 180 is capable of being switched on for starting and then turned off for normal operation of theouter impeller stage 114. During low inner impeller stage drive speed operation, such as engine starting, theelectric drive motor 180 that drives theouter impeller stage 114 builds the required system pressure and flow. Once sufficient engine speed is attained to permit the impeller stage to produce the required system pressure, theelectric drive motor 180 may be switched off. Thereafter, theouter stage 114 is allowed to act as a free rotating disk, and driven only by the fluidic coupling provided by fluid rotation caused by theinner impeller stage 112 and thereby improves the operating efficiency of thepump 100. - In other instances, it may be desired to control the rotational speed of the
outer stage 114 by using both the fluid coupling and the outerstage drive motor 180. In such instances, theouter impeller stage 114 is rotated faster or slower than the inner impeller stage, however, optimized pump performance can be controlled through selective, independent drive of the outer impeller stage. - By locating the
outer impeller stage 114 in concentric relation with theinner impeller stage 112, the fluid is first pressurized by the inner impeller stage, exitsoutlet 118, and is fed to inlet of theradial passage 144 of the outer impeller stage. Upon exiting the outer impeller stage, the energized fluid enters the stationary diffuser and ultimately reaches the discharge or outlet of the fluid pump. - The concentric arrangement provides for a compact package of a high speed centrifugal pump that includes a start stage. In addition, by independently driving the inner and outer impeller stages, reduced impeller fluid friction drag due to a free rotating disk action during normal operation is achieved. Likewise, there is an increased ability to receive flow at the stationary radial diffuser and shape the diffuser pressure recovery characteristics due to lower outer stage rotational speed. As a result, pump performance can be optimized relative to the ratio of impeller drive speeds (i.e., N1 vs. N2). Further, pump performance can be optimized via the ratio of pressure rise from each impeller stage. All of this is achieved in a pump package volume that is minimized and a multistage pump that has a reduced weight while still incorporating a start stage.
- The disclosure has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon reading and understanding this specification. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.
Claims (11)
- A centrifugal pump assembly comprising:a first pump stage;a second pump stage independently rotatable relative to and disposed in concentric relation with the first pump stage; anda drive assembly operatively associated with the first and second pump stages that rotates the first and second pump stages to a first rotational speed and then (a) turns off drives the first pump stage of the first rotational speed or (b) independently drives the first and second pump stages above the first rotational speed.
- The centrifugal pump assembly of claim 1 wherein the second pump stage rotates freely independent of the first rotational speed.
- The centrifugal pump assembly of claim 1 wherein the first pump stage is an inner impeller stage and the second pump stage is an outer impeller stage.
- The centrifugal pump assembly of claim 1 wherein the drive assembly includes a main drive shaft connected to and selectively rotating the first pump stage.
- The centrifugal pump assembly of claim 1 wherein the drive assembly includes a separate drive for rotating the second pump stage.
- The centrifugal pump assembly of claim 5 wherein the separate drive is an electric motor drive.
- The centrifugal pump assembly of claim 6 wherein the electric motor drive rotates the second pump stage at a different speed than the main drive shaft rotates the first pump stage.
- A method of operating a centrifugal pump assembly comprising:providing a first pump stage;providing a second pump stage concentrically mounted around the first pump stage;independently driving the first and second pump stages; andswitching off the drive for the second pump stage above a preselected rotational speed.
- The method of claim 8 further comprising allowing the second pump stage to rotate freely relative to the first pump stage above the preselected rotational speed.
- The method of claim 8 further comprising driving the first and second pump stages at different speeds.
- The method of claim 8 wherein the driving step includes using an electric motor drive for rotating the second pump stage.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/970,161 US20120156066A1 (en) | 2010-12-16 | 2010-12-16 | Concentric multi-stage centrifugal pump with start stage |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2466142A2 true EP2466142A2 (en) | 2012-06-20 |
Family
ID=45370446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11194070A Withdrawn EP2466142A2 (en) | 2010-12-16 | 2011-12-16 | Concentric multi-stage centrifugal pump with start stage |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120156066A1 (en) |
EP (1) | EP2466142A2 (en) |
CA (1) | CA2762453A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160305447A1 (en) * | 2013-12-03 | 2016-10-20 | Flowserve Management Company | Rotating diffuser pump |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5599368B2 (en) * | 2011-06-08 | 2014-10-01 | 三菱電機株式会社 | Motor rotor structure of electric turbocharger and its assembly method |
EP3371459B1 (en) * | 2015-11-03 | 2020-04-22 | Eaton Intelligent Power Limited | Regenerative pump start stage for high speed centrifugal fuel pump |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3208389A (en) * | 1962-12-06 | 1965-09-28 | Ford Motor Co | Two stage pump |
US4449888A (en) * | 1982-04-23 | 1984-05-22 | Balje Otto E | Free spool inducer pump |
DE4244586C2 (en) * | 1992-12-28 | 1996-09-05 | Mannesmann Ag | Ship propulsion with two counter-rotating screws |
TWI299072B (en) * | 2005-06-02 | 2008-07-21 | Delta Electronics Inc | Centrifugal fan |
-
2010
- 2010-12-16 US US12/970,161 patent/US20120156066A1/en not_active Abandoned
-
2011
- 2011-12-16 EP EP11194070A patent/EP2466142A2/en not_active Withdrawn
- 2011-12-16 CA CA2762453A patent/CA2762453A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160305447A1 (en) * | 2013-12-03 | 2016-10-20 | Flowserve Management Company | Rotating diffuser pump |
EP3077681A4 (en) * | 2013-12-03 | 2017-08-16 | Flowserve Management Company | Rotating diffuser pump |
EP3822490A1 (en) * | 2013-12-03 | 2021-05-19 | Flowserve Management Company | Rotating diffuser pump |
US11396887B2 (en) | 2013-12-03 | 2022-07-26 | Flowserve Management Company | Rotating diffuser pump |
Also Published As
Publication number | Publication date |
---|---|
US20120156066A1 (en) | 2012-06-21 |
CA2762453A1 (en) | 2012-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10240613B2 (en) | Supersonic compressor with structural arrangement to increase pressure energy in a discharge process fluid received from a centrifugal impeller | |
KR101521097B1 (en) | Method and apparatus for lubricating a thrust bearing for a rotating machine using pumpage | |
CN104067071A (en) | Variable-speed multi-stage refrigerant centrifugal compressor with diffusers | |
US7264443B2 (en) | Centrifugal water pump | |
EP2466142A2 (en) | Concentric multi-stage centrifugal pump with start stage | |
EP3118460A1 (en) | Turbo machine | |
EP3329127B1 (en) | Motorcompressor, and method to improve the efficency of a motorcompressor | |
RU2342564C1 (en) | Mixed-flow screw-type pump with automatic unit for rotor relief from axial force | |
US9512887B2 (en) | Hybrid drive | |
US9709060B2 (en) | Side-channel pump and method for operating same | |
US9206814B2 (en) | Energy saving pump with multiple impellers | |
US11808265B2 (en) | Energy-conserving fluid pump | |
CN2844531Y (en) | Axial-forced balancing disk unit for balanced sectional multi-stage pump | |
CN101893005B (en) | Method for adjusting axial force by using thrust adjusting plate | |
CN109404291A (en) | High-performance low-flow high-lift single-stage cantilever centrifugal pump | |
JP2006152994A (en) | Centrifugal compressor | |
US20240026903A1 (en) | Energy-conserving fluid pump | |
JPH1182364A (en) | Multistage centrifugal pump | |
RU2466299C2 (en) | Centrifugal screw pump | |
RU2418989C1 (en) | Turbo-pump unit | |
RU2418986C1 (en) | Turbo-pump unit | |
WO2025071950A1 (en) | Energy-conserving fluid pump | |
RU2366837C1 (en) | Two-outlet centrifugal auger pump | |
RU2414627C1 (en) | Turbine-driven pump assembly | |
RU2423621C1 (en) | Turbine pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140701 |