[go: up one dir, main page]

EP2466142A2 - Concentric multi-stage centrifugal pump with start stage - Google Patents

Concentric multi-stage centrifugal pump with start stage Download PDF

Info

Publication number
EP2466142A2
EP2466142A2 EP11194070A EP11194070A EP2466142A2 EP 2466142 A2 EP2466142 A2 EP 2466142A2 EP 11194070 A EP11194070 A EP 11194070A EP 11194070 A EP11194070 A EP 11194070A EP 2466142 A2 EP2466142 A2 EP 2466142A2
Authority
EP
European Patent Office
Prior art keywords
stage
pump
drive
pump stage
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11194070A
Other languages
German (de)
French (fr)
Inventor
Martin A. Clements
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eaton Corp
Original Assignee
Eaton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaton Corp filed Critical Eaton Corp
Publication of EP2466142A2 publication Critical patent/EP2466142A2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/003Having contrarotating parts

Definitions

  • This disclosure relates to a pump, and more particularly to a high speed centrifugal pump, with the addition of a start stage.
  • selective details may find application in related pump environments.
  • Centrifugal pumps are generally well known in the art.
  • an axial inlet provides fluid to a rotating impeller.
  • a first stage impeller is driven by a rotating drive shaft so that the first stage impeller imparts energy to the fluid which exits generally radially from the first stage.
  • axially spaced bearings are disposed along an outer surface of the shaft to support the shaft and impeller within the pump housing.
  • the impeller is located within a pumping cavity of the housing and seals are provided on front and rear faces of the impeller so that the pressure build-up from the rotating impeller is imparted to the fluid within the pump cavity.
  • a stationary diffuser is provided at a radial outer location of the impeller and receives the fluid from the impeller. The diffuser converts high velocity fluid energy into lower velocity fluid energy thereby increasing the pressure of the fluid as the fluid is directed to a discharge passage.
  • centrifugal pumps are used in a wide variety of applications.
  • One such application is providing high pressure fuel flow to a jet engine, for example.
  • This environment requires a minimal pump packaging volume, and also a minimal weight.
  • Optimizing pump performance and particularly optimizing pump performance at engine start-up in order to build the desired or required system pressure and flow is desired. However, once the start-up pressure and flow is established, it is important to limit the impact of the starting components on operation of the pump.
  • a centrifugal pump assembly includes a first pump stage, a second pump stage independently rotatable relative to the first pump stage, and a drive assembly that rotates the first and second pump stages to a first speed and then rotates the second pump stage at a different speed than the first pump stage.
  • the second pump stage becomes freely rotating at a selectable operating condition.
  • the second impeller stage may rotate faster at start-up and then rotate at approximately one-half of the speed of the first pump stage speed.
  • the second pump stage rotates at a slower speed based on a fluidic drive provided by the driven first stage speed.
  • a first pump stage is an inner impeller stage, and the second pump stage is preferably a concentric, outer impeller stage.
  • the drive assembly includes a main drive shaft connected to and selectively rotating the first pump stage.
  • the drive assembly includes a separate drive member for rotating the second pump stage independently of the first pump stage.
  • the separate drive member is an electric motor drive.
  • the electric motor drive many be concentrically located about the main drive shaft and adapted to rotate the second pump stage at a different speed than the main drive shaft rotates the first pump stage.
  • the outer stage may rotate at a high speed to increase the pressure.
  • the second, outer stage rotates slower since the outer impeller stage is only fluidically coupled to the inner impeller stage.
  • a method of operating the centrifugal pump assembly includes providing first and second pump stages. The method includes independently driving the first and second pump stages.
  • a positive drive for the second pump stage may be turned off and the second pump stage allowed to freely rotate.
  • the concentric outer stage can be driven with not only the fluidic drive but also the second, outer stage drive motor and continue to drive the second pump stage if so desired.
  • the driving step includes using an electric drive motor for rotating the second pump stage so that the first and second pump stages may be driven at different speeds.
  • a primary benefit is a reduction in disk drag associated with the high speed centrifugal pump using multiple stages.
  • Another benefit is associated with the minimal pump packaging volume, for example by placing the first and second pump stages disposed in concentric fashion.
  • Still another advantage resides in the reduced weight while providing for start-up.
  • Figure 1 is a cross-sectional view of a preferred embodiment of the present disclosure.
  • a pump assembly and more particularly a centrifugal pump assembly 100, includes a housing 102 having an inlet 104 shown here as an axial inlet that communicates with a pump cavity or chamber 106.
  • Received in the pump chamber is a rotary pump 110 and specifically a multi-stage rotary pump provided by a first or inner impeller stage 112 and a second or outer impeller stage 114.
  • the first stage is in fluid communication with the inlet so that an axial passage 116 receives the fluid from the inlet 104 and through rotation of the inner impeller stage, provides fluid at a higher pressure to radial outlet 118.
  • the inner impeller stage 112 is positively driven by a portion of the drive assembly 120, and more particularly by drive shaft 122 that rotates the inner impeller stage at a desired speed.
  • the drive shaft 122 is supported and axially spaced locations by first and second bearings 124, 126 that support the drive shaft for relative rotation with respect to the housing 102.
  • seals 128 are typically provided and extend between the outer surface of the drive shaft and an inner wall of the passage in the housing that receives the drive shaft 122.
  • a first impeller seal 140 is provided adjacent the inlet 104 and seals between the inner, front surface of the inner impeller stage 112 and the inlet 104 while a second or rear seal 142 is disposed along a rear surface or rear face of the inner impeller stage 112 and the housing 102.
  • the second or outer impeller stage 114 is also received within the pump chamber 106.
  • the outer impeller stage 114 is concentrically located relative to the inner impeller stage 112. That is, a radially extending passage 144 receives fluid from the outlet 118 of the inner impeller stage, and imparts additional energy from the outer impeller stage 114 before the fluid exits and communicates with a stationary diffuser 150 that leads to discharge passage 152.
  • the outer impeller stage 114 includes a recess 154 dimensioned to closely receive the outer radial dimension of the inner impeller stage 112.
  • An axially extending portion of the outer impeller stage has a first portion 156 that is received in the pump chamber in radially spaced location relative to the inlet end of the inner impeller stage.
  • the first axial portion 156 is supported by an outer stage bearing 158 that supports the outer impeller stage for relative rotation with respect to the housing 102.
  • seal 160 is interposed between the first axial portion 156 and an inner surface that defines the pump chamber in the housing.
  • a second axial portion 162 extends rearwardly and is supported by a second outer stage bearing 164 and receives a seal 166 between the second axial portion and the pump housing 102.
  • a second portion of the drive assembly 120 is provided by an outer stage drive motor 180 which is in this particular instance is an electric drive motor.
  • This drive motor 180 provides for positive independent driving movement of the outer impeller stage 114 relative to the inner impeller stage 112.
  • the drive motor 180 provides for positive independent driving movement of the outer impeller stage 114 relative to the inner impeller stage 112.
  • the drive motor 180 provides for positive independent driving movement of the outer impeller stage 114 relative to the inner impeller stage 112.
  • the drive motor 180 to positively drive the outer impeller stage 114 at a different speed than the inner impeller stage.
  • the inner and outer impeller stages 112, 114 could be driven at the same speed if so desired.
  • the outer stage can be positively driven or rotated at a fast speed at start-up in order to build a desired pressure. Once the desired pressure is reached, then one of two actions can be taken.
  • the outer stage drive motor 180 can be turned off so that the outer impeller stage rotates freely and the drive energy imposed on the outer stage is provided by a fluid coupling fluidic forces provided by the driven inner impeller stage 112.
  • the inner impeller stage 112 may be rotating at a first speed N1 while the outer stage may be rotating at a reduced, second rotational speed N2.
  • N2 is approximately one-half the rotational speed of N1.
  • the electric motor drive 180 is capable of being switched on for starting and then turned off for normal operation of the outer impeller stage 114.
  • the electric drive motor 180 that drives the outer impeller stage 114 builds the required system pressure and flow.
  • the electric drive motor 180 may be switched off. Thereafter, the outer stage 114 is allowed to act as a free rotating disk, and driven only by the fluidic coupling provided by fluid rotation caused by the inner impeller stage 112 and thereby improves the operating efficiency of the pump 100.
  • the fluid is first pressurized by the inner impeller stage, exits outlet 118, and is fed to inlet of the radial passage 144 of the outer impeller stage.
  • the energized fluid enters the stationary diffuser and ultimately reaches the discharge or outlet of the fluid pump.
  • the concentric arrangement provides for a compact package of a high speed centrifugal pump that includes a start stage.
  • reduced impeller fluid friction drag due to a free rotating disk action during normal operation is achieved.
  • pump performance can be optimized relative to the ratio of impeller drive speeds (i.e., N1 vs. N2).
  • pump performance can be optimized via the ratio of pressure rise from each impeller stage. All of this is achieved in a pump package volume that is minimized and a multistage pump that has a reduced weight while still incorporating a start stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A multi-stage concentric centrifugal pump includes a start stage. An inner impeller stage is driven by drive shaft while an electric motor drive is selectively switched on for starting, and off for normal operation to drive an outer impeller stage. The electric motor driven outer stage builds required system pressure and flow at engine starting, and then permits the electric motor to be switched off and allow the outer stage to act as a free rotating disk to improve operating efficiency of the pump.

Description

    Background of the Disclosure
  • This disclosure relates to a pump, and more particularly to a high speed centrifugal pump, with the addition of a start stage. However, selective details may find application in related pump environments.
  • Centrifugal pumps are generally well known in the art. Generally speaking, an axial inlet provides fluid to a rotating impeller. A first stage impeller is driven by a rotating drive shaft so that the first stage impeller imparts energy to the fluid which exits generally radially from the first stage. Typically, axially spaced bearings are disposed along an outer surface of the shaft to support the shaft and impeller within the pump housing. The impeller is located within a pumping cavity of the housing and seals are provided on front and rear faces of the impeller so that the pressure build-up from the rotating impeller is imparted to the fluid within the pump cavity. A stationary diffuser is provided at a radial outer location of the impeller and receives the fluid from the impeller. The diffuser converts high velocity fluid energy into lower velocity fluid energy thereby increasing the pressure of the fluid as the fluid is directed to a discharge passage.
  • Such centrifugal pumps are used in a wide variety of applications. One such application is providing high pressure fuel flow to a jet engine, for example. This environment requires a minimal pump packaging volume, and also a minimal weight. Optimizing pump performance and particularly optimizing pump performance at engine start-up in order to build the desired or required system pressure and flow is desired. However, once the start-up pressure and flow is established, it is important to limit the impact of the starting components on operation of the pump.
  • Therefore, a need exists for a compact package of a high-speed centrifugal pump that also has reduced weight and satisfies start stage requirements for the system.
  • Summary of the Disclosure
  • A centrifugal pump assembly includes a first pump stage, a second pump stage independently rotatable relative to the first pump stage, and a drive assembly that rotates the first and second pump stages to a first speed and then rotates the second pump stage at a different speed than the first pump stage.
  • In one embodiment, the second pump stage becomes freely rotating at a selectable operating condition.
  • The second impeller stage may rotate faster at start-up and then rotate at approximately one-half of the speed of the first pump stage speed.
  • In one arrangement, the second pump stage rotates at a slower speed based on a fluidic drive provided by the driven first stage speed.
  • A first pump stage is an inner impeller stage, and the second pump stage is preferably a concentric, outer impeller stage.
  • The drive assembly includes a main drive shaft connected to and selectively rotating the first pump stage.
  • The drive assembly includes a separate drive member for rotating the second pump stage independently of the first pump stage.
  • In one arrangement, the separate drive member is an electric motor drive.
  • The electric motor drive many be concentrically located about the main drive shaft and adapted to rotate the second pump stage at a different speed than the main drive shaft rotates the first pump stage.
  • Consequently, at start-up, the outer stage may rotate at a high speed to increase the pressure.
  • After start-up, the second, outer stage rotates slower since the outer impeller stage is only fluidically coupled to the inner impeller stage.
  • A method of operating the centrifugal pump assembly includes providing first and second pump stages. The method includes independently driving the first and second pump stages.
  • Once start-up speed is attained, a positive drive for the second pump stage may be turned off and the second pump stage allowed to freely rotate.
  • In another arrangement, the concentric outer stage can be driven with not only the fluidic drive but also the second, outer stage drive motor and continue to drive the second pump stage if so desired.
  • The driving step includes using an electric drive motor for rotating the second pump stage so that the first and second pump stages may be driven at different speeds.
  • A primary benefit is a reduction in disk drag associated with the high speed centrifugal pump using multiple stages.
  • Another benefit is associated with the minimal pump packaging volume, for example by placing the first and second pump stages disposed in concentric fashion.
  • Still another advantage resides in the reduced weight while providing for start-up.
  • Still other benefits and advantages of the present disclosure will become apparent upon reading and understanding the following detailed description.
  • Brief Description of the Drawing
  • Figure 1 is a cross-sectional view of a preferred embodiment of the present disclosure.
  • Detailed Description
  • As shown in Figure 1, a pump assembly, and more particularly a centrifugal pump assembly 100, includes a housing 102 having an inlet 104 shown here as an axial inlet that communicates with a pump cavity or chamber 106. Received in the pump chamber is a rotary pump 110 and specifically a multi-stage rotary pump provided by a first or inner impeller stage 112 and a second or outer impeller stage 114. The first stage is in fluid communication with the inlet so that an axial passage 116 receives the fluid from the inlet 104 and through rotation of the inner impeller stage, provides fluid at a higher pressure to radial outlet 118.
  • The inner impeller stage 112 is positively driven by a portion of the drive assembly 120, and more particularly by drive shaft 122 that rotates the inner impeller stage at a desired speed. Preferably the drive shaft 122 is supported and axially spaced locations by first and second bearings 124, 126 that support the drive shaft for relative rotation with respect to the housing 102. In addition, seals 128 are typically provided and extend between the outer surface of the drive shaft and an inner wall of the passage in the housing that receives the drive shaft 122. In addition, a first impeller seal 140 is provided adjacent the inlet 104 and seals between the inner, front surface of the inner impeller stage 112 and the inlet 104 while a second or rear seal 142 is disposed along a rear surface or rear face of the inner impeller stage 112 and the housing 102. Thus, as the first impeller stage 112 is rotated by the drive shaft 122, fluid from the inlet 104 proceeds through passages 116 to the outlets 118.
  • Also received within the pump chamber 106 is the second or outer impeller stage 114. Preferably, the outer impeller stage 114 is concentrically located relative to the inner impeller stage 112. That is, a radially extending passage 144 receives fluid from the outlet 118 of the inner impeller stage, and imparts additional energy from the outer impeller stage 114 before the fluid exits and communicates with a stationary diffuser 150 that leads to discharge passage 152. The outer impeller stage 114 includes a recess 154 dimensioned to closely receive the outer radial dimension of the inner impeller stage 112. An axially extending portion of the outer impeller stage has a first portion 156 that is received in the pump chamber in radially spaced location relative to the inlet end of the inner impeller stage. The first axial portion 156 is supported by an outer stage bearing 158 that supports the outer impeller stage for relative rotation with respect to the housing 102. In addition, seal 160 is interposed between the first axial portion 156 and an inner surface that defines the pump chamber in the housing. Similarly, a second axial portion 162 extends rearwardly and is supported by a second outer stage bearing 164 and receives a seal 166 between the second axial portion and the pump housing 102.
  • A second portion of the drive assembly 120 is provided by an outer stage drive motor 180 which is in this particular instance is an electric drive motor. This drive motor 180 provides for positive independent driving movement of the outer impeller stage 114 relative to the inner impeller stage 112. There are situations where it is desirable to use the drive motor 180 to positively drive the outer impeller stage 114 at a different speed than the inner impeller stage. Of course, one skilled in the art will also appreciate that the inner and outer impeller stages 112, 114 could be driven at the same speed if so desired. By using an independent outer stage drive motor 180, the outer stage can be positively driven or rotated at a fast speed at start-up in order to build a desired pressure. Once the desired pressure is reached, then one of two actions can be taken. First, the outer stage drive motor 180 can be turned off so that the outer impeller stage rotates freely and the drive energy imposed on the outer stage is provided by a fluid coupling fluidic forces provided by the driven inner impeller stage 112. Under such an arrangement, the inner impeller stage 112 may be rotating at a first speed N1 while the outer stage may be rotating at a reduced, second rotational speed N2. Typically, N2 is approximately one-half the rotational speed of N1. Thus, the electric motor drive 180 is capable of being switched on for starting and then turned off for normal operation of the outer impeller stage 114. During low inner impeller stage drive speed operation, such as engine starting, the electric drive motor 180 that drives the outer impeller stage 114 builds the required system pressure and flow. Once sufficient engine speed is attained to permit the impeller stage to produce the required system pressure, the electric drive motor 180 may be switched off. Thereafter, the outer stage 114 is allowed to act as a free rotating disk, and driven only by the fluidic coupling provided by fluid rotation caused by the inner impeller stage 112 and thereby improves the operating efficiency of the pump 100.
  • In other instances, it may be desired to control the rotational speed of the outer stage 114 by using both the fluid coupling and the outer stage drive motor 180. In such instances, the outer impeller stage 114 is rotated faster or slower than the inner impeller stage, however, optimized pump performance can be controlled through selective, independent drive of the outer impeller stage.
  • By locating the outer impeller stage 114 in concentric relation with the inner impeller stage 112, the fluid is first pressurized by the inner impeller stage, exits outlet 118, and is fed to inlet of the radial passage 144 of the outer impeller stage. Upon exiting the outer impeller stage, the energized fluid enters the stationary diffuser and ultimately reaches the discharge or outlet of the fluid pump.
  • The concentric arrangement provides for a compact package of a high speed centrifugal pump that includes a start stage. In addition, by independently driving the inner and outer impeller stages, reduced impeller fluid friction drag due to a free rotating disk action during normal operation is achieved. Likewise, there is an increased ability to receive flow at the stationary radial diffuser and shape the diffuser pressure recovery characteristics due to lower outer stage rotational speed. As a result, pump performance can be optimized relative to the ratio of impeller drive speeds (i.e., N1 vs. N2). Further, pump performance can be optimized via the ratio of pressure rise from each impeller stage. All of this is achieved in a pump package volume that is minimized and a multistage pump that has a reduced weight while still incorporating a start stage.
  • The disclosure has been described with reference to the preferred embodiments. Modifications and alterations will occur to others upon reading and understanding this specification. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.

Claims (11)

  1. A centrifugal pump assembly comprising:
    a first pump stage;
    a second pump stage independently rotatable relative to and disposed in concentric relation with the first pump stage; and
    a drive assembly operatively associated with the first and second pump stages that rotates the first and second pump stages to a first rotational speed and then (a) turns off drives the first pump stage of the first rotational speed or (b) independently drives the first and second pump stages above the first rotational speed.
  2. The centrifugal pump assembly of claim 1 wherein the second pump stage rotates freely independent of the first rotational speed.
  3. The centrifugal pump assembly of claim 1 wherein the first pump stage is an inner impeller stage and the second pump stage is an outer impeller stage.
  4. The centrifugal pump assembly of claim 1 wherein the drive assembly includes a main drive shaft connected to and selectively rotating the first pump stage.
  5. The centrifugal pump assembly of claim 1 wherein the drive assembly includes a separate drive for rotating the second pump stage.
  6. The centrifugal pump assembly of claim 5 wherein the separate drive is an electric motor drive.
  7. The centrifugal pump assembly of claim 6 wherein the electric motor drive rotates the second pump stage at a different speed than the main drive shaft rotates the first pump stage.
  8. A method of operating a centrifugal pump assembly comprising:
    providing a first pump stage;
    providing a second pump stage concentrically mounted around the first pump stage;
    independently driving the first and second pump stages; and
    switching off the drive for the second pump stage above a preselected rotational speed.
  9. The method of claim 8 further comprising allowing the second pump stage to rotate freely relative to the first pump stage above the preselected rotational speed.
  10. The method of claim 8 further comprising driving the first and second pump stages at different speeds.
  11. The method of claim 8 wherein the driving step includes using an electric motor drive for rotating the second pump stage.
EP11194070A 2010-12-16 2011-12-16 Concentric multi-stage centrifugal pump with start stage Withdrawn EP2466142A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/970,161 US20120156066A1 (en) 2010-12-16 2010-12-16 Concentric multi-stage centrifugal pump with start stage

Publications (1)

Publication Number Publication Date
EP2466142A2 true EP2466142A2 (en) 2012-06-20

Family

ID=45370446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11194070A Withdrawn EP2466142A2 (en) 2010-12-16 2011-12-16 Concentric multi-stage centrifugal pump with start stage

Country Status (3)

Country Link
US (1) US20120156066A1 (en)
EP (1) EP2466142A2 (en)
CA (1) CA2762453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160305447A1 (en) * 2013-12-03 2016-10-20 Flowserve Management Company Rotating diffuser pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599368B2 (en) * 2011-06-08 2014-10-01 三菱電機株式会社 Motor rotor structure of electric turbocharger and its assembly method
EP3371459B1 (en) * 2015-11-03 2020-04-22 Eaton Intelligent Power Limited Regenerative pump start stage for high speed centrifugal fuel pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208389A (en) * 1962-12-06 1965-09-28 Ford Motor Co Two stage pump
US4449888A (en) * 1982-04-23 1984-05-22 Balje Otto E Free spool inducer pump
DE4244586C2 (en) * 1992-12-28 1996-09-05 Mannesmann Ag Ship propulsion with two counter-rotating screws
TWI299072B (en) * 2005-06-02 2008-07-21 Delta Electronics Inc Centrifugal fan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160305447A1 (en) * 2013-12-03 2016-10-20 Flowserve Management Company Rotating diffuser pump
EP3077681A4 (en) * 2013-12-03 2017-08-16 Flowserve Management Company Rotating diffuser pump
EP3822490A1 (en) * 2013-12-03 2021-05-19 Flowserve Management Company Rotating diffuser pump
US11396887B2 (en) 2013-12-03 2022-07-26 Flowserve Management Company Rotating diffuser pump

Also Published As

Publication number Publication date
US20120156066A1 (en) 2012-06-21
CA2762453A1 (en) 2012-06-16

Similar Documents

Publication Publication Date Title
US10240613B2 (en) Supersonic compressor with structural arrangement to increase pressure energy in a discharge process fluid received from a centrifugal impeller
KR101521097B1 (en) Method and apparatus for lubricating a thrust bearing for a rotating machine using pumpage
CN104067071A (en) Variable-speed multi-stage refrigerant centrifugal compressor with diffusers
US7264443B2 (en) Centrifugal water pump
EP2466142A2 (en) Concentric multi-stage centrifugal pump with start stage
EP3118460A1 (en) Turbo machine
EP3329127B1 (en) Motorcompressor, and method to improve the efficency of a motorcompressor
RU2342564C1 (en) Mixed-flow screw-type pump with automatic unit for rotor relief from axial force
US9512887B2 (en) Hybrid drive
US9709060B2 (en) Side-channel pump and method for operating same
US9206814B2 (en) Energy saving pump with multiple impellers
US11808265B2 (en) Energy-conserving fluid pump
CN2844531Y (en) Axial-forced balancing disk unit for balanced sectional multi-stage pump
CN101893005B (en) Method for adjusting axial force by using thrust adjusting plate
CN109404291A (en) High-performance low-flow high-lift single-stage cantilever centrifugal pump
JP2006152994A (en) Centrifugal compressor
US20240026903A1 (en) Energy-conserving fluid pump
JPH1182364A (en) Multistage centrifugal pump
RU2466299C2 (en) Centrifugal screw pump
RU2418989C1 (en) Turbo-pump unit
RU2418986C1 (en) Turbo-pump unit
WO2025071950A1 (en) Energy-conserving fluid pump
RU2366837C1 (en) Two-outlet centrifugal auger pump
RU2414627C1 (en) Turbine-driven pump assembly
RU2423621C1 (en) Turbine pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140701