EP2449142B1 - Aluminium-copper-lithium alloy with improved mechanical resistance and toughness - Google Patents
Aluminium-copper-lithium alloy with improved mechanical resistance and toughness Download PDFInfo
- Publication number
- EP2449142B1 EP2449142B1 EP10734173.7A EP10734173A EP2449142B1 EP 2449142 B1 EP2449142 B1 EP 2449142B1 EP 10734173 A EP10734173 A EP 10734173A EP 2449142 B1 EP2449142 B1 EP 2449142B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mpa
- weight
- yield strength
- tensile yield
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Definitions
- the invention relates to aluminum-copper-lithium alloy products, more particularly, such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
- Products, especially thick rolled products, forged or spun aluminum alloy are developed to produce by cutting, surfacing or mass machining of high strength parts intended especially for the aviation industry, the aerospace industry or mechanical construction.
- Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
- their performance compared to other properties of use must reach that of commonly used alloys, in particular in terms of a compromise between the static mechanical strength properties (yield strength, resistance to rupture) and the properties of damage tolerance (toughness, resistance to the propagation of fatigue cracks), these properties being in general antinomic.
- a product is said to be quench sensitive if its static mechanical characteristics, such as its yield strength, decrease as quenching speed decreases.
- the quenching rate is the average cooling rate of the product during quenching.
- These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual methods and have low residual stresses so that they can be machined integrally.
- the US Patent 5,032,359 discloses a large family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, in particular between 0.3 and 0.5 percent by weight, makes it possible to increase the mechanical strength.
- the US Patent 5,234,662 describes alloys of composition (in% by weight), Cu: 2.60 - 3.30, Mn: 0.0 - 0.50, Li: 1.30 - 1.65, Mg: 0.0 - 1, 8, elements controlling the granular structure selected from Zr and Cr: 0.0 - 1.5.
- the US Patent 5,455,003 discloses a process for producing Al-Cu-Li alloys which have improved mechanical strength and toughness at cryogenic temperature, particularly through proper work-hardening and tempering.
- the problem of aging products for civil aviation applications is not mentioned because the products concerned are essentially cryogenic tanks for rocket launchers or space shuttle.
- the US Patent 7,438,772 discloses alloys comprising, in weight percent, Cu: 3-5, Mg: 0.5-2, Li: 0.01-0.9 and discourage the use of higher lithium content due to degradation compromise between toughness and mechanical strength.
- the US Patent 7,229,509 discloses an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain-refining agents such as Cr, Ti, Hf, Sc, V, especially having a toughness K 1C (L)> 37.4 MPa ⁇ m for an elastic limit R p0.2 (L)> 448.2 MPa (products with a thickness greater than 76.2 mm) and in particular a tenacity K 1C (L)> 38.5 MPa ⁇ m for an elastic limit R p0, 2 (L)> 489.5 MPa (products less than 76.2 mm thick).
- AA2050 alloy is also known which comprises (% by weight): (3.2-3.9) Cu, (0.7-1.3) Li, (0.20-0.6) Mg, (0 , 20-0.7) Ag, 0.25max. Zn, (0.20-0.50) Mn, (0.06-0.14) Zr and AA2095 (3.7-4.3) Cu, (0.7-1.5) Li, (0.25-0.8) Mg, (0.25-0.6) Ag, 0.25max. Zn, 0.25 max. Mn, (0.04-0.18) Zr.
- AA2050 alloy products are known for their quality in terms of static strength and toughness.
- Yet another object of the invention is a structural element comprising a product according to the invention.
- Yet another object of the invention is the use of a structural element according to the invention for aeronautical construction.
- alloys are in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than by a method of measuring weight. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515.
- the static mechanical characteristics in other words the ultimate tensile strength R m , the conventional yield stress at 0.2% elongation R p 0.2 ("yield strength") and the elongation at break A%, are determined by a tensile test according to EN 10002-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
- the stress intensity factor (K Q ) is determined according to ASTM E 399.
- ASTM E 399 gives the criteria for determining if K Q is a valid value of K 1C .
- the K Q values obtained for different materials are comparable to each other as long as the elasticity limits of the materials are of the same order of magnitude.
- the definitions of EN 12258 apply.
- the thickness of the profiles is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
- the MASTMAASIS Modified ASTM Acetic Acid Salt Intermittent Spray test is performed according to ASTM G85.
- a "structural element” or “structural element” of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or realized.
- These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others.
- these structural elements include the elements that make up the fuselage (such as fuselage skin, fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stringers or stiffeners), ribs (ribs) and spars) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the floor beams, the seat tracks and the doors.
- fuselage such as fuselage skin, fuselage skin in English
- stiffeners or stringers such as wing skin
- wings such as wing skin
- stiffeners stringers or stiffeners
- ribs ribs
- spars spars
- the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the floor beams, the seat tracks and the doors.
- a selected class of aluminum alloys which contain specific and critical amounts of lithium, copper and magnesium and zirconium makes it possible to prepare wrought products having an improved compromise between toughness and mechanical strength, and good resistance to corrosion.
- these products when they undergo an income chosen so as to achieve a yield strength R p0 , 2 close to the yield strength R p0 , 2 at the peak, exhibit excellent thermal stability.
- the present inventors have found that, surprisingly, it is possible to improve the compromise between the static mechanical strength properties and the damage tolerance properties, in particular of thick products made of aluminum-copper-lithium alloys, such as in particular the alloy. AA2050, by increasing the magnesium content.
- the choice of copper, magnesium and lithium contents makes it possible to reach a compromise of favorable properties and to obtain a satisfactory thermal stability of the product.
- the copper content of the products according to the invention is between 3.2 and 3.7% by weight. When the copper content is too high, the toughness is not sufficient especially for income close to the peak and, moreover, the density of the alloy is not advantageous. When the copper content is too low, the minimum static mechanical characteristics are not reached.
- the lithium content of the products according to the invention is between 0.8 and 1.3% by weight.
- the lithium content is between 0.9% and 1.2% by weight.
- the lithium content is at least 0.93% by weight or even at least 0.94% by weight.
- the magnesium content of the products according to the invention is between 0.6 and 1.0% by weight and preferably between 0.65 or 0.67 and 1.0% by weight.
- the magnesium content is at most 0.9% by weight and preferably at most 0.8% by weight.
- the magnesium content is at least 0.7% by weight.
- the zirconium content is between 0.05 and 0.18% by weight and preferably between 0.08 and 0.14% by weight so as to obtain preferably a fibered or slightly recrystallized grain structure.
- the manganese content is between 0.0 and 0.5% by weight. In particular for the manufacture of thick plates, a manganese content of between 0.2 and 0.4% by weight makes it possible to improve the toughness without compromising the mechanical strength.
- the silver content is between 0.0 and 0.5% by weight.
- the silver content is between 0.15 and 0.35% by weight.
- the silver content is at most 0.25% by weight.
- the sum of the iron content and the silicon content is at most 0.20% by weight.
- the iron and silicon contents are each at most 0.08% by weight.
- the iron and silicon contents are at most 0.06% and 0.04% by weight, respectively.
- a controlled and limited iron and silicon content contributes to the improvement of the compromise between mechanical resistance and damage tolerance.
- the alloy also contains at least one element that can contribute to controlling the grain size selected from Cr, Sc, Hf and Ti, the amount of the element, if selected, being from 0.05 to 0.3 % by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and from 0.01 to 0.15% by weight for Ti.
- Preferably, between 0.02 and 0.10% by weight of titanium is chosen.
- Zinc is an undesirable impurity.
- the zinc content is Zn ⁇ 0.15% by weight and preferably Zn ⁇ 0.05% by weight.
- the zinc content is advantageously less than 0.04% by weight.
- thinner products are preferred, the thickness of which is between 10 and 30 mm, typically about 20 mm, because the compromise obtained under these conditions between strength and toughness is particularly advantageous.
- the products according to the invention also have advantageous properties in terms of fatigue behavior both from the point of view of the crack initiation (S / N) and the propagation speed (da / dN).
- the corrosion resistance of the products of the invention is generally high; thus, the MASTMAASIS test result (ASTMG85 & G34 standards) is at least EA and preferably P for the products according to the invention.
- the method of manufacturing the products according to the invention comprises stages of preparation, casting, wrought, solution, quenching and tempering.
- a bath of liquid metal is produced so as to obtain an aluminum alloy of composition according to the invention.
- the liquid metal bath is then cast in a raw form, such as a billet, a rolling plate or a forging blank.
- the crude form is then homogenized at a temperature between 450 ° C and 550 ° and preferably between 480 ° C and 530 ° C for a period between 5 and 60 hours.
- the raw form is generally cooled to room temperature before being preheated for hot deformation.
- Preheating aims to reach a temperature preferably between 400 and 500 ° C and preferably of the order of 450 ° C allowing the deformation of the raw form.
- Hot deformation and optionally cold deformation is typically performed by spinning, rolling and / or forging to obtain a spun, rolled and / or forged product preferably having a thickness of at least 30 mm.
- the product thus obtained is then put in solution by heat treatment between 490 and 530 ° C for 15 min to 8 h, then quenched typically with water at room temperature or preferably cold water.
- the product then undergoes controlled traction with a permanent deformation of 1 to 6% and preferably of at least 2%.
- the rolled products preferably undergo controlled pulling with a permanent deformation greater than 3%.
- the controlled traction is carried out with a permanent deformation of between 3 and 5%.
- a preferred metallurgical state is the T84 state.
- Known steps such as rolling, planing, straightening shaping may optionally be performed after solution and quenching and before or after controlled pulling.
- An income is achieved comprising heating at a temperature between 130 and 170 ° C and preferably between 150 and 160 ° C for 5 to 100 hours and preferably from 10 to 40h so as to achieve a yield strength R p0, 2 close to the elastic limit R p0,2 at the peak.
- R p0, 2 close to the elastic limit
- the yield strength increases with the duration of tempering at a given temperature up to a maximum value called the peak of hardening or "peak” then decreases with the duration of income.
- the yield curve is defined as the evolution of the elastic limit as a function of the equivalent duration of income at 155 ° C.
- An example of an income curve is presented in FIG. 1.
- a point N of the income curve, of duration equivalent to 155 ° C t N and yield strength R p0 , 2 (N) is close to the peak by determining the slope P N of the tangent to the income curve at point N. It is considered in the context of the present invention that the elastic limit of a point N of the curve of income is close to the yield strength at the peak if the absolute value of the slope P N is at most 3 MPa / h. As illustrated by FIG. 1, an under-income state is a state for which P N is positive and an over-income state is a state for which P N is negative.
- the present inventors have found that a satisfactory approximation of P N is generally obtained when the difference t N - t N-1 is between 2 and 15 hours and preferably is of the order of 3 hours.
- the elastic limit close to the yield strength at the peak is typically at least 90%, generally even at least 95% and frequently at least 97% of the elastic limit R p0,2 at the peak.
- the yield strength at the peak is generally satisfactorily evaluated by varying the residence time between 10 and 70h for a temperature of 155 ° C after a pull of 3.5%.
- the clearly underdeveloped states correspond to compromises between the static mechanical resistance (R p0.2 , R m ) and the damage tolerance (toughness, resistance to propagation cracks in fatigue) more interesting than peak and a fortiori that beyond the peak.
- the present inventors have found that a state under income but close to the peak makes it possible both to obtain a compromise between static mechanical resistance and damage tolerance of interest, but also to improve the performance in terms of corrosion resistance and thermal stability.
- the use of an under-income state close to the peak makes it possible to improve the robustness of the industrial process: a variation in the income conditions leads to a small variation in the properties obtained.
- the products according to the invention can advantageously be used in structural elements, in particular aircraft.
- the use of a structural element incorporating at least one product according to the invention or manufactured from such a product is advantageous, in particular for aeronautical construction.
- the products according to the invention are particularly advantageous for the production of products machined in the mass, such as in particular intrados or extrados elements whose skin and stiffeners come from the same starting material, spars and ribs, as well as any other use where the present properties could be advantageous
- the plates were homogenized at about 500 ° C for about 12 hours and then cut and scalped to obtain slugs of size 400 x 335 x 90 mm.
- the slabs were hot rolled to obtain sheets having a thickness of 20 mm.
- the sheets were dissolved at 505 ⁇ 2 ° C for 1 h, quenched with water at 75 ° C to obtain a cooling rate of about 18 ° C / sec and thus simulate properties obtained at mid-thickness of sheet of thickness 80 mm.
- the sheets were then trimmed with a permanent elongation of 3.5%.
- the sheets were tempered between 10 and 50 hours at 155 ° C. Samples were taken at mid-thickness to measure static mechanical tensile properties as well as toughness K Q.
- the K Q values obtained from this type of specimen are lower than those obtained from specimens having a greater thickness and width.
- the products according to the invention have a significantly improved property compromise compared to the reference products.
- the plates were homogenized and then scalped. After homogenization, the plates were hot-rolled to obtain sheets having a thickness of 50 mm. The sheets were dissolved in cold water and triturated with a permanent elongation of between 3.5% and 4.5%
- points 8, 9 and 10 have been added to FIG. 2 (slope P N between 0 and 3), although they relate to specimens of different geometry for the measurement of K Q (K 1C ) in order to facilitate the comparison between the invention and the prior art. It is thus confirmed that the products according to the invention have a compromise of significantly improved properties compared to the prior art.
- the plates were homogenized at about 500 ° C for about 12 hours and then cut and scalped to obtain slugs of size 400 x 335 x 90 mm.
- the slabs were hot rolled to obtain sheets having a thickness of 20 mm.
- the sheets were dissolved at 505 +/- 2 ° C for 1h and quenched with cold water. The sheets were then trimmed with a permanent elongation of 3.5%.
- the products according to the invention have a significantly improved property compromise compared to the reference samples.
- Alloy plates 12 transformed by the method described in Example 3 up to the excluded revenue stage were tempered at 155 ° C or 143 ° C for increasing times indicated in Table 7. After 34h at 143 ° C and 40h at 155 ° C, the aging was 1000 hours at 85 ° C. Samples were taken at mid-thickness to measure static mechanical tensile characteristics before and after aging.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Conductive Materials (AREA)
Description
L'invention concerne les produits en alliages aluminium-cuivre-lithium, plus particulièrement, de tels produits, leurs procédés de fabrication et d'utilisation, destinés en particulier à la construction aéronautique et aérospatiale.The invention relates to aluminum-copper-lithium alloy products, more particularly, such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
Des produits, notamment des produits épais laminés, forgés ou filés en alliage d'aluminium sont développés pour produire par découpage, surfaçage ou usinage dans la masse des pièces de haute résistance destinées notamment à l'industrie aéronautique, à l'industrie aérospatiale ou à la construction mécanique.
Les alliages d'aluminium contenant du lithium sont très intéressants à cet égard, car le lithium peut réduire la densité de l'aluminium de 3 % et augmenter le module d'élasticité de 6 % pour chaque pourcent en poids de lithium ajouté. Pour que ces alliages soient sélectionnés dans les avions, leur performance par rapport aux autres propriétés d'usage doit atteindre celle des alliages couramment utilisés, en particulier en terme de compromis entre les propriétés de résistance mécanique statique (limite d'élasticité, résistance à la rupture) et les propriétés de tolérance aux dommages (ténacité, résistance à la propagation des fissures en fatigue), ces propriétés étant en général antinomiques. Pour les produits épais, ces propriétés doivent en particulier être obtenues à quart et à mi-épaisseur et les produits doivent donc avoir une faible sensibilité à la trempe. On dit qu'un produit est sensible à la trempe si ses caractéristiques mécaniques statiques, telles que sa limite élastique, décroissent lorsque la vitesse de trempe décroit. La vitesse de trempe est la vitesse de refroidissement moyenne du produit au cours de la trempe.
Ces propriétés mécaniques doivent de plus être de préférence stables dans le temps et ne pas être significativement modifiées par un vieillissement à température d'utilisation. Ainsi, l'utilisation prolongée des produits dans le cadre des applications d'aviation civile nécessite une bonne stabilité des propriétés mécaniques, celle-ci étant par exemple simulée par un vieillissement de 1000 heures à 85 °C.Products, especially thick rolled products, forged or spun aluminum alloy are developed to produce by cutting, surfacing or mass machining of high strength parts intended especially for the aviation industry, the aerospace industry or mechanical construction.
Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added. For these alloys to be selected in the aircraft, their performance compared to other properties of use must reach that of commonly used alloys, in particular in terms of a compromise between the static mechanical strength properties (yield strength, resistance to rupture) and the properties of damage tolerance (toughness, resistance to the propagation of fatigue cracks), these properties being in general antinomic. For thick products, these properties must in particular be obtained at quarter and at mid-thickness and the products must therefore have a low sensitivity to quenching. A product is said to be quench sensitive if its static mechanical characteristics, such as its yield strength, decrease as quenching speed decreases. The quenching rate is the average cooling rate of the product during quenching.
These mechanical properties must also preferably be stable over time and not be significantly modified by aging at the temperature of use. So, the prolonged use of the products in the context of civil aviation applications requires a good stability of the mechanical properties, this being for example simulated by an aging of 1000 hours at 85 ° C.
Ces alliages doivent également présenter une résistance à la corrosion suffisante, pouvoir être mis en forme selon les procédés habituels et présenter de faibles contraintes résiduelles de façon à pouvoir être usinés de façon intégrale.These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual methods and have low residual stresses so that they can be machined integrally.
Le
Le
Le
Le
Le
La demande de
On connait également l'alliage AA2050 qui comprend (% en poids) : (3,2-3,9) Cu, (0,7-1,3) Li, (0,20-0,6) Mg, (0,20-0,7) Ag, 0,25max. Zn, (0,20-0,50) Mn, (0,06-0,14) Zr et l'alliage AA2095 (3,7-4,3)Cu, (0,7-1,5) Li, (0,25-0,8) Mg, (0,25-0,6) Ag, 0,25max. Zn, 0,25 max. Mn, (0,04-0,18) Zr. Les produits en alliage AA2050 sont connus pour leur qualité en termes de résistance mécanique statique et de ténacité.AA2050 alloy is also known which comprises (% by weight): (3.2-3.9) Cu, (0.7-1.3) Li, (0.20-0.6) Mg, (0 , 20-0.7) Ag, 0.25max. Zn, (0.20-0.50) Mn, (0.06-0.14) Zr and AA2095 (3.7-4.3) Cu, (0.7-1.5) Li, (0.25-0.8) Mg, (0.25-0.6) Ag, 0.25max. Zn, 0.25 max. Mn, (0.04-0.18) Zr. AA2050 alloy products are known for their quality in terms of static strength and toughness.
Il existe un besoin pour des produits, notamment des produits épais, en alliage aluminium-cuivre-lithium présentant des propriétés améliorées par rapport à celles des produits connus, en particulier en termes de compromis entre les propriétés de résistance mécanique statique et les propriétés de tolérance aux dommages, de stabilité thermique, de résistance à la corrosion et d'aptitude à l'usinage, tout en ayant une faible densité.There is a need for products, in particular thick products, of aluminum-copper-lithium alloy having improved properties compared to those of the known products, in particular in terms of a compromise between the static mechanical strength properties and the tolerance properties. damage, thermal stability, corrosion resistance and machinability, while having a low density.
Un premier objet de l'invention est un produit corroyé tel qu'un produit filé , laminé et/ou forgé, en alliage à base d'aluminium comprenant, en % en poids,
- Cu : 3,2 -3,7 ;
- Li : 0,8 - 1,3 ;
- Mg : 0,6 - 1,0 ;
- Zr: 0,05 - 0,18 ;
- Ag : 0,0 - 0,5 ;
- Mn : 0,0 - 0,5 ;
- Fe + Si ≤ 0,20 ;
- Zn ≤ 0,15 ;
- Ti : 0,01 - 0,15 ;
- Sc : 0,05 - 0,3 ;
- Cr : 0,05 - 0,3 ;
- Hf : 0,05 - 0,5 ;
- Cu: 3.2-3.7;
- Li: 0.8 - 1.3;
- Mg 0.6 - 1.0;
- Zr: 0.05-0.18;
- Ag: 0.0 - 0.5;
- Mn: 0.0 - 0.5;
- Fe + Si ≤ 0.20;
- Zn ≤ 0.15;
- Ti: 0.01-0.15;
- Sc: 0.05 - 0.3;
- Cr: 0.05 - 0.3;
- Hf: 0.05 - 0.5;
Un deuxième objet de l'invention est un procédé de fabrication d'un produit filé, laminé et/ou forgé à base d'alliage d'aluminium dans lequel
- a) on élabore un bain de métal liquide à base d'aluminium comprenant 3,2 à 3,7 % en poids de Cu, 0,8 à 1,3 % en poids de Li, 0,6 à 1,0 % en poids de Mg, 0,05 à 0,18 % en poids de Zr, 0,0 à 0,5 % en poids d'Ag, 0,0 à 0,5% en poids de Mn, au plus 0,20 % en poids de Fe + Si, au plus 0,15 % en poids de Zn, au moins un élément choisi parmi Cr, Sc, Hf et Ti, la quantité dudit élément, s'il est choisi, étant de 0,05 à 0,3 % en poids pour Cr et pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti, les autres éléments au plus 0,05% en poids chacun et 0,15% en poids au total, le reste aluminium ;
- b) on coule une forme brute à partir dudit bain de métal liquide ;
- c) on homogénéise ladite forme brute à une température comprise entre 450°C et 550° et de préférence entre 480 °C et 530°C pendant une durée comprise entre 5 et 60 heures ;
- d) on déforme à chaud et optionnellement à froid ladite forme brute en un produit filé, laminé et/ou forgé ;
- e) on met en solution entre 490 et 530 °C pendant 15 min à 8 h et on trempe ledit produit ;
- f) on tractionne de façon contrôlée ledit produit avec une déformation permanente de 1 à 6 % et préférentiellement d'au moins 2% ;
- g) on réalise un revenu dudit produit comprenant un chauffage à une température comprise entre 130 et 170 °C pendant 5 à 100 heures et de préférence de 10 à 40h de façon à atteindre une limite d'élasticité proche du pic.
- a) an aluminum-based liquid metal bath comprising 3.2 to 3.7 wt.% Cu, 0.8 to 1.3 wt.% Li, 0.6 to 1.0 wt. weight of Mg, 0.05 to 0.18% by weight of Zr, 0.0 to 0.5% by weight of Ag, 0.0 to 0.5% by weight of Mn, at most 0.20% by weight of Fe + Si, at most 0.15% by weight of Zn, at least one element selected from Cr, Sc, Hf and Ti, the amount of said element, if chosen, being from 0.05 to 0 , 3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the other elements at most 0.05% by weight each and 0.15% by weight in total, the balance aluminum;
- b) pouring a raw form from said bath of liquid metal;
- c) homogenizing said crude form at a temperature between 450 ° C and 550 ° and preferably between 480 ° C and 530 ° C for a period of between 5 and 60 hours;
- d) hot deformed and optionally cold deformed said raw form into a product spun, rolled and / or forged;
- e) is dissolved between 490 and 530 ° C for 15 min to 8 h and said product quenched;
- f) the product is tensed in a controlled manner with a permanent deformation of 1 to 6% and preferably of at least 2%;
- g) producing an income of said product comprising heating at a temperature between 130 and 170 ° C for 5 to 100 hours and preferably 10 to 40h so as to reach a limit of elasticity close to the peak.
Encore un autre objet de l'invention est un élément de structure comprenant un produit selon l'invention.Yet another object of the invention is a structural element comprising a product according to the invention.
Encore un autre objet de l'invention est l'utilisation d'un élément de structure selon l'invention pour la construction aéronautique.Yet another object of the invention is the use of a structural element according to the invention for aeronautical construction.
- Figure 1 : Exemple de courbe de revenu et de détermination de la pente de la tangente PN.Figure 1: Example of income curve and determination of the slope of the tangent P N.
- Figure 2 : Résultats de limite d'élasticité et de ténacité obtenus pour les échantillons de l'exemple 1.FIG. 2: Results of yield strength and toughness obtained for the samples of Example 1.
- Figure 3 : Résultats de limite d'élasticité et de ténacité obtenus pour les échantillons des exemples 1 et 2, la limite d'élasticité étant proche du pic.3: Results of yield strength and toughness obtained for the samples of Examples 1 and 2, the elastic limit being close to the peak.
- Figure 4 : Résultats de limite d'élasticité et de ténacité obtenus pour les échantillons de l'exemple 3, la limite d'élasticité étant proche du pic.FIG. 4: Results of yield strength and toughness obtained for the samples of Example 3, the yield strength being close to the peak.
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2-13 de « Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.
Sauf mention contraire, les caractéristiques mécaniques statiques, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 (« limite d'élasticité ») et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme EN 10002-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1.
Le facteur d'intensité de contrainte (KQ) est déterminé selon la norme ASTM E 399. La norme ASTM E 399 donne les critères qui permettent de déterminer si KQ est une valeur valide de K1C. Pour une géométrie d'éprouvette donnée, les valeurs de KQ obtenues pour différents matériaux sont comparables entre elles pour autant que les limites d'élasticité des matériaux soient du même ordre de grandeur.
Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent. L'épaisseur des profilés est définie selon la norme EN 2066 :2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire. La semelle est le rectangle élémentaire présentant la plus grande dimension A.Unless stated otherwise, all the information concerning the chemical composition of the alloys is expressed as a percentage by weight based on the total weight of the alloy. The expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of alloys is in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than by a method of measuring weight. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515.
Unless otherwise stated, the static mechanical characteristics, in other words the ultimate tensile strength R m , the conventional yield stress at 0.2% elongation R p 0.2 ("yield strength") and the elongation at break A%, are determined by a tensile test according to EN 10002-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
The stress intensity factor (K Q ) is determined according to ASTM E 399. ASTM E 399 gives the criteria for determining if K Q is a valid value of K 1C . For a given specimen geometry, the K Q values obtained for different materials are comparable to each other as long as the elasticity limits of the materials are of the same order of magnitude.
Unless otherwise specified, the definitions of EN 12258 apply. The thickness of the profiles is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
Le test MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittent Spray) est effectué selon la norme ASTM G85.The MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittent Spray) test is performed according to ASTM G85.
On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique pour laquelle les propriétés mécaniques statiques et/ou dynamiques sont particulièrement importantes pour la performance de la structure, et pour laquelle un calcul de structure est habituellement prescrit ou réalisé. Il s'agit typiquement d'éléments dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage, fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.Here, a "structural element" or "structural element" of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or realized. These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others. For an aircraft, these structural elements include the elements that make up the fuselage (such as fuselage skin, fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stringers or stiffeners), ribs (ribs) and spars) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the floor beams, the seat tracks and the doors.
Selon la présente invention, il a été découvert qu'une classe sélectionnée d'alliages d'aluminium qui contiennent des quantités spécifiques et critiques de lithium, de cuivre et de magnésium et de zirconium permet de préparer des produits corroyés présentant un compromis amélioré entre ténacité et résistance mécanique, et une bonne résistance à la corrosion. De plus ces produits, lorsqu'ils subissent un revenu choisi de façon à atteindre une limite d'élasticité Rp0,2 proche de la limite d'élasticité Rp0,2 au pic, présentent une excellente stabilité thermique.
Les présents inventeurs ont constaté que de manière surprenante, il est possible d'améliorer le compromis entre les propriétés de résistance mécanique statique et les propriétés de tolérance aux dommages notamment de produits épais en alliages aluminium-cuivre-lithium, tels que notamment l'alliage AA2050, en augmentant la teneur en magnésium. En particulier, pour les produits épais ayant subi un revenu proche du pic, le choix des teneurs en cuivre, magnésium et lithium permet d'atteindre un compromis de propriétés favorable et d'obtenir une stabilité thermique du produit satisfaisante.According to the present invention, it has been discovered that a selected class of aluminum alloys which contain specific and critical amounts of lithium, copper and magnesium and zirconium makes it possible to prepare wrought products having an improved compromise between toughness and mechanical strength, and good resistance to corrosion. In addition, these products, when they undergo an income chosen so as to achieve a yield strength R p0 , 2 close to the yield strength R p0 , 2 at the peak, exhibit excellent thermal stability.
The present inventors have found that, surprisingly, it is possible to improve the compromise between the static mechanical strength properties and the damage tolerance properties, in particular of thick products made of aluminum-copper-lithium alloys, such as in particular the alloy. AA2050, by increasing the magnesium content. In particular, for thick products having a near-peak income, the choice of copper, magnesium and lithium contents makes it possible to reach a compromise of favorable properties and to obtain a satisfactory thermal stability of the product.
La teneur en cuivre des produits selon l'invention est comprise entre 3,2 et 3,7 % en poids. Lorsque la teneur en cuivre est trop élevée, la ténacité n'est pas suffisante notamment pour des revenus proches du pic et, par ailleurs, la densité de l'alliage n'est pas avantageuse. Lorsque la teneur en cuivre est trop faible, les caractéristiques mécaniques statiques minimales ne sont pas atteintes.
La teneur en lithium des produits selon l'invention est comprise entre 0,8 et 1,3 % en poids. Avantageusement, la teneur en lithium est comprise entre 0,9 % et 1,2 % en poids. De manière préférée, la teneur en lithium est au moins de 0,93 % en poids ou même au moins 0,94 % en poids. Lorsque la teneur en lithium est trop faible, la diminution de densité liée à l'ajout de lithium n'est pas suffisante.
La teneur en magnésium des produits selon l'invention est comprise entre 0,6 et 1,0 % en poids et de manière préférée entre 0,65 ou 0,67 et 1,0 % en poids. Dans un mode de réalisation avantageux de l'invention la teneur en magnésium est au plus de 0,9 % en poids et de manière préférée au plus de 0,8 % en poids. Pour certaines applications, il est avantageux que la teneur en magnésium soit au moins de 0,7 % en poids.
La teneur en zirconium est comprise entre 0,05 et 0,18 % en poids et de préférence entre 0,08 et 0,14% en poids de façon à obtenir de préférence une structure des grains fibrée ou faiblement recristallisée.
La teneur en manganèse est comprise entre 0,0 et 0,5 % en poids. En particulier pour la fabrication de tôles épaisses, une teneur en manganèse comprise entre 0,2 et 0,4 % en poids permet d'améliorer la ténacité sans compromettre la résistance mécanique.
La teneur en argent est comprise entre 0,0 et 0,5 % en poids. Les présents inventeurs ont constaté que, bien que la présence d'argent soit avantageuse, en présence d'une quantité de magnésium selon l'invention une quantité importante d'argent n'est pas nécessaire pour obtenir l'amélioration souhaitée dans le compromis entre la résistance mécanique et la tolérance aux dommages. La limitation de la quantité d'argent est économiquement très favorable. Dans une réalisation avantageuse de l'invention, la teneur en argent est comprise entre 0,15 et 0,35 % en poids. Dans un mode de réalisation de l'invention, qui présente l'avantage de minimiser la densité, la teneur en argent est au plus de 0,25 % en poids.
La somme de la teneur en fer et de la teneur en silicium est au plus de 0,20 % en poids. De préférence, les teneurs en fer et en silicium sont chacune au plus de 0,08 % en poids. Dans une réalisation avantageuse de l'invention les teneurs en fer et en silicium sont au plus de 0,06 % et 0,04 % en poids, respectivement. Une teneur en fer et en silicium contrôlée et limitée contribue à l'amélioration du compromis entre résistance mécanique et tolérance aux dommages.
L'alliage contient également au moins un élément pouvant contribuer au contrôle de la taille de grain choisi parmi Cr, Sc, Hf et Ti, la quantité de l'élément, s'il est choisi, étant de 0,05 à 0,3 % en poids pour Cr et pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti. De manière préférée on choisit entre 0,02 et 0,10 % en poids de titane. Le zinc est une impureté indésirable. La teneur en zinc est Zn ≤ 0,15 % en poids et de préférence Zn ≤ 0,05 % en poids. La teneur en zinc est avantageusement inférieure à 0,04 % en poids.The copper content of the products according to the invention is between 3.2 and 3.7% by weight. When the copper content is too high, the toughness is not sufficient especially for income close to the peak and, moreover, the density of the alloy is not advantageous. When the copper content is too low, the minimum static mechanical characteristics are not reached.
The lithium content of the products according to the invention is between 0.8 and 1.3% by weight. Advantageously, the lithium content is between 0.9% and 1.2% by weight. Preferably, the lithium content is at least 0.93% by weight or even at least 0.94% by weight. When the lithium content is too low, the density reduction associated with the addition of lithium is not sufficient.
The magnesium content of the products according to the invention is between 0.6 and 1.0% by weight and preferably between 0.65 or 0.67 and 1.0% by weight. In a mode of Advantageous embodiment of the invention the magnesium content is at most 0.9% by weight and preferably at most 0.8% by weight. For some applications, it is advantageous that the magnesium content is at least 0.7% by weight.
The zirconium content is between 0.05 and 0.18% by weight and preferably between 0.08 and 0.14% by weight so as to obtain preferably a fibered or slightly recrystallized grain structure.
The manganese content is between 0.0 and 0.5% by weight. In particular for the manufacture of thick plates, a manganese content of between 0.2 and 0.4% by weight makes it possible to improve the toughness without compromising the mechanical strength.
The silver content is between 0.0 and 0.5% by weight. The present inventors have found that, although the presence of silver is advantageous, in the presence of a quantity of magnesium according to the invention a significant amount of silver is not necessary to obtain the desired improvement in the compromise between mechanical resistance and damage tolerance. The limitation of the amount of money is economically very favorable. In an advantageous embodiment of the invention, the silver content is between 0.15 and 0.35% by weight. In one embodiment of the invention, which has the advantage of minimizing the density, the silver content is at most 0.25% by weight.
The sum of the iron content and the silicon content is at most 0.20% by weight. Preferably, the iron and silicon contents are each at most 0.08% by weight. In an advantageous embodiment of the invention, the iron and silicon contents are at most 0.06% and 0.04% by weight, respectively. A controlled and limited iron and silicon content contributes to the improvement of the compromise between mechanical resistance and damage tolerance.
The alloy also contains at least one element that can contribute to controlling the grain size selected from Cr, Sc, Hf and Ti, the amount of the element, if selected, being from 0.05 to 0.3 % by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and from 0.01 to 0.15% by weight for Ti. Preferably, between 0.02 and 0.10% by weight of titanium is chosen. Zinc is an undesirable impurity. The zinc content is Zn ≤ 0.15% by weight and preferably Zn ≤ 0.05% by weight. The zinc content is advantageously less than 0.04% by weight.
La densité des produits selon l'invention est inférieure à 2,72 g/cm3. De manière à réduire la densité des produits, on peut avantageusement sélectionner la composition pour obtenir une densité inférieure à 2,71 g/cm3 et de préférence inférieure à 2,70 g/cm3.
L'alliage selon l'invention est particulièrement destiné à la fabrication de produits épais, filés, laminés et/ou forgés. Par produits épais, on entend dans le cadre de la présente invention, des produits dont l'épaisseur est au moins de 30 mm et de préférence au moins de 50 mm. En effet l'alliage selon l'invention présente une faible sensibilité à la trempe ce qui est particulièrement avantageux pour les produits épais.
Les produits laminés selon l'invention ont de préférence une épaisseur comprise entre 30 et 200 mm et de manière préférée entre 50 et 170 mm.
Les produits épais selon l'invention présentent un compromis entre résistance mécanique et ténacité particulièrement avantageux.
Un produit selon l'invention, dans un état laminé, mis en solution, trempé et revenu de façon à atteindre une limite d'élasticité proche du pic, présentant à mi-épaisseur au moins un des couples de caractéristiques suivants pour des épaisseurs comprises entre 30 et 100 mm:
- (i) pour des épaisseurs de 30 à 60 mm, à mi-épaisseur, une limite d'élasticité Rp0,2(L) ≥ 525 MPa et de préférence Rp0,2(L) ≥ 545 MPa et une ténacité K1C (L-T) ≥ 38 MPa√m et de préférence K1C (L-T) ≥ 43 MPa√m,
- (ii) pour des épaisseurs de 60 à 100 mm, à mi-épaisseur, une limite d'élasticité Rp0,2(L) ≥ 515 MPa et de préférence Rp0,2(L) ≥ 535 MPa et une ténacité K1C (L-T) ≥ 35 MPa√m et de préférence K1C (L-T) ≥ 40 MPa√m,
- (iii) pour des épaisseurs de 100 à 130 mm, à mi-épaisseur, une limite d'élasticité Rp0,2(L) ≥ 505 MPa et de préférence Rp0,2(L) ≥ 525 MPa et une ténacité K1C (L-T) ≥ 32 MPa√m et de préférence K1C (L-T) ≥ 37 MPa√m,
- (iv) pour des épaisseurs de 30 à 100 mm, à mi-épaisseur, une limite d'élasticité Rp0,2(L) exprimée en MPa et une ténacité K1C (L-T) exprimée en MPa√m telles que K1C (L-T) ≥ - 0.217 Rp0,2(L) + 157 et de préférence K1C (L-T) ≥ - 0.217 Rp0,2(L) + 163 et supérieure à 35 MPa√m.
- (v) après vieillissement de 1000 heures à 85 °C, une limite d'élasticité Rp0,2(L) et un allongement à rupture A%(L) présentant une différence avec la limite d'élasticité Rp0,2(L) et l'allongement à rupture A%(L) avant vieillissement inférieure à 10% et de préférence inférieure à 5%..
The alloy according to the invention is particularly intended for the manufacture of thick products, spun, rolled and / or forged. By thick products is meant in the context of the present invention, products whose thickness is at least 30 mm and preferably at least 50 mm. Indeed the alloy according to the invention has a low sensitivity to quenching which is particularly advantageous for thick products.
The rolled products according to the invention preferably have a thickness of between 30 and 200 mm and preferably between 50 and 170 mm.
The thick products according to the invention have a compromise between mechanical strength and particularly advantageous toughness.
A product according to the invention, in a rolled state, dissolved, quenched and tempered so as to reach a limit of elasticity close to the peak, having at least one of the following pairs of characteristics at thicknesses between thicknesses between 30 and 100 mm:
- (i) for thicknesses of 30 to 60 mm, at mid-thickness, a yield strength R p0.2 (L) ≥ 525 MPa and preferably R p0.2 (L) ≥ 545 MPa and a toughness K 1C (LT) ≥ 38 MPa√m and preferably K 1C (LT) ≥ 43 MPa√m,
- (ii) for thicknesses of 60 to 100 mm, at mid-thickness, a yield strength R p0.2 (L) ≥ 515 MPa and preferably R p0.2 (L) ≥ 535 MPa and a toughness K 1C (LT) ≥ 35 MPa√m and preferably K 1C (LT) ≥ 40 MPa√m,
- (iii) for thicknesses of 100 to 130 mm, at mid-thickness, a yield strength R p0.2 (L) ≥ 505 MPa and preferably R p0.2 (L) ≥ 525 MPa and a toughness K 1C (LT) ≥ 32 MPa√m and preferably K 1C (LT) ≥ 37 MPa√m,
- (iv) for thicknesses of 30 to 100 mm, at mid-thickness, a yield strength R p0.2 (L) expressed in MPa and a toughness K 1C (LT) expressed in MPa√m such as K 1C ( LT) ≥ 0.217 R p0.2 (L) + 157 and preferably K 1C (LT) ≥ 0.217 R p0.2 (L) + 163 and greater than 35 MPa√m.
- (v) after aging for 1000 hours at 85 ° C, a yield strength R p0.2 (L) and an elongation at break A% (L) having a difference with the yield strength R p0.2 (L ) and the elongation at break A% (L) before aging less than 10% and preferably less than 5%.
Dans un autre mode de réalisation de l'invention, on préfère cependant des produits plus minces, dont l'épaisseur est comprise entre 10 et 30 mm, typiquement d'environ 20 mm, car le compromis obtenu dans ces conditions entre résistance mécanique et ténacité est particulièrement avantageux.In another embodiment of the invention, however, thinner products are preferred, the thickness of which is between 10 and 30 mm, typically about 20 mm, because the compromise obtained under these conditions between strength and toughness is particularly advantageous.
Un produit selon l'invention, dans un état laminé, mis en solution, trempé et revenu de façon à atteindre une limite d'élasticité proche du pic, présentant à mi-épaisseur au moins un des couples de caractéristiques suivants pour des épaisseurs comprises entre 10 et 30 mm:
- (i) une limite d'élasticité Rp0,2(L) ≥ 525 MPa et de préférence Rp0,2(L) ≥ 545 MPa et une ténacité K1C (L-T) ≥ 40 MPa√m et de préférence K1C (L-T) ≥ 45 MPa√m,
- (ii) une limite d'élasticité Rp0,2(L) exprimée en MPa et une ténacité KQ (L-T) exprimée en MPa√m telles que K1C (L-T) ≥ - 0,4 Rp0,2(L) + 265 et de préférence K1C (L-T) ≥ - 0,4 Rp0,2(L) + 270 et supérieure à 45 MPa √m,
- (iii) après vieillissement de 1000 heures à 85 °C, une limite d'élasticité Rp0,2(L) et un allongement à rupture A%(L) présentant une différence avec la limite d'élasticité Rp0,2(L) et l'allongement à rupture A%(L) avant vieillissement inférieure à 10% et de préférence inférieure à 5%.
- (i) a yield strength R p0.2 (L) ≥ 525 MPa and preferably R p0.2 (L) ≥ 545 MPa and a toughness K 1C (LT) ≥ 40 MPa√m and preferably K 1C ( LT) ≥ 45 MPa√m,
- (ii) a yield strength R p0.2 (L) expressed in MPa and a toughness K Q (LT) expressed in MPa√m such that K 1C (LT) ≥ -0.4 R p0.2 (L) + 265 and preferably K 1C (LT) ≥ -0.4 R p0.2 (L) + 270 and greater than 45 MPa √m,
- (iii) after aging for 1000 hours at 85 ° C, a yield strength R p0.2 (L) and an elongation at break A% (L) having a difference with the yield strength R p0.2 (L ) and the elongation at break A% (L) before aging less than 10% and preferably less than 5%.
Les produits selon l'invention présentent également des propriétés avantageuses en termes de comportement en fatigue tant du point de vue de l'initiation des fissures (S/N) que de la vitesse de propagation (da/dN).The products according to the invention also have advantageous properties in terms of fatigue behavior both from the point of view of the crack initiation (S / N) and the propagation speed (da / dN).
La résistance à la corrosion des produits de l'invention est généralement élevée ; ainsi, le résultat au test MASTMAASIS (normes ASTMG85 & G34) est au moins EA et de préférence P pour les produits selon l'invention.The corrosion resistance of the products of the invention is generally high; thus, the MASTMAASIS test result (ASTMG85 & G34 standards) is at least EA and preferably P for the products according to the invention.
Le procédé de fabrication des produits selon l'invention comprend des étapes d'élaboration, coulée, corroyage, mise en solution, trempe et revenu.
Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon l'invention.
Le bain de métal liquide est ensuite coulé sous une forme brute, telle qu'une billette, une plaque de laminage ou une ébauche de forge.
La forme brute est ensuite homogénéisée à une température comprise entre 450°C et 550° et de préférence entre 480 °C et 530°C pendant une durée comprise entre 5 et 60 heures.The method of manufacturing the products according to the invention comprises stages of preparation, casting, wrought, solution, quenching and tempering.
In a first step, a bath of liquid metal is produced so as to obtain an aluminum alloy of composition according to the invention.
The liquid metal bath is then cast in a raw form, such as a billet, a rolling plate or a forging blank.
The crude form is then homogenized at a temperature between 450 ° C and 550 ° and preferably between 480 ° C and 530 ° C for a period between 5 and 60 hours.
Après homogénéisation, la forme brute est en général refroidie jusqu'à température ambiante avant d'être préchauffée en vue d'être déformée à chaud. Le préchauffage a pour objectif d'atteindre une température de préférence comprise entre 400 et 500 °C et de manière préférée de l'ordre de 450 °C permettant la déformation de la forme brute.
La déformation à chaud et optionnellement à froid est typiquement effectuée par filage, laminage et/ou forgeage de façon à obtenir un produit filé, laminé et/ou forgé dont l'épaisseur est de préférence d'au moins 30 mm. Le produit ainsi obtenu est ensuite mis en solution par traitement thermique entre 490 et 530 °C pendant 15 min à 8 h, puis trempé typiquement avec de l'eau à température ambiante ou préférentiellement de l'eau froide. Le produit subit ensuite une traction contrôlée avec une déformation permanente de 1 à 6 % et préférentiellement d'au moins 2%. Les produits laminés subissent de préférence une traction contrôlée avec une déformation permanente supérieure à 3 %. Dans un mode de réalisation avantageux de l'invention, la traction contrôlée est réalisée avec une déformation permanente comprise entre 3 et 5%. Un état métallurgique préféré est l'état T84. Des étapes connues telles que le laminage, le planage, le redressage la mise en forme peuvent être optionnellement réalisées après mise en solution et trempe et avant ou après la traction contrôlée. Dans un mode de réalisation de l'invention on réalise une étape de laminage à froid d'au moins 7 % et de préférence d'au moins 9% avant de réaliser une traction contrôlée avec une déformation permanente de 1 à 3 %.
Un revenu est réalisé comprenant un chauffage à une température comprise entre 130 et 170°C et de préférence entre 150 et 160°C pendant 5 à 100 heures et de préférence de 10 à 40h de façon à atteindre une limite d'élasticité Rp0,2 proche de la limite d'élasticité Rp0,2 au pic.
Il est connu que pour les alliages à durcissement structural tels que les alliages Al-Cu-Li la limite d'élasticité augmente avec la durée de revenu à une température donnée jusqu'à une valeur maximale appelée le pic de durcissement ou « pic » puis diminue avec la durée de revenu. Dans le cadre de la présente invention, on appelle courbe de revenu l'évolution de la limite d'élasticité en fonction de la durée équivalente de revenu à 155 °C. Un exemple de courbe de revenu est présenté sur la Figure 1. Dans le cadre de la présente invention, on détermine si un point N de la courbe de revenu, de durée équivalente à 155 °C tN et de limite d'élasticité Rp0,2 (N) est proche du pic en déterminant la pente PN de la tangente à la courbe de revenu au point N. On considère dans le cadre de la présente invention que la limite d'élasticité d'un point N de la courbe de revenu est proche de la limite d'élasticité au pic si la valeur absolue de la pente PN est au plus de 3 MPa/h. Comme illustré par la figure 1, un état sous-revenu est un état pour lequel PN est positif et un état sur-revenu est un état pour lequel PN est négatif.
Pour obtenir une valeur approchée de PN, pour un point N de la courbe dans un état sous-revenu, on peut déterminer la pente de la droite passant par le point N et par le point précédent N-1, obtenu pour une durée tN-1 < tN et présentant une limite d'élasticité Rp0,2 (N-1), on a ainsi PN ≈ (Rp0,2 (N) - Rp0,2 (N-1)) / (tN - tN-1). En théorie, la valeur exacte de PN est obtenue lorsque tN-1 tend vers tN. Cependant, si la différence tN- tN-1 est faible, la variation de limite élastique risque d'être peu significative et la valeur imprécise. Les présents inventeurs ont constaté qu'une approximation satisfaisante de PN est en général obtenue lorsque la différence tN - tN-1 est comprise entre 2 et 15 heures et de préférence est de l'ordre de 3 heures.
Le temps équivalent ti à 155 °C est défini par la formule :
Hot deformation and optionally cold deformation is typically performed by spinning, rolling and / or forging to obtain a spun, rolled and / or forged product preferably having a thickness of at least 30 mm. The product thus obtained is then put in solution by heat treatment between 490 and 530 ° C for 15 min to 8 h, then quenched typically with water at room temperature or preferably cold water. The product then undergoes controlled traction with a permanent deformation of 1 to 6% and preferably of at least 2%. The rolled products preferably undergo controlled pulling with a permanent deformation greater than 3%. In an advantageous embodiment of the invention, the controlled traction is carried out with a permanent deformation of between 3 and 5%. A preferred metallurgical state is the T84 state. Known steps such as rolling, planing, straightening shaping may optionally be performed after solution and quenching and before or after controlled pulling. In one embodiment of the invention, a step of cold rolling of at least 7% and preferably at least 9% before performing a controlled pull with a permanent deformation of 1 to 3%.
An income is achieved comprising heating at a temperature between 130 and 170 ° C and preferably between 150 and 160 ° C for 5 to 100 hours and preferably from 10 to 40h so as to achieve a yield strength R p0, 2 close to the elastic limit R p0,2 at the peak.
It is known that for structural hardening alloys such as Al-Cu-Li alloys the yield strength increases with the duration of tempering at a given temperature up to a maximum value called the peak of hardening or "peak" then decreases with the duration of income. In the context of the present invention, the yield curve is defined as the evolution of the elastic limit as a function of the equivalent duration of income at 155 ° C. An example of an income curve is presented in FIG. 1. In the context of the present invention, it is determined whether a point N of the income curve, of duration equivalent to 155 ° C t N and yield strength R p0 , 2 (N) is close to the peak by determining the slope P N of the tangent to the income curve at point N. It is considered in the context of the present invention that the elastic limit of a point N of the curve of income is close to the yield strength at the peak if the absolute value of the slope P N is at most 3 MPa / h. As illustrated by FIG. 1, an under-income state is a state for which P N is positive and an over-income state is a state for which P N is negative.
To obtain an approximate value of P N , for a point N of the curve in an under-tempered state, it is possible to determine the slope of the straight line passing through the point N and the preceding point N-1, obtained for a duration t N-1 <t N and having a yield strength R p0,2 (N-1), we thus have P N ≈ (R p0,2 (N) -R p0,2 (N-1)) / ( t N - t N-1 ). In theory, the exact value of P N is obtained when t N-1 tends to t N. However, if the difference t N - t N - 1 is small, the variation of elastic limit may be insignificant and the value imprecise. The present inventors have found that a satisfactory approximation of P N is generally obtained when the difference t N - t N-1 is between 2 and 15 hours and preferably is of the order of 3 hours.
The time equivalent t i at 155 ° C is defined by the formula:
La limite d'élasticité proche de la limite d'élasticité au pic est typiquement au moins égale à 90%, en général même au moins égale à 95% et de façon fréquente au moins 97% de la limite d'élasticité Rp0,2 au pic. La limite d'élasticité au pic et la limite d'élasticité maximale pouvant être obtenue en faisant varier les paramètres de durée et de température du revenu. La limite d'élasticité au pic est en général évaluée de façon satisfaisante en faisant varier la durée de revenu entre 10 et 70h pour une température de 155 °C après une traction de 3.5%.The elastic limit close to the yield strength at the peak is typically at least 90%, generally even at least 95% and frequently at least 97% of the elastic limit R p0,2 at the peak. The yield strength at the peak and the maximum yield strength that can be obtained by varying the parameters of time and temperature of income. The yield strength at the peak is generally satisfactorily evaluated by varying the residence time between 10 and 70h for a temperature of 155 ° C after a pull of 3.5%.
En général, pour les alliages de type Al-Cu-Li, les états nettement sous-revenus correspondent à des compromis entre la résistance mécanique statique (Rp0,2, Rm) et la tolérance aux dommages (ténacité, résistance à la propagation des fissures en fatigue) plus intéressant qu'au pic et a fortiori qu'au-delà du pic. Toutefois, les présents inventeurs ont constaté qu'un état sous revenu mais proche du pic permet à la fois d'obtenir un compromis entre résistance mécanique statique et tolérance aux dommages intéressant mais également d'améliorer la performance en termes de résistance à la corrosion et de stabilité thermique. De plus, l'utilisation d'un état sous-revenu proche du pic permet d'améliorer la robustesse du procédé industriel : une variation des conditions de revenu conduit à une faible variation des propriétés obtenues.
Ainsi, il est avantageux de réaliser un sous-revenu proche du pic, c'est à dire un sous-revenu avec les conditions de durée et de température équivalente à celles d'un point N de la courbe de revenu à 155 °C tel que la tangente à la courbe de revenu en ce point a une pente PN, exprimée en MPa/h, telle que 0 < PN ≤ 3 et de préférence 0,2 < PN ≤ 2,5.In general, for the Al-Cu-Li type alloys, the clearly underdeveloped states correspond to compromises between the static mechanical resistance (R p0.2 , R m ) and the damage tolerance (toughness, resistance to propagation cracks in fatigue) more interesting than peak and a fortiori that beyond the peak. However, the present inventors have found that a state under income but close to the peak makes it possible both to obtain a compromise between static mechanical resistance and damage tolerance of interest, but also to improve the performance in terms of corrosion resistance and thermal stability. In addition, the use of an under-income state close to the peak makes it possible to improve the robustness of the industrial process: a variation in the income conditions leads to a small variation in the properties obtained.
Thus, it is advantageous to achieve an under-income close to the peak, ie an under-income with the conditions of duration and temperature equivalent to those of a point N of the income curve at 155 ° C such that the tangent to the yield curve at this point has a slope P N , expressed in MPa / h, such that 0 <P N ≤ 3 and preferably 0.2 <P N ≤ 2.5.
Les produits selon l'invention peuvent de manière avantageuse être utilisés dans des éléments de structure, en particulier d'avion. L'utilisation, d'un élément de structure incorporant au moins un produit selon l'invention ou fabriqué à partir d'un tel produit est avantageux, en particulier pour la construction aéronautique. Les produits selon l'invention sont particulièrement avantageux pour la réalisation de produits usinés dans la masse, tels que notamment des éléments intrados ou extrados dont la peau et les raidisseurs proviennent d'un même produit de départ, des longerons et des nervures, de même que toute autre utilisation où les présentes propriétés pourraient être avantageusesThe products according to the invention can advantageously be used in structural elements, in particular aircraft. The use of a structural element incorporating at least one product according to the invention or manufactured from such a product is advantageous, in particular for aeronautical construction. The products according to the invention are particularly advantageous for the production of products machined in the mass, such as in particular intrados or extrados elements whose skin and stiffeners come from the same starting material, spars and ribs, as well as any other use where the present properties could be advantageous
Ces aspects, ainsi que d'autres de l'invention sont expliqués plus en détail à l'aide des exemples illustratifs et non limitant suivants.These and other aspects of the invention are explained in more detail with the aid of the following illustrative and non-limiting examples.
Dans cet exemple, plusieurs plaques de dimension 2000 x 380 x 120 mm dont la composition est donnée dans le tableau 1 ont été coulées.
Les plaques ont été homogénéisées à environ 500 °C pendant environ 12 heures puis débitées et scalpées de façon à obtenir des lopins de dimension 400 x 335 x 90 mm. Les lopins ont été laminés à chaud pour obtenir des tôles ayant une épaisseur de 20 mm. Les tôles ont été mises en solution à 505 +/- 2 °C pendant 1h, trempées avec de l'eau à 75 °C de manière à obtenir une vitesse de refroidissement d'environ 18°C/s et simuler ainsi les propriétés obtenues à mi-épaisseur de tôle d'épaisseur 80 mm. Les tôles ont ensuite été tractionnées avec un allongement permanent de 3,5%.The plates were homogenized at about 500 ° C for about 12 hours and then cut and scalped to obtain slugs of size 400 x 335 x 90 mm. The slabs were hot rolled to obtain sheets having a thickness of 20 mm. The sheets were dissolved at 505 ± 2 ° C for 1 h, quenched with water at 75 ° C to obtain a cooling rate of about 18 ° C / sec and thus simulate properties obtained at mid-thickness of sheet of thickness 80 mm. The sheets were then trimmed with a permanent elongation of 3.5%.
Les tôles ont subi un revenu compris entre 10 h et 50 h à 155 °C. Des échantillons ont été prélevés à mi-épaisseur pour mesurer les caractéristiques mécaniques statiques en traction ainsi que la ténacité KQ. Les éprouvettes utilisées pour la mesure de ténacité avaient une largeur W = 25 mm et une épaisseur B = 12,5 mm. D'une manière générale, les valeurs de KQ obtenues à partir de ce type d'éprouvette sont plus faibles que celles obtenues à partir d'éprouvettes présentant une épaisseur et une largeur supérieures. Deux mesures, réalisées à partir d'éprouvettes ayant une largeur W = 40 mm et une épaisseur B = 20 mm, confirment cette tendance. On peut penser que des mesures obtenues à partir d'éprouvettes encore plus larges permettant d'obtenir des mesures valides de K1C seraient également plus élevées que les mesures obtenues avec les éprouvettes de largeur W = 25 mm et d'épaisseur B = 12,5 mm.
Les résultats obtenus sont présentés dans le tableau 2.
The results obtained are shown in Table 2.
La figure 2 présente les compromis de propriétés obtenus pour les échantillons présentant une pente PN comprise entre 0 et 3 et les mesures de ténacité effectuées avec des échantillons de largeur W = 25 mm et d'épaisseur B = 12,5 mm. Les produits selon l'invention présentent un compromis de propriétés significativement amélioré par rapport aux produits de référence.FIG. 2 shows the property compromises obtained for the samples having a slope P N between 0 and 3 and the tenacity measurements made with samples of width W = 25 mm and thickness B = 12.5 mm. The products according to the invention have a significantly improved property compromise compared to the reference products.
Dans cet exemple, plusieurs plaques d'épaisseur 406 mm dont la composition est donnée dans le tableau 3 ont été coulées.
Les plaques ont été homogénéisées puis scalpées. Après homogénéisation, les plaques ont été laminées à chaud pour obtenir des tôles ayant une épaisseur de 50 mm. Les tôles ont été mises en solution trempées à l'eau froide et tractionnées avec un allongement permanent compris entre 3,5% et 4,5%The plates were homogenized and then scalped. After homogenization, the plates were hot-rolled to obtain sheets having a thickness of 50 mm. The sheets were dissolved in cold water and triturated with a permanent elongation of between 3.5% and 4.5%
Les tôles ont subi un revenu de compris entre 10 h et 50 h à 155 °C. Des échantillons ont été prélevés à mi-épaisseur pour mesurer les caractéristiques mécaniques statiques en traction ainsi que la ténacité KQ. Les éprouvettes utilisées pour la mesure de ténacité avaient une largeur W = 80 mm et une épaisseur B = 40 mm. Les critères de validité de K1C ont été remplis pour certains échantillons. Les résultats obtenus sont présentés dans le tableau 4.
Dans la figure 3 les points 8, 9 et 10 ont été ajoutées à la Figure 2 (pente PN comprise entre 0 et 3) bien qu'ils concernent des éprouvettes de géométrie différente pour la mesure de KQ (K1C) afin de faciliter la comparaison entre l'invention et l'art antérieur. On confirme ainsi que les produits selon l'invention présentent un compromis de propriétés significativement améliorés par rapport à l'art antérieur.In FIG. 3 points 8, 9 and 10 have been added to FIG. 2 (slope P N between 0 and 3), although they relate to specimens of different geometry for the measurement of K Q (K 1C ) in order to facilitate the comparison between the invention and the prior art. It is thus confirmed that the products according to the invention have a compromise of significantly improved properties compared to the prior art.
Dans cet exemple, plusieurs plaques de dimension 2000 x 380 x 120 mm dont la composition est donnée dans le tableau 5 ont été coulées.
Les plaques ont été homogénéisées à environ 500 °C pendant environ 12 heures puis débitées et scalpées de façon à obtenir des lopins de dimension 400 x 335 x 90 mm. Les lopins ont été laminés à chaud pour obtenir des tôles ayant une épaisseur de 20 mm. Les tôles ont été mises en solution à 505 +/- 2 °C pendant 1h et trempées avec de l'eau froide. Les tôles ont ensuite été tractionnées avec un allongement permanent de 3,5%.The plates were homogenized at about 500 ° C for about 12 hours and then cut and scalped to obtain slugs of size 400 x 335 x 90 mm. The slabs were hot rolled to obtain sheets having a thickness of 20 mm. The sheets were dissolved at 505 +/- 2 ° C for 1h and quenched with cold water. The sheets were then trimmed with a permanent elongation of 3.5%.
Les tôles ont subi un revenu compris entre 18 h et 72 h à 155 °C. Des échantillons ont été prélevés à mi-épaisseur pour mesurer les caractéristiques mécaniques statiques en traction ainsi que la ténacité KQ. Les éprouvettes utilisées pour la mesure de ténacité avaient une largeur W = 25 mm et une épaisseur B = 12,5 mm.
Les résultats obtenus sont présentés dans le tableau 6.
The results obtained are shown in Table 6.
La figure 4 présente les compromis de propriétés obtenus pour les échantillons présentant une pente PN comprise entre 0 et 3 et les mesures de ténacité effectuées avec des échantillons de largeur W = 25 mm et d'épaisseur B = 12,5 mm. Les produits selon l'invention présentent un compromis de propriétés significativement amélioré par rapport aux échantillons de référence.FIG. 4 shows the property compromises obtained for the samples having a slope P N between 0 and 3 and the tenacity measurements made with samples of width W = 25 mm and thickness B = 12.5 mm. The products according to the invention have a significantly improved property compromise compared to the reference samples.
Dans cet exemple, on a comparé la stabilité thermique de produits en alliage 12 selon les conditions de revenu utilisées.In this example, the thermal stability of alloy products 12 was compared according to the income conditions used.
Des tôles en alliage 12 transformées par le procédé décrit dans l'exemple 3 jusqu'à l'étape de revenu exclue ont subi un revenu à 155 °C ou à 143 °C pendant des durées croissantes indiquées dans le Tableau 7. Les tôles ayant été revenues 34h à 143 °C et 40h à 155 °C ont ensuite subi un vieillissement de 1000 heures à 85 °C. Des échantillons ont été prélevés à mi-épaisseur pour mesurer les caractéristiques mécaniques statiques en traction avant et après le vieillissement.Alloy plates 12 transformed by the method described in Example 3 up to the excluded revenue stage were tempered at 155 ° C or 143 ° C for increasing times indicated in Table 7. After 34h at 143 ° C and 40h at 155 ° C, the aging was 1000 hours at 85 ° C. Samples were taken at mid-thickness to measure static mechanical tensile characteristics before and after aging.
Les résultats obtenus sont présentés dans le Tableau 7. Le revenu de 34 heures à 143 °C, pour lequel la pente Pn est évaluée à 7,1 ne présente pas une stabilité thermique satisfaisante. Ainsi après vieillissement la limite d'élasticité a augmenté de 15% et l'allongement a diminué de 13%. Au contraire, le revenu de 40 heures à 155 °C, pour lequel la pente Pn est évaluée à 1,9 présente une stabilité thermique satisfaisante, avec une évolution de ces propriétés inférieure à 5%.
Claims (14)
- Wrought product such as an extruded, rolled and/or forged product, made from aluminium-based alloy comprising, as % by weight,Cu : 3.2 - 3.7;Li : 0.8 - 1.3;Mg : 0.6 - 1.0;Zr : 0.05 - 0.18;Ag : 0.0 - 0.5;Mn : 0.0 - 0.5;Fe + Si ≤ 0.20;Zn ≤ 0.15;at least one element fromTi: 0.01 - 0.15;Sc: 0.05 - 0.3;Cr: 0.05 - 0.3;Hf: 0.05 - 0.5;other elements ≤ 0.05 each and ≤ 0.15 in total, the remainder aluminium.
- Product according to claim 1, in which the lithium content is between 0.9% and 1.2% by weight.
- Product according to either claim 1 or claim 2, in which the magnesium content is between 0.65% and 1.0% by weight and preferably between 0.7% and 0.9% by weight.
- Product according to any of claims 1 to 3, in which the manganese content is between 0.2% and 0.4% by weight.
- Product according to any of claims 1 to 4, the thickness of which is at least 30 mm and preferably at least 50 mm.
- Product according to claim 5, in a rolled state, solution heat treated, quenched and aged so as to achieve a tensile yield strength close to the peak, having at mid-thickness at least one of the following pairs of characteristics for thicknesses of between 30 and 100 mm:(i) for thicknesses of 30 to 60 mm, at mid-thickness, a tensile yield strength Rp0.2 (L) ≥ 525 MPa and preferably Rp0.2 (L) ≥ 545 MPa and a toughness K1C(L-T) ≥ 38 MPa√m and preferably K1C(L-T) ≥ 43 MPa√m,(ii) for thicknesses of 60 to 100 mm, at mid-thickness, a tensile yield strength Rp0.2(L) ≥ 515 MPa and preferably Rp0.2(L) ≥ 535 MPa and a toughness K1C(L-T) ≥ 35 MPa√m and preferably K1C(L-T) ≥ 40 MPa√m,(iii) for thicknesses of 100 to 130 mm, at mid-thickness, a tensile yield strength Rp0.2(L) ≥ 505 MPa and preferably Rp0.2(L) ≥ 525 MPa and a toughness K1C(L-T) ≥ 32 MPa√m and preferably K1C(L-T) ≥ 37 MPa√m,(iv) for thicknesses of 30 to 100 mm, at mid-thickness, a tensile yield strength Rp0.2(L) expressed in MPa and a toughness K1C(L-T) expressed in MPa√m such that K1C(L-T) ≥ - 0.217 Rp0.2(L) + 157 and preferably K1C(L-T) ≥ - 0.217 Rp0.2(L) + 163 and greater than 35 MPa√m,(v) after aging of 1000 hours at 85°C, a tensile yield strength Rp0.2(L) and an elongation at break A% (L) having a difference from the tensile yield strength Rp0.2 (L) and the elongation at break A% (L) before aging of less than 10% and preferably less than 5%.
- Product according to any of claims 1 to 4, in a rolled state, solution heat treated, quenched and aged so as to achieve a tensile yield strength close to the peak, having at mid-thickness at least one of the following pairs of characteristics for thicknesses of between 10 and 30 mm:(i) a tensile yield strength Rp0.2(L) ≥ 525 MPa and preferably Rp0.2(L) ≥ 545 MPa and a toughness K1C(L-T) ≥ 40 MPa√m and preferably K1C(L-T) ≥ 45 MPa√m,(ii) a tensile yield strength Rp0.2 (L) expressed in MPa and a toughness KQ(L-T) expressed in MPa√m such that K1C(L-T) ≥ - 0.4 Rp0.2(L) + 265 and preferably K1C(L-T) ≥ - 0.4 Rp0.2(L) + 270 and greater than 45 MPa√m,(iii) after aging of 1000 hours at 85°C, a tensile yield strength Rp0.2(L) and an elongation at break A%(L) having a difference from the tensile yield strength Rp0.2(L) and the elongation at break A% (L) before aging of less than 10% and preferably less than 5%.
- Method for manufacturing an extruded, rolled and/or forged product based on aluminium alloy, in whicha) a liquid metal bath based on aluminium is produced, comprising 3.2 to 3.7% by weight Cu, 0.8 to 1.3% by weight Li, 0.6 to 1.0% by weight Mg, 0.05 to 0.18% by weight Zr, 0.0 to 0.5% by weight Ag, 0.0 to 0.5% by weight Mn, no more than 0.20% by weight Fe + Si, no more than 0.15% by weight Zn, at least one element chosen from Cr, Sc, Hf and Ti, the quantity of said element, if chosen, being from 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and from 0.01 to 0.15% by weight for Ti, the other elements no more than 0.05% by weight each and 0.15% by weight in total, the remainder aluminium;b) a rough form is cast from said liquid metal bath;c) said rough form is homogenised at a temperature between 450°C and 550°C and preferably between 480°C and 530°C for a period of between 5 and 60 hours.d) said rough form is hot worked and optionally cold worked into an extruded, rolled and/or forged product;e) solution heat treatment is carried out at between 490°C and 530°C for 15 minutes to 8 hours and said product is quenched;f) said product is stretched in a controlled manner with a permanent deformation of 1% to 6% and preferentially at least 2%;g) aging of said product is carried out, comprising heating at a temperature of between 130°C and 170°C for 5 to 100 hours and preferably 10 to 40 hours so as to achieve a tensile yield strength close to the peak, the aging being carried out under duration and temperature conditions equivalent to those of a point N on the aging curve at 155°C such that the tangent to the aging curve at this point has a slope PN, expressed in MPa/h, such that 0 < PN ≤ 3.
- Method according to claim 8, in which the hot and optionally cold working is carried out to a thickness of at least 30 mm.
- Method according to claim 8 or claim 9, in which the controlled stretching is carried with a permanent deformation of between 3% and 5%.
- Method according to any of claims 8 to 10, in which 0.2 < PN ≤ 2.5.
- Structure element comprising a product according to any of claims 1 to 7.
- Use of a structure element according to claim 12 for aeronautical construction.
- Use according to claim 13, in which the structure element is an upper wing or lower wing element, the skin and stiffeners of which come from the same starting product, a spar or a rib.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10734173T DE10734173T8 (en) | 2009-06-25 | 2010-06-22 | ALUMINUM COPPER LITHIUM ALLOY WITH IMPROVED MECHANICAL STRENGTH AND INCREASED RESISTANCE |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22024909P | 2009-06-25 | 2009-06-25 | |
FR0903096A FR2947282B1 (en) | 2009-06-25 | 2009-06-25 | LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED MECHANICAL RESISTANCE AND TENACITY |
PCT/FR2010/000455 WO2010149873A1 (en) | 2009-06-25 | 2010-06-22 | Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2449142A1 EP2449142A1 (en) | 2012-05-09 |
EP2449142B1 true EP2449142B1 (en) | 2017-05-03 |
Family
ID=41484286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10734173.7A Active EP2449142B1 (en) | 2009-06-25 | 2010-06-22 | Aluminium-copper-lithium alloy with improved mechanical resistance and toughness |
Country Status (8)
Country | Link |
---|---|
US (1) | US11111562B2 (en) |
EP (1) | EP2449142B1 (en) |
CN (1) | CN102459671B (en) |
BR (1) | BRPI1011757B1 (en) |
CA (1) | CA2765382C (en) |
DE (1) | DE10734173T8 (en) |
FR (1) | FR2947282B1 (en) |
WO (1) | WO2010149873A1 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8845827B2 (en) | 2010-04-12 | 2014-09-30 | Alcoa Inc. | 2XXX series aluminum lithium alloys having low strength differential |
US9347558B2 (en) | 2010-08-25 | 2016-05-24 | Spirit Aerosystems, Inc. | Wrought and cast aluminum alloy with improved resistance to mechanical property degradation |
FR2981365B1 (en) | 2011-10-14 | 2018-01-12 | Constellium Issoire | PROCESS FOR THE IMPROVED TRANSFORMATION OF AL-CU-LI ALLOY SHEET |
US9458528B2 (en) | 2012-05-09 | 2016-10-04 | Alcoa Inc. | 2xxx series aluminum lithium alloys |
US10266933B2 (en) | 2012-08-27 | 2019-04-23 | Spirit Aerosystems, Inc. | Aluminum-copper alloys with improved strength |
FR3004197B1 (en) | 2013-04-03 | 2015-03-27 | Constellium France | THIN ALUMINUM-COPPER-LITHIUM ALLOY SHEETS FOR THE MANUFACTURE OF AIRCRAFT FUSELAGES. |
FR3004196B1 (en) * | 2013-04-03 | 2016-05-06 | Constellium France | ALUMINUM-COPPER-LITHIUM ALLOY SHEETS FOR THE MANUFACTURE OF AIRCRAFT FUSELAGES. |
FR3014905B1 (en) * | 2013-12-13 | 2015-12-11 | Constellium France | ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS WITH IMPROVED FATIGUE PROPERTIES |
RU2560481C1 (en) * | 2014-07-01 | 2015-08-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Al-Cu-Li-INTERMETALLIDE-BASED ALLOY AND ARTICLES MADE THEREOF |
FR3026747B1 (en) | 2014-10-03 | 2016-11-04 | Constellium France | ALUMINUM-COPPER-LITHIUM ALLOY ISOTROPES FOR THE MANUFACTURE OF AIRCRAFT FUSELAGES |
US10253404B2 (en) * | 2014-10-26 | 2019-04-09 | Kaiser Aluminum Fabricated Products, Llc | High strength, high formability, and low cost aluminum-lithium alloys |
CN104762504A (en) * | 2015-03-23 | 2015-07-08 | 蚌埠南自仪表有限公司 | Fly ash aluminium-based composite material with good hear resistance and preparation method thereof |
CN104762513A (en) * | 2015-03-23 | 2015-07-08 | 蚌埠市鸿安精密机械有限公司 | Easily-processed fly ash aluminum-based composite material and preparation method thereof |
EP3072985B2 (en) | 2015-03-27 | 2020-08-26 | Otto Fuchs KG | Ag-free al-cu-mg-li alloy |
EP3072984B2 (en) | 2015-03-27 | 2020-05-06 | Otto Fuchs KG | Al-cu-mg-li alloy and alloy product produced from same |
FR3044682B1 (en) * | 2015-12-04 | 2018-01-12 | Constellium Issoire | LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED MECHANICAL RESISTANCE AND TENACITY |
EP3504086B1 (en) | 2016-08-26 | 2022-08-03 | Shape Corp. | Warm forming process for transverse bending of an extruded aluminum beam to warm form a vehicle structural component |
US11072844B2 (en) | 2016-10-24 | 2021-07-27 | Shape Corp. | Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components |
US20190233921A1 (en) * | 2018-02-01 | 2019-08-01 | Kaiser Aluminum Fabricated Products, Llc | Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application |
FR3080861B1 (en) * | 2018-05-02 | 2021-03-19 | Constellium Issoire | METHOD OF MANUFACTURING AN ALUMINUM COPPER LITHIUM ALLOY WITH IMPROVED COMPRESSION RESISTANCE AND TENACITY |
CN108754263A (en) * | 2018-07-30 | 2018-11-06 | 东北轻合金有限责任公司 | A kind of high intensity space flight aluminium lithium alloy proximate matter and preparation method thereof |
FR3088935B1 (en) | 2018-11-28 | 2021-06-04 | Irt Antoine De Saint Exupery | PROCESS FOR STABILIZING THE PROPERTIES OF AN ALUMINUM ALLOY PART, PART OBTAINED BY SUCH A PROCESS AND ITS USE IN AN AIRCRAFT |
CN110512125B (en) * | 2019-08-30 | 2020-09-22 | 中国航发北京航空材料研究院 | Preparation method of diameter aluminum-lithium alloy wire for additive manufacturing |
CN111304503A (en) * | 2020-03-12 | 2020-06-19 | 江苏豪然喷射成形合金有限公司 | Low-density damage-resistant aluminum-lithium alloy for aircraft wheel and preparation method thereof |
CN115821132A (en) * | 2022-11-25 | 2023-03-21 | 江苏徐工工程机械研究院有限公司 | Aluminum alloy and preparation method thereof |
CN117165814A (en) * | 2023-08-31 | 2023-12-05 | 西南铝业(集团)有限责任公司 | 5-meter-level special-shaped ring and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389165A (en) | 1991-05-14 | 1995-02-14 | Reynolds Metals Company | Low density, high strength Al-Li alloy having high toughness at elevated temperatures |
WO1995004837A1 (en) | 1993-08-10 | 1995-02-16 | Martin Marietta Corporation | Al-cu-li alloys with improved cryogenic fracture toughness |
WO2009036953A1 (en) | 2007-09-21 | 2009-03-26 | Aleris Aluminum Koblenz Gmbh | Al-cu-li alloy product suitable for aerospace application |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4999061A (en) * | 1983-12-30 | 1991-03-12 | The Boeing Company | Low temperature underaging of lithium bearing alloys and method thereof |
US5032359A (en) | 1987-08-10 | 1991-07-16 | Martin Marietta Corporation | Ultra high strength weldable aluminum-lithium alloys |
JPH0547868Y2 (en) * | 1988-11-21 | 1993-12-17 | ||
US5234662A (en) * | 1991-02-15 | 1993-08-10 | Reynolds Metals Company | Low density aluminum lithium alloy |
AU2651595A (en) * | 1994-05-25 | 1995-12-18 | Ashurst Corporation | Aluminum-scandium alloys and uses thereof |
US7438772B2 (en) * | 1998-06-24 | 2008-10-21 | Alcoa Inc. | Aluminum-copper-magnesium alloys having ancillary additions of lithium |
CN1216167C (en) * | 2002-01-30 | 2005-08-24 | 北京航空航天大学 | High-strength Al alloy containing Li and its preparing process |
WO2004106570A1 (en) * | 2003-05-28 | 2004-12-09 | Pechiney Rolled Products | New al-cu-li-mg-ag-mn-zr alloy for use as stractural members requiring high strength and high fracture toughness |
DE602006003656D1 (en) | 2005-06-06 | 2008-12-24 | Alcan Rhenalu | HIGH SOLID ALUMINUM COPPER LITHIUM SHEET FOR AIRPLANE RECYCLES |
CN101189353A (en) * | 2005-06-06 | 2008-05-28 | 爱尔康何纳吕公司 | High-strength aluminum-copper-lithium sheet metal for aircraft fuselages |
CN101889099A (en) * | 2007-12-04 | 2010-11-17 | 美铝公司 | Improved Solder for Al-Cu Joint Welding-lithium alloy |
US7875133B2 (en) * | 2008-04-18 | 2011-01-25 | United Technologies Corporation | Heat treatable L12 aluminum alloys |
-
2009
- 2009-06-25 FR FR0903096A patent/FR2947282B1/en active Active
-
2010
- 2010-06-22 DE DE10734173T patent/DE10734173T8/en active Active
- 2010-06-22 CN CN201080028657.9A patent/CN102459671B/en active Active
- 2010-06-22 BR BRPI1011757-1A patent/BRPI1011757B1/en active IP Right Grant
- 2010-06-22 CA CA2765382A patent/CA2765382C/en active Active
- 2010-06-22 WO PCT/FR2010/000455 patent/WO2010149873A1/en active Application Filing
- 2010-06-22 EP EP10734173.7A patent/EP2449142B1/en active Active
- 2010-06-22 US US12/820,495 patent/US11111562B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389165A (en) | 1991-05-14 | 1995-02-14 | Reynolds Metals Company | Low density, high strength Al-Li alloy having high toughness at elevated temperatures |
WO1995004837A1 (en) | 1993-08-10 | 1995-02-16 | Martin Marietta Corporation | Al-cu-li alloys with improved cryogenic fracture toughness |
WO2009036953A1 (en) | 2007-09-21 | 2009-03-26 | Aleris Aluminum Koblenz Gmbh | Al-cu-li alloy product suitable for aerospace application |
Non-Patent Citations (3)
Title |
---|
DIERTRICH G.ALTENPOHL: "Aluminum: Technology, Applications and Environment", 1998, article "chapter 6", pages: 77 - 125, XP055462619 |
E.A. STARKE.JR: "NASA-UVa Light Aerospace Alloy and Structures Technology Program", ALUMINUM-BASED MATERIALS FOR HIGH SPEED AIRCRAFT, SEMI-ANNUAL, February 1995 (1995-02-01), pages 1 - 384, XP055462617 |
M.A. EASTON ET AL.: "The Effect of Alloy Content on the Grain Refinement of Aluminium Alloys", LIGHT METALS, 2001, pages 1 - 7, XP055462625 |
Also Published As
Publication number | Publication date |
---|---|
WO2010149873A1 (en) | 2010-12-29 |
DE10734173T1 (en) | 2012-12-06 |
BRPI1011757B1 (en) | 2019-04-09 |
US20110030856A1 (en) | 2011-02-10 |
US20110209801A2 (en) | 2011-09-01 |
BRPI1011757A2 (en) | 2018-03-06 |
CN102459671A (en) | 2012-05-16 |
CA2765382A1 (en) | 2010-12-29 |
CN102459671B (en) | 2014-03-19 |
US11111562B2 (en) | 2021-09-07 |
FR2947282A1 (en) | 2010-12-31 |
FR2947282B1 (en) | 2011-08-05 |
DE10734173T8 (en) | 2013-04-25 |
EP2449142A1 (en) | 2012-05-09 |
CA2765382C (en) | 2018-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2449142B1 (en) | Aluminium-copper-lithium alloy with improved mechanical resistance and toughness | |
EP2655680B1 (en) | Aluminium-copper-lithium alloy with improved compressive strength and toughness | |
EP3384061B1 (en) | Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness | |
EP2364378B1 (en) | Products in aluminium-copper-lithium alloy | |
EP2710163B1 (en) | Aluminum magnesium lithium alloy having improved toughness | |
EP1966402B1 (en) | Sheet made of high-toughness aluminium alloy containing copper and lithium for an aircraft fuselage | |
EP1492896B1 (en) | Al-zn-mg-cu alloys welded products with high mechanical properties, and aircraft structural elements | |
EP2766503B1 (en) | Improved method for processing sheet metal made of an al-cu-li alloy | |
EP2836620B1 (en) | Alliage aluminium cuivre lithium à résistance au choc améliorée | |
EP2981631B1 (en) | Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages | |
EP3201371B1 (en) | Method of fabrication of a wrought product of an alloy of aluminium- magnesium-lithium, wrougt product and use of the product | |
EP3201372B1 (en) | Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same | |
EP1644546B1 (en) | Use of pipes made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage | |
EP3526358B1 (en) | Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications | |
EP3411508B1 (en) | Thick al - cu - li - alloy sheets having improved fatigue properties | |
EP3788178B1 (en) | Aluminium-copper-lithium alloy having improved compressive strength and improved toughness | |
EP3610047B1 (en) | Aluminium-copper-lithium alloy products | |
EP3788179A1 (en) | Method for manufacturing an aluminum-copper-lithium alloy with improved compressive strength and improved toughness | |
FR3026411A1 (en) | METHOD FOR MANUFACTURING LITHIUM MAGNESIUM ALUMINUM ALLOY PRODUCTS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GASQUERES, CEDRIC Inventor name: DANIELOU, ARMELLE Inventor name: SIGLI, CHRISTOPHE Inventor name: WARNER, TIMOTHY |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R083 Ref document number: 602010042028 Country of ref document: DE Ref country code: DE Ref legal event code: R083 Ref country code: DE Ref legal event code: R083 Ref document number: 107341737 Country of ref document: DE Ref country code: DE Ref legal event code: R082 Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602010042028 Country of ref document: DE Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R210 Ref document number: 602010042028 Country of ref document: DE Effective date: 20121206 Ref country code: DE Ref legal event code: R210 Effective date: 20121206 |
|
17Q | First examination report despatched |
Effective date: 20150227 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONSTELLIUM ISSOIRE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20161130 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602010042028 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 890060 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010042028 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170803 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170804 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170803 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170903 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602010042028 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
26 | Opposition filed |
Opponent name: ARCONIC INC. Effective date: 20180205 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170622 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170630 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 890060 Country of ref document: AT Kind code of ref document: T Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170503 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: HOWMET AEROSPACE INC. Effective date: 20180205 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 602010042028 Country of ref document: DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20220708 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230411 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230702 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240627 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240627 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240603 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240625 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240704 Year of fee payment: 15 |