EP2428647B1 - Transitional Region for a Combustion Chamber of a Gas Turbine - Google Patents
Transitional Region for a Combustion Chamber of a Gas Turbine Download PDFInfo
- Publication number
- EP2428647B1 EP2428647B1 EP11179039.0A EP11179039A EP2428647B1 EP 2428647 B1 EP2428647 B1 EP 2428647B1 EP 11179039 A EP11179039 A EP 11179039A EP 2428647 B1 EP2428647 B1 EP 2428647B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gap
- combustion chamber
- turbine
- gas turbine
- heat shields
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 74
- 239000007789 gas Substances 0.000 claims description 57
- 238000011144 upstream manufacturing Methods 0.000 claims description 42
- 238000001816 cooling Methods 0.000 claims description 14
- 230000003068 static effect Effects 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims 1
- 230000007704 transition Effects 0.000 description 12
- 238000010276 construction Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/023—Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/24—Heat or noise insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/007—Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00005—Preventing fatigue failures or reducing mechanical stress in gas turbine components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03042—Film cooled combustion chamber walls or domes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the present invention relates to a gas turbine, in particular a special embodiment of the transition region between a combustion chamber and a turbine in a gas turbine.
- Gas turbine may be configured with a single combustion chamber, but they may also have a so-called sequential combustion. In the latter, fuel is burned in a first combustion chamber and the combustion air is subsequently expanded via a first turbine, a high-pressure turbine. Behind the high-pressure turbine, the still hot combustion gases flow through a secondary combustion chamber in which fuel is again supplied and burned under auto-ignition. Behind this secondary combustion chamber, a low-pressure turbine is arranged, through which the combustion gases are expanded, optionally followed by a heat recovery system with steam generation.
- combustion chamber which is designed for example as an annular combustion chamber, has a somewhat shell-shaped outer boundary, an outer wall which consists of a heat-resistant material or is correspondingly coated, and which is normally composed of individual segments.
- an inner wall of corresponding materials On the opposite, closer to the axis inside there is a correspondingly formed inner boundary, an inner wall of corresponding materials.
- the turbine in turn has a number of alternating rows of vanes and blades.
- the first row of blades arranged immediately behind the combustion chamber is typically a row of blades with considerable rotation of the blades with respect to the main axis direction.
- the guide vanes are typically designed as segment modules, in which each vane on the inside has an inner platform and on the outside an outer platform, and these platforms then with their inner surface and the flow channel of the combustion air radially inside or radially outside limit.
- the thermal expansion of the different contiguous components in this region is very different and, in absolute terms, large due to the size of the component.
- the gap width is and must be e.g. be greater at the base load point than is necessary for the driving condition. Accordingly, the problem can not be solved easily by reducing the gap width.
- the present invention is intended to solve the disadvantages explained in the introduction in connection with said gap just upstream of the first row of guide blades, that is, in the transition from the combustion chamber to the first row of guide blades. Specifically, this involves the improvement of a gas turbine with a combustion chamber and a first Leitschaufelsch arranged substantially immediately downstream therefrom wherein the radially outer side and / or radially inner boundary of the combustion chamber by at least one outer respectively inner heat shield (which, so to speak, the Inner wall of the combustion chamber forms and is typically formed in the form of one or more plates with a thermal protection layer; Also referred to as a heat shield segment) is formed, which at least one radially outward or radial is fixed within arranged combustion chamber structure, and wherein the flow path of the hot gases in the region of the guide vane row radially outer side or radially inwardly bounded by an outer or inner blade platform, which is at least indirectly attached to at least one turbine carrier.
- it is in particular in an annular combustion chamber to improve the
- the present invention makes the way basically to move the gap to a less critical location as it were.
- the most critical location is, as explained above, where it is conventionally located, at the upstream end of the blade platform, which typically is made as short as possible to minimize stress. Especially at this end of the platform, the influence of the leading edge of the first vane row on the flow and pressure distribution is large, which is why the above problems are present exactly in the gap area.
- the procedure is such that a plurality of plate-shaped heat shields are arranged at least indirectly on the turbine carrier upstream of the first guide blade row and substantially adjacent to the blade platform. So they lie in the direction of flow between the heat shield of the combustion chamber (also called combustion chamber heat shield) and the blade platform.
- These mini heat shields span this area over a certain axial distance, being shaped to form a flow wall adapted to the flow between the heat shield and the platform.
- the above-mentioned and required for the compensation of the thermal expansion differences gap between the combustion chamber and the turbine is thus shifted to some extent upstream and removed from the critical point immediately at the leading edge of the first row of vanes, or at least moved away. Specifically, this gap is in a more upstream area between This mini heat shield and the heat shield in the form of an upstream gap postponed.
- a first embodiment of this embodiment of a gas turbine according to the invention is characterized in that the mini heat shields are attached to an extension of the turbine carrier which extends upstream with respect to the flow direction of the hot gases.
- the turbine carrier is extended somewhat upstream in the axial direction compared to the conventional construction, in order to attach to this extension, the mini heat shield can. Since this extension is thus to some extent part of the turbine, and is also exposed to the corresponding thermal expansion conditions, then the gap between the attached miniature heat shield and the adjacent blade platform can be set extremely low.
- the procedure is such that the miniature heat shields are attached to at least one additional turbine carrier element arranged upstream of the turbine carrier and fastened thereto.
- the turbine carrier does not need to be modified, but the attachment is ensured by a separate additional turbine support member which is mounted upstream of the turbine carrier.
- the mini heat shield is not directly but indirectly attached to the turbine carrier.
- the heat shields arranged adjacent to one another around the circumference do not necessarily have to run axially, but can also be adapted quite specifically to the flow direction of the hot gases in this area.
- these gaps can be arranged exactly parallel to the flow direction of the hot gases, which is often helical in this region, in this region, but they can also be arranged perpendicular thereto or below a certain one preferred angle.
- means may be provided for applying a cooling air flow to these gaps, and / or seals may be provided in these gaps be provided.
- gaps can to some extent be avoided by the individual heat shields, for example, in the form of a groove / comb mesh or the like, as it is known from US2009 / 0293488 is known.
- a further preferred embodiment is characterized in that contour of the annulus formed by the mini heat shields is not circular over its entire axial extent, but starting from the circular shape locally slight bulges are provided normal to the direction of the hot gas flow to locally increase the static pressure or to reduce and thus overall the uniformity of the static pressure distribution in the circumferential direction in the region of the gap to improve.
- Such bumps are for platforms of static turbine blades from the application with application number EP 09159355.8 known.
- a further preferred embodiment is characterized in that between the blade platform and the at least one mini heat shield there is a substantially circumferential gap with a small gap width, that is, which preferably has a gap width in the axial direction in the range of 0.1-20 mm.
- the gap width is typically 0.1 to 5 mm, for large gas turbines it is 0.5 to 20 mm.
- a large gas turbine is typically considered to be a gas turbine with a capacity of 50 MW.
- preferred means may be provided for applying a cooling air flow to this circumferential gap, and / or seals, for example labyrinth seals or even meshing with the blade platform may be provided.
- the procedure is preferably such that the miniature heat shield has a length in the axial direction in the range from 5 to 500 mm.
- the length is typically 5 to 50 mm, for large gas turbines it is 10 to 350 mm.
- lengths of up to 500 mm are conceivable. In other words, about that distance, the column which is very wide in the prior art construction is displaced upstream.
- the critical gap of the prior art is typically in a region where the wall for the flow gases is substantially cylindrical.
- the upstream gap can now typically be arranged at a location in which the wall of the combustion chamber is arranged conically tapered farther upstream in the flow direction, and it preferably has a gap in the radial direction in the range of about 0.1-20 mm.
- the gap width is typically 0.1 to 5 mm, for large gas turbines it is 0.5 to 15 mm and can be 20 mm or more for very large gas turbines.
- a further preferred embodiment is characterized in that means are provided to apply cooling air to the upstream gap, and in particular to a cavity arranged behind it.
- at least one step element can be arranged in the inlet region of such a cavity, which reduces the width of the cavity by at least 10% in at least one step substantially perpendicular to the direction of flow of the hot gas in the cavity, preferably such a step element with respect to the axis of the turbine is formed circumferentially.
- the entire construction so that a mini heat shield is arranged in the combustion chamber per burner, it is also possible to arrange, for example, two or three heat shields per burner, or a common heat shield for each burner or three burners.
- the number of combustor heat shields is selected to be an integer multiple of the number of mini heat shields, or the number of mini heat shields is selected to be an integer multiple of the number of combustor heat shields.
- a gas turbine of the type GT 24 with sequential combustion distributed around the circumference of the annular combustion chamber 24 burners so it may be 24 mini heat shields distributed in such a construction around the circumference, that is a heat shield per burner, or even 12, so that two burners share a heat shield to some extent, or 48, if in each case two miniature heat shields are provided per burner.
- vanes in the first row of vanes of the turbine there are significantly more vanes in the first row of vanes of the turbine than there are burners. It is also possible to adapt the number of heat shields to the conditions of the first row of guide vanes. Accordingly, it is possible that in each case a mini heat shield is arranged per guide vane of the first row of vane in the combustion chamber. It is also possible that in each case two vanes have a common heat shield upstream.
- the number of vanes of the first row of vanes is selected to be an integer multiple of the number of mini heat shields or the number of mini heat shields is selected to be an integer multiple of the number of vanes of the first row of vanes.
- heat shields whether their number is provided in relation to the burners or the guide vanes, can either be arranged exactly staggered or are preferably arranged such that the gaps existing between the heat shields are staggered between two adjacent burners respectively between two adjacent vanes are, since then those between the heat shields existing column are least loaded
- the miniature heat shields are typically formed as individual, adapted to the flow shape substantially plate-shaped heat accumulation elements, which are attached via positive and / or non-positive and / or cohesive means to an upstream extension of the turbine carrier or on an attached to the turbine support additional turbine support member.
- the heat shields usually have at least on the side facing the hot gases flowing in the combustion chamber on a heat insulating layer, which is for example a ceramic layer
- the upstream gap typically transitions into a cavity on the rear side facing away from the combustion chamber, and this cavity can then extend, for example, in a substantially axial direction, for example in the form of a gap which essentially surrounds the axis of the gas turbine and forms a cylinder jacket.
- the upstream gap merges into a cavity on the rear side facing away from the combustion chamber, and that this cavity extends substantially in the radial direction, that is, for example, in the form of a substantially circulating around the axis of the gas turbine, so to speak, a circular disk forming gap.
- the gap has a course direction between these two directions (axial / radial).
- transition region between the combustion chamber and the first row of guide vanes can be preferably configured.
- the considerations made here apply quite analogously also to the radial inner side, ie. for the hub-side wall boundary at the transition of the combustion chamber to the first row of guide blades.
- FIG. 1 shows first the transition region of the wall from the combustion chamber 9 to the first row of guide blades 1 of the turbine 21 in a construction according to the prior art.
- the first vane row 1 is formed by typically individual ones Blade blades 2, which radially on the outside and radially inside have blade platforms 3. Via this blade platforms, which in turn form a closed circular ring which circumscribes the flow cross-section radially outwards, the row of guide blades 1 is fastened to a turbine carrier 4. Since high temperatures prevail here, there is a corresponding cooling air supply 5, which optionally open into corresponding cooling air ducts in the platforms 3 and / or the blades 2.
- the combustion chamber 9 Upstream of this first row of guide vanes 1 is the combustion chamber 9 and this is typically limited by one or more heat shields 7 fixed to a combustion chamber structure 6. These heat shields 7 are typically plate-shaped and have thermal protection layers on the side exposed to the hot gases.
- the hot gases flow, as is schematically indicated by the arrow 10, in a substantially axial direction downstream of the burner, which in FIG. 1 are not shown and to some extent lie on the right side of the area shown. These hot gases meet inter alia on the leading edge 12 of the blades 2. Straight in this area, but now the transition between the heat shield 7 and the platform 3, in this transition region a circumferential gap 8 is arranged, which opens behind it in a cavity 11, the extends deep into the supporting structure of the Turbinenträges 4 and the combustion chamber structure 6. This gap is required because of the effects mentioned above and is typically with a gap d in the range of 10 to 50 mm. If the gap is selected narrower, different thermal expansions of the components combustion chamber / turbine and other effects can not be compensated sufficiently.
- FIG. 2 now shows a first embodiment of the invention.
- an intermediate element in the form of a mini heat shield 13 is interposed between the heat shield 7 and the first blade platform 3 of the first row of guide blades 1, an intermediate element in the form of a mini heat shield 13 is interposed.
- This heat shield 13 is doing directly to an upstream extension 4 'of the Turbine carrier 4 attached.
- mini-heat shields which are arranged distributed around the circulation of the annular combustion chamber.
- These heat shields 13 may, as shown in this figure, be realized on the side of the guide vane row 1 via a connection with fastening projection 14 and retaining lug 15 and deck area 16 arranged above it, but other fastening possibilities can also be realized.
- this additional heat shield is directly attached to the same support element, specifically to the turbine support 4, and accordingly exposed to essentially the same conditions as the blade platform 3 both in terms of vibration and thermal expansion, it is now possible to the corresponding gap dimension d of the remaining gap 23 between blade platform 3 and heat shield 13 extremely low, so here, for example, gap mass in the axial direction of 0.5 - 3 mm are possible without causing problems.
- FIG. 3 A second embodiment is in FIG. 3 shown.
- An essential difference to the construction according to FIG. 2 is that the turbine support 4 has no upstream extension 4 ', but that instead of an additional upstream turbine support member 18 has.
- This separate turbine carrier element 18 is attached to the turbine carrier 4, this can be done via a positive connection and / or a frictional connection and / or a material bond, for example, on the front side 19 of the turbine carrier.
- this additional turbine support element 18 performs the same function as the upstream extension of the turbine support.
- FIG. 4 A third embodiment is in FIG. 4 shown.
- the additional mini heat shield 13 is also indirectly attached via an additional turbine support member 18 on the turbine carrier 4.
- the additional turbine support member 18 may be configured in the form of a circumferential ring, but it may also be segments, which do not even have to be adjacent to each other circumferentially, but which may also be distributed, for example, spaced around the circulation of the annular combustion chamber.
- the upstream gap 17 is slightly less advanced and also runs the gap 17 and the underlying cavity 20 here not in the axial direction, but al radial cavity 20 "in the radial direction.
- the individual mini heatshields are distributed in some form of segments around the circumference of the annular combustion chamber in the form.
- the number of such heat shields can, as explained above, either depending on the number of burners, the number of combustion chamber heat shields or depending on the number of vanes 2 are selected.
- Between the individual heat shields or the segments of such heat shields usually remain axially extending column 24, which in FIG. 4 are indicated schematically by a dashed arrow.
- These axially extending gaps 24 are preferably, as well as possibly also the gaps 17 and 23, acted upon with cooling air, or with seals, such as labyrinth seals, provided to protect underlying components.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die vorliegende Erfindung betrifft eine Gasturbine, insbesondere eine besondere Ausgestaltung des Übergangsbereichs zwischen einer Brennkammer und einer Turbine bei einer Gasturbine.The present invention relates to a gas turbine, in particular a special embodiment of the transition region between a combustion chamber and a turbine in a gas turbine.
Gasturbinen können mit einer einzigen Brennkammer ausgestaltet sein, sie können aber auch eine so genannte sequenzielle Verbrennung aufweisen. Bei Letzterer wird in einer ersten Brennkammer Brennstoff verbrannt und die Verbrennungsluft anschließend über eine erste Turbine, eine Hochdruckturbine, entspannt. Hinter der Hochdruckturbine durchströmen die immer noch heissen Verbrennungsgase eine Sekundärbrennkammer, in welcher erneut Brennstoff zugeführt und typischerweise unter Selbstzündung verbrannt wird. Hinter dieser Sekundärbrennkammer ist eine Niederdruckturbine angeordnet, durch welche die Verbrennungsgase entspannt werden, gegebenenfalls gefolgt durch ein Wärmerückgewinnungssystem mit Dampferzeugung.Gas turbine may be configured with a single combustion chamber, but they may also have a so-called sequential combustion. In the latter, fuel is burned in a first combustion chamber and the combustion air is subsequently expanded via a first turbine, a high-pressure turbine. Behind the high-pressure turbine, the still hot combustion gases flow through a secondary combustion chamber in which fuel is again supplied and burned under auto-ignition. Behind this secondary combustion chamber, a low-pressure turbine is arranged, through which the combustion gases are expanded, optionally followed by a heat recovery system with steam generation.
Der Übergang von Brennkammer zu Turbine ist dabei ein kritischer Bereich, weil in diesem besonders komplexe Temperatur- und Druckverhältnisse vorliegen. Typischerweise verfügt die Brennkammer, die beispielsweise als Ringbrennkammer ausgebildet ist, über eine gewissermassen schalenförmige äußere Begrenzung, eine äussere Wandung, welche aus einem hitzebeständigen Material besteht respektive entsprechend beschichtet ist, und welche normalerweise aus einzelnen Segmenten aufgebaut ist. Auf der gegenüberliegenden, näher bei der Achse liegenden Innenseite gibt es eine entsprechend ausgebildete innere Begrenzung, eine innere Wandung aus entsprechenden Materialien.The transition from combustion chamber to turbine is a critical area, because there are particularly complex temperature and pressure conditions in this. Typically, the combustion chamber, which is designed for example as an annular combustion chamber, has a somewhat shell-shaped outer boundary, an outer wall which consists of a heat-resistant material or is correspondingly coated, and which is normally composed of individual segments. On the opposite, closer to the axis inside there is a correspondingly formed inner boundary, an inner wall of corresponding materials.
Die Turbine ihrerseits verfügt über eine Anzahl von alternierend angeordneten Reihen von Leitschaufeln und Laufschaufeln. Die erste unmittelbar hinter der Brennkammer angeordnete Schaufelreihe ist typischerweise eine Leitschaufelreihe mit erheblicher Verdrehung der Schaufeln bezüglich der Hauptachsenrichtung. Die Leitschaufeln sind dabei typischerweise als Segment-Module ausgebildet, bei welchen jede Leitschaufel auf der Innenseite eine innere Plattform und auf der Außenseite eine äußere Plattform aufweist, und diese Plattformen anschließend mit deren Innenfläche auch den Strömungskanal der Verbrennungsluft radial innen respektive radial außen begrenzen. Entsprechend gibt es auf der radial inneren Seite des ringförmigen Strömungskanals einen Spalt zwischen dem inneren Brennkammerhitzeschild (Wandungssegment der Brennkammer) und der inneren Plattform der ersten Leitschaufelreihe, und auf der radial äußeren Seite einen Spalt zwischen dem äußeren Brennkammerhitzeschild (Wandungssegment der Brennkammer) und der äußeren Plattform der ersten Leitschaufelreihe.The turbine in turn has a number of alternating rows of vanes and blades. The first row of blades arranged immediately behind the combustion chamber is typically a row of blades with considerable rotation of the blades with respect to the main axis direction. The guide vanes are typically designed as segment modules, in which each vane on the inside has an inner platform and on the outside an outer platform, and these platforms then with their inner surface and the flow channel of the combustion air radially inside or radially outside limit. Accordingly, on the radially inner side of the annular flow passage, there is a gap between the inner combustion heat shield (wall segment of the combustion chamber) and the inner stage of the first guide blade row, and on the radially outer side, a gap between the outer combustion heat shield (wall segment of the combustion chamber) and the outer Platform of the first vane row.
Aus der
Aufgrund der unterschiedlichen mechanischen und thermischen Belastungen der Bauteile Brennkammer und Turbine muss dieser Spalt aber eine gewisse Breite aufweisen und kann nicht ohne weiteres geschlossen oder vollständig überbrückt werden.Due to the different mechanical and thermal loads of the components combustion chamber and turbine but this gap must have a certain width and can not be easily closed or completely bridged.
Tatsächlich ist die thermische Ausdehnung der verschiedenen in dieser Region aneinander grenzenden Komponenten (Turbine, Brennkammer) äußerst unterschiedlich und aufgrund der Komponentengröße auch absolut gesehen gross. An den Schnittstellen gibt es entsprechend große Spalte, welche über den gesamten transienten Verlauf (beispielsweise hot restart) ausreichende Spaltweiten aufweisen müssen. Als Konsequenz ist und muss die Spaltweite z.B. am Grundlastpunkt größer sein als dies für den Fahrzustand notwendig ist. Entsprechend lässt sich die Problematik durch eine Reduktion der Spaltweite nicht ohne weiteres lösen.In fact, the thermal expansion of the different contiguous components in this region (turbine, combustor) is very different and, in absolute terms, large due to the size of the component. There are correspondingly large gaps at the interfaces which must have sufficient gap widths over the entire transient course (for example hot restart). As a consequence, the gap width is and must be e.g. be greater at the base load point than is necessary for the driving condition. Accordingly, the problem can not be solved easily by reducing the gap width.
Des weiteren gibt es Unterschiede in den Komponenten und deren Beeinflussung durch die Strömungsprozesse. Namentlich gibt es in der Brennkammer nur kleine Druckunterschiede, während es im Bereich der Turbine große Druckunterschiede durch die Schaufeln gibt, welche das Druckfeld erzeugen. Das Druckfeld wirkt auf die Spalte. Die heissgastragenden Teile außerhalb des Strömungspfades müssen vor Heissgasbeaufschlagung geschützt werden. Druckspitzen des Druckfeldes bestimmen den Druck der in den angrenzenden Kavitäten zur Verfügung stehen muss. Leckage und höhere RTDF (radial temperature distribution function)/Emissionen sind die Folge. Die Spülung der Kavitäten wird konkret durch die auftretenden Druckspitzen bestimmt, und nicht durch den Mitteldruck.Furthermore, there are differences in the components and their influence by the flow processes. In particular, there are only small ones in the combustion chamber Pressure differences, while there are large pressure differences in the area of the turbine blades, which produce the pressure field. The pressure field acts on the column. The hot gas bearing parts outside the flow path must be protected from hot gas. Pressure peaks of the pressure field determine the pressure that must be available in the adjacent cavities. Leakage and higher RTDF (radial temperature distribution function) / emissions are the result. The flushing of the cavities is determined concretely by the occurring pressure peaks, and not by the medium pressure.
Problematisch an diesem Spalt, der eine radial vom Heissgaskanal wegweisenden in weitere Konstruktionsbauteile des Gehäuses sich erstreckende Kavität bildet, ist also auch die Tatsache, dass er zudem insbesondere im Bereich jeweils einer Leitschaufel komplexen Strömungsbedingungen ausgesetzt ist. An der Anströmkante der Leitschaufeln bildet sich namentlich eine so genannte Bugwelle, die dazu führt, dass heiße Verbrennungsluft im Wandbereich unter Druck in diese Kavität hinein gepresst wird und entsprechend tief in diese eindringt. Dies kann zu Problemen im Zusammenhang mit einer Überhitzung aber auch mit Oxidation der entsprechenden Oberflächen Anlass geben.The problem with this gap, which forms a cavity pointing away from the hot gas duct into further structural components of the housing, is therefore also the fact that it is also exposed to complex flow conditions, in particular in the area of one guide vane. At the leading edge of the guide vanes, a so-called bow wave forms, which causes hot combustion air in the wall region to be pressed under pressure into this cavity and penetrates deep into it. This can give rise to problems in connection with overheating but also with oxidation of the corresponding surfaces.
Zudem treten die Biegemomentbelastungen an den Schaufeln an den Übergängen zwischen Plattform und Profil auf. Diese Biegemomente in Kombination mit den thermischen Spannungen beschränken die Größe der Plattformen und daher die Distanz, in welcher die Spalte von den Profilstaupunkten entfernt platziert werden können. Mit anderen Worten sind die Plattformüberhänge beschränkt.In addition, the bending moment loads on the blades occur at the transitions between platform and profile. These bending moments in combination with the thermal stresses limit the size of the platforms and therefore the distance in which the gaps can be placed away from the tread dew points. In other words, the platform overhangs are limited.
Aus der
Die vorliegende Erfindung soll die eingangs erläuterten Nachteile im Zusammenhang mit dem genannten Spalt gerade stromaufwärts vor der ersten Leitschaufelreihe, das heißt beim Übergang von der Brennkammer zur ersten Leitschaufelreihe lösen. Spezifisch geht es dabei um die Verbesserung einer Gasturbine mit einer Brennkammer und einer im wesentlichen unmittelbar stromab davon angeordneten ersten Leitschaufelreihe wobei die radial aussenseitige und/oder radial innenseitige Begrenzung der Brennkammer durch wenigstens ein äußeres respektive inneres Hitzeschild (welches gewissermassen die Innenwand der Brennkammer bildet und typischerweise in Form einer oder mehrerer Platten mit einer thermischen Schutzschicht ausgebildet ist; auch als Wärmestausegment bezeichnet) gebildet wird, welches an wenigstens einer radial außerhalb respektive radial innerhalb angeordneten Brennkammerstruktur befestigt ist, und wobei der Strömungspfad der Heißgase im Bereich der Leitschaufelreihe radial aussenseitig respektive radial innenseitig durch eine äußere respektive innere Schaufelplattform begrenzt ist, welche wenigstens mittelbar an wenigstens einem Turbinenträger befestigt ist. Mit anderen Worten geht es insbesondere bei einer Ringbrennkammer um die Verbesserung der Konstruktion entweder auf der Nabenseite (radial innenseitige Wandbegrenzung der Brennkammer) oder auf der Außenseite (radial aussenseitige Wandbegrenzung der Brennkammer), oder beides.The present invention is intended to solve the disadvantages explained in the introduction in connection with said gap just upstream of the first row of guide blades, that is, in the transition from the combustion chamber to the first row of guide blades. Specifically, this involves the improvement of a gas turbine with a combustion chamber and a first Leitschaufelreihe arranged substantially immediately downstream therefrom wherein the radially outer side and / or radially inner boundary of the combustion chamber by at least one outer respectively inner heat shield (which, so to speak, the Inner wall of the combustion chamber forms and is typically formed in the form of one or more plates with a thermal protection layer; Also referred to as a heat shield segment) is formed, which at least one radially outward or radial is fixed within arranged combustion chamber structure, and wherein the flow path of the hot gases in the region of the guide vane row radially outer side or radially inwardly bounded by an outer or inner blade platform, which is at least indirectly attached to at least one turbine carrier. In other words, it is in particular in an annular combustion chamber to improve the design either on the hub side (radially inside wall boundary of the combustion chamber) or on the outside (radially outer side wall boundary of the combustion chamber), or both.
Im Gegensatz zu Lösungen, welche einfach darauf abzielen, das Spaltmaß zu reduzieren, den Eintritt von Heissgas in den Spalt zu reduzieren, oder den Spalt gewissermassen abzudecken, geht die vorliegende Erfindung den Weg, den Spalt grundsätzlich gewissermassen an einen weniger kritischen Ort zu verschieben. Der kritischste Ort ist, wie oben erläutert, an dem er herkömmlich angeordnet ist, am stromaufwärtigen Ende der Schaufelplattform, wobei diese zur Minimierung von Spannungen typischerweise möglichst kurz ausgeführt wird. Gerade an diesem Ende der Plattform ist der Einfluss der Anströmkante der ersten Leitschaufelreihe auf die Strömung und Druckverteilung gross, weshalb die oben genannten Probleme genau im Spaltbereich vorliegen.In contrast to solutions which simply aim to reduce the gap size, to reduce the entry of hot gas into the gap, or to cover the gap to some extent, the present invention makes the way basically to move the gap to a less critical location as it were. The most critical location is, as explained above, where it is conventionally located, at the upstream end of the blade platform, which typically is made as short as possible to minimize stress. Especially at this end of the platform, the influence of the leading edge of the first vane row on the flow and pressure distribution is large, which is why the above problems are present exactly in the gap area.
Entsprechend der vorliegenden Erfindung wird so vorgegangen, dass wenigstens mittelbar am Turbinenträger befestigt stromauf der ersten Leitschaufelreihe und im wesentlichen angrenzend an die Schaufelplattform eine Mehrzahl von plattenförmigen Hitzeschilden angeordnet ist. Sie liegen also in Strömungsrichtung zwischen dem Hitzeschild der Brennkammer (auch Brennkammerhitzeschild genannt) und der Schaufelplattform. Diese Minihitzeschilde überbrücken diesen Bereich über eine gewisse axiale Strecke, wobei sie so geformt sind, dass sie eine der Strömung zwischen Hitzeschild und Plattform angepasste Strömungswandung bilden. Der oben erwähnte und für die Kompensation der Wärmeausdehnungsunterschiede erforderliche Spalt zwischen der Brennkammer und der Turbine wird damit gewissermassen stromaufwärts verschoben und von der kritischen Stelle unmittelbar bei der Anströmkante der ersten Leitschaufelreihe entfernt oder zumindest weg verschoben. Konkret wird dieser Spalt in einen weiter stromaufwärts gelegenen Bereich zwischen diesem Minihitzeschild und dem Hitzeschild in Form eines vorgelagerten Spaltes verschoben.According to the present invention, the procedure is such that a plurality of plate-shaped heat shields are arranged at least indirectly on the turbine carrier upstream of the first guide blade row and substantially adjacent to the blade platform. So they lie in the direction of flow between the heat shield of the combustion chamber (also called combustion chamber heat shield) and the blade platform. These mini heat shields span this area over a certain axial distance, being shaped to form a flow wall adapted to the flow between the heat shield and the platform. The above-mentioned and required for the compensation of the thermal expansion differences gap between the combustion chamber and the turbine is thus shifted to some extent upstream and removed from the critical point immediately at the leading edge of the first row of vanes, or at least moved away. Specifically, this gap is in a more upstream area between This mini heat shield and the heat shield in the form of an upstream gap postponed.
Eine erste Ausführungsform dieser Ausgestaltung einer Gasturbine gemäss der Erfindung ist dadurch gekennzeichnet, dass die Minihitzeschilde an einer sich bezüglich Strömungsrichtung der Heißgase stromaufwärtig erstreckenden Erweiterung des Turbinenträgers befestigt sind. Bei dieser Ausführungsform wird also gewissermaßen der Turbinenträger im Vergleich zur üblichen Bauweise etwas in axialer Richtung stromaufwärts verlängert, um an dieser Verlängerung die Minihitzeschilde befestigen zu können. Da diese Verlängerung damit gewissermassen Bestandteil der Turbine ist, und auch den entsprechenden Wärmeausdehnungsbedingungen ausgesetzt ist, kann dann das Spaltmaß zwischen dem daran befestigten Minihitzeschild und der angrenzenden Schaufelplattform äußerst gering eingestellt werden.A first embodiment of this embodiment of a gas turbine according to the invention is characterized in that the mini heat shields are attached to an extension of the turbine carrier which extends upstream with respect to the flow direction of the hot gases. In this embodiment, so to speak, the turbine carrier is extended somewhat upstream in the axial direction compared to the conventional construction, in order to attach to this extension, the mini heat shield can. Since this extension is thus to some extent part of the turbine, and is also exposed to the corresponding thermal expansion conditions, then the gap between the attached miniature heat shield and the adjacent blade platform can be set extremely low.
Aus Montagegründen kann es vorteilhaft sein, den Turbinenträger nicht gegenüber dem ursprünglichen Mass stromaufwärts zu verlängern, sondern ein Zusatzelement an dem eigentlichen Träger zu befestigen. Entsprechend wird gemäß einer weiteren Ausführungsform gemäss der Erfindung so vorgegangen, dass die Minihitzeschilde an wenigstens einem stromaufwärtig des Turbinenträgers angeordneten und an diesem befestigten zusätzlichen Turbinenträgerelement befestigt sind. Bei diesem Ausführungsbeispiel muss entsprechend der Turbinenträger nicht modifiziert werden, sondern die Befestigung wird über ein separates zusätzliches Turbinenträgerelement, welches am Turbinenträger stromaufwärts befestigt ist, gewährleistet. Mit anderen Worten ist in diesem Fall der Minihitzeschild nicht unmittelbar sondern mittelbar am Turbinenträger befestigt.For assembly reasons, it may be advantageous not to extend the turbine support upstream of the original Mass, but to attach an additional element to the actual carrier. Accordingly, according to a further embodiment according to the invention, the procedure is such that the miniature heat shields are attached to at least one additional turbine carrier element arranged upstream of the turbine carrier and fastened thereto. In this embodiment, according to the turbine carrier does not need to be modified, but the attachment is ensured by a separate additional turbine support member which is mounted upstream of the turbine carrier. In other words, in this case, the mini heat shield is not directly but indirectly attached to the turbine carrier.
Zwischen diesen Hitzeschilden sind dann typischerweise im wesentlichen axial verlaufende Spalte vorhanden. Diese gewissermassen die um den Umfang benachbart angeordneten Hitzeschilde voneinander trennenden Spalte müssen dabei nicht zwingend axial verlaufen, sondern können auch ganz gezielt der Strömungsrichtung der Heißgase in diesem Bereich angepasst sein. So können diese Spalte beispielsweise genau parallel zur in diesem Bereich häufig spiralförmigen Strömungsrichtung der Heißgase in diesem Bereich angeordnet sein, sie können aber auch senkrecht dazu angeordnet sein oder unter einem bestimmten bevorzugten Winkel. Generell können dabei Mittel vorgesehen werden, diese Spalte mit einem Kühlluftstrom zu beaufschlagen, und/oder es können in diesen Spalten Dichtungen vorgesehen werden. Auch können derartige Spalte gewissermassen vermieden werden, indem die einzelnen Hitzeschilde beispielsweise in Form einer Nut/Kammverbindung ineinandergreifen oder ähnliches, wie es aus der
Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass Kontur des durch die Minihitzeschilde gebildeten Ringraums nicht über seine ganze axiale Erstreckung kreisförmig ist, sondern ausgehend von der Kreisform lokal leichte Ausbeulungen normal zur Richtung des Heissgasstroms vorgesehen sind, um lokal den statischen Druck zu erhöhen oder zu reduzieren und damit insgesamt die Uniformität der statischen Druckverteilung in Umfangsrichtung im Bereich des Spaltes zu verbessern. Derartige Ausbeulungen (bumps) sind für Plattformen von statischen Turbinenschaufeln aus der Anmeldung mit Anmeldenummer
Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass zwischen der Schaufelplattform und dem wenigstens einen Minihitzeschild ein im wesentlichen umlaufender Spalt mit geringer Spaltweite vorhanden ist, das heißt welcher bevorzugtermassen eine Spaltweite in axialer Richtung im Bereich von 0.1-20 mm aufweisst. Für kleine Industriegasturbinen und Aeroderivatives beträgt die Spaltweite typischerweise 0.1 bis 5 mm, für grosse Gasturbinen beträgt sie 0.5 bis 20 mm Als grosse Gasturbine wird typischerweise eine Gasturbine mit einer Leistung ab 50 MW angesehen. Auch hier können bevorzugtermassen Mittel vorgesehen werden, diesen umlaufenden Spalt mit einem Kühlluftstrom zu beaufschlagen, und/oder es können Dichtungen, beispielsweise Labyrinthdichtungen oder sogar ein Ineinandergreifen mit der Schaufelplattform vorgesehen werden.A further preferred embodiment is characterized in that between the blade platform and the at least one mini heat shield there is a substantially circumferential gap with a small gap width, that is, which preferably has a gap width in the axial direction in the range of 0.1-20 mm. For small industrial gas turbines and aeroderivatives, the gap width is typically 0.1 to 5 mm, for large gas turbines it is 0.5 to 20 mm. A large gas turbine is typically considered to be a gas turbine with a capacity of 50 MW. Here too, preferred means may be provided for applying a cooling air flow to this circumferential gap, and / or seals, for example labyrinth seals or even meshing with the blade platform may be provided.
Um eine genügende Entfernung von der kritischen Anströmkantc der ersten Leitschaufelreihe sicherzustellen, wird bevorzugtermassen so vorgegangen, dass der Minihitzeschild in axialer Richtung eine Länge im Bereich von 5 bis 500 mm aufweisst. Für kleine Industriegasturbinen und Aeroderivatives beträgt die Länge typischerweise 5 bis 50 mm, für grosse Gasturbinen beträgt sie 10 bis 350 mm, Für zukünftige sehr grosse Gasturbinen sind Längen bis zu 500 mm denkbar. Mit anderen Worten wird ungefähr um diese Distanz die bei der Konstruktion nach dem Stand der Technik sehr breite Spalte stromaufwärts verschoben.In order to ensure a sufficient distance from the critical inflow edge of the first row of guide vanes, the procedure is preferably such that the miniature heat shield has a length in the axial direction in the range from 5 to 500 mm. For small industrial gas turbines and aeroderivatives the length is typically 5 to 50 mm, for large gas turbines it is 10 to 350 mm. For future very large gas turbines, lengths of up to 500 mm are conceivable. In other words, about that distance, the column which is very wide in the prior art construction is displaced upstream.
Der kritische Spalt nach dem Stand der Technik liegt typischerweise in einem Bereich, bei welchem die Wandung für die Strömungsgase im wesentlichen zylindrisch angeordnet ist.The critical gap of the prior art is typically in a region where the wall for the flow gases is substantially cylindrical.
Der vorgelagerte Spalt kann nun typischerweise an einer Stelle angeordnet werden, bei welcher die Wandung der Brennkammer weiter stromaufwärts in Strömungsrichtung betrachtet konisch zulaufend angeordnet ist, und er verfügt dabei vorzugsweise über ein Spaltmaß in radialer Richtung im Bereich von etwa 0.1-20 mm. Für kleine Industriegasturbinen und sogenannte Aeroderivatives (Flugtriebwerk das für industrielle Zwecke übernommen und geändert wurde) beträgt die Spaltweite typischerweise 0.1 bis 5 mm, für grosse Gasturbinen beträgt sie 0.5 bis 15 mm und kann für sehr grosse Gasturbinen 20 mm oder mehr betragen.The upstream gap can now typically be arranged at a location in which the wall of the combustion chamber is arranged conically tapered farther upstream in the flow direction, and it preferably has a gap in the radial direction in the range of about 0.1-20 mm. For small industrial gas turbines and so-called aeroderivatives (aircraft engine that was taken over and changed for industrial purposes), the gap width is typically 0.1 to 5 mm, for large gas turbines it is 0.5 to 15 mm and can be 20 mm or more for very large gas turbines.
Eine weitere bevorzugte Ausführungsform zeichnet sich dadurch aus, dass Mittel vorgesehen sind, den vorgelagerten Spalt, und insbesondere eine dahinter angeordnete Kavität, mit Kühlluft zu beaufschlagen. Dabei kann zudem im Eintrittsbereich einer derartigen Kavität wenigstens ein Stufenelement angeordnet werden, welches die Breite der Kavität in wenigstens einer, im wesentlichen senkrecht zur Strömungsrichtung des Heissgases in der Kavität verlaufenden Stufe um wenigstens 10 % reduziert, wobei bevorzugtermassen ein solches Stufenelement bezüglich Achse der Turbine umlaufend ausgebildet ist.A further preferred embodiment is characterized in that means are provided to apply cooling air to the upstream gap, and in particular to a cavity arranged behind it. In addition, at least one step element can be arranged in the inlet region of such a cavity, which reduces the width of the cavity by at least 10% in at least one step substantially perpendicular to the direction of flow of the hot gas in the cavity, preferably such a step element with respect to the axis of the turbine is formed circumferentially.
Es ist möglich, die gesamte Konstruktion so auszulegen, dass pro Brenner in der Brennkammer ein Minihitzeschild angeordnet ist, es ist auch möglich, pro Brenner beispielsweise zwei oder drei Hitzeschilde anzuordnen, oder jeweils für zwei Brenner oder drei Brenner einen gemeinsamen Hitzeschild. Typischerweise wird die Anzahl der Brennkammerhitzeschilde als ein ganzzahliges Vielfaches der Anzahl Minihitzeschilde gewählt oder die Anzahl Minihitzeschilde als ein ganzzahliges Vielfaches der Anzahl der Brennkammerhitzeschilde gewählt. Beispielsweise sind bei einer Gasturbine des Typs GT 24 mit sequenzieller Verbrennung um den Umfang der Ringbrennkammer verteilt 24 Brenner angeordnet, es kann also bei einer derartigen Bauweise um den Umfang verteilt 24 Minihitzeschilde haben, das heißt pro Brenner einen Hitzeschild, oder aber auch 12, so dass jeweils zwei Brenner einen Hitzeschild gewissermassen teilen, oder aber 48, wenn jeweils pro Brenner zwei Minihitzeschilde vorgesehen werden.It is possible to design the entire construction so that a mini heat shield is arranged in the combustion chamber per burner, it is also possible to arrange, for example, two or three heat shields per burner, or a common heat shield for each burner or three burners. Typically, the number of combustor heat shields is selected to be an integer multiple of the number of mini heat shields, or the number of mini heat shields is selected to be an integer multiple of the number of combustor heat shields. For example, with a gas turbine of the
Typischerweise gibt es wesentlich mehr Leitschaufeln bei der ersten Leitschaufelreihe der Turbine als es Brenner gibt. Es ist auch eine Anpassung der Anzahl der Hitzeschilde an die Gegebenheiten der ersten Leitschaufelreihe ist möglich. Entsprechend ist es möglich, dass pro Leitschaufel der ersten Leitschaufelreihe in der Brennkammer jeweils ein Minihitzeschild angeordnet ist. Ebenfalls möglich ist es, dass jeweils zwei Leitschaufeln einen gemeinsamen Hitzeschild stromaufwärts aufweisen.Typically, there are significantly more vanes in the first row of vanes of the turbine than there are burners. It is also possible to adapt the number of heat shields to the conditions of the first row of guide vanes. Accordingly, it is possible that in each case a mini heat shield is arranged per guide vane of the first row of vane in the combustion chamber. It is also possible that in each case two vanes have a common heat shield upstream.
Typischerweise wird die Anzahl der Leitschaufeln der ersten Leitschaufelreihe als ein ganzzahliges Vielfaches der Anzahl Minihitzeschilde gewählt oder die Anzahl Minihitzeschilde als ein ganzzahliges Vielfaches der Anzahl der Leitschaufeln der ersten Leitschaufelreihe gewählt.Typically, the number of vanes of the first row of vanes is selected to be an integer multiple of the number of mini heat shields or the number of mini heat shields is selected to be an integer multiple of the number of vanes of the first row of vanes.
Diese Hitzeschilde können sei es nun wenn deren Anzahl auf die Brenner oder auf die Leitschaufeln bezogen vorgesehen wird, entweder genau gestaffelt angeordnet werden oder werden bevorzugtermassen so angeordnet, dass die zwischen den Hitzeschilden vorhandenen Spalte gestaffelt zwischen jeweils zwei benachbarten Brennern respektive zwischen zwei benachbarten Leitschaufeln angeordnet sind, da dann diese zwischen den Hitzeschilden vorhandenen Spalte am wenigsten belastet werdenThese heat shields, whether their number is provided in relation to the burners or the guide vanes, can either be arranged exactly staggered or are preferably arranged such that the gaps existing between the heat shields are staggered between two adjacent burners respectively between two adjacent vanes are, since then those between the heat shields existing column are least loaded
Die Minihitzeschilde sind typischerweise als individuelle, an die Strömungsform angepasste im wesentlichen plattenförmige Wärmestauelemente ausgebildet, welche über formschlüssige und/oder kraftschlüssige und/oder stoffschlüssige Mittel an einer stromaufwärtigen Erweiterung des Turbinenträgers oder an einem am Turbinenträger befestigten zusätzlichen Turbinenträgerelement befestigt sind.The miniature heat shields are typically formed as individual, adapted to the flow shape substantially plate-shaped heat accumulation elements, which are attached via positive and / or non-positive and / or cohesive means to an upstream extension of the turbine carrier or on an attached to the turbine support additional turbine support member.
Die Hitzeschilde verfügen üblicherweise wenigstens auf der den in der Brennkammer strömenden Heissgasen zugewandten Seite über eine Wärmedämmschicht, die beispielsweise eine keramische Schicht istThe heat shields usually have at least on the side facing the hot gases flowing in the combustion chamber on a heat insulating layer, which is for example a ceramic layer
Der vorgelagerte Spalt geht typischerweise auf der der Brennkammer abgewandten Rückseite in eine Kavität über, und diese Kavität kann sich dann zum Beispiel in im wesentlichen axialer Richtung erstrecken, so beispielsweise in Form eines um die Achse der Gasturbine im wesentlichen umlaufenden, einen Zylindermantel bildenden Spaltes.The upstream gap typically transitions into a cavity on the rear side facing away from the combustion chamber, and this cavity can then extend, for example, in a substantially axial direction, for example in the form of a gap which essentially surrounds the axis of the gas turbine and forms a cylinder jacket.
Alternativ ist es möglich, dass der vorgelagerte Spalt auf der der Brennkammer abgewandten Rückseite in eine Kavität übergeht, und dass sich diese Kavität im wesentlichen in radialer Richtung erstreckt, so also beispielsweise in Form eines um die Achse der Gasturbine im wesentlichen umlaufenden, gewissermassen eine Kreisscheibe bildenden Spaltes.Alternatively, it is possible that the upstream gap merges into a cavity on the rear side facing away from the combustion chamber, and that this cavity extends substantially in the radial direction, that is, for example, in the form of a substantially circulating around the axis of the gas turbine, so to speak, a circular disk forming gap.
Es ist aber auch möglich, dass der Spalt eine Verlaufsrichtung zwischen diesen beiden Richtungen (axial/radial) aufweist.But it is also possible that the gap has a course direction between these two directions (axial / radial).
Weitere Ausführungsformen sind in den abhängigen Ansprüchen angegeben.Further embodiments are given in the dependent claims.
Bevorzugte Ausführungsformen der Erfindung werden im Folgenden anhand der Zeichnungen beschrieben, die lediglich zur Erläuterung dienen und nicht einschränkend auszulegen sind. In den Zeichnungen zeigen:
- Fig. 1
- einen schematischen axialen Schnitt durch den radial äußeren Strömungsbereich beim Austritt der Brennkammer, das heißt beim Übergangsbereich von der Brennkammer zur ersten Leitschaufelreihe, bei einer Konstruktion nach dem Stand der Technik;
- Fig. 2
- einen schematischen axialen Schnitt durch den radial äußeren Strömungsbereich beim Austritt der Brennkammer bei einer Bauweise nach einem ersten Ausführungsbeispiel nach der Erfindung;
- Fig. 3
- einen schematischen axialen Schnitt durch den radial äußeren Strömungsbereich beim Austritt der Brennkammer bei einer Bauweise nach einem zweiten Ausführungsbeispiel nach der Erfindung; und
- Fig. 4
- einen schematischen axialen Schnitt durch den radial äußeren Strömungsbereich beim Austritt der Brennkammer bei einer Bauweise nach einem dritten Ausführungsbeispiel nach der Erfindung.
- Fig. 1
- a schematic axial section through the radially outer flow region at the outlet of the combustion chamber, that is at the transition region from the combustion chamber to the first row of guide vanes, in a construction according to the prior art;
- Fig. 2
- a schematic axial section through the radially outer flow region at the outlet of the combustion chamber in a construction according to a first embodiment of the invention;
- Fig. 3
- a schematic axial section through the radially outer flow region at the outlet of the combustion chamber in a construction according to a second embodiment of the invention; and
- Fig. 4
- a schematic axial section through the radially outer flow region at the outlet of the combustion chamber in a construction according to a third embodiment of the invention.
In der Folge soll anhand der Figuren erläutert werden, wie der Übergangsbereich zwischen der Brennkammer und der ersten Leitschaufelreihe vorzugsweise ausgestaltet werden kann. Im Zusammenhang mit den nun diskutierten Figuren wird jeweils nur die Situation auf der radialen Aussenseite vorgestellt, die hier gemachten Überlegungen finden aber ganz analog auch für die radiale Innenseite Anwendung, d.h. für die nabenseitige Wandbegrenzung beim Übergang der Brennkammer zur ersten Leitschaufelreihe.In the following, it will be explained with reference to the figures how the transition region between the combustion chamber and the first row of guide vanes can be preferably configured. In connection with the figures which are now discussed, only the situation on the radial outside is presented in each case, but the considerations made here apply quite analogously also to the radial inner side, ie. for the hub-side wall boundary at the transition of the combustion chamber to the first row of guide blades.
Stromaufwärts dieser ersten Leitschaufelreihe 1 befindet sich die Brennkammer 9 und diese wird typischerweise über ein oder mehrere Hitzeschilder 7, die an einer Brennkammerstruktur 6 befestigt sind, begrenzt. Diese Hitzeschilder 7 sind typischerweise plattenförmig ausgebildet und verfügen auf der den Heissgasen ausgesetzten Seite über thermische Schutzschichten.Upstream of this first row of
Die Heissgase strömen, wie dies schematisch durch den Pfeil 10 angedeutet wird, in im wesentlichen axialer Richtung stromabwärts der Brenner, welche in
Der Spalt 17 zwischen den Hitzeschild 7 und dem Hitzeschild 13 ist nun wesentlich weiter stromaufwärts verschoben, namentlich ist der vorgelagerte Spalt 17 jetzt auch noch an der erweiterten Wandungszone der Brennkammer 9 angeordnet. Zudem verläuft die hinter diesem vorgelagerten Spalt 17 angeordnete Kavität 20 nicht mehr wie nach dem Stand der Technik in radialer Richtung sondern als axiale Kavität 20' in axialer Richtung 25, was weitere Vorteile haben kann, insbesondere dass dieser Spalt mit einem Spaltmass d' realisiert werden kann, welches wesentlich geringer ist, als das Spaltmass, wenn der entsprechende Spalt gewissermassen in radialer Richtung verläuft, wie dies z.B. in
Ein zweites Ausführungsbeispiel ist in
Die einzelnen Minihitzeschilde sind dabei in Form gewissermassen von Segmenten um den Unfang der Ringbrennkammer herum verteilt. Die Anzahl derartiger Hitzeschilde kann dabei, wie oben erläutert, entweder in Abhängigkeit der Anzahl der Brenner, der Anzahl der Brennkammerhitzeschilde oder in Abhängigkeit der Anzahl der Leitschaufeln 2 gewählt werden. Zwischen den einzelnen Hitzeschilden respektive den Segmenten von solchen Hitzeschilden verbleiben i.d.R. axial verlaufende Spalte 24, welche in
Claims (13)
- Gas turbine (22) with at least one combustion chamber (9) and a first guide vane row (2) of a turbine (21) arranged substantially immediately downstream thereof, wherein the radially outer and/or radially inner delimitation of the combustion chamber (9) is formed by at least one outer or inner heat shield (7) respectively which is attached to at least one combustion chamber structure (6) arranged radially outside or radially inside respectively, and wherein the flow path of the hot gases (10) in the region of the guide vane row (2) is delimited radially outwardly and/or radially inwardly by an outer or inner vane platform (3) respectively which is attached at least indirectly to at least one turbine carrier (4),
characterised in that a plurality of platform-like mini heat shields (13) is arranged on a widening (4') of the turbine carrier (4) extending upstream, or on a turbine carrier element (18) arranged upstream of the turbine carrier (4) and attached thereto, upstream of the first guide vane row (2) and substantially adjacent to the vane platform (3) and in the flow direction (10) between the heat shield (7) and the vane platform (3), and between these, forming the flow wall, in the form of a course adapted to the flow,
wherein an upstream gap (17) is present between the mini heat shields (13) and the heat shields (7). - Gas turbine (22) according to claim 1, characterised in that a plurality of mini heat shields (13) is arranged around the periphery of the wall of the combustion chamber (9), between which preferably substantially axial gaps (24) or gaps running substantially in the main flow direction (10) are present, wherein preferably means are provided for applying a cooling air flow to these gaps, and/or seals are provided in these gaps (24).
- Gas turbine (22) according to any of the preceding claims, characterised in that a substantially circumferential gap (23) is present between the vane platform (3) and the mini heat shields (13), which gap preferably has a gap width (d) in the axial direction in the range from 1 - 5 mm, preferably in the range from 2 - 4 mm, wherein furthermore preferably means are provided which apply a cooling air flow to this circumferential gap (23).
- Gas turbine (22) according to any of the preceding claims, characterised in that the mini heat shield (13) has a length in the axial direction (25) in the range from 5 - 500 mm, preferably in the range from 10 - 350 mm.
- Gas turbine (22) according to any of the preceding claims, characterised in that the upstream gap (17) is arranged at a point at which the wall of the combustion chamber is arranged conically tapering, and wherein preferably the gap dimension (d') in the radial direction (26) preferably lies in the range from 0.1 - 20 mm, preferably in the range from 0.5 - 20 mm, and/or wherein preferably the gap dimension (d") in the axial direction (25) preferably lies in the range from 0.1 - 20 mm, preferably in the range from 0.5 - 20 mm.
- Gas turbine (22) according to any of the preceding claims, characterised in that means are provided for applying cooling air to the upstream gap (17) and in particular to a cavity (20) arranged behind this, wherein preferably in the inlet area of such a cavity at least one step element is arranged which reduces the width of the cavity by at least 10% in at least one step running substantially perpendicular to the flow direction of the hot gas in the cavity (20), wherein preferably such a step element is configured circumferentially relative to the axis of the turbine.
- Gas turbine (22) according to any of the preceding claims, characterised in that the number of combustion chamber heat shields (7) is an integral multiple of the number of mini heat shields (13), or the number of mini heat shields (13) is an integral multiple of the number of combustion chamber heat shields (7).
- Gas turbine (22) according to any of the preceding claims, characterised in that the number of mini heat shields (13) is an integral multiple of the number of guide vanes (2) of the first guide vane row (131), or the number of guide vanes (2) of the first guide vane row is an integral multiple of the number of mini heat shields (13).
- Gas turbine (22) according to any of the preceding claims, characterised in that the mini heat shields (13) are configured as individual heat build-up elements adapted to the flow form, which are attached to the extension (4') of the turbine carrier and/or to the additional turbine carrier element (18) attached to the turbine carrier (4) via form-fit and/or force-fit and/or material-fit means (14, 15).
- Gas turbine (22) according to claim 11, characterised in that the heat shields (13) have a thermal barrier layer at least on the side facing the hot gases flowing into the combustion chamber.
- Gas turbine (22) according to any of the preceding claims, characterised in that on the back side facing away from the combustion chamber (9), the upstream gap (17) transforms into a cavity (20), and that this cavity (20) extends substantially in the axial direction (25), preferably in the form of a gap (20') running substantially around the axis of the gas turbine (22) and forming a cylinder casing.
- Gas turbine according to any of the preceding claims, characterised in that the contour of the ring chamber formed by the mini heat shields (13) is not circular over its entire axial extension, but starting from the circle form has slight local bulges which are normal to the direction of the hot gas flow (10), in order to increase or reduce the static pressure locally and hence as a whole improve the uniformity of the static pressure distribution in the circumferential direction in the region of the upstream gap (17).
- Gas turbine according to any of the preceding claims, characterised in that on the back side facing away from the combustion chamber (9), the upstream gap (17) transforms into a cavity (20), and that this cavity (20) extends substantially in the radial direction (26), preferably in the form of a gap (20") running substantially around the axis of the gas turbine (22) and forming a circular disc.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11179039.0A EP2428647B1 (en) | 2010-09-08 | 2011-08-26 | Transitional Region for a Combustion Chamber of a Gas Turbine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10175744 | 2010-09-08 | ||
EP11179039.0A EP2428647B1 (en) | 2010-09-08 | 2011-08-26 | Transitional Region for a Combustion Chamber of a Gas Turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2428647A1 EP2428647A1 (en) | 2012-03-14 |
EP2428647B1 true EP2428647B1 (en) | 2018-07-11 |
Family
ID=43513986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11179039.0A Active EP2428647B1 (en) | 2010-09-08 | 2011-08-26 | Transitional Region for a Combustion Chamber of a Gas Turbine |
Country Status (2)
Country | Link |
---|---|
US (1) | US9097118B2 (en) |
EP (1) | EP2428647B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2728255A1 (en) | 2012-10-31 | 2014-05-07 | Alstom Technology Ltd | Hot gas segment arrangement |
EP3017253B1 (en) * | 2013-09-11 | 2017-04-26 | Siemens Aktiengesellschaft | Ceramic heat shield for a gas turbine combustion chamber, combustion chamber for a gas turbine and method |
EP3141702A1 (en) * | 2015-09-14 | 2017-03-15 | Siemens Aktiengesellschaft | Gas turbine guide vane segment and method of manufacturing |
DE102017207392A1 (en) * | 2017-05-03 | 2018-11-08 | Siemens Aktiengesellschaft | Silo combustion chamber and method for converting such |
US11702991B2 (en) * | 2020-09-30 | 2023-07-18 | General Electric Company | Turbomachine sealing arrangement having a heat shield |
CN113006880B (en) * | 2021-03-29 | 2022-02-22 | 南京航空航天大学 | Cooling device for end wall of turbine blade |
CN115789700B (en) * | 2022-11-14 | 2025-01-21 | 中国航发湖南动力机械研究所 | Connection structure of large curved pipe of recirculation combustion chamber and turbine and aircraft engine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3797236A (en) * | 1971-06-11 | 1974-03-19 | Rolls Royce | Annular combustion chamber with ceramic annular ring |
US4016718A (en) * | 1975-07-21 | 1977-04-12 | United Technologies Corporation | Gas turbine engine having an improved transition duct support |
US4567730A (en) * | 1983-10-03 | 1986-02-04 | General Electric Company | Shielded combustor |
DE50107283D1 (en) | 2001-06-18 | 2005-10-06 | Siemens Ag | Gas turbine with a compressor for air |
JP3840556B2 (en) * | 2002-08-22 | 2006-11-01 | 川崎重工業株式会社 | Combustor liner seal structure |
US7363763B2 (en) | 2003-10-23 | 2008-04-29 | United Technologies Corporation | Combustor |
EP1650503A1 (en) * | 2004-10-25 | 2006-04-26 | Siemens Aktiengesellschaft | Method for cooling a heat shield element and a heat shield element |
EP1666797A1 (en) * | 2004-12-01 | 2006-06-07 | Siemens Aktiengesellschaft | Heat shield element, method for manufacturing the same, heat shield and combustor |
EP1731715A1 (en) * | 2005-06-10 | 2006-12-13 | Siemens Aktiengesellschaft | Transition between a combustion chamber and a turbine |
EP1767835A1 (en) * | 2005-09-22 | 2007-03-28 | Siemens Aktiengesellschaft | Sealing arrangement resistant to high temperatures, in particular for gas turbines |
WO2009019282A2 (en) | 2007-08-06 | 2009-02-12 | Alstom Technology Ltd | Gap cooling between a combustion chamber wall and a turbine wall of a gas turbine installation |
US8418474B2 (en) * | 2008-01-29 | 2013-04-16 | Alstom Technology Ltd. | Altering a natural frequency of a gas turbine transition duct |
US20100071377A1 (en) * | 2008-09-19 | 2010-03-25 | Fox Timothy A | Combustor Apparatus for Use in a Gas Turbine Engine |
EP2206885A1 (en) * | 2009-01-08 | 2010-07-14 | Siemens Aktiengesellschaft | Gas turbine |
US8448416B2 (en) * | 2009-03-30 | 2013-05-28 | General Electric Company | Combustor liner |
-
2011
- 2011-08-26 EP EP11179039.0A patent/EP2428647B1/en active Active
- 2011-09-06 US US13/226,020 patent/US9097118B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US9097118B2 (en) | 2015-08-04 |
EP2428647A1 (en) | 2012-03-14 |
US20120060503A1 (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2428647B1 (en) | Transitional Region for a Combustion Chamber of a Gas Turbine | |
EP3056813B1 (en) | Seal of an edge gap between effusion shingle of a gas turbine combustor | |
DE3510230C2 (en) | Combustion chamber for a gas turbine engine | |
DE60318792T2 (en) | Bleed air housing for a compressor | |
EP2696037B1 (en) | Sealing of the flow channel of a fluid flow engine | |
EP2179143B1 (en) | Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation | |
DE1476795A1 (en) | Intermediate nozzle floor, especially for gas turbines | |
EP2927594B1 (en) | Combustion chamber of a gas turbine | |
EP1276972B1 (en) | Turbine | |
EP2132414B1 (en) | Shiplap arrangement | |
DE102008037501A1 (en) | Gas turbines with flexible tendon joint seals | |
DE102015212573A1 (en) | Gas turbine combustor with integrated turbine guide wheel and method for its production | |
EP3051068A1 (en) | Guide blade ring for a flow engine and additive manufacturing method | |
EP2466074A1 (en) | Gas turbine engine with piston ring sealing device | |
EP2818643B1 (en) | Sealing device and turbo-machine | |
EP2344723B1 (en) | Gas turbine with seal plates on the turbine disk | |
DE102016207057A1 (en) | Gas turbine combustor | |
DE102016104957A1 (en) | Cooling device for cooling platforms of a vane ring of a gas turbine | |
DE3428206C2 (en) | Stator arrangement in a gas turbine | |
EP2526263B1 (en) | Housing system for an axial turbomachine | |
EP3139007B1 (en) | Device for limiting a flow channel of a turbomachine | |
EP1653049B1 (en) | Vane ring assembly for gas turbines and method to modify the same | |
EP2980481A1 (en) | Aircraft gas turbine having a seal for sealing a spark plug to the combustor chamber wall of a gas turbine | |
DE102010036071A1 (en) | Housing-side structure of a turbomachine | |
EP2725203B1 (en) | Cool air guide in a housing structure of a fluid flow engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120907 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ANSALDO ENERGIA IP UK LIMITED |
|
INTG | Intention to grant announced |
Effective date: 20180130 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ANSALDO ENERGIA IP UK LIMITED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ANSALDO ENERGIA IP UK LIMITED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1017088 Country of ref document: AT Kind code of ref document: T Effective date: 20180715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011014428 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180711 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181011 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181011 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181012 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181111 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011014428 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180826 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
26N | No opposition filed |
Effective date: 20190412 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180911 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1017088 Country of ref document: AT Kind code of ref document: T Effective date: 20180826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180826 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180711 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240819 Year of fee payment: 14 |