EP2421657A1 - Nozzle capable of maximizing the quantity of movement produced by a two-phase flow through the relief of a saturating flow - Google Patents
Nozzle capable of maximizing the quantity of movement produced by a two-phase flow through the relief of a saturating flowInfo
- Publication number
- EP2421657A1 EP2421657A1 EP10715995A EP10715995A EP2421657A1 EP 2421657 A1 EP2421657 A1 EP 2421657A1 EP 10715995 A EP10715995 A EP 10715995A EP 10715995 A EP10715995 A EP 10715995A EP 2421657 A1 EP2421657 A1 EP 2421657A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- flow
- phase
- convergent
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000009738 saturating Methods 0.000 title claims abstract description 23
- 230000005514 two-phase flow Effects 0.000 title claims description 7
- 239000012808 vapor phase Substances 0.000 claims abstract description 13
- 239000007791 liquid phase Substances 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 28
- 239000012071 phase Substances 0.000 claims description 22
- 230000002040 relaxant effect Effects 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 230000008020 evaporation Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000012455 biphasic mixture Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/34—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
- B05B1/3405—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
- B05B1/341—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
- B05B1/3415—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with swirl imparting inserts upstream of the swirl chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B11/00—Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
- F03B11/02—Casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/16—Stators
- F03B3/18—Stator blades; Guide conduits or vanes, e.g. adjustable
- F03B3/186—Spiral or volute casings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Definitions
- Nozzle capable of maximizing the amount of movement produced by a two-phase flow coming from the expansion of a saturating flow
- the invention lies in the field of ejectors and nozzles used as expansion members in turbines.
- these devices are designed to convert the energy of pressure into kinetic energy, this kinetic energy being used to produce a work, for example to rotate augers, turbine blades or, in the case of ejectors , to suck a flow.
- Figures 1 to 4 illustrate this phenomenon.
- Figure 1 shows a nozzle 1 according to the state of the art.
- This nozzle 1 comprises a convergent 2, a neck 3, and a moderate angle divergent 4.
- a saturating liquid flow D enters the nozzle 1 through the convergent 2, and travels this nozzle from right to left through the neck 3 then the moderate divergence 4.
- FIG. 2 shows the abscissa of the measured pressure of the flow rate D during its course in the nozzle 1 of FIG. 1, and the ordinate the mass velocity pV, product of the density p by the velocity V. Note that this mass velocity is maximum at the neck 3, (marked by the vertical line).
- FIG. 1 shows a nozzle 1 according to the state of the art.
- This nozzle 1 comprises a convergent 2, a neck 3, and a moderate angle divergent 4.
- a saturating liquid flow D enters the nozzle 1 through the convergent 2, and travels this nozzle from right to left through the neck 3 then
- FIG. 4 represents the evolution of the speed (V, expressed in m / s) of the flow rate D as a function of the pressure (P, expressed in MPa) during its course in the nozzle 1.
- the invention aims to overcome the disadvantages of that of the prior art by proposing, in a first aspect, a nozzle capable of maximizing the amount of movement produced by a two-phase liquid / vapor flow from the expansion of a saturating liquid.
- ejectors such as two-phase turbines can achieve higher energy performance especially for refrigeration systems or heat pumps with isenthalpe expansion valves.
- FIG. 5 illustrates a vapor compression refrigeration cycle, in the form of a T / S diagram, in which the mass entropy S
- Such isenthalpe expansion is far from achieving the performance of the ideal isentropic expansion, illustrated in FIG. 5 by the transition between the high condensation pressure (point 103) and the theoretical point (point 1O4 IS ).
- point 103 the high condensation pressure
- point 1O4 IS the theoretical point
- the amount of steam generated is minimal and the difference in the evaporation entropy of the saturating liquid is much greater than in the case of the isenthalpe expansion.
- FIGS. 6A to 6C show an ejector 60 of the prior art.
- This ejector mainly comprises a nozzle i as described with reference to FIG. 1 and a hollow body 62.
- the role of the nozzle 1 is to relax a high-pressure flushing liquid flow PFISI up to a theoretical low pressure Pth_ F is3 by increasing its speed, in order to cause a flow rate of fluid F2 at pressure PF2S2 significantly lower than PFISI .
- This fluid flow rate F 2 is usually a steam flow rate from the evaporation of a fluid at evaporation pressure PF2S2 less than the pressure P F isi and the pressure P ⁇ h_Meiss of the mixture after ejection.
- the hollow body 62 has a convergent 63, a mixing chamber 64 of constant section S4 and a conical divergent 65 of maximum section S5.
- the flow Fl enters the nozzle 1 at the section S1 and expands into a two-phase primary flow until it leaves the section S3.
- VFISI the speed of the primary flow Fl at section S1
- - PFISI the pressure of the primary flow Fl at the section S1;
- Pp2 S 2 the pressure of the secondary flow F2 at section S2;
- V ⁇ h ⁇ F2S3 the theoretical speed of the secondary flow F2 at section S3.
- the primary flow Fl and secondary flow F2 begin to mix in the convergent 63 at constant pressure and then enter the mixing chamber 64 in which a biphasic mixture is formed at theoretical velocity V ⁇ h_Meis4 and theoretical pressure P ⁇ hj "s4-
- the divergent 65 forms a diffuser for decelerating the two-phase mixing of fluid flows Fl and F2 up to a speed V ⁇ h_Meiss and transforming the kinetic energy into potential energy pressure.
- the pressure of the mixture increases in the divergent 65 to a theoretical outlet pressure Pm .
- FIGS. 6B and 6C This state of affairs is represented in FIGS. 6B and 6C on which the pressures and speeds defined above are respectively represented, the theory being represented in solid line, and the performance of the prior art in bold dashed line.
- the invention also relates to an ejector which does not have the disadvantages of the current state of the art.
- the invention relates to a nozzle capable of relaxing a saturating flow.
- This nozzle comprises a convergent, a neck, a tube, and a mixing element located in the tube, downstream of the neck, the mixing element being able to split the saturating liquid phase to mix with the vapor phase.
- the nozzle according to the invention aims to mix the vapor and liquid phases of the saturating liquid downstream of the neck, whereas in the current state of the art, it is sought to treat these two phases separately
- the Applicant has found that in the nozzles of the prior art, the liquid and the vapor are separated at the outlet of the neck, at the level of enlargement. Downstream of the neck, she noted a slippage between the liquid phase and the vapor phase: the vapor phase seeking to occupy the entire volume allotted to it spreads around the periphery of the central liquid flow. Therefore, the liquid jet at the outlet of the convergent is not accelerated by the steam formed by the trigger, the latter being placed at the periphery of the liquid jet.
- the invention therefore proposes mixing the vapor and liquid phases, which, as will be demonstrated later, considerably increases the amount of movement produced by the two-phase liquid / vapor flow coming from the expansion of the saturating liquid.
- the tube is a divergent section increasing, for example conical.
- the opening of this cone may be chosen to maintain the constant mass flow rate during the acceleration of the two-phase flow rate.
- the moderate conical divergent 4 may be replaced by a cylindrical tube.
- the convergent nozzle according to the invention comprises a needle to vary the neck section.
- the aforementioned mixing element is a fixed helix.
- this helix can be mobile.
- the mixing element may comprise forms of revolution of increasing sections.
- the nozzle according to the invention can be used in many devices, and in particular in an ejector, in a Hero turbine, in a Pelton turbine, or in a Francis turbine. More specifically, the invention also relates to an ejector comprising a body cr ⁇ ux r this hollow body having a convergent, a mixing chamber and a divergent, this ejector comprising, in the convergent, an expansion nozzle as mentioned above, the nozzle being adapted to to relax a primary flow of saturating liquid, in order to cause a secondary flow introduced into the convergent around this nozzle.
- the invention thus makes it possible to satisfactorily mix the vapor and liquid phases of the primary flow, and to drive the secondary flow much more efficiently than in the ejectors of the state of the art. This gives a real output pressure very close to the theoretical output pressure.
- the invention also relates to a Hero turbine comprising one or more hollow arms movable in rotation about an axis, this axis supplying the hollow arm (s) with a saturating liquid, this turbine comprising an expansion nozzle as mentioned above in FIG. end of each of the hollow arms.
- the invention also relates to a Pelton turbine comprising at least two buckets integral with a wheel that is rotatable about an axis, this turbine comprising at least one expansion nozzle as mentioned above, capable of projecting a two-phase jet in direction of the buckets.
- the invention also relates to a Francis-type turbine comprising at least one expansion nozzle as mentioned above and capable of projecting a two-phase jet towards the inside of a rotor of said turbine.
- the ejector according to the invention comprises a second mixing element, partly in the mixing chamber and partly in the diverging portion. This characteristic favors the mixing of the two-phase flow of the primary flow at the outlet of the nozzle with the secondary flow.
- FIG. 1 shows a nozzle of the prior art
- Figures 2 to 4 show pressure and velocity values of a saturating flow flowing in the nozzle of Figure 1
- Fig. 5 is a T / S diagram illustrating a vapor compression refrigeration cycle
- Figure 6 shows an ejector of the prior art
- FIGS. 6B and 6C show pressure and velocity values of the primary and secondary flows flowing in the ejector of FIG. 6A
- Figures 7A and 7B show a nozzle according to a particular embodiment of the invention
- FIG. 8 represents a mixing element that can be used in the invention.
- FIG. 9 shows pressure and velocity values of a saturating flow flowing in the nozzle of FIGS. 7A and 7B;
- FIGS. 10A and 10B show a Hero turbine according to a first particular embodiment of the invention;
- FIG. 10C schematically represents a Hero turbine according to a second particular embodiment of the invention;
- FIG. 11 represents a Pelton turbine according to a particular embodiment of the invention
- - Figure 12 shows a Francis turbine according to a particular embodiment of the invention
- Figure 13A shows an ejector according to a particular embodiment of the invention
- FIGS. 13B and 13C show pressure and velocity values of the primary and secondary flows flowing in the ejector of FIG. 13A
- Figures 7A and 7B show a nozzle 10 according to the invention. It is distinguished from the nozzle 1 of Figure 1 in that it comprises a mixing element 5 downstream of the neck 3, able to create a homogeneous mixture of vapor and liquid phases in the moderate divergent 4, this having the consequence of considerably increase the amount of movement of the phase flow at the output of the divergent 4.
- the moderate divergent 4 of the nozzle 10 according to the invention has a slightly flared conical shape to keep the mass flow rate constant during the acceleration of the two-phase flow rate.
- the mixing element 5 is constituted by a fixed helix shown in FIG.
- FIG. 9 represents, in solid bold line, the evolution of the speed V of the flow rate D as a function of the pressure during its course in the nozzle 10. This figure repeats the curves of FIG. 4 for comparison purposes. It makes it possible to demonstrate that the introduction of the mixing element 5, in the form of a helix, downstream of the neck 3 makes it possible to approach the theoretical curve (in solid line).
- the speed of the flow D at the outlet of the nozzle 10 can be adjusted by varying the outlet diameter ⁇ 6 of this nozzle.
- the flow rate at the outlet of the nozzle 10 according to the invention is equal to 110 m / s, much greater than the speed of 20 m / s obtained in the absence of mixer 5.
- the nozzle 10 according to the invention may in particular be integrated in a turbine or in a two-phase ejector.
- FIGS. 10A and 10B respectively show, in front view and in plan view, a two-phase turbine 20 of the Hero type according to the invention.
- this turbine 20 comprises two hollow arms 21, each of these arms having at its end, a nozzle 10 according to the invention.
- the hollow arms 21 are rotatable about a hollow axis 22 adapted to supply these hollow arms with a saturating liquid. It will be recalled that in a Hero-type turbine, the work is recovered directly on the axis 22 thanks to the impetus of the jets that start tangentially from the arms 21.
- FIG. 10C shows another turbine 20 'of the Hero type according to the invention, with eight hollow arms 21' distributed around an axis 22 'for supplying saturating liquid, each arm 21' comprising a nozzle 10 conforming to FIG. invention, not shown.
- FIG. 11 represents a two-phase turbine 30 of the Pelton type according to the invention.
- This turbine 30 comprises two nozzles 10 according to the invention, the two-phase jets at the outlet of these nozzles coming to hit buckets 31 integral with a movable wheel 32 to set it in motion.
- FIG. 12 represents a two-phase turbine 40 of the Francis type according to the invention.
- This turbine 40 comprises eight nozzles 10 according to the invention, the two-phase jets at the outlet of these nozzles being directed towards the inside of a rotor 42.
- FIG. 13 shows an ejector 70 according to the invention.
- the ejector 60 of the state of the art comprises, in replacement of the nozzle 1, a nozzle 10 according to the invention, the helix 5 generates a vortex for mixing the vapor and liquid phases of the primary flow Fl.
- FIGS. 13B and 13 C The pressures and speeds obtained in the ejector 70 according to the invention are respectively represented in FIGS. 13B and 13 C.
- the actual velocity V BuS eio ⁇ Fis3 of the primary flow Fl at section S3 of this nozzle 10 is very close to the theoretical velocity V ⁇ h _ F is 3 -
- the ejector 70 comprises a second fixed helix 5 that can be placed in or out of the mixing chamber 64.
- This second helix favors the mixing of the phases of the two-phase flow of the primary flow Fl with the secondary flow F2.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Jet Pumps And Other Pumps (AREA)
Abstract
Description
Buse apte à maximaliser la quantité de mouvement produite par un écoulement diphasique provenant de Ia détente d'un débit saturant Nozzle capable of maximizing the amount of movement produced by a two-phase flow coming from the expansion of a saturating flow
Arrière-plan de l'inventionBackground of the invention
L'invention se situe dans le domaine des éjecteurs et des buses utilisés comme organes de détente dans les turbines.The invention lies in the field of ejectors and nozzles used as expansion members in turbines.
D'une façon générale, ces dispositifs sont conçus pour transformer l'énergie de pression en énergie cinétique, cette énergie cinétique étant utilisée pour produire un travail, par exemple pour faire tourner des augets, des aubes de turbine ou, dans le cas des éjecteurs, pour aspirer un débit.In general, these devices are designed to convert the energy of pressure into kinetic energy, this kinetic energy being used to produce a work, for example to rotate augers, turbine blades or, in the case of ejectors , to suck a flow.
Ces dispositifs sont couramment utilisés pour détendre de la vapeur ou des liquides très sous-refroidis. En revanche l'utilisation d'éjecteurs ou de buses pour détendre des liquides saturants reste marginale, l'apparition d'une phase vapeur limitant considérablement la quantité de mouvement de l'écoulement diphasique liquide / vapeur après détente.These devices are commonly used to relax steam or very subcooled liquids. However the use of ejectors or nozzles to relax saturating liquids remains marginal, the appearance of a vapor phase significantly limiting the amount of movement of the two-phase liquid / vapor after expansion.
Les figures 1 à 4 illustrent ce phénomène. La figure 1 représente une buse 1 conforme à l'état actuel de la technique. Cette buse 1 comporte un convergent 2, un col 3, et un divergent à angle modéré 4. Un débit de liquide saturant D entre dans la buse 1 par le convergent 2, et parcourt cette buse de droite à gauche en passant par le col 3 puis le divergent modéré 4. La figure 2 présente en abscisse la pression mesurée du débit D lors de son parcours dans la buse 1 de la figure 1, et en ordonnée la vitesse massique p.V, produit de la masse volumique p par la vitesse V. On remarque que cette vitesse massique est maximale au niveau du col 3, (repéré par le trait vertical). La figure 3 représente l'évolution de la masse volumique homogène liquide-vapeur (p, exprimée en kg/m3) du débit D en fonction de la pression (P, exprimée en MPa) lors de son parcours dans la buse i. Ces résultats, obtenus par calcul, enseignent que Ia masse volumique p diminue avec l'apparition de Ia phase vapeur lors de Ia décroissance de pression le long de Ia buse.Figures 1 to 4 illustrate this phenomenon. Figure 1 shows a nozzle 1 according to the state of the art. This nozzle 1 comprises a convergent 2, a neck 3, and a moderate angle divergent 4. A saturating liquid flow D enters the nozzle 1 through the convergent 2, and travels this nozzle from right to left through the neck 3 then the moderate divergence 4. FIG. 2 shows the abscissa of the measured pressure of the flow rate D during its course in the nozzle 1 of FIG. 1, and the ordinate the mass velocity pV, product of the density p by the velocity V. Note that this mass velocity is maximum at the neck 3, (marked by the vertical line). FIG. 3 represents the evolution of the homogeneous liquid-vapor density (p, expressed in kg / m 3 ) of the flow rate D as a function of the pressure (P, expressed in MPa) during its course in the nozzle i. These results, obtained by calculation, teach that the density p decreases with the appearance of the vapor phase during the pressure decrease along the nozzle.
La figure 4 représente l'évolution de la vitesse (V, exprimée en m/s) du débit D en fonction de la pression (P, exprimée en MPa) lors de son parcours dans la buse 1.FIG. 4 represents the evolution of the speed (V, expressed in m / s) of the flow rate D as a function of the pressure (P, expressed in MPa) during its course in the nozzle 1.
Ces résultats, obtenus par des essais, démontrent que l'accroissement réel de la vitesse du mélange diphasique provenant de la baisse de masse volumique due à la vaporisation partielle du liquide (courbe en pointillés) s'éloigne fortement de l'évolution théorique (courbe en trait plein).These results, obtained by tests, show that the real increase in the speed of the two-phase mixture resulting from the drop in density due to the partial vaporization of the liquid (dashed curve) deviates significantly from the theoretical evolution (curve in full line).
Ces mauvaises performances ont limité terriblement le développement des turbines diphasiques, certains pensant même que celles-ci ne présentent pas d'intérêt industriel. L'invention vise à palier les inconvénients de celle de l'art antérieur en proposant, selon un premier aspect, une buse apte à maximaliser la quantité de mouvement produit par un écoulement diphasique liquide / vapeur provenant de la détente d'un liquide saturant.These poor performances have severely limited the development of two-phase turbines, some even thinking that these are not of industrial interest. The invention aims to overcome the disadvantages of that of the prior art by proposing, in a first aspect, a nozzle capable of maximizing the amount of movement produced by a two-phase liquid / vapor flow from the expansion of a saturating liquid.
Par ailleurs, il est connu que les éjecteurs comme les turbines diphasiques permettent d'obtenir des performances énergétiques supérieures en particulier pour les systèmes frigorifiques ou les pompes à chaleur dotées de détendeurs isenthalpes.Furthermore, it is known that ejectors such as two-phase turbines can achieve higher energy performance especially for refrigeration systems or heat pumps with isenthalpe expansion valves.
A ce jour, les turbines et les éjecteurs sont largement utilisés pour détendre des liquides qui restent liquide ou des vapeurs qui restent principalement vapeur ; ces évolutions thermodynamiques de détente s'approchent de la détente idéale isentropique. Cette détente isentropique fixe, pour un écart de pression donné et pour la détente d'un liquide, la fraction minimale de vapeur qui peut être générée à partir de la détente de ce liquide saturant haute pression. La figure 5 illustre un cycle frigorifique à compression de vapeur, sous forme d'un diagramme T/S, dans lequel l'entropie massique STo date, turbines and ejectors are widely used to relax liquids that remain liquid or vapors that remain mainly vapor; these thermodynamic evolutions of relaxation approach the ideal isentropic relaxation. This isentropic expansion fixes, for a given pressure difference and for the expansion of a liquid, the minimum fraction of vapor that can be generated from the expansion of this high pressure saturating liquid. FIG. 5 illustrates a vapor compression refrigeration cycle, in the form of a T / S diagram, in which the mass entropy S
(exprimée en kJ/kg.K) et la température T (exprimée en Kelvin) sont respectivement représentées en abscisse et en ordonnée. Ce diagramme illustre :(expressed in kJ / kg.K) and the temperature T (expressed in Kelvin) are respectively represented on the abscissa and on the ordinate. This diagram illustrates:
- entre les états 101 et 102, une compression du fluide frigorigène en phase vapeur, de la basse pression d'évaporation à la haute pression de condensation ; et - entre les états 102 et 103, une phase de désurchauffe de la vapeur suivie d'une condensation dans laquelle le liquide frigorigène devient liquide saturant.between the states 101 and 102, a compression of the refrigerant in the vapor phase, from the low evaporation pressure to the high condensation pressure; and between the states 102 and 103, a desuperheating phase of the steam followed by a condensation in which the refrigerant becomes a saturating liquid.
La transition entre le point 103 (haute pression de condensation) et le point 104ith (basse pression d'évaporation) illustre la détente isenthalpe de l'état actuel de la technique. La quantité de vapeur générée au cours de cette détente est maximale.The transition between point 103 (high condensing pressure) and point 104 ith (low evaporation pressure) illustrates the isenthalpe expansion of the current state of the art. The amount of steam generated during this expansion is maximum.
Une telle détente isenthalpe est loin d'atteindre les performances de la détente idéale, isentropique, illustrée figure 5 par la transition entre la haute pression de condensation (point 103) et le point théorique (point 1O4IS). Dans le cas d'une détente isentropique, la quantité de vapeur générée est minimale et la différence d'entropie d'évaporation du liquide saturant largement supérieure par rapport au cas de la détente isenthalpe.Such isenthalpe expansion is far from achieving the performance of the ideal isentropic expansion, illustrated in FIG. 5 by the transition between the high condensation pressure (point 103) and the theoretical point (point 1O4 IS ). In the case of isentropic expansion, the amount of steam generated is minimal and the difference in the evaporation entropy of the saturating liquid is much greater than in the case of the isenthalpe expansion.
On rappelle qu'une détente isenthalpe se fait typiquement dans un orifice dont les sections amont et aval sont largement supérieures à la taille de l'orifice, le rétrécissement brutal et l'élargissement brutal de part et d'autre de l'orifice permettant de créer une perte de charge très significative complémentairement à celle de l'orifice.It is recalled that an isenthalpe expansion is typically done in an orifice whose upstream and downstream sections are much greater than the size of the orifice, the sudden narrowing and the sudden enlargement on either side of the orifice allowing create a significant loss of charge complementarily to that of the orifice.
Dans une turbine ou dans un éjecteur, il est connu de limiter la perte de charge en amenant le fluide au col par un convergent. Des essais et quelques articles scientifiques montrent que la détente est quasi isentropîque dans le convergent, jusqu'au col.In a turbine or in an ejector, it is known to limit the pressure drop by bringing the fluid to the neck by a convergent. Tests and some scientific articles show that the relaxation is almost isentropic in the convergent, up to the neck.
II est alors fondamental de constater que la vitesse du liquide en aval du col reste sensiblement identique à celle qu'elle était au niveau du col, autrement dit que l'énergie de pression n'est pas convertie en énergie cinétique.It is then fundamental to note that the speed of the liquid downstream of the neck remains substantially identical to that it was at the neck, in other words that the pressure energy is not converted into kinetic energy.
Ce phénomène est illustré par les figures 6A à 6C qui vont maintenant être décrites. La figure SA représente un éjecteur 60 de l'art antérieur. Cet éjecteur comporte principalement une buse i telle que décrite en référence à la figure i et un corps creux 62. Le rôle de la buse 1 est de détendre un débit de liquide saturant Fl à haute pression PFISI jusqu'à une basse pression théorique Pτh_Fis3 en augmentant sa vitesse, afin d'entraîner un débit de fluide F2 à pression PF2S2 significativement inférieure à PFISI. Ce débit de fluide F2 est usuellement un débit vapeur provenant de l'évaporation d'un fluide à pression d'évaporation PF2S2 inférieure à la pression PFisi et à la pression Pτh_Meiss du mélange après éjection.This phenomenon is illustrated by FIGS. 6A to 6C which will now be described. Figure SA shows an ejector 60 of the prior art. This ejector mainly comprises a nozzle i as described with reference to FIG. 1 and a hollow body 62. The role of the nozzle 1 is to relax a high-pressure flushing liquid flow PFISI up to a theoretical low pressure Pth_ F is3 by increasing its speed, in order to cause a flow rate of fluid F2 at pressure PF2S2 significantly lower than PFISI . This fluid flow rate F 2 is usually a steam flow rate from the evaporation of a fluid at evaporation pressure PF2S2 less than the pressure P F isi and the pressure Pτh_Meiss of the mixture after ejection.
Le corps creux 62 comporte un convergent 63, une chambre de mélange 64 à section constante S4 et un divergent conique 65 de section maximale S5.The hollow body 62 has a convergent 63, a mixing chamber 64 of constant section S4 and a conical divergent 65 of maximum section S5.
Le débit Fl entre dans la buse 1 à la section Sl et se détend en écoulement primaire diphasique jusqu'à sa sortie de section S3.The flow Fl enters the nozzle 1 at the section S1 and expands into a two-phase primary flow until it leaves the section S3.
On note :We notice :
- VFISI : la vitesse du flux primaire Fl au niveau de la section Sl ; - PFISI : la pression du flux primaire Fl au niveau de la section Sl ;VFISI: the speed of the primary flow Fl at section S1; - PFISI: the pressure of the primary flow Fl at the section S1;
- Vτh_Fis3 : la vitesse théorique du flux primaire Fl au niveau de la section S3 ;- Vτ h _Fis3: the theoretical speed of the primary flow Fl at section S3;
- Pτh^Fis3 : la pression théorique du flux primaire Fl au niveau de la section S3. Le débit F2 entre dans l'éjecteur 60 par une section S2. Il est entraîné et accéléré dans un flux dit « secondaire » par l'écoulement primaire Fl en raison de la différence de pression entre les sections S3 et S2.- Pτ h ^ Fis3: the theoretical pressure of the primary flow Fl at section S3. The flow F2 enters the ejector 60 by a section S2. It is driven and accelerated in a flow called "secondary" by the primary flow Fl because of the pressure difference between sections S3 and S2.
On note ; - VF2S2; Ia vitesse du flux secondaire F2 au niveau de la section S2 ;We notice ; - V F 2S2; The speed of the secondary flow F2 at section S2;
- Pp2S2 : Ia pression du flux secondaire F2 au niveau de la section S2 ; etPp2 S 2: the pressure of the secondary flow F2 at section S2; and
- Vτh^F2S3 : la vitesse théorique du flux secondaire F2 au niveau de la section S3. Les écoulements primaire Fl et secondaire F2 commencent à se mélanger dans Ie convergent 63 à pression constante puis entrent dans Ia chambre de mélange 64 dans laquelle se forme un mélange diphasique à vitesse théorique Vτh_Meis4 et pression théorique Pτhj«s4- Le divergent 65 forme un diffuseur pour décélérer Ie mélange diphasique des débits de fluides Fl et F2 jusqu'à une vitesse Vτh_Meiss et transformer l'énergie cinétique en énergie potentielle de pression. La pression du mélange augmente dans Ie divergent 65 jusqu'à une pression théorique de sortie P-m.Meiss-- Vτh ^ F2S3: the theoretical speed of the secondary flow F2 at section S3. The primary flow Fl and secondary flow F2 begin to mix in the convergent 63 at constant pressure and then enter the mixing chamber 64 in which a biphasic mixture is formed at theoretical velocity Vτh_Meis4 and theoretical pressure Pτhj "s4- The divergent 65 forms a diffuser for decelerating the two-phase mixing of fluid flows Fl and F2 up to a speed Vτh_Meiss and transforming the kinetic energy into potential energy pressure. The pressure of the mixture increases in the divergent 65 to a theoretical outlet pressure Pm . Meiss-
Mais en réalité, on constate que Ia vitesse réelle VBusei_Fis3 du flux primaire Fl mesurée en sortie du col 3 est largement inférieure à la vitesse théorique VVh_Fis3-But in reality, it is found that the actual velocity VBusei_Fis3 of the primary flow Fl measured at the outlet of the neck 3 is much lower than the theoretical velocity VVh_Fis3-
Par conséquent : - l'entraînement du débit secondaire F2 est moindre qu'en théorie ;Consequently: the drive of the secondary flow F2 is less than in theory;
- la pression réelle Pβuseoieis* du mélange en sortie de la chambre de mélange 64 est inférieure à la pression théorique Pτn_Meis4 ; et de ce fait :- The actual pressure P ususeoieis * of the mixture at the outlet of the mixing chamber 64 is less than the theoretical pressure Ptn_Meis4; thereby :
- la pression réelle de sortie Pβuseijieiss est inférieure à la pression théorique de sortie Pnoieiss.- The actual output pressure Pβuseijieiss is less than the theoretical output pressure Pnoieiss.
Cet état de fait est représenté sur les figures 6B et 6C sur lesquelles on a respectivement représenté les pressions et vitesses définies ci-dessus, la théorie étant représentée en trait plein fin, et les performances de l'art antérieur en trait gras tireté. L'invention vise aussi un éjecteur qui ne présente pas les inconvénients de l'état actuel de la technique.This state of affairs is represented in FIGS. 6B and 6C on which the pressures and speeds defined above are respectively represented, the theory being represented in solid line, and the performance of the prior art in bold dashed line. The invention also relates to an ejector which does not have the disadvantages of the current state of the art.
Objet et résumé de l'inventionObject and summary of the invention
Plus précisément, l'invention concerne une buse apte à détendre un débit saturant. Cette buse comporte un convergent, un col, un tube, et un élément mélangeur situé, dans le tube, à l'aval du col, cet élément mélangeur étant apte à fractionner Ia phase liquide saturante pour la mélanger avec la phase vapeur.More specifically, the invention relates to a nozzle capable of relaxing a saturating flow. This nozzle comprises a convergent, a neck, a tube, and a mixing element located in the tube, downstream of the neck, the mixing element being able to split the saturating liquid phase to mix with the vapor phase.
Ainsi, et d'une façon générale, la buse selon l'invention vise à mélanger les phases vapeur et liquide du liquide saturant en aval du col, alors que dans l'état actuel de la technique, on cherche à traiter ces deux phases séparément Or, Ia Demanderesse a constaté que dans les buses de l'art antérieur, le liquide et la vapeur se séparent en sortie du col, au niveau de l'élargissement. En aval du col, elle a constaté un glissement entre la phase liquide et la phase vapeur : la phase vapeur cherchant à occuper tout le volume qui lui est imparti se répand à la périphérie de l'écoulement liquide central. Par conséquent, le jet liquide en sortie du convergent n'est pas accéléré par la vapeur formée par la détente, celle-ci se plaçant en périphérie du jet liquide.Thus, and in a general manner, the nozzle according to the invention aims to mix the vapor and liquid phases of the saturating liquid downstream of the neck, whereas in the current state of the art, it is sought to treat these two phases separately However, the Applicant has found that in the nozzles of the prior art, the liquid and the vapor are separated at the outlet of the neck, at the level of enlargement. Downstream of the neck, she noted a slippage between the liquid phase and the vapor phase: the vapor phase seeking to occupy the entire volume allotted to it spreads around the periphery of the central liquid flow. Therefore, the liquid jet at the outlet of the convergent is not accelerated by the steam formed by the trigger, the latter being placed at the periphery of the liquid jet.
L'invention propose donc de mélanger les phases vapeur et liquide, ce qui, comme il sera démontré ultérieurement augmente considérablement la quantité de mouvement produite par l'écoulement diphasique liquide / vapeur provenant de la détente du liquide saturant.The invention therefore proposes mixing the vapor and liquid phases, which, as will be demonstrated later, considerably increases the amount of movement produced by the two-phase liquid / vapor flow coming from the expansion of the saturating liquid.
Dans un mode particulier de réalisation, le tube est un divergent à section croissante, par exemple conique. L'ouverture de ce cône peut être choisie pour maintenir le débit massique constant pendant l'accélération du débit diphasique.In a particular embodiment, the tube is a divergent section increasing, for example conical. The opening of this cone may be chosen to maintain the constant mass flow rate during the acceleration of the two-phase flow rate.
En variante, le divergent modéré conique 4 peut être remplacé par un tube cylindrique.Alternatively, the moderate conical divergent 4 may be replaced by a cylindrical tube.
Dans un mode particulier de réalisation, le convergent de la buse selon l'invention comporte un pointeau pour faire varier la section du col.In a particular embodiment, the convergent nozzle according to the invention comprises a needle to vary the neck section.
Dans un mode particulier de réalisation, l'élément mélangeur précité est une hélice fixe.In a particular embodiment, the aforementioned mixing element is a fixed helix.
En variante, cette hélice peut être mobile.In a variant, this helix can be mobile.
Dans un autre mode de réalisation de l'invention, l'élément mélangeur peut comporter des formes de révolution de sections croissantes.In another embodiment of the invention, the mixing element may comprise forms of revolution of increasing sections.
La buse selon l'invention peut être utilisée dans de nombreux dispositifs, et en particulier dans un éjecteur, dans une turbine Hero, dans une turbine Pelton, ou dans une turbine Francis. Plus précisément, l'invention vise aussi un éjecteur comportant un corps crβuxr ce corps creux comportant un convergent, une chambre de mélange et un divergent, cet éjecteur comportant, dans le convergent, une buse de détente telle que mentionnée ci-dessus, la buse étant apte à détendre un débit primaire de liquide saturant, afin d'entraîner un débit secondaire introduit dans le convergent autour de cette buse.The nozzle according to the invention can be used in many devices, and in particular in an ejector, in a Hero turbine, in a Pelton turbine, or in a Francis turbine. More specifically, the invention also relates to an ejector comprising a body crβux r this hollow body having a convergent, a mixing chamber and a divergent, this ejector comprising, in the convergent, an expansion nozzle as mentioned above, the nozzle being adapted to to relax a primary flow of saturating liquid, in order to cause a secondary flow introduced into the convergent around this nozzle.
L'invention permet ainsi de mélanger de manière satisfaisante les phases vapeur et liquide de l'écoulement primaire, et d'entraîner beaucoup plus efficacement le flux secondaire que dans les éjecteurs de l'état de la technique. On obtient ainsi une pression réelle de sortie très proche de la pression théorique de sortie.The invention thus makes it possible to satisfactorily mix the vapor and liquid phases of the primary flow, and to drive the secondary flow much more efficiently than in the ejectors of the state of the art. This gives a real output pressure very close to the theoretical output pressure.
L'invention vise aussi une turbine Hero comportant un ou plusieurs bras creux mobiles en rotation autour d'un axe, cet axe alimentant le ou les bras creux en liquide saturant, cette turbine comportant une buse de détente telle que mentionnée ci-dessus à l'extrémité de chacun des bras creux.The invention also relates to a Hero turbine comprising one or more hollow arms movable in rotation about an axis, this axis supplying the hollow arm (s) with a saturating liquid, this turbine comprising an expansion nozzle as mentioned above in FIG. end of each of the hollow arms.
L'invention vise aussi une turbine Pelton comportant au moins deux augets solidaires d'une roue mobile en rotation autour d'un axe, cette turbine comportant au moins une buse de détente telle que mentionnée ci-dessus, apte à projeter un jet diphasique en direction des augets.The invention also relates to a Pelton turbine comprising at least two buckets integral with a wheel that is rotatable about an axis, this turbine comprising at least one expansion nozzle as mentioned above, capable of projecting a two-phase jet in direction of the buckets.
L'invention vise aussi une turbine de type Francis comportant au moins une buse de détente telle que mentionnée ci-dessus et apte à projeter un jet diphasique vers l'intérieur d'un rotor de ladite turbine. Dans un mode particulier de réalisation, l'éjecteur selon l'invention comporte un deuxième élément mélangeur, en partie dans la chambre de mélange et en partie dans le divergent. Cette caractéristique favorise le mélange de l'écoulement diphasique du flux primaire en sortie de la buse avec le flux secondaire. Brève description des dessinsThe invention also relates to a Francis-type turbine comprising at least one expansion nozzle as mentioned above and capable of projecting a two-phase jet towards the inside of a rotor of said turbine. In a particular embodiment, the ejector according to the invention comprises a second mixing element, partly in the mixing chamber and partly in the diverging portion. This characteristic favors the mixing of the two-phase flow of the primary flow at the outlet of the nozzle with the secondary flow. Brief description of the drawings
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif, Sur les figures : - la figure 1 représente une buse de l'art antérieur ; les figures 2 à 4 présentent des valeurs de pression et de vitesse d'un débit saturant circulant dans la buse de Ia figure 1 ; la figure 5 est un diagramme T/S illustrant un cycle frigorifique à compression de vapeur ; la figure 6Â représente un éjecteur de l'art antérieur ; les figures 6B et 6C présentent des valeurs de pression et de vitesse des écoulements primaire et secondaire circulant dans l'éjecteur de la figure 6A ; les figures 7A et 7B représentent une buse conforme à un mode particulier de réalisation de l'invention ;Other features and advantages of the present invention will emerge from the description given below, with reference to the accompanying drawings which illustrate an embodiment having no limiting character, in the figures: - Figure 1 shows a nozzle of the prior art; Figures 2 to 4 show pressure and velocity values of a saturating flow flowing in the nozzle of Figure 1; Fig. 5 is a T / S diagram illustrating a vapor compression refrigeration cycle; Figure 6 shows an ejector of the prior art; FIGS. 6B and 6C show pressure and velocity values of the primary and secondary flows flowing in the ejector of FIG. 6A; Figures 7A and 7B show a nozzle according to a particular embodiment of the invention;
- la figure 8 représente un élément mélangeur pouvant être utilisé dans l'invention ;FIG. 8 represents a mixing element that can be used in the invention;
- la figure 9 présente des valeurs de pression et de vitesse d'un débit saturant circulant dans la buse des figures 7A et 7B ; les figures 1OA et 1OB représentent une turbine Hero conforme à un premier mode particulier de réalisation de l'invention ; - la figure 1OC représente schématiquement une turbine Hero conforme à un deuxième mode particulier de réalisation de l'invention ;FIG. 9 shows pressure and velocity values of a saturating flow flowing in the nozzle of FIGS. 7A and 7B; FIGS. 10A and 10B show a Hero turbine according to a first particular embodiment of the invention; FIG. 10C schematically represents a Hero turbine according to a second particular embodiment of the invention;
- la figure 11 représente une turbine Pelton conforme à un mode particulier de réalisation de l'invention ; - la figure 12 représente une turbine Francis conforme à un mode particulier de réalisation de l'invention ; la figure 13A représente un éjecteur conforme à un mode particulier de réalisation de l'invention ; etFIG. 11 represents a Pelton turbine according to a particular embodiment of the invention; - Figure 12 shows a Francis turbine according to a particular embodiment of the invention; Figure 13A shows an ejector according to a particular embodiment of the invention; and
- les figures 13B et 13C présentent des valeurs de pression et de vitesse des écoulements primaire et secondaire circulant dans l'éjecteur de la figure 13A,FIGS. 13B and 13C show pressure and velocity values of the primary and secondary flows flowing in the ejector of FIG. 13A,
Description détaillée d'un mode de réalisationDetailed description of an embodiment
Les figures 7A et 7B représentent une buse 10 conforme à l'invention. Elle se distingue de la buse 1 de la figure 1 en ce qu'elle comporte un élément mélangeur 5 en aval du col 3, apte à créer un mélange homogène des phases vapeur et de liquide dans le divergent modéré 4, ceci ayant pour conséquence d'augmenter considérablement la quantité de mouvement de l'écoulement dïphasîque en sortie du divergent 4. Dans le mode de réalisation décrit ici, le divergent modéré 4 de Ia buse 10 conforme à l'invention possède une forme conique légèrement évasée pour maintenir le débit massique constant pendant l'accélération du débit diphasique. Dans l'exemple de réalisation décrit ici, l'élément mélangeur 5 est constitué par une hélice fixe représentée à la figure 8.Figures 7A and 7B show a nozzle 10 according to the invention. It is distinguished from the nozzle 1 of Figure 1 in that it comprises a mixing element 5 downstream of the neck 3, able to create a homogeneous mixture of vapor and liquid phases in the moderate divergent 4, this having the consequence of considerably increase the amount of movement of the phase flow at the output of the divergent 4. In the embodiment described herein, the moderate divergent 4 of the nozzle 10 according to the invention has a slightly flared conical shape to keep the mass flow rate constant during the acceleration of the two-phase flow rate. In the embodiment described here, the mixing element 5 is constituted by a fixed helix shown in FIG.
La figure 9 représente, en trait gras plein, l'évolution de la vitesse V du débit D en fonction de la pression lors de son parcours dans la buse 10, Cette figure reprend les courbes de la figure 4 à titre de comparaison. Elle permet de démontrer que l'introduction de l'élément mélangeur 5, en forme d'hélice, en aval du col 3 permet d'approcher de la courbe théorique (en trait plein fin).FIG. 9 represents, in solid bold line, the evolution of the speed V of the flow rate D as a function of the pressure during its course in the nozzle 10. This figure repeats the curves of FIG. 4 for comparison purposes. It makes it possible to demonstrate that the introduction of the mixing element 5, in the form of a helix, downstream of the neck 3 makes it possible to approach the theoretical curve (in solid line).
De retour aux figures 7A et 7B, la vitesse du débit D en sortie de la buse 10 peut être ajustée variant le diamètre δ de sortie 6 de cette buse. Dans l'exemple de la figure 9, la vitesse débitante en sortie de la buse 10 conforme à l'invention est égale à 110 m/s, largement supérieure à la vitesse de 20 m/s obtenue en l'absence de mélangeur 5.Returning to FIGS. 7A and 7B, the speed of the flow D at the outlet of the nozzle 10 can be adjusted by varying the outlet diameter δ 6 of this nozzle. In the example of FIG. 9, the flow rate at the outlet of the nozzle 10 according to the invention is equal to 110 m / s, much greater than the speed of 20 m / s obtained in the absence of mixer 5.
Il est connu que l'énergie disponible en sortie de la buse est donnée par la relation V2/2. Par conséquent, l'énergie cinétique disponible (6050 J/kg) en sortie de la buse 10 selon l'invention est environ 30 fois supérieure à celle obtenue en sortie de la buse 1 de l'art antérieur (200 J/kg).It is known that the energy available in the nozzle is given by the relation V 2/2. Consequently, the available kinetic energy (6050 J / kg) at the outlet of the nozzle 10 according to the invention is approximately 30 times greater than that obtained at the outlet of the nozzle 1 of the prior art (200 J / kg).
La buse 10 selon l'invention peut notamment être intégrée dans une turbine ou dans un éjecteur diphasique. Les figures 1OA et 1OB représentent respectivement en vue de face et en vue de dessus une turbine diphasique 20 de type Hero conforme à l'invention.The nozzle 10 according to the invention may in particular be integrated in a turbine or in a two-phase ejector. FIGS. 10A and 10B respectively show, in front view and in plan view, a two-phase turbine 20 of the Hero type according to the invention.
Dans l'exemple de réalisation décrit ici, cette turbine 20 comporte deux bras creux 21, chacun de ces bras comportant en son extrémité, une buse 10 conforme à l'invention.In the embodiment described here, this turbine 20 comprises two hollow arms 21, each of these arms having at its end, a nozzle 10 according to the invention.
Les bras creux 21 sont mobiles en rotation autour d'un axe creux 22 apte à alimenter ces bras creux en liquide saturant. On rappelle que dans une turbine de type Hero, le travail est récupéré directement sur l'axe 22 grâce à l'impulsion des jets qui partent tangentiellement des bras 21.The hollow arms 21 are rotatable about a hollow axis 22 adapted to supply these hollow arms with a saturating liquid. It will be recalled that in a Hero-type turbine, the work is recovered directly on the axis 22 thanks to the impetus of the jets that start tangentially from the arms 21.
La figure 1OC représente une autre turbine 20' de type Hero conforme à l'invention, à huit bras creux 21' répartis autour d'un axe 22' d'alimentation en liquide saturant, chaque bras 21' comportant une buse 10 conforme à l'invention, non représentée.FIG. 10C shows another turbine 20 'of the Hero type according to the invention, with eight hollow arms 21' distributed around an axis 22 'for supplying saturating liquid, each arm 21' comprising a nozzle 10 conforming to FIG. invention, not shown.
La figure 11 représente une turbine diphasique 30 de type Pelton conforme à l'invention. Cette turbine 30 comporte deux buses 10 selon l'invention, les jets diphasiques en sortie de ces buses venant frapper des augets 31 solidaires d'une roue mobile 32 pour la mettre en mouvement.FIG. 11 represents a two-phase turbine 30 of the Pelton type according to the invention. This turbine 30 comprises two nozzles 10 according to the invention, the two-phase jets at the outlet of these nozzles coming to hit buckets 31 integral with a movable wheel 32 to set it in motion.
La figure 12 représente une turbine diphasique 40 de type Francis conforme à l'invention. Cette turbine 40 comporte huit buses 10 selon l'invention, les jets diphasiques en sortie de ces buses étant dirigés vers l'intérieur d'un rotor 42.FIG. 12 represents a two-phase turbine 40 of the Francis type according to the invention. This turbine 40 comprises eight nozzles 10 according to the invention, the two-phase jets at the outlet of these nozzles being directed towards the inside of a rotor 42.
La figure 13Â représente un éjecteur 70 conforme à l'invention.FIG. 13 shows an ejector 70 according to the invention.
Il se distingue de l'éjecteur 60 de l'état de la technique, en ce qu'il comporte, en remplacement de la buse 1, une buse 10 conforme à l'invention, dont l'hélice 5 génère un tourbillon pour mélanger les phases vapeur et liquide de l'écoulement primaire Fl.It is distinguished from the ejector 60 of the state of the art, in that it comprises, in replacement of the nozzle 1, a nozzle 10 according to the invention, the helix 5 generates a vortex for mixing the vapor and liquid phases of the primary flow Fl.
Les pressions et vitesses obtenues dans l'éjecteur 70 selon l'invention sont respectivement représentées aux figures 13B et 13 C. Il y apparaît notamment que grâce à l'utilisation de la buse 10, la vitesse réelle VBuSeio^Fis3 de l'écoulement primaire Fl au niveau de la section S3 de cette buse 10 est très proche de la vitesse théorique Vτh_Fis3-The pressures and speeds obtained in the ejector 70 according to the invention are respectively represented in FIGS. 13B and 13 C. In particular, it can be seen that by using the nozzle 10, the actual velocity V BuS eio ^ Fis3 of the primary flow Fl at section S3 of this nozzle 10 is very close to the theoretical velocity Vτ h _ F is 3 -
Par ailleurs, dans le mode de réalisation décrit ici, l'éjecteur 70 selon l'invention comporte une deuxième hélice fixe 5 pouvant être placée dans ou en sortie de la chambre de mélange 64.Moreover, in the embodiment described here, the ejector 70 according to the invention comprises a second fixed helix 5 that can be placed in or out of the mixing chamber 64.
Cette deuxième hélice favorise le mélange des phases de l'écoulement diphasique de l'écoulement primaire Fl avec l'écoulement secondaire F2. This second helix favors the mixing of the phases of the two-phase flow of the primary flow Fl with the secondary flow F2.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0952611A FR2944460B1 (en) | 2009-04-21 | 2009-04-21 | NOZZLE FOR MAXIMIZING THE QUANTITY OF MOTION PRODUCED BY A DIPHASIC FLOW FROM SATURDENT FLOW RELAXATION |
PCT/FR2010/050576 WO2010122251A1 (en) | 2009-04-21 | 2010-03-29 | Nozzle capable of maximizing the quantity of movement produced by a two-phase flow through the relief of a saturating flow |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2421657A1 true EP2421657A1 (en) | 2012-02-29 |
Family
ID=41461110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10715995A Withdrawn EP2421657A1 (en) | 2009-04-21 | 2010-03-29 | Nozzle capable of maximizing the quantity of movement produced by a two-phase flow through the relief of a saturating flow |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120134776A1 (en) |
EP (1) | EP2421657A1 (en) |
JP (1) | JP5689457B2 (en) |
CN (1) | CN102405110B (en) |
AU (1) | AU2010240721B2 (en) |
CA (1) | CA2758643C (en) |
FR (1) | FR2944460B1 (en) |
WO (1) | WO2010122251A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3008452B1 (en) * | 2013-07-10 | 2015-07-24 | Claude Favy | DEVICE FOR THE DIPHASIC RELAXATION OF A SIGNIFICANT SATURATING FLOW |
JP5778849B1 (en) | 2014-12-22 | 2015-09-16 | 三井造船株式会社 | Power equipment |
US10478835B2 (en) * | 2016-11-22 | 2019-11-19 | Exxonmobil Research And Engineering Company | Nozzle for wet gas scrubber |
CN111093816B (en) * | 2017-09-22 | 2022-11-18 | 阿法拉伐股份有限公司 | Liquid mixture nozzle, flow system and method for dispersing particles in a liquid mixture |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1020612A (en) * | 1912-03-19 | Robert W Lawton | Hydrocarbon-burner. | |
US3920187A (en) * | 1974-05-24 | 1975-11-18 | Porta Test Mfg | Spray head |
WO1983000721A1 (en) * | 1980-02-04 | 1983-03-03 | Bailey, John, M. | Control system and nozzle for impulse turbines |
JPS6092800U (en) * | 1983-12-01 | 1985-06-25 | 日産自動車株式会社 | Ejector device |
US5125582A (en) * | 1990-08-31 | 1992-06-30 | Halliburton Company | Surge enhanced cavitating jet |
US5682759A (en) * | 1996-02-27 | 1997-11-04 | Hays; Lance Gregory | Two phase nozzle equipped with flow divider |
DE102006001319A1 (en) * | 2006-01-09 | 2007-07-12 | Wurz, Dieter, Prof. Dr.-Ing. | Two-fluid nozzle with Lavalcharekteristik and with pre-division in the liquid supply |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2733044A (en) * | 1956-01-31 | Impulse turbine | ||
US2517452A (en) * | 1945-12-26 | 1950-08-01 | Stindt Frederick | Fluid driven centrifugal machine |
US3277660A (en) * | 1965-12-13 | 1966-10-11 | Kaye & Co Inc Joseph | Multiple-phase ejector refrigeration system |
US4355949A (en) * | 1980-02-04 | 1982-10-26 | Caterpillar Tractor Co. | Control system and nozzle for impulse turbines |
US4466245A (en) * | 1983-06-02 | 1984-08-21 | Arold Frank G | Power plant having a fluid powered flywheel |
US5313797A (en) * | 1993-03-01 | 1994-05-24 | Howard Bidwell | Exhaust gas turbine powered system for transforming pressure into rotative motion |
US5408824A (en) * | 1993-12-15 | 1995-04-25 | Schlote; Andrew | Rotary heat engine |
JP2003004319A (en) * | 2001-06-20 | 2003-01-08 | Denso Corp | Ejector cycle |
US6668539B2 (en) * | 2001-08-20 | 2003-12-30 | Innovative Energy, Inc. | Rotary heat engine |
US6877960B1 (en) * | 2002-06-05 | 2005-04-12 | Flodesign, Inc. | Lobed convergent/divergent supersonic nozzle ejector system |
JP4232484B2 (en) * | 2003-03-05 | 2009-03-04 | 株式会社日本自動車部品総合研究所 | Ejector and vapor compression refrigerator |
JP4474989B2 (en) * | 2004-04-26 | 2010-06-09 | 株式会社Ihi | Turbine nozzle and turbine nozzle segment |
US7546738B2 (en) * | 2004-12-31 | 2009-06-16 | United Technologies Corporation | Turbine engine nozzle |
JP4786235B2 (en) * | 2005-07-08 | 2011-10-05 | 株式会社東芝 | Stalling remodeling method and water wheel remodeling method |
DK1966486T3 (en) * | 2005-12-29 | 2010-10-04 | Georg Hamann | Equipment and plants for generating regenerative and renewable energy from wind |
JP4760843B2 (en) * | 2008-03-13 | 2011-08-31 | 株式会社デンソー | Ejector device and vapor compression refrigeration cycle using ejector device |
-
2009
- 2009-04-21 FR FR0952611A patent/FR2944460B1/en active Active
-
2010
- 2010-03-29 WO PCT/FR2010/050576 patent/WO2010122251A1/en active Application Filing
- 2010-03-29 EP EP10715995A patent/EP2421657A1/en not_active Withdrawn
- 2010-03-29 CN CN201080017537.9A patent/CN102405110B/en active Active
- 2010-03-29 JP JP2012506546A patent/JP5689457B2/en active Active
- 2010-03-29 US US13/265,780 patent/US20120134776A1/en not_active Abandoned
- 2010-03-29 AU AU2010240721A patent/AU2010240721B2/en active Active
- 2010-03-29 CA CA2758643A patent/CA2758643C/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1020612A (en) * | 1912-03-19 | Robert W Lawton | Hydrocarbon-burner. | |
US3920187A (en) * | 1974-05-24 | 1975-11-18 | Porta Test Mfg | Spray head |
WO1983000721A1 (en) * | 1980-02-04 | 1983-03-03 | Bailey, John, M. | Control system and nozzle for impulse turbines |
JPS6092800U (en) * | 1983-12-01 | 1985-06-25 | 日産自動車株式会社 | Ejector device |
US5125582A (en) * | 1990-08-31 | 1992-06-30 | Halliburton Company | Surge enhanced cavitating jet |
US5682759A (en) * | 1996-02-27 | 1997-11-04 | Hays; Lance Gregory | Two phase nozzle equipped with flow divider |
DE102006001319A1 (en) * | 2006-01-09 | 2007-07-12 | Wurz, Dieter, Prof. Dr.-Ing. | Two-fluid nozzle with Lavalcharekteristik and with pre-division in the liquid supply |
Non-Patent Citations (1)
Title |
---|
See also references of WO2010122251A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2010122251A1 (en) | 2010-10-28 |
AU2010240721A1 (en) | 2011-11-10 |
CA2758643C (en) | 2018-01-23 |
US20120134776A1 (en) | 2012-05-31 |
CN102405110B (en) | 2015-07-15 |
CA2758643A1 (en) | 2010-10-28 |
JP2012524862A (en) | 2012-10-18 |
FR2944460B1 (en) | 2012-04-27 |
AU2010240721B2 (en) | 2016-08-25 |
JP5689457B2 (en) | 2015-03-25 |
CN102405110A (en) | 2012-04-04 |
FR2944460A1 (en) | 2010-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1269025B1 (en) | Thermo-kinetic compressor | |
EP2416874B1 (en) | Ejector device for producing a pressurized mixture of liquid and gas, and its use | |
WO2010122251A1 (en) | Nozzle capable of maximizing the quantity of movement produced by a two-phase flow through the relief of a saturating flow | |
FR2801648A1 (en) | Nuclear PWR high-pressure steam injector has axial drain tube in mixing chamber outlet neck to reduce neck section and remove some steam | |
CN102744166A (en) | Core-adjustable variable-cross-section-tube ultrasonic condensation cyclone separator | |
CN202655135U (en) | Variable section pipe type supersonic speed condensation cyclone | |
BE1000524A4 (en) | Method and device for aerodynamic separation of components of a gas flow. | |
EP1606064B1 (en) | Spray nozzle for overheated liquid | |
FR2664659A1 (en) | Reaction and electric-arc thruster, and anode for such a thruster | |
NL2028048B1 (en) | Full-swirl supersonic separation device | |
US8550693B2 (en) | Device for preparation of water-fuel emulsion | |
FR3051855A1 (en) | DEVICE FOR OPERATING AN ENGINE | |
FR2488815A1 (en) | LIQUID SPRAYING DEVICE AND ITS APPLICATIONS | |
KR102150378B1 (en) | Supersonic separator | |
WO2008056086A1 (en) | Device for spraying a fluid at a variable flow-rate for generating artificial snow | |
BE537785A (en) | ||
CH337366A (en) | Jet thruster | |
RU2564730C1 (en) | Fluid heating device | |
BE510572A (en) | ||
CN107762573A (en) | A kind of vertical two-phase liquid expansion power generator | |
BE415698A (en) | ||
BE334736A (en) | ||
BE407194A (en) | ||
BE438304A (en) | ||
FR2509389A1 (en) | Solar powered well water pump - has solar steam generator pressurising water in wall for extraction through venturi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160721 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20190306 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190717 |