EP2402652A1 - Burner - Google Patents
Burner Download PDFInfo
- Publication number
- EP2402652A1 EP2402652A1 EP10168107A EP10168107A EP2402652A1 EP 2402652 A1 EP2402652 A1 EP 2402652A1 EP 10168107 A EP10168107 A EP 10168107A EP 10168107 A EP10168107 A EP 10168107A EP 2402652 A1 EP2402652 A1 EP 2402652A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- attachment
- burner
- full
- jet nozzle
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 claims abstract description 34
- 238000002485 combustion reaction Methods 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 7
- 230000035515 penetration Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000010349 pulsation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/343—Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/38—Nozzles; Cleaning devices therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/286—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07021—Details of lances
Definitions
- the present invention relates to a burner according to the preamble of claim 1.
- the combustion chamber is supplied with compressed air from the compressor.
- the compressed air is mixed with a fuel, such as oil or gas, and the mixture burned in the combustion chamber.
- the hot combustion exhaust gases are finally supplied as a working medium via a combustion chamber outlet of the turbine, where they transmit momentum to the blades under relaxation and cooling and thus do work.
- the vanes serve to optimize the momentum transfer.
- an injection of the fuel oil via swirl generator in which the oil is mixed with air.
- the oil within the nozzles used for the injection into a swirling motion is added.
- This oil nozzle is also referred to as a pressure-swirl nozzle.
- the oil nozzles can not be arranged so that the mixing of the fuel with the air leads to an optimal result in terms of pressure pulsations.
- the object of the present invention is therefore to provide a burner which solves the above problem.
- full jet nozzles produce a full jet without disturbing turbulence.
- the full jet nozzle has the advantage that a higher fuel pressure is converted into a greater penetration depth.
- pressure-swirl nozzles smaller drops are formed by a higher pre-pressure, which in turn penetrate less effectively. It follows that a much higher pressure is required for an increased penetration depth for pressure-swirl nozzles than for full-jet nozzles.
- the jet nozzle e.g. expensive pumps that can deliver more fuel pressure, or avoid piping systems with high pressure ratings.
- Fig. 1 shows a burner 107 according to the invention.
- swirl blades 17 are arranged around the lance.
- the swirl blades 17 are arranged along the circumference of the lance in the housing 12.
- a compressor air flow 15 is passed into the leading to a combustion chamber part of the burner 107.
- the air is displaced by the swirl blades 17 in a swirling motion.
- the lance also comprises a fuel channel 16.
- the burner 107 further comprises an attachment 13 on the side leading to a combustion chamber.
- the attachment 13 can be welded to the lance, for example or screwed.
- the fuel nozzles are arranged in the attachment 13 preferably downstream of the swirl vanes 17 and are fluidically connected to the fuel channel 16, here represented as an oil channel.
- the fuel channel 16 here represented as an oil channel.
- eight such burners 107 are arranged in a circle (not shown).
- the burners 107 are arranged around a pilot burner (not shown) with pilot cone.
- the plurality of fuel nozzles according to the invention are designed as full jet nozzles 1.
- the design of the nozzle as a full jet nozzle 1, the full jet nozzle size and also arrangement make it possible to adjust the penetration depth of the fuel so that an advantageous fuel profile is formed.
- the parameters are the diameter of the full jet nozzles 1 and the number of full jet nozzles 1 available.
- the fuel distribution is adjusted so that the ignition of the fuel-air mixture is done with a beneficial time delay.
- the time delay between the injection and the combustion of the fuel is decisive for the formation of thermoacoustic feedback loops, from which combustion chamber pulsations can arise.
- the full jet nozzles 1 have a length, wherein the length to diameter ratio is at least 1.5, in order to achieve a good mixing. As a result, the divergence of the full jet is small enough, so that it does not come to an unwanted ejection of drops.
- the full-jet nozzle 1 has the advantage that a higher fuel pressure, especially in one greater penetration depth is implemented.
- a higher fuel pressure especially in one greater penetration depth is implemented.
- smaller drops are formed by a higher pre-pressure, which in turn are less effective to penetrate. It follows that a much higher pressure is required for an increased penetration depth for pressure-swirl nozzles than for full-jet nozzles. This can be with the full jet nozzle 1, for example, expensive pumps that can provide more fuel supply pressure, or avoid piping systems with high pressure levels.
- the Fig. 2 schematically shows a section through the attachment 13 in a perspective view.
- the center attachment axis of the attachment 13 is identified by the reference numeral 18.
- the attachment 13 is conical towards the combustion chamber, tapered designed. It comprises several, in the present embodiment four, full jet nozzles 1.
- the full jet nozzles 1 are arranged on the outer circumference of the attachment 13.
- the center axes of the full-jet nozzles 1 are identified by the reference numeral 19.
- the central axes 19 of the full-jet nozzles 1 have an angle 20 to the central attachment axis 18 of the attachment 13.
- the fuel enters the attachment 13 along the direction of flow indicated by the reference numeral 26 through the fuel channel 16.
- the fuel is then injected through the full jet nozzles 1 in the direction 25 in the coming of the swirl blades 17 air flow.
- the central axis 19 of the full-jet nozzles 1 is arranged substantially perpendicularly (90 degrees) to the middle attachment axis 18 of the full-jet nozzles 1.
- the central axis 19 of the nozzle 1 may be perpendicular to the attachment surface.
- the steel is introduced vertically into the air stream; a very good mix is the result.
- an arrangement of 90 ° +/- 30 ° degrees, in particular 90 ° +/- 10 ° degree, from the central axis 19 of the full-jet nozzles 1 to the axis 18 or the top surface results in a very advantageous arrangement.
- the attachment 13 comprises a cylindrical portion 130 and a tapered portion 140 to a combustion chamber.
- the conical portion 140 may have a cone angle of 10-20 ° degrees exhibit. Due to this configuration, there is no demolition of the flow at the attachment tip.
- the full-jet nozzles 1 can be arranged on the conical tapering part 140 of the attachment 13.
- the position of the full jet nozzles 1 may vary depending on the autoignition time of the mixture. In order to achieve a good fuel distribution, eight to twelve full-jet nozzles per attachment 13 are preferably used (not shown). Also advantageous are six to sixteen full jet nozzles 1 (not shown). These are evenly distributed on the circumference of the article 13. Good fuel distribution is necessary to meet emission limits and avoid soot formation.
- the full-jet nozzles 1 may be formed as bores in the attachment 13. In terms of mixing, in particular, a length to diameter ratio of six to fourteen is advantageous. Preferred diameter of the full-jet nozzles 1 are 0.55-0.8 mm, also 0.5 -1 mm are advantageous (not shown).
- solid jet nozzles 1 can easily be adapted to other thermodynamic conditions, which are e.g. in an altered air cross-flow speed, air density or fuel mass flow, perform by the diameter of the full jet nozzles 1 is adjusted accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Nozzles For Spraying Of Liquid Fuel (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft einen Brenner nach dem Oberbegriff des Anspruchs 1.The present invention relates to a burner according to the preamble of
Im Betrieb der Gasturbine wird der Brennkammer verdichtete Luft aus dem Verdichter zugeführt. Die verdichtete Luft wird mit einem Brennstoff, beispielsweise Öl oder Gas, vermischt und das Gemisch in der Brennkammer verbrannt. Die heißen Verbrennungsabgase werden schließlich als Arbeitsmedium über einen Brennkammerausgang der Turbine zugeführt, wo sie unter Entspannung und Abkühlung Impuls auf die Laufschaufeln übertragen und so Arbeit leisten. Die Leitschaufeln dienen dabei zum Optimieren des Impulsübertrags.During operation of the gas turbine, the combustion chamber is supplied with compressed air from the compressor. The compressed air is mixed with a fuel, such as oil or gas, and the mixture burned in the combustion chamber. The hot combustion exhaust gases are finally supplied as a working medium via a combustion chamber outlet of the turbine, where they transmit momentum to the blades under relaxation and cooling and thus do work. The vanes serve to optimize the momentum transfer.
Bei Verbrennungsmaschinen, insbesondere solchen, die mit zwei verschiedenen Brennstoffen betrieben werden, erfolgt beispielsweise eine Eindüsung des Brennstoffes Öl über Drallerzeuger, in denen das Öl mit Luft vermischt wird. Zur besseren Vermischung von Öl und Luft wird das Öl innerhalb der zur Eindüsung verwendeten Düsen in eine Drallbewegung versetzt. Diese Öldüse wird auch als Druck-Drall-Düse bezeichnet.In combustion engines, in particular those which are operated with two different fuels, for example, an injection of the fuel oil via swirl generator, in which the oil is mixed with air. For better mixing of oil and air, the oil within the nozzles used for the injection into a swirling motion is added. This oil nozzle is also referred to as a pressure-swirl nozzle.
Gerade bei Maschinen mit zwei verschiedenen Brennstoffen können die Öldüsen nicht so angeordnet werden, dass die Vermischung des Brennstoffs mit der Luft zu einem optimalen Ergebnis hinsichtlich der Druckpulsationen führt.Especially with machines with two different fuels, the oil nozzles can not be arranged so that the mixing of the fuel with the air leads to an optimal result in terms of pressure pulsations.
Die Aufgabe der vorliegenden Erfindung ist daher die Angabe eines Brenners, welche das obige Problem löst.The object of the present invention is therefore to provide a burner which solves the above problem.
Die Aufgabe wird gelöst durch einen Brenner nach Anspruch 1. Die weiteren Unteransprüche enthalten vorteilhafte Ausgestaltungen der Erfindung.The object is achieved by a burner according to
Durch den Einsatz von Vollstrahldüsen kann die Einstellung des Brennstoffprofils, insbesondere der radialen Brennstoffverteilung sehr effektiv verändert werden. Vollstrahldüsen erzeugen einen Vollstrahl ohne störende Turbulenzen. Gegenüber der Druck-Drall-Düse hat die Vollstrahldüse den Vorteil, dass ein höherer Brennstoffvordruck in eine größere Eindringtiefe umgesetzt wird. Bei Druck-Drall-Düsen werden durch einen höheren Vordruck kleinere Tropfen gebildet, die wiederum weniger effektiv eindringen. Daraus folgt, dass für eine erhöhte Eindringtiefe bei Druck-Drall- Düsen ein deutlich höherer Druck nötig ist, als bei Vollstrahldüsen. Damit lassen sich mit der Vollstrahldüse z.B. teure Pumpen, die mehr Brennstoffvordruck liefern können, oder Rohrleitungssysteme mit hohen Druckstufen vermeiden.Through the use of full jet nozzles, the setting of the fuel profile, in particular the radial fuel distribution can be changed very effectively. Full jet nozzles produce a full jet without disturbing turbulence. Compared to the pressure swirl nozzle, the full jet nozzle has the advantage that a higher fuel pressure is converted into a greater penetration depth. In pressure-swirl nozzles smaller drops are formed by a higher pre-pressure, which in turn penetrate less effectively. It follows that a much higher pressure is required for an increased penetration depth for pressure-swirl nozzles than for full-jet nozzles. Thus, with the jet nozzle, e.g. expensive pumps that can deliver more fuel pressure, or avoid piping systems with high pressure ratings.
Weitere Vorteile, Merkmale und Eigenschaften der vorliegenden Erfindung werden im Folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren näher beschrieben. Die Merkmale der Ausführungsbeispiele können hierbei einzeln oder in Kombination miteinander vorteilhaft sein.
- Fig. 1
- zeigt schematisch einen Schnitt durch einen erfindungsgemäßen Brenner,
- Fig. 2
- zeigt schematisch einen Schnitt durch den
Aufsatz 13 in perspektivischer Ansicht.
- Fig. 1
- schematically shows a section through a burner according to the invention,
- Fig. 2
- schematically shows a section through the
attachment 13 in a perspective view.
Bisherige im Stand der Technik eingesetzte Druck-Drall-Düsen weisen hohe Druckpulsationen auf. Gerade im Grundlastbetrieb treten hier jedoch große Probleme auf. Dies wird mithilfe der Erfindung nun vermieden.Previous pressure-swirl nozzles used in the prior art have high pressure pulsations. Especially in base load operation, however, there are major problems here. This is avoided by means of the invention now.
Daher sind die mehreren Brennstoffdüsen erfindungsgemäß als Vollstrahldüsen 1 ausgestaltet. Die Ausgestaltung der Düse als Vollstrahldüse 1, die Vollstrahldüsengröße und auch - anordnung ermöglichen es dabei die Eindringtiefe des Brennstoffes so einzustellen, dass ein vorteilhaftes Brennstoffprofil entsteht. Als Parameter stehen dabei die Durchmesser der Vollstrahldüsen 1 und die Anzahl der Vollstrahldüsen 1 zur Verfügung. Im Zusammenspiel mit dem zentralen Pilotbrenner wird die Brennstoffverteilung dabei so eingestellt, dass die Zündung des Brennstoff-Luftgemisches mit einer vorteilhaften Zeitverzögerung geschieht. Die Zeitverzögerung zwischen der Eindüsung und der Verbrennung des Brennstoffes ist maßgeblich für die Ausbildung thermoakustischer Rückkoppelungsschleifen, aus welchen Brennkammerpulsationen entstehen können. Die Vollstrahldüsen 1 weisen eine Länge auf, wobei das Länge zu Durchmesser Verhältnis mindestens 1,5 ist, um eine gute Durchmischung zu erzielen. Dadurch ist nämlich die Divergenz des Vollstrahles klein genug, so dass es nicht zu einem unerwünschten Ausschleudern von Tropfen kommt.Therefore, the plurality of fuel nozzles according to the invention are designed as
Durch den Einsatz von Vollstrahldüsen 1 kann somit die Einstellung des Brennstoffprofils, insbesondere der radialen Brennstoffverteilung sehr effektiv verändert werden. Gegenüber einer Druck-Drall-Düse hat die Vollstrahldüse 1 den Vorteil, dass ein höherer Brennstoffvordruck vor allem in einer größeren Eindringtiefe umgesetzt wird. Bei den Druck-Drall-Düsen des Stands der Technik werden durch einen höheren Vordruck kleinere Tropfen gebildet, die wiederum weniger effektiv eindringen. Daraus folgt, dass für eine erhöhte Eindringtiefe bei Druck-Drall- Düsen ein deutlich höherer Druck nötig ist, als bei Vollstrahldüsen. Damit lassen sich mit der Vollstrahldüse 1, z.B. teure Pumpen, die mehr Brennstoffvordruck liefern können, oder Rohrleitungssysteme mit hohen Druckstufen vermeiden.By using full-
Die
Der Aufsatz 13 umfasst einen zylindrischen 130 und ein zu einer Brennkammer hin konischen zulaufenden Teil 140. Dabei kann der konische Teil 140 einen Konuswinkel von 10-20° Grad aufweisen. Durch diese Ausgestaltung erfolgt an der Aufsatzspitze kein Abriss der Strömung. Dabei können die Vollstrahldüsen 1 auf dem konischen zulaufenden Teil 140 des Aufsatzes 13 angeordnet sein. Die Position der Vollstrahldüsen 1 kann sich abhängig von der Selbstzündzeit des Gemisches ändern. Um eine gute Brennstoffverteilung zu erreichen, werden acht bis zwölf Vollstrahldüsen pro Aufsatz 13 bevorzugt eingesetzt (nicht gezeigt). Vorteilhaft sind auch sechs bis sechzehn Vollstrahldüsen 1 (nicht gezeigt). Diese sind am Umfang des Aufsatzes 13 gleichmäßig verteilt. Eine gute Brennstoffverteilung ist notwendig, um die Emissionsgrenzwerte einzuhalten und Rußbildung zu vermeiden. Die Vollstrahldüsen 1 können als Bohrungen in dem Aufsatz 13 ausgebildet sein. Vorteilhaft hinsichtlich der Durchmischung ist insbesondere ein Länge zu Durchmesser Verhältnis von sechs bis vierzehn. Bevorzugter Durchmesser der Vollstrahldüsen 1 sind dabei 0,55-0,8 mm, auch vorteilhaft sind 0,5 -1 mm (nicht gezeigt).The
Insbesondere, ebenfalls nicht gezeigt, sind auch die Kombinationen von acht Düsen mit einem Durchmesser von 0,7-0,8 mm, oder von zehn Düsen mit 0,6-0,7 mm Durchmesser und von zwölf Düsen mit 0,55 - 0,65 mm Durchmesser vorteilhaft.In particular, also not shown, are also the combinations of eight nozzles with a diameter of 0.7-0.8 mm, or of ten nozzles with 0.6-0.7 mm diameter and twelve nozzles with 0.55-0 , 65 mm diameter advantageous.
Zudem lässt sich durch die Vollstrahldüsen 1 unproblematisch eine Anpassung an andere thermodynamische Bedingungen, welche z.B. in einer geänderten Luftquerströmungsgeschwindigkeit, Luftdichte oder Brennstoffmassenstrom resultieren, vollziehen, indem der Durchmesser den Vollstrahldüsen 1 entsprechend angepasst wird.In addition, the
Zusätzlich ist es auch möglich, durch Anpassen des Durchmessers der Vollstrahldüsen 1 ein optimiertes Design für Wasseranteile bereitzustellen. Dies kann z.B. interessant sein, wenn die Emissionsgrenzen, insbesondere für NOx, erhöht werden. Dies passiert etwa in wasserarmen Regionen, wo Gasturbinen 1 auch für die Süßwasseraufbereitung eingesetzt werden.In addition, it is also possible to provide an optimized design for water content by adjusting the diameter of the
Claims (10)
dadurch gekennzeichnet, dass die mindestens eine Brennstoffdüse als Vollstrahldüse (1) ausgestaltet ist und die mindestens eine Vollstrahldüse (1) eine Länge und einen Durchmesser aufweist, wobei das Verhältnis Länge zu Durchmesser mindestens 1,5 ist.Burner (107) comprising a cylindrical housing (12) having a centrally disposed therein, a fuel passage (16) having lance, which is supported via swirl vanes (17) on the housing and wherein arranged on the side leading to a combustion chamber an attachment (13) wherein at least one fuel nozzle in the attachment (13) is preferably arranged downstream of the swirl vanes (17) and connected to the fuel channel (16),
characterized in that the at least one fuel nozzle is configured as a full jet nozzle (1) and the at least one solid jet nozzle (1) has a length and a diameter, wherein the length to diameter ratio is at least 1.5.
dadurch gekennzeichnet, dass der Aufsatz (13) einen zylindrischen (130) und ein zu einer Brennkammer hin konischen zulaufenden Teil (140) aufweist.Burner (107) according to claim 1,
characterized in that the attachment (13) has a cylindrical (130) and a combustion chamber towards tapered part (140).
dadurch gekennzeichnet, dass der konische Teil (140) einen Konuswinkel von 10-20° Grad aufweist.Burner (107) according to claim 2,
characterized in that the conical part (140) has a cone angle of 10-20 ° degrees.
dadurch gekennzeichnet, dass der Aufsatz (13) eine Mittelaufsatzachse (18), und die mindestens eine Vollstrahldüse (1) eine Mittelachse (19) umfasst und die mindestens eine Vollstrahldüse (1) in dem Aufsatz (13) so angeordnet ist, dass die Mittelachse (19) der mindestens einen Vollstrahldüse (1) einen Winkel (20) von 90° Grad zu der Mittelaufsatzachse des Aufsatzes (18) aufweist.Burner (107) according to one of the preceding claims,
characterized in that the attachment (13) comprises a center attachment axis (18), and the at least one solid jet nozzle (1) comprises a central axis (19) and the at least one solid jet nozzle (1) is arranged in the attachment (13) such that the central axis (19) of the at least one solid jet nozzle (1) has an angle (20) of 90 ° degrees to the center attachment axis of the attachment (18).
dadurch gekennzeichnet, dass der Aufsatz (13) eine Mittelaufsatzachse (18) umfasst, die mindestens eine Vollstrahldüse (1) eine Mittelachse (19) umfasst und die mindestens eine Vollstrahldüse (1) in dem Aufsatz (13) so angeordnet ist, dass die Mittelachse (19) der mindestens einen Vollstrahldüse (1) einen Winkel (20) zwischen zumindest 90°+/-30° Grad zu der Mittelaufsatzachse (18) des Aufsatzes (13) aufweist.Burner (107) according to one of the preceding claims 1-3,
characterized in that the attachment (13) comprises a center attachment axis (18), the at least a full-jet nozzle (1) comprises a central axis (19) and the at least one solid-jet nozzle (1) is arranged in the attachment (13) so that the central axis (19) of the at least one full-jet nozzle (1) forms an angle (20) between at least 90 ° ° +/- 30 ° degree to the center attachment axis (18) of the attachment (13).
dadurch gekennzeichnet, dass der Aufsatz (13) eine Aufsatzoberfläche aufweist und die mindestens eine Vollstrahldüse (1) eine Mittelachse (19) umfasst, und die mindestens eine Vollstrahldüse (1) in dem Aufsatz (13) so angeordnet ist, dass die Mittelachse (19) der mindestens einen Vollstrahldüse (1) senkrecht zu dieser Aufsatzoberfläche ist.Burner (107) according to one of the preceding claims 1-3,
characterized in that the attachment (13) has an attachment surface and the at least one solid jet nozzle (1) comprises a central axis (19), and the at least one solid jet nozzle (1) is arranged in the attachment (13) such that the central axis (19 ) of the at least one solid jet nozzle (1) is perpendicular to this attachment surface.
dadurch gekennzeichnet, dass acht bis zwölf Vollstrahldüsen (1) mit einem Durchmesser vorgesehen sind, wobei der Durchmesser zwischen 0,55-0,8mm ist.Burner (107) according to one of the preceding claims 1-6,
characterized in that eight to twelve full jet nozzles (1) are provided with a diameter, wherein the diameter is between 0.55-0.8mm.
dadurch gekennzeichnet, dass zehn Vollstrahldüsen (1) mit einem Durchmesser zwischen 0,6-0,7mm vorgesehen sind.Burner (107) according to claim 7,
characterized in that ten full jet nozzles (1) are provided with a diameter between 0.6-0.7mm.
dadurch gekennzeichnet, dass zwölf Vollstrahldüsen (1) mit einem Durchmesser zwischen 0,55-0,65 vorgesehen sind.Burner (107) according to claim 7,
characterized in that twelve full jet nozzles (1) are provided with a diameter between 0.55-0.65.
dadurch gekennzeichnet, dass acht Vollstrahldüsen (1) mit einem Durchmesser zwischen 0,7-0,8 vorgesehen sind.Burner (107) according to claim 7,
characterized in that eight full-jet nozzles (1) are provided with a diameter between 0.7-0.8.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10168107A EP2402652A1 (en) | 2010-07-01 | 2010-07-01 | Burner |
PCT/EP2011/061101 WO2012001141A1 (en) | 2010-07-01 | 2011-07-01 | Burner assembly |
EP11728849.8A EP2588805B1 (en) | 2010-07-01 | 2011-07-01 | Burner |
JP2013517313A JP6005040B2 (en) | 2010-07-01 | 2011-07-01 | Burner equipment |
US13/806,895 US20130104554A1 (en) | 2010-07-01 | 2011-07-01 | Burner assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10168107A EP2402652A1 (en) | 2010-07-01 | 2010-07-01 | Burner |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2402652A1 true EP2402652A1 (en) | 2012-01-04 |
Family
ID=43531833
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10168107A Withdrawn EP2402652A1 (en) | 2010-07-01 | 2010-07-01 | Burner |
EP11728849.8A Active EP2588805B1 (en) | 2010-07-01 | 2011-07-01 | Burner |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11728849.8A Active EP2588805B1 (en) | 2010-07-01 | 2011-07-01 | Burner |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130104554A1 (en) |
EP (2) | EP2402652A1 (en) |
JP (1) | JP6005040B2 (en) |
WO (1) | WO2012001141A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017116266A1 (en) * | 2015-12-30 | 2017-07-06 | General Electric Company | Liquid fuel nozzles for dual fuel combustors |
CN107023834A (en) * | 2017-04-19 | 2017-08-08 | 中国科学院工程热物理研究所 | A kind of nozzle and burner of multiple dimensioned flame on duty |
CN111520750A (en) * | 2020-03-25 | 2020-08-11 | 西北工业大学 | A new type of fuel injection structure in the head of the combustion chamber |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9671112B2 (en) | 2013-03-12 | 2017-06-06 | General Electric Company | Air diffuser for a head end of a combustor |
US9650959B2 (en) | 2013-03-12 | 2017-05-16 | General Electric Company | Fuel-air mixing system with mixing chambers of various lengths for gas turbine system |
US9528444B2 (en) | 2013-03-12 | 2016-12-27 | General Electric Company | System having multi-tube fuel nozzle with floating arrangement of mixing tubes |
US9651259B2 (en) | 2013-03-12 | 2017-05-16 | General Electric Company | Multi-injector micromixing system |
US9759425B2 (en) * | 2013-03-12 | 2017-09-12 | General Electric Company | System and method having multi-tube fuel nozzle with multiple fuel injectors |
US9765973B2 (en) * | 2013-03-12 | 2017-09-19 | General Electric Company | System and method for tube level air flow conditioning |
US9534787B2 (en) | 2013-03-12 | 2017-01-03 | General Electric Company | Micromixing cap assembly |
JP5984770B2 (en) * | 2013-09-27 | 2016-09-06 | 三菱日立パワーシステムズ株式会社 | Gas turbine combustor and gas turbine engine equipped with the same |
CN106715870B (en) | 2014-07-02 | 2018-11-09 | 诺沃皮尼奥内股份有限公司 | Fuel dispensing device, gas-turbine unit and installation method |
CN104315540B (en) * | 2014-09-26 | 2018-05-25 | 北京华清燃气轮机与煤气化联合循环工程技术有限公司 | Gas-turbine combustion chamber premixes fuel nozzle |
US10443855B2 (en) | 2014-10-23 | 2019-10-15 | Siemens Aktiengesellschaft | Flexible fuel combustion system for turbine engines |
US20170328568A1 (en) * | 2014-11-26 | 2017-11-16 | Siemens Aktiengesellschaft | Fuel lance with means for interacting with a flow of air and improve breakage of an ejected liquid jet of fuel |
US10393030B2 (en) * | 2016-10-03 | 2019-08-27 | United Technologies Corporation | Pilot injector fuel shifting in an axial staged combustor for a gas turbine engine |
US10738704B2 (en) * | 2016-10-03 | 2020-08-11 | Raytheon Technologies Corporation | Pilot/main fuel shifting in an axial staged combustor for a gas turbine engine |
US10739003B2 (en) | 2016-10-03 | 2020-08-11 | United Technologies Corporation | Radial fuel shifting and biasing in an axial staged combustor for a gas turbine engine |
US10508811B2 (en) * | 2016-10-03 | 2019-12-17 | United Technologies Corporation | Circumferential fuel shifting and biasing in an axial staged combustor for a gas turbine engine |
US10584877B2 (en) | 2017-04-28 | 2020-03-10 | DOOSAN Heavy Industries Construction Co., LTD | Device to correct flow non-uniformity within a combustion system |
US11421883B2 (en) * | 2020-09-11 | 2022-08-23 | Raytheon Technologies Corporation | Fuel injector assembly with a helical swirler passage for a turbine engine |
US20220205637A1 (en) * | 2020-12-30 | 2022-06-30 | General Electric Company | Mitigating combustion dynamics using varying liquid fuel cartridges |
KR102460672B1 (en) * | 2021-01-06 | 2022-10-27 | 두산에너빌리티 주식회사 | Fuel nozzle, fuel nozzle module and combustor having the same |
US12025311B2 (en) * | 2021-08-24 | 2024-07-02 | Solar Turbines Incorporated | Micromix fuel injection air nozzles |
US11617981B1 (en) | 2022-01-03 | 2023-04-04 | Saudi Arabian Oil Company | Method for capturing CO2 with assisted vapor compression |
KR102583223B1 (en) * | 2022-01-28 | 2023-09-25 | 두산에너빌리티 주식회사 | Nozzle for combustor, combustor, and gas turbine including the same |
GB2629434A (en) * | 2023-04-28 | 2024-10-30 | Siemens Energy Global Gmbh & Co Kg | Fuel lance for burner of gas turbine engine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904119A (en) * | 1973-12-05 | 1975-09-09 | Avco Corp | Air-fuel spray nozzle |
US5680766A (en) * | 1996-01-02 | 1997-10-28 | General Electric Company | Dual fuel mixer for gas turbine combustor |
JPH09303776A (en) * | 1996-05-10 | 1997-11-28 | Mitsubishi Heavy Ind Ltd | Fuel injection nozzle for gas turbine combustor |
WO1999019670A2 (en) * | 1997-10-10 | 1999-04-22 | Siemens Westinghouse Power Corporation | FUEL NOZZLE ASSEMBLY FOR A LOW NOx COMBUSTOR |
WO2000022347A1 (en) * | 1998-10-09 | 2000-04-20 | General Electric Company | Fuel injection assembly for gas turbine engine combustor |
US6141967A (en) * | 1998-01-09 | 2000-11-07 | General Electric Company | Air fuel mixer for gas turbine combustor |
EP1990580A1 (en) * | 2007-05-10 | 2008-11-12 | Siemens Aktiengesellschaft | Burner component for a gas turbine burner |
WO2010073156A1 (en) * | 2008-12-23 | 2010-07-01 | Tck - Societa' A Responsabilita' Limitata | A combustion head and a burner comprising the head |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5822992A (en) * | 1995-10-19 | 1998-10-20 | General Electric Company | Low emissions combustor premixer |
JP3392633B2 (en) * | 1996-05-15 | 2003-03-31 | 三菱重工業株式会社 | Combustor |
GB2324147B (en) * | 1997-04-10 | 2001-09-05 | Europ Gas Turbines Ltd | Fuel-injection arrangement for a gas turbine combuster |
JP3443009B2 (en) * | 1998-08-17 | 2003-09-02 | 三菱重工業株式会社 | Low NOx combustor |
JP2000310422A (en) * | 1999-04-26 | 2000-11-07 | Mitsubishi Heavy Ind Ltd | Fuel nozzle |
JP2000356344A (en) * | 1999-06-14 | 2000-12-26 | Hitachi Ltd | Gas turbine combustion apparatus and combustion state control method therefor |
JP3860952B2 (en) * | 2000-05-19 | 2006-12-20 | 三菱重工業株式会社 | Gas turbine combustor |
JP2002276943A (en) * | 2001-03-14 | 2002-09-25 | Mitsubishi Heavy Ind Ltd | Fuel nozzle for gas turbine |
US6832481B2 (en) * | 2002-09-26 | 2004-12-21 | Siemens Westinghouse Power Corporation | Turbine engine fuel nozzle |
EP1507119A1 (en) * | 2003-08-13 | 2005-02-16 | Siemens Aktiengesellschaft | Burner and process to operate a gas turbine |
US7316117B2 (en) * | 2005-02-04 | 2008-01-08 | Siemens Power Generation, Inc. | Can-annular turbine combustors comprising swirler assembly and base plate arrangements, and combinations |
RU2300702C1 (en) * | 2006-04-04 | 2007-06-10 | Общество с ограниченной ответственностью "Научно-производственное предприятие "ЭСТ" | Fuel combustion method and device for realization of said method |
JP4719059B2 (en) * | 2006-04-14 | 2011-07-06 | 三菱重工業株式会社 | Gas turbine premixed combustion burner |
EP2085695A1 (en) * | 2008-01-29 | 2009-08-05 | Siemens Aktiengesellschaft | Fuel nozzle with swirl duct and method for manufacturing a fuel nozzle |
-
2010
- 2010-07-01 EP EP10168107A patent/EP2402652A1/en not_active Withdrawn
-
2011
- 2011-07-01 WO PCT/EP2011/061101 patent/WO2012001141A1/en active Application Filing
- 2011-07-01 US US13/806,895 patent/US20130104554A1/en not_active Abandoned
- 2011-07-01 EP EP11728849.8A patent/EP2588805B1/en active Active
- 2011-07-01 JP JP2013517313A patent/JP6005040B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3904119A (en) * | 1973-12-05 | 1975-09-09 | Avco Corp | Air-fuel spray nozzle |
US5680766A (en) * | 1996-01-02 | 1997-10-28 | General Electric Company | Dual fuel mixer for gas turbine combustor |
JPH09303776A (en) * | 1996-05-10 | 1997-11-28 | Mitsubishi Heavy Ind Ltd | Fuel injection nozzle for gas turbine combustor |
WO1999019670A2 (en) * | 1997-10-10 | 1999-04-22 | Siemens Westinghouse Power Corporation | FUEL NOZZLE ASSEMBLY FOR A LOW NOx COMBUSTOR |
US6141967A (en) * | 1998-01-09 | 2000-11-07 | General Electric Company | Air fuel mixer for gas turbine combustor |
WO2000022347A1 (en) * | 1998-10-09 | 2000-04-20 | General Electric Company | Fuel injection assembly for gas turbine engine combustor |
EP1990580A1 (en) * | 2007-05-10 | 2008-11-12 | Siemens Aktiengesellschaft | Burner component for a gas turbine burner |
WO2010073156A1 (en) * | 2008-12-23 | 2010-07-01 | Tck - Societa' A Responsabilita' Limitata | A combustion head and a burner comprising the head |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017116266A1 (en) * | 2015-12-30 | 2017-07-06 | General Electric Company | Liquid fuel nozzles for dual fuel combustors |
US10830445B2 (en) | 2015-12-30 | 2020-11-10 | General Electric Company | Liquid fuel nozzles for dual fuel combustors |
CN107023834A (en) * | 2017-04-19 | 2017-08-08 | 中国科学院工程热物理研究所 | A kind of nozzle and burner of multiple dimensioned flame on duty |
CN107023834B (en) * | 2017-04-19 | 2019-01-08 | 中国科学院工程热物理研究所 | A kind of nozzle and burner of multiple dimensioned flame on duty |
CN111520750A (en) * | 2020-03-25 | 2020-08-11 | 西北工业大学 | A new type of fuel injection structure in the head of the combustion chamber |
CN111520750B (en) * | 2020-03-25 | 2022-05-20 | 西北工业大学 | New type combustion chamber head fuel injection structure |
Also Published As
Publication number | Publication date |
---|---|
JP6005040B2 (en) | 2016-10-12 |
WO2012001141A1 (en) | 2012-01-05 |
EP2588805A1 (en) | 2013-05-08 |
EP2588805B1 (en) | 2016-04-20 |
JP2013529771A (en) | 2013-07-22 |
US20130104554A1 (en) | 2013-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2402652A1 (en) | Burner | |
DE3029095C2 (en) | Double fuel injector for a gas turbine engine | |
EP2156095B1 (en) | Swirling-free stabilising of the flame of a premix burner | |
DE2143012A1 (en) | Burner systems | |
DE102010017778A1 (en) | Device for fuel injection in a turbine | |
EP2161502A1 (en) | Pre-mix burner for a low calorie and high calorie fuel | |
EP2390491B1 (en) | Device for injecting fuel into a combustion chamber | |
DE112014001594T5 (en) | Combustion chamber and gas turbine | |
DE102006051286A1 (en) | Combustion device, has combustion chamber with combustion space and air injecting device including multiple nozzles arranged on circular line, where nozzles have openings formed as slotted holes in combustion space | |
EP2601447A2 (en) | Gas turbine combustion chamber | |
EP2609368A1 (en) | Burner arrangement | |
EP2171354B1 (en) | Burner | |
EP0911582B1 (en) | Method for operating a premix burner and premix burner | |
DE102016118633A1 (en) | Burner head, burner system and use of the burner system | |
EP2558781B1 (en) | Swirl generator for a torch | |
EP4089325B1 (en) | Nozzle for blowing gas into a combustion plant with a pipe and a swirl generator, flue with such a nozzle and method of using such a nozzle | |
DE102017118166B4 (en) | Burner head, burner system and use of the burner system | |
DE2932378A1 (en) | COMBUSTION CHAMBER FOR GAS TURBINE ENGINES | |
EP2310741B1 (en) | Fuel nozzle insert | |
DE102021123513A1 (en) | Burner and method for its manufacture | |
WO2015158489A1 (en) | Burner with swirl vane | |
DE102012101682A1 (en) | Injector of injection head for combustion chamber of rocket engine, has combustion chamber into which pressurized fuel mixed with other fuel is injected through downstream end of spacer | |
WO2011022847A1 (en) | Burner for generating a hot gas stream | |
EP2407715A1 (en) | Burner | |
WO2011022846A1 (en) | Oil burner, especially for heavy oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120705 |