EP2402473B1 - Process for producing a single-crystal component made of a nickel-based superalloy - Google Patents
Process for producing a single-crystal component made of a nickel-based superalloy Download PDFInfo
- Publication number
- EP2402473B1 EP2402473B1 EP11171088.5A EP11171088A EP2402473B1 EP 2402473 B1 EP2402473 B1 EP 2402473B1 EP 11171088 A EP11171088 A EP 11171088A EP 2402473 B1 EP2402473 B1 EP 2402473B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- component
- stage
- nickel
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
Definitions
- the invention relates to the field of materials technology. It relates to a method for producing a single-crystal component consisting of a nickel-base superalloy or directionally solidified component having comparatively large dimensions. With the aid of the method according to the invention, particularly good properties, in particular very good fatigue strength, are achieved with low-cycle stress on the component.
- Single-crystal components made of nickel-based superalloys have, among other things, a very good material strength at high stress temperatures, but also good corrosion and oxidation resistance as well as good creep resistance. Due to these properties, when using such materials z. As in gas turbines, the inlet temperature of the gas turbine can be increased, whereby the efficiency of the gas turbine plant increases.
- the first type to which the present invention relates may be completely solution annealed so that the entire ⁇ 'phase is in solution.
- This is the case for example for the known alloy CMSX4 with the following chemical composition (in% by weight): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni or the alloy PWA 1484 with the following chemical composition (in% by weight): 5 Cr, 10 Co, 6 W, 2 Mo, 3 Re, 8.7 Ta, 5.6 Al, 0.1 Hf and the known alloy MC2, which unlike the abovementioned alloys, it is not alloyed with rhenium and has the following chemical composition (in% by weight): 5 Co, 8 Cr, 2 Mo, 8 W, 5 Al, 1.5 Ti, 6 Ta, balance Ni.
- a typical standard heat treatment for CMSX4, for example, is the following: solution annealing at 1320 ° C / 2h / shielding gas, fan cooling.
- the second type of single crystal nickel base superalloys is not fully heat treatable, i.
- the entire portion of the ⁇ '-phase in a solution annealing goes into solution, but only a certain part.
- This is the case, for example, with the known superalloy CMSX186 having the following chemical composition (in% by weight): 0.07 C, 6 Cr, 9 Co, 0.5 Mo, 8 W, 3 Ta, 3 Re, 5.7 Al, 0.7 Ti, 1.4 Hf, 0.015 B, 0.005 Zr, balance Ni and the alloy CMSX486 with the following chemical composition (in% by weight): 0.07 C, 0.015 B, 5.7 Al, 9.3 Co, 5 Cr, 1.2 Hf, 0.7 Mo, 3 Re, 4.5 Ta, 0.7 Ti, 8.6 W, 0.005 Zr, balance Ni.
- the nickel-based superalloys of the second type are usually subjected to a two-stage heat treatment (aging process at lower temperatures), as at higher temperatures, as typically used in the alloys of the first type for solution annealing are already reached, the melting point start temperature, and thus the alloy begins to melt undesirable.
- the creep resistance of the first type of nickel-base superalloys is usually higher than that of the second type, provided that the alloys belong to the same generation. This is mainly due to the fact that the dissolved ⁇ 'is the main source of recoverable strength.
- Nickel-based superalloys for single-crystal components such as. B. off US 4,643,782 . EP 0 208 645 .
- US 5,270,123 and US 7,115,175 B2 contain alloying, eg, Re, W, Mo, Co, Cr, as well as ⁇ '-phase-forming elements, for example Al, Ta, and Ti.
- the content of high-melting alloying elements (W, Mo, Re) in the basic matrix ( austenitic ⁇ phase) increases continuously with the increase of the stress temperature of the alloy.
- W, Mo, Re high-melting alloying elements
- the alloys disclosed in the above references have a high creep strength, a comparatively good LCF (low cycle fatigue fatigue) and HCF (high cycle life fatigue) properties, and a high oxidation resistance.
- the alloy CMSX-4 US 4,643,782 when used experimentally in a gas turbine at a temperature above 1000 ° C a strong coarsening of the y 'phase, which is associated with an increase in the creeping speed of the alloy adversely.
- a similar effect leading to the flocculation of the ⁇ '-phase also results from the solidification of nickel-based superalloys due to dendritic segregation. Especially in superalloys with a high proportion of slowly diffusing elements, such. As rhenium, the segregations of these elements can not be completely eliminated within an acceptable homogenization time. Since the ⁇ '-phase, which precipitates during cooling, has a smaller lattice constant than the ⁇ -matrix and the ⁇ / ⁇ '-lattice offset in the dendrites is larger than in the interdendritic regions, internal stresses are formed during the heat treatment, especially during cooling. This leads to a change in the ⁇ 'microstructure in that the initially cubic form of ⁇ ' changes into a stretched form of ⁇ '. This is accompanied by the deterioration of mechanical properties, eg. B. fatigue strength at low load cycles.
- the process immediately following the casting step is carried out after a two-stage slow heating of the cast object at a final HIP temperature in the range of 1174 ° C (2145 ° F) to 1440 ° C (2625 ° F), wherein the hold time is 3.5 to 4.5 hours and the pressure is in the range of 89.6 MPa (13 ksi) to 113 MPa (16.5 ksi), that is, comparatively low.
- the aim of the invention is to avoid the mentioned disadvantages of the prior art.
- the invention is based on the object to provide a suitable method for the production, including heat treatment, of comparatively large single-crystal components or components with directionally solidified structure of known nickel-based superalloys, with which a microstructure can be adjusted that not for raft formation ⁇ '-phase and therefore leads to improved mechanical properties, in particular an improved fatigue life at low load cycles (LCF) of the components.
- the method according to the invention it is possible to produce large single-crystal components or components with directionally solidified microstructure of known nickel-base superalloys, which on the one hand are free of pores and on the other hand have a microstructure in which the flocculation of the ⁇ 'phase is avoided. Therefore, the components thus produced have improved mechanical properties, in particular improved low cycle fatigue life (LCF) fatigue strength.
- the method has the advantage that it is relatively easy to implement.
- step A) it is advantageous if the determination of the dendrite arm spacing ( ⁇ ) according to step A) takes place by metallographic means. This is relatively easy to implement and, for example, can already be carried out prior to the method on the basis of corresponding samples,
- the quenching rate (v1) from solution annealing temperature (T 1 ) to room temperature is greater than 70 ° C./min, because then extremely fine uniformly distributed ⁇ '-particles are obtained in the ⁇ -matrix.
- the nickel-base superalloys CMSX4 known from the prior art with the following chemical composition (in% by weight) were used: 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, balance Ni.
- the component such as a gas turbine bucket
- the component was poured into its mold.
- dendritic segregations arise due to the composition, in particular the comparatively high Re content.
- Rhenium is a very slowly diffusing element, so these segregations can not be completely eliminated in the subsequent solution annealing process within an acceptable homogenization time. Since the ⁇ '-phase, which precipitates during cooling, has a smaller lattice constant than the ⁇ -matrix and the ⁇ / ⁇ '-lattice offset in the dendrites is larger than in the interdendritic regions, internal stresses are formed during the heat treatment, especially during cooling. This leads to a degradation in the ⁇ '-microstructure, in that the initially cubic form of ⁇ 'changes into a stretched form of ⁇ '. This is accompanied by the deterioration of mechanical properties, eg. B. fatigue strength at low load cycles.
- mechanical properties eg. B. fatigue strength at low load cycles.
- the dendrite arm spacing ⁇ is therefore first determined in different, for example, the critical regions of the cast component. This can z. B. done by metallographic way, where appropriate, this distance is already determined prior to the process on the basis of corresponding pre-cast samples.
- the slowest diffusion element in the composition of the respective nickel base superalloy is identified to determine the diffusion coefficient D.
- this element is rhenium, as already explained above.
- this element is Mo.
- the required time t is calculated at which the component at solution annealing temperature T 1 , which is lower on the one hand than the starting melt temperature T mi , and on the other hand high enough to in the necessary heat treatment window must be held so that the microsegregation of this slowest diffusion element is reduced to ⁇ 5%.
- Fig. 1 is the time-temperature diagram of the subsequent to the casting process treatment method for producing the single crystal component from the above superalloy shown schematically.
- the solution annealing (process step D)) of the cast component in the present embodiment thus comprises heating the component to the above solution annealing temperature T 1 of 1290-1310 ° C, holding at this temperature with the time t calculated above (4-6 h) and a rapid quenching from the solution annealing temperature T 1 to room temperature at a rate v1 ⁇ 50 ° C / min, in order to obtain very fine uniformly distributed ⁇ 'particles in the ⁇ matrix after quenching (Scheme Fig. 2a ).
- the quenching rate is greater than 70 ° C / min, because then a microstructure is obtained with extremely fine uniformly distributed ⁇ '-particles in the ⁇ -matrix.
- a two-stage precipitation treatment for precipitating the ⁇ '-phase is carried out at lower temperatures T 2 and T 3 in comparison to T 1 (method step E)), wherein in the first stage of the precipitation treatment a HIP method with one pressure p greater than 160 MPa and a cooling rate v2 ⁇ 50 ° C / min is applied.
- the final temperature of the HIP process in the present embodiment is 1150 ° C, the holding time 4-6 h.
- the applied final pressure during the HIP process is relatively high, it is greater than the internal stresses caused by the inhomogeneities in the microstructure.
- this method step advantageously closes any micropores present in the microstructure and, on the other hand, eliminates stresses which are caused by the rapid cooling of the solution annealing temperature T 1 to room temperature or by any residual inhomogeneities in the microstructure. This prevents directional flocculation of the ⁇ 'phase by the formation of the aforementioned cubic ⁇ ' particles in the ⁇ matrix.
- the microstructure present after the HIP-treatment step consists of fine uniformly distributed cubic ⁇ '-particles in the ⁇ matrix and is schematically in orientation Fig. 2b shown.
- the first stage of process step E ie the HIP process, as in Fig. 3c is shown to perform.
- the isostatic discharge pressure p is here in turn applied abruptly at the beginning of the warm-up phase, and kept constant over the entire warm-up phase, the holding phase at T 2 and in addition over the entire cooling phase. Only then, when the component has assumed room temperature, the isostatic pressure load is abruptly removed.
- the single-crystal component / directionally solidified component is heated to a temperature T 3 of 870 ° C., held at this temperature T 3 for 16-20 h and then cooled to room temperature at a cooling rate v3 of approx. 50 ° C./minute ,
- the end structure according to the present invention formed after this last treatment step is schematically for the ⁇ 001> orientation in FIG Fig. 2c shown.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
Die Erfindung bezieht sich auf das Gebiet der Werkstofftechnik. Sie betrifft ein Verfahren zur Herstellung einer aus einer Nickel-Basis-Superlegierung bestehenden Einkristallkomponente oder gerichtet erstarrten Komponente mit vergleichsweise grossen Abmessungen. Mit Hilfe des erfindungsgemässen Verfahrens werden besonders gute Eigenschaften, insbesondere sehr gute Ermüdungsfestigkeit bei niederzyklischer Beanspruchung der Komponente erreicht.The invention relates to the field of materials technology. It relates to a method for producing a single-crystal component consisting of a nickel-base superalloy or directionally solidified component having comparatively large dimensions. With the aid of the method according to the invention, particularly good properties, in particular very good fatigue strength, are achieved with low-cycle stress on the component.
Einkristallkomponenten aus Nickel-Basis-Superlegierungen weisen bei hohen Beanspruchungstemperaturen u. a. eine sehr gute Materialfestigkeit, aber auch gute Korrosions- und Oxidationsbeständigkeit sowie eine gute Kriechfestigkeit auf. Aufgrund dieser Eigenschaften kann beim Einsatz derartiger Werkstoffe z. B. in Gasturbinen, die Einlasstemperatur der Gasturbinen erhöht werden, wodurch die Effizienz der Gasturbinenanlage steigt.Single-crystal components made of nickel-based superalloys have, among other things, a very good material strength at high stress temperatures, but also good corrosion and oxidation resistance as well as good creep resistance. Due to these properties, when using such materials z. As in gas turbines, the inlet temperature of the gas turbine can be increased, whereby the efficiency of the gas turbine plant increases.
Vereinfacht gesagt gibt es zwei Typen von Einkristall-Nickel-Basis-Superlegierungen.Put simply, there are two types of single crystal nickel-base superalloys.
Der erste Typ, auf den sich die vorliegende Erfindung bezieht, kann vollständig lösungsgeglüht werden, so dass sich die gesamte γ'-Phase in Lösung befindet. Dies ist beispielsweise der Fall bei der bekannten Legierung CMSX4 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni oder der Legierung PWA 1484 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 5 Cr, 10 Co, 6 W, 2 Mo, 3 Re, 8.7 Ta, 5.6 Al, 0.1 Hf sowie der bekannten Legierung MC2, welche im Gegensatz zu den vorher genannten Legierungen nicht mit Rhenium legiert ist und folgende chemische Zusammensetzung (Angaben in Gew.- %) aufweist: 5 Co, 8 Cr, 2 Mo, 8 W, 5 Al, 1.5 Ti, 6 Ta, Rest Ni.The first type to which the present invention relates may be completely solution annealed so that the entire γ 'phase is in solution. This is the case for example for the known alloy CMSX4 with the following chemical composition (in% by weight): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni or the alloy PWA 1484 with the following chemical composition (in% by weight): 5 Cr, 10 Co, 6 W, 2 Mo, 3 Re, 8.7 Ta, 5.6 Al, 0.1 Hf and the known alloy MC2, which unlike the abovementioned alloys, it is not alloyed with rhenium and has the following chemical composition (in% by weight): 5 Co, 8 Cr, 2 Mo, 8 W, 5 Al, 1.5 Ti, 6 Ta, balance Ni.
Eine typische Standardwärmebehandlung für CMSX4 ist beispielsweise die folgende: Lösungsglühen bei 1320 °C/2h/Schutzgas, Schnellkühlung mit Ventilator.A typical standard heat treatment for CMSX4, for example, is the following: solution annealing at 1320 ° C / 2h / shielding gas, fan cooling.
Der zweite Typ von Einkristall-Nickel-Basis-Superlegierungen ist nicht vollständig wärmebehandelbar, d.h. hier geht nicht der gesamte Anteil der γ'-Phase bei einem Lösungsglühen in Lösung, sondern nur ein bestimmter Teil. Dies ist beispielsweise der Fall bei der bekannten Superlegierung CMSX186 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 0.07 C, 6 Cr, 9 Co, 0.5 Mo, 8 W, 3 Ta, 3 Re, 5.7 Al, 0.7 Ti, 1.4 Hf, 0.015 B, 0.005 Zr, Rest Ni und der Legierung CMSX486 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 0.07 C, 0.015 B, 5.7 Al, 9.3 Co, 5 Cr, 1.2 Hf, 0.7 Mo, 3 Re, 4.5 Ta, 0.7 Ti, 8.6 W, 0.005 Zr, Rest Ni.The second type of single crystal nickel base superalloys is not fully heat treatable, i. Here, not the entire portion of the γ'-phase in a solution annealing goes into solution, but only a certain part. This is the case, for example, with the known superalloy CMSX186 having the following chemical composition (in% by weight): 0.07 C, 6 Cr, 9 Co, 0.5 Mo, 8 W, 3 Ta, 3 Re, 5.7 Al, 0.7 Ti, 1.4 Hf, 0.015 B, 0.005 Zr, balance Ni and the alloy CMSX486 with the following chemical composition (in% by weight): 0.07 C, 0.015 B, 5.7 Al, 9.3 Co, 5 Cr, 1.2 Hf, 0.7 Mo, 3 Re, 4.5 Ta, 0.7 Ti, 8.6 W, 0.005 Zr, balance Ni.
Die Nickel-Basis-Superlegierungen des zweiten Typs werden meist einer zweifstufigen Wärmebehandlung (Alterungsprozess bei niedrigeren Temperaturen) ausgesetzt, da bei höheren Temperaturen, wie sie bei den Legierungen des ersten Typs zum Lösungsglühen typischerweise verwendet werden, bereits die Schmelzpunkt-Starttemperatur erreicht wird, und die Legierung somit unerwünscht zu schmelzen beginnt.The nickel-based superalloys of the second type are usually subjected to a two-stage heat treatment (aging process at lower temperatures), as at higher temperatures, as typically used in the alloys of the first type for solution annealing are already reached, the melting point start temperature, and thus the alloy begins to melt undesirable.
Eine typische zweistufige Wärmebehandlung der Legierung CMSX186 ist beispielsweise die folgende:
- 1. Stufe: 1080 °C/4h/Gebläse
- 2. Stufe: 870 °C/20h/Gebläse.
- 1st stage: 1080 ° C / 4h / blower
- 2nd stage: 870 ° C / 20h / blower.
Die Kriechfestigkeit des ersten Typs der Nickel-Basis-Superlegierungen ist normalerweise höher als die des zweiten Typs, vorausgesetzt, dass die Legierungen der gleichen Generation angehören. Dies ist vor allem in der Tatsache begründet, dass das gelöste γ' die Hauptquelle für die erzielbare Festigkeit ist.The creep resistance of the first type of nickel-base superalloys is usually higher than that of the second type, provided that the alloys belong to the same generation. This is mainly due to the fact that the dissolved γ 'is the main source of recoverable strength.
Nickel-Basis-Superlegierungen für Einkristall-Komponenten, wie sie z. B. aus
Diese bekannten Legierungen wurden für Flugzeugturbinen entwickelt und deshalb optimiert auf den Kurz- und Mittelzeiteinsatz, d.h. die Beanspruchungsdauer wird auf bis zu 20 000 Stunden ausgelegt. Im Gegensatz dazu müssen industrielle Gasturbinen-Komponenten auf eine Beanspruchungsdauer von bis zu 75 000 Stunden oder auch mehr ausgelegt werden.These known alloys have been developed for aircraft turbines and therefore optimized for short-term and medium-time use, ie the load duration is designed for up to 20,000 hours. In contrast, industrial gas turbine components have to go to one Stress duration of up to 75 000 hours or more can be interpreted.
Nach einer Beanspruchungsdauer von 300 Stunden zeigt z. B. die Legierung CMSX-4 aus
Es ist bekannter Stand der Technik, derartige Superlegierungen nach dem Giessprozess einer Wärmebehandlung zu unterziehen, bei der in einem ersten Lösungsglühschritt die während des Giessprozesses ungleichmässig ausgeschiedene γ'-Phase im Gefüge ganz oder teilweise aufgelöst wird. In
Es wurde allerdings festgestellt, dass es bei Einwirkung einer mechanischen Belastung unter langzeitiger Hochtemperaturbeanspruchung (Kriechbeanspruchung) oder nach einer plastischen Deformation des Materials bei Raumtemperatur, an die sich eine Wärmebehandlung (Hochtemperatur-Glühen) des Materials anschliesst, im Gefüge derartiger Legierungen nachteilig zu einer gerichteten Vergröberung der y'-Teilchen, der sogenannten Flossbildung (Englisch: rafting) kommt. Bei hohen γ'-Gehalten (d.h. bei einem γ'-Volumenanteil von mindestens 50%) führt dies zur Invertierung der Mikrostruktur, d.h. γ' wird zur durchgehenden Phase, in der die frühere γ-Matrix eingebettet ist.However, it has been found that when subjected to mechanical stress under long-term high temperature stress (creep) or after plastic deformation of the material at room temperature to which a heat treatment is applied (High-temperature annealing) of the material adjoins, in the structure of such alloys adversely to a directional coarsening of the y 'particles, the so-called rafting (English: rafting) comes. At high γ'-contents (ie at a γ'-volume fraction of at least 50%) this leads to inversion of the microstructure, ie γ 'becomes the continuous phase in which the former γ-matrix is embedded.
Da die intermetallische γ'-Phase zur Umgebungsversprödung (Englisch: environmental embrittlement) neigt, führt dies nachfolgend unter bestimmten Beanspruchungsbedingungen zu einem massiven Abfall der mechanischen Eigenschaften - vor allem der Streckgrenze - bei Raumtemperatur (25°C) im Vergleich zu Proben, die keiner vorgängigen derartigen Kriechbeanspruchung unterzogen wurden. Diese Verschlechterung der Streckgrenze wird mit dem Begriff "Degradierung" der Eigenschaften beschrieben (siehe
Ein ähnlicher, zur Flossbildung der γ'-Phase führender Effekt ergibt sich auch beim Erstarren von Nickel-Basis-Superlegierungen auf Grund von dendritischen Segregationen. Besonders in Superlegierungen mit einem hohen Anteil an langsam diffundierenden Elementen, wie z. B. Rhenium, können die Segregationen dieser Elemente nicht vollständig innerhalb einer akzeptablen Homogenisierungszeit beseitigt werden. Da die γ'-Phase, die sich während der Abkühlung ausscheidet, eine kleinere Gitterkonstante als die γ-Matrix hat und der γ/γ'-Gitterversatz in den Dendriten aber grösser ist als in den interdendritischen Gebieten, kommt es zur Ausbildung von inneren Spannungen während der Wärmebehandlung, insbesondere während des Abkühlens. Dies führt zu einer Veränderung in der γ'-Mikrostruktur, indem sich die zunächst kubische Form von γ` in eine gestreckte Form von γ' verändert. Dies geht einher mit der Verschlechterung von mechanischen Eigenschaften, z. B. der Ermüdungsfestigkeit bei niedriger Lastspielzahl.A similar effect leading to the flocculation of the γ'-phase also results from the solidification of nickel-based superalloys due to dendritic segregation. Especially in superalloys with a high proportion of slowly diffusing elements, such. As rhenium, the segregations of these elements can not be completely eliminated within an acceptable homogenization time. Since the γ'-phase, which precipitates during cooling, has a smaller lattice constant than the γ-matrix and the γ / γ'-lattice offset in the dendrites is larger than in the interdendritic regions, internal stresses are formed during the heat treatment, especially during cooling. This leads to a change in the γ 'microstructure in that the initially cubic form of γ' changes into a stretched form of γ '. This is accompanied by the deterioration of mechanical properties, eg. B. fatigue strength at low load cycles.
Ein weiteres Problem vieler bekannter Nickel-Basis-Superlegierungen, beispielsweise der aus
Das Glessen einer perfekten, relativ grossen gerichtet erstarrten Einkristall-Komponente aus einer Nickel-Basis-Superlegierung ist extrem schwierig. Die meisten dieser Komponenten weisen Fehler auf, z. B. Kleinwinkelkorngrenzen, "Frecklen", d. h. Fehlstellen bedingt durch eine Kette von gleichgerichteten Körnern mit einem hohem Gehalt an Eutektikum, äquiaxiale Streugrenzen, Mikroporositäten u. a. Diese Fehler schwächen die Komponenten bei hohen Temperaturen, so dass die gewünschte Lebensdauer bzw. die Betriebstemperatur der Turbine nicht erreicht werden.The glazing of a perfect, relatively large directionally solidified single crystal nickel base superalloy component is extremely difficult. Most of these components have errors, e.g. Small angle grain boundaries, "Frecklen", d. H. Defects caused by a chain of rectified grains with a high content of eutectic, equiaxial Streugrenzen, microporosity u. a. These defects weaken the components at high temperatures, so that the desired life or operating temperature of the turbine can not be achieved.
Da aber eine perfekt gegossene Einkristall-Komponente extrem teuer ist, tendiert die Industrie dazu, so viele Defekte wie möglich zuzulassen ohne dass die Lebensdauer oder die Betriebstemperatur beeinträchtigt werden.However, because a perfectly cast single crystal component is extremely expensive, the industry tends to allow as many defects as possible without sacrificing service life or operating temperature.
Eine andere Möglichkeit wird in
Gemäss dem im Dokument
Letzteres trifft auch für das im Dokument
Mit diesen bekannten Verfahren werden somit Einkristallkomponenten aus Nickel-Basis-Superlegierungen hergestellt, welche einerseits vorteilhaft porenfrei sind und keine eutektischen γ/γ'-Phasen aufweisen und welche andererseits eine γ'-Morphologie mit einer bimodalen γ'-Verteilung aufweisen.With these known methods, therefore, single-crystal components of nickel-base superalloys are produced, which on the one hand are advantageously nonporous and have no eutectic γ / γ 'phases and which, on the other hand, have a γ' morphology with a bimodal γ 'distribution.
Im Dokument
Eine positive Beeinflussung des Gefüges im Hinblick auf die oben beschriebene unerwünschte Flossbildung ist mit den in diesen Dokumenten offenbarten Verfahren nicht möglich.A positive effect on the microstructure with regard to the unwanted flocculation described above is not possible with the methods disclosed in these documents.
Ziel der Erfindung ist es, die genannten Nachteile des Standes der Technik zu vermeiden. Der Erfindung liegt die Aufgabe zu Grunde, ein geeignetes Verfahren zur Herstellung, inklusive Wärmebehandlung, von vergleichsweise grossen Einkristallkomponenten bzw. Komponenten mit gerichtet erstarrtem Gefüge aus bekannten Nickel-Basis-Superlegierungen zu schaffen, mit welchem ein Gefüge eingestellt werden kann, dass nicht zur Flossbildung der γ'-Phase neigt und daher zu verbesserten mechanischen Eigenschaften, insbesondere einer verbesserte Ermüdungsfestigkeit bei niedriger Lastspielzahl (LCF) der Komponenten führt.The aim of the invention is to avoid the mentioned disadvantages of the prior art. The invention is based on the object to provide a suitable method for the production, including heat treatment, of comparatively large single-crystal components or components with directionally solidified structure of known nickel-based superalloys, with which a microstructure can be adjusted that not for raft formation γ'-phase and therefore leads to improved mechanical properties, in particular an improved fatigue life at low load cycles (LCF) of the components.
Erfindungsgemäss wird dies dadurch erreicht, dass bei einem Verfahren gemäss Obergriff des Anspruches 1 folgende Schritte nach dem gemäss üblichem Stand der Technik erfolgten Giessen der Komponente durchgeführt werden:
- A) Bestimmung des Dendritenarmabstandes (λ) in verschiedenen Bereichen der gegossenen Komponente,
- B) Identifizierung des langsamsten Diffusionselementes in der Zusammensetzung der jeweiligen Nickel Basis-Superlegierung zur Ermittlung des Diffusionskoeffizienten (D),
- C) Kalkulation der erforderlichen Zeit (t), die notwendig ist, um die Segregation dieses langsamsten Diffusionselementes auf ≤ 5% zu reduzieren bei einer Lösungsglühtemperatur (T1), welche einerseits niedriger als die Startschmelztemperatur (Tmi) ist, andererseits aber hoch genug ist, um im notwendigen Wärmebehandlungsfenster zu liegen,
- D) Lösungsglühen der gegossenen Komponente, umfassend ein Erwärmen der Komponente auf die Lösungsglühtemperatur (T1), ein Halten bei dieser Temperatur mit der im Schritt C) kalkulierten Zeit (t) und ein Abschrecken von der Lösungsglühtemperatur (T1) auf Raumtemperatur (RT) mit einer Geschwindigkeit (v1) ≥ 50 °C/min,
- E) Durchführung der zweistufigen Ausscheidungsbehandlung zur Ausscheidung der γ'-Phase bei jeweils niedrigeren Temperaturen (T2) und (T3) im Anschluss an den Schritt D), wobei in der ersten Stufe der Ausscheidungsbehandlung ein HIP-Verfahren mit einem Druck (p) grösser 160 MPa bei der Haltetemperatur (T2) und einer anschliessenden Abkühlung auf Raumtemperatur (RT) mit einer Abkühlgeschwindigkeit (v2) ≥ 50 °C/min durchgeführt wird, und in der nachfolgenden zweiten Stufe der Ausscheidungsbehandlung eine Wärmebehandlung der Komponente bei einer Haltetemperatur (T3) und anschliessender Abkühlung auf Raumtemperatur (RT) mit einer Abkühlgeschwindigkeit (v3) von 10 bis 50 °C/min durch geführt wird.
- A) determination of the dendrite arm spacing (λ) in different regions of the cast component,
- B) Identification of the slowest diffusion element in the composition of the respective nickel-based superalloy for determining the diffusion coefficient (D),
- C) Calculation of the required time (t) necessary to reduce the segregation of this slowest diffusion element to ≤ 5% at a solution annealing temperature (T 1 ) which on the one hand is lower than the start melting temperature (T mi ) but on the other hand high enough is to be in the necessary heat treatment window,
- D) Solution annealing the cast component comprising heating the component to the solution annealing temperature (T 1 ), holding at that temperature with the time (t) calculated in step C) and quenching from the solution annealing temperature (T 1 ) to room temperature (RT ) at a speed (v1) ≥ 50 ° C / min,
- E) carrying out the two-stage precipitation treatment to separate the γ 'phase at lower temperatures (T 2 ) and (T 3 ) following step D), wherein in the first stage of the precipitation treatment a HIP process with a pressure (p ) greater than 160 MPa at the holding temperature (T 2 ) and subsequent cooling to room temperature (RT) at a cooling rate (v2) ≥ 50 ° C / min, and in the subsequent second stage of the precipitation treatment a heat treatment of the component at a holding temperature (T 3 ) and subsequent cooling to room temperature (RT) with a cooling rate (v3) of 10 to 50 ° C / min is performed.
Mit dem erfindungsgemässen Verfahren ist es möglich, grosse Einkristallkomponenten bzw. Komponenten mit gerichtet erstarrtem Gefüge aus bekannten Nickel-Basis-Superlegierungen herzustellen, welche einerseits porenfrei sind und die anderseits eine Mikrostruktur aufweisen, bei der die Flossbildung der γ'-Phase vermieden wird. Daher weisen die so hergestellten Komponenten verbesserte mechanischen Eigenschaften, insbesondere eine verbessert Ermüdungsfestigkeit bei niedriger Lastspielzahl (LCF) auf. Das Verfahren hat den Vorteil, dass es relativ einfach umsetzbar ist.With the method according to the invention, it is possible to produce large single-crystal components or components with directionally solidified microstructure of known nickel-base superalloys, which on the one hand are free of pores and on the other hand have a microstructure in which the flocculation of the γ 'phase is avoided. Therefore, the components thus produced have improved mechanical properties, in particular improved low cycle fatigue life (LCF) fatigue strength. The method has the advantage that it is relatively easy to implement.
Es ist vorteilhaft, wenn die Bestimmung des Dendritenarmabstandes (λ) gemäss Schritt A) auf metallographischem Wege erfolgt. Dies ist relativ einfach zu realisieren und kann beispielsweise bereits im Vorfeld des Verfahrens anhand von entsprechenden Proben erfolgen,It is advantageous if the determination of the dendrite arm spacing (λ) according to step A) takes place by metallographic means. This is relatively easy to implement and, for example, can already be carried out prior to the method on the basis of corresponding samples,
Weiterhin ist es von Vorteil, wenn die Abschreckgeschwindigkeit (v1) von Lösungsglühtemperatur (T1) auf Raumtemperatur grösser als 70 °C/min ist, weil dann extrem feine gleichmässig verteilte γ'-Partikel in der γ-Matrix erhalten werden.Furthermore, it is advantageous if the quenching rate (v1) from solution annealing temperature (T 1 ) to room temperature is greater than 70 ° C./min, because then extremely fine uniformly distributed γ'-particles are obtained in the γ-matrix.
Schliesslich ist es vorteilhaft, wenn das erfindungsgemässe Verfahren zur Herstellung einer Komponente aus einer Nickel-Basis-Superlegierung mit folgender chemischer Zusammensetzung (Angaben in Gew.- %): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni bei folgenden Behandlungsparametern durchgeführt wird:
- Lösungsglühen bei 1290-1310°C/4-6h/Schnellabkühlung mit v1≥50 °C/min
- HIP-Prozess (isostatischer Druck> 160 MPa) mit Erwärmen und Glühen bei 1150 °C/4-8h/Schnellabkühlung mit v2 ≥ 50 °C/min
- Glühen bei 870 °C/16-20h/Abkühlung mit v3 im Bereich von 10-20 °C/min umfasst.
- Solution annealing at 1290-1310 ° C / 4-6h / rapid cooling with v1≥50 ° C / min
- HIP process (isostatic pressure> 160 MPa) with heating and annealing at 1150 ° C / 4-8h / rapid cooling with v2 ≥ 50 ° C / min
- Annealing at 870 ° C / 16-20h / cooling with v3 in the range of 10-20 ° C / min.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen schematisch:
- Fig. 1
- das Zeit-Temperatur-Diagramm des sich an den Giessprozess anschliessenden Behandlungsverfahren zur Herstellung einer Einkristallkomponente
- Fig. 2a-2c
- die jeweiligen zu
Fig. 1 zugehörenden Gefüge zu Orientierung) und - Fig.3a-3c
- die Zeit-Temperatur- bzw. Druck-Temperatur-Diagramme für den HIP-Prozess in drei möglichen Varianten.
- Fig. 1
- the time-temperature diagram of the adjoining the casting process treatment method for producing a single crystal component
- Fig. 2a-2c
- the respective ones too
Fig. 1 belonging structure for orientation) and - 3a-3c
- the time-temperature or pressure-temperature diagrams for the HIP process in three possible variants.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles und der Zeichnungen näher erläutert.The invention will be explained in more detail with reference to an embodiment and the drawings.
Zur Herstellung einer grossen Einkristallkomponente/gerichtet erstarrten Komponente wurde die aus dem Stand der Technik bekannten Nickel-Basis-Superlegierungen CMSX4 mit folgender chemischer Zusammensetzung (Angaben in Gew.- %) verwendet: 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, Rest Ni.To prepare a large single-crystal component / directionally solidified component, the nickel-base superalloys CMSX4 known from the prior art with the following chemical composition (in% by weight) were used: 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, balance Ni.
Zunächst wurde die Komponente, beispielsweise eine Gastubinenschaufel, in ihre Form gegossen. Beim Erstarren dieser gegossenen Legierung entstehen aufgrund der Zusammensetzung, insbesondere des vergleichsweise hohen Re-Anteils, dendritischen Segregationen.First, the component, such as a gas turbine bucket, was poured into its mold. Upon solidification of this cast alloy, dendritic segregations arise due to the composition, in particular the comparatively high Re content.
Rhenium ist ein sehr langsam diffundierendes Element ist, daher können diese Segregationen beim nachfolgenden Lösungsgluhprozess nicht vollständig innerhalb einer akzeptablen Homogenisierungszeit beseitigt werden. Da die γ'-Phase, die sich während der Abkühlung ausscheidet, eine kleinere Gitterkonstante als die γ-Matrix hat und der γ/γ'-Gitterversatz in den Dendriten aber grösser ist als in den interdendritischen Gebieten, kommt es zur Ausbildung von inneren Spannungen während der Wärmebehandlung, insbesondere während des Abkühlens. Dies führt zu einer Degradation in der γ'-Mikrostruktur, indem sich die zunächst kubische Form von γ' in eine gestreckte Form von γ' verändert. Dies geht einher mit der Verschlechterung von mechanischen Eigenschaften, z. B. der Ermüdungsfestigkeit bei niedriger Lastspielzahl.Rhenium is a very slowly diffusing element, so these segregations can not be completely eliminated in the subsequent solution annealing process within an acceptable homogenization time. Since the γ'-phase, which precipitates during cooling, has a smaller lattice constant than the γ-matrix and the γ / γ'-lattice offset in the dendrites is larger than in the interdendritic regions, internal stresses are formed during the heat treatment, especially during cooling. This leads to a degradation in the γ'-microstructure, in that the initially cubic form of γ 'changes into a stretched form of γ'. This is accompanied by the deterioration of mechanical properties, eg. B. fatigue strength at low load cycles.
Um dies zu vermeiden wird daher zunächst der Dendritenarmabstandes λ in verschiedenen, beispielsweise den kritischen Bereichen der gegossenen Komponente ermittelt. Das kann z. B. auf metallographischem Wege erfolgen, wobei gegebenenfalls bereits im Vorfeld des Verfahrens dieser Abstand anhand von entsprechenden vorab gegossenen Proben ermittelt wird.To avoid this, the dendrite arm spacing λ is therefore first determined in different, for example, the critical regions of the cast component. This can z. B. done by metallographic way, where appropriate, this distance is already determined prior to the process on the basis of corresponding pre-cast samples.
Weiterhin wird das langsamste Diffusionselement in der Zusammensetzung der jeweiligen Nickel-Basis-Superlegierung identifiziert zur Ermittlung des Diffusionskoeffizienten D. Im vorliegenden Falle ist dieses Element, wie bereits oben dargelegt, Rhenium. Im Falle der im Abschnitt "Stand der Technik" oben beschriebenen Nickel-Basis-Superlegierung MC2 ist dieses Element Mo.Furthermore, the slowest diffusion element in the composition of the respective nickel base superalloy is identified to determine the diffusion coefficient D. In the present case, this element is rhenium, as already explained above. In the case of the nickel-base superalloy MC2 described in the section "Prior Art" above, this element is Mo.
Aus den nun bekannten Daten, d.h. aus D und λ, wird die erforderliche Zeit t kalkuliert, bei welcher die Komponente bei Lösungsglühtemperatur T1, welche einerseits niedriger ist als die Startschmelztemperatur Tmi, und andererseits aber hoch genug ist, um im notwendigen Wärmebehandlungsfenster zu liegen, gehalten werden muss, damit die Mikrosegregation dieses langsamsten Diffusionselementes auf ≤ 5% reduziert wird.From the data now known, ie from D and λ, the required time t is calculated at which the component at solution annealing temperature T 1 , which is lower on the one hand than the starting melt temperature T mi , and on the other hand high enough to in the necessary heat treatment window must be held so that the microsegregation of this slowest diffusion element is reduced to ≤ 5%.
Diese kalkulierte Zeit t beträgt im vorliegenden Ausführungsbeispiel 4-6 h bei einer Lösungsglühtemperatur T1 von 1290-1310 °C. Man kann sie ermitteln nach folgender Formel:
- mit λ = Dendritenarmabstand
- D = Diffusionskoeffizient (von Rh in Ni für das vorliegende Beispiel)
- δ = Amplitude der Mikrosegregation (hier: 0.05 für eine
- Restsegregation von 5 %
- with λ = dendrite arm spacing
- D = diffusion coefficient (from Rh to Ni for the present example)
- δ = amplitude of microsegregation (here: 0.05 for a
- Residual segregation of 5%
In
Das Lösungsglühen (Verfahrensschritt D)) der gegossenen Komponente umfasst im vorliegenden Ausführungsbeispiel somit ein Erwärmen der Komponente auf die o. g. Lösungsglühtemperatur T1 von 1290-1310 °C, ein Halten bei dieser Temperatur mit der oben kalkulierten Zeit t (4-6 h) und ein schnelles Abschrecken von der Lösungsglühtemperatur T1 auf Raumtemperatur mit einer Geschwindigkeit v1 ≥ 50 °C/min, um nach dem Abschrecken sehr feine gleichmässig verteilte γ'-Partikel in der γ-Matrix zu erhalten (schematische Darstellung des Gefüges siehe
Erfindungsgemäss wird nach dem Lösungsglühen eine zweistufigen Ausscheidungsbehandlung zur Ausscheidung der γ'-Phase bei im Vergleich zu T1 jeweils niedrigeren Temperaturen T2 und T3 durchgeführt (Verfahrensschritt E)), wobei in der ersten Stufe der Ausscheidungsbehandlung ein HIP-Verfahren mit einem Druck p grösser 160 MPa und einer Abkühlgeschwindigkeit v2 ≥ 50 °C/min angewendet wird. Die Endtemperatur des HIP-Verfahrens beträgt im vorliegenden Ausführungsbeispiel 1150 °C, die Haltezeit 4-6 h. Der aufgebrachte Enddruck während des HIP-Prozesses ist relativ hoch, er ist grösser als die durch die Inhomogenitäten im Gefüge hervorgerufenen inneren Spannungen. Durch diesen Verfahrensschritt werden vorteilhaft einerseits eventuell vorhandene Mikroporen im Gefüge geschlossen und andererseits Spannungen beseitigt, welche durch die rapide Abkühlung von Lösungsglühtemperatur T1 auf Raumtemperatur bzw. durch eventuell vorhanden Restinhomogenitäten im Gefüge hervorgerufen werden. Dadurch wird eine gerichtete Flossbildung der γ'-Phase verhindert, indem sich die bereits erwähnten kubischen γ'-Partikeln in der γ-Matrix bilden. Das nach dem HIP-Behandlungsschritt vorliegende Gefüge besteht aus feinen gleichmässig verteilten kubischen γ'-Partikeln in der γ-Matrix und ist schematisch in zu Orientierung in
Die Realisierung der ersten Stufe des Verfahrensschrittes E) ist in mehreren Varianten möglich. Entsprechende Zeit-Temperatur- bzw. Druck-Temperatur-Diagramme für den HIP-Prozess sind schematisch in den
Bei der ersten, in
Im Vergleich zu
Schliesslich ist es in einer weitern Variante auch möglich, die erste Stufe des Verfahrensschrittes E), d.h. den HIP-Prozess, so wie er in
Mit allen drei Varianten wird vorteilhafte eine Flossbildung im Gefüge verhindert.With all three variants, beneficial fin formation in the microstructure is prevented.
Abschliessend wird als letzter Schritt des Verfahrens eine weitere Stufe der Ausscheidungswärmebehandlung der Komponente durchgeführt. Gemäss vorliegendem Ausführungsbeispiel wird dabei die Einkristallkomponente/gerichtet erstarrte Komponente auf eine Temperatur T3 von 870 °C erwärmt, bei dieser Temperatur T3 16-20 h lang gehalten und danach mit einer Abkühlgeschwindigkeit v3 von ca. 50 °C/min auf Raumtemperatur abgekühlt.Finally, as the last step of the process, a further stage of the precipitation heat treatment of the component is carried out. According to the present exemplary embodiment, the single-crystal component / directionally solidified component is heated to a temperature T 3 of 870 ° C., held at this temperature T 3 for 16-20 h and then cooled to room temperature at a cooling rate v3 of approx. 50 ° C./minute ,
Das nach diesem letzten Behandlungsschritt gebildete End-Gefüge gemäss vorliegender Erfindung ist schematisch für die <001> Orientierung in
Mit dem erfindungsgemässen Verfahren werden vor allem chemische Inhomogenitäten zwischen dendritischen und interdendritschen Bereichen im Gefüge beseitigt, dadurch die Tendenz zur lokalen Flossbildung der γ'-Phase reduziert bzw. verhindert (im vorliegenden Ausführungsbeispiel konnte in den Kühlkanälen der Gasturbinenschaufel die Flossbildung der γ'-Phase verhindert werden) und somit die Eigenschaften der Komponenten, insbesondere die Ermüdungseigenschaften bei niedrigen Lastspielzahlen, verbessert.With the method according to the invention, in particular chemical inhomogeneities between dendritic and interdendritic regions in the microstructure are eliminated, thereby reducing or preventing the tendency of local olfief formation of the γ'-phase (in the present embodiment, the fin of the γ'-phase could be formed in the cooling channels of the gas turbine blade prevented) and thus the properties of the components, in particular the fatigue properties at low load cycles, improved.
Claims (4)
- Method for producing a single-crystal component comprising a nickel-based superalloy, or a directionally solidified component, wherein the component is first cast in a known manner in a mould forming a structure having a dendrite, and then a solution-annealing process is carried out for homogenization of the cast structure of the component and a two-stage precipitation heat treatment is performed, characterised by the following steps:A) determining the dendrite arm spacing (λ) in different areas of the cast component,B) identifying the slowest diffusion element in the composition of the respective nickel-based superalloy for determining the diffusion coefficient (D),C) calculating the required time (t) necessary to reduce the segregation of this slowest diffusion element to ≤ 5% at a solution annealing temperature (T1) which is firstly lower than the starting melt temperature (Tmi) and secondly however high enough to lie within the necessary heat treatment window,D) solution-annealing the cast component, comprising heating of the component to the solution-annealing temperature (T1), holding at this temperature (T1) for the time (t) calculated in step C), and quenching from the temperature (T1) to room temperature (RT) with a speed (v1) ≥ 50°C/min,E) carrying out the two-stage precipitation treatment for separating the γ' phase at respectively lower temperatures (T2) and (T3) following step D), wherein the first stage of the precipitation treatment comprises carrying out an HIP process with an isostatic pressure (p) greater than 160 MPa at the holding temperature (T2) and subsequent cooling from the temperature (T2) to room temperature (RT) with a cooling rate (v2) ≥ 50°C/min, and the subsequent second stage of the precipitation treatment comprises heat treatment of the component at a holding temperature (T3) and a subsequent cooling from the temperature (T3) to room temperature with a cooling rate (v3) of 10-50°C/min.
- Method according to claim 1, characterised in that the dendrite arm spacing (λ) is determined in step A) using a metallographic process.
- Method according to claim 1, characterised in that the quenching speed (v1) in step D) is > 70°C/min.
- Method according to one of claims 1 to 3, characterised in that for a nickel-based superalloy with the following chemical composition (data in w.%): 5.6 Al, 9.0 Co, 6.5 Cr, 0.1 Hf, 0.6 Mo, 3 Re, 6.5 Ta, 1.0 Ti, 6.0 W, remainder Ni, the step of solution annealing is carried out with the following parameters: 1290-1310 °C / 4-6 h / rapid cooling with v1 ≥ 50°C/min, the step of the first stage of the γ'precipitation treatment comprises an HIP process with an isostatic pressure (p) > 160 MPa at a holding temperature (T2) of 1150°C and a holding time of 4-8 h, and rapid cooling takes place with (v2) ≥ 50°C/min, and the second stage of the γ' precipitation treatment comprises heating and holding at 870°C / 16-20 h / and cooling with a rate (v3) of 10-50°C/min.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01058/10A CH703386A1 (en) | 2010-06-30 | 2010-06-30 | A process for the preparation of a composed of a nickel-base superalloy monocrystalline component. |
Publications (4)
Publication Number | Publication Date |
---|---|
EP2402473A2 EP2402473A2 (en) | 2012-01-04 |
EP2402473A3 EP2402473A3 (en) | 2013-10-30 |
EP2402473B1 true EP2402473B1 (en) | 2017-04-26 |
EP2402473B8 EP2402473B8 (en) | 2017-07-26 |
Family
ID=42938589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11171088.5A Not-in-force EP2402473B8 (en) | 2010-06-30 | 2011-06-22 | Process for producing a single-crystal component made of a nickel-based superalloy |
Country Status (4)
Country | Link |
---|---|
US (1) | US8435362B2 (en) |
EP (1) | EP2402473B8 (en) |
JP (1) | JP5787643B2 (en) |
CH (1) | CH703386A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013167513A1 (en) | 2012-05-07 | 2013-11-14 | Alstom Technology Ltd | Method for manufacturing of components made of single crystal (sx) or directionally solidified (ds) superalloys |
DE102013008396B4 (en) | 2013-05-17 | 2015-04-02 | G. Rau Gmbh & Co. Kg | Method and device for remelting and / or remelting of metallic materials, in particular nitinol |
JP6528926B2 (en) | 2014-05-21 | 2019-06-12 | 株式会社Ihi | Rotating equipment of nuclear facilities |
CN105689719A (en) * | 2016-02-17 | 2016-06-22 | 西南交通大学 | Method for calculating alloy droplet deposition cooling rate |
DE102016202837A1 (en) * | 2016-02-24 | 2017-08-24 | MTU Aero Engines AG | Heat treatment process for nickel base superalloy components |
WO2018111566A1 (en) * | 2016-12-15 | 2018-06-21 | General Electric Company | Treatment processes for superalloy articles and related articles |
CN110760770B (en) * | 2019-10-30 | 2020-10-23 | 西安交通大学 | Heat treatment method for single crystal nickel-based high-temperature alloy after cold deformation |
FR3121453B1 (en) * | 2021-04-02 | 2023-04-07 | Safran | NICKEL-BASED SUPERALLOY, SINGLE-CRYSTALLINE BLADE AND TURBOMACHINE |
CN113930697B (en) * | 2021-09-23 | 2022-09-27 | 鞍钢集团北京研究院有限公司 | Heat treatment method of 750-grade and 850-grade deformed high-temperature alloy |
CN114038522A (en) * | 2021-11-18 | 2022-02-11 | 成都先进金属材料产业技术研究院股份有限公司 | Method for determining homogenizing heat treatment process of GH5188 alloy |
CN114737081B (en) * | 2022-04-06 | 2023-03-24 | 暨南大学 | A Ni-Al-Ti-based superalloy with layered microstructure and its preparation method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4328045A (en) * | 1978-12-26 | 1982-05-04 | United Technologies Corporation | Heat treated single crystal articles and process |
US4643782A (en) | 1984-03-19 | 1987-02-17 | Cannon Muskegon Corporation | Single crystal alloy technology |
US4719080A (en) | 1985-06-10 | 1988-01-12 | United Technologies Corporation | Advanced high strength single crystal superalloy compositions |
IL80227A (en) * | 1985-11-01 | 1990-01-18 | United Technologies Corp | High strength single crystal superalloys |
US5435861A (en) | 1992-02-05 | 1995-07-25 | Office National D'etudes Et De Recherches Aerospatiales | Nickel-based monocrystalline superalloy with improved oxidation resistance and method of production |
US5270123A (en) * | 1992-03-05 | 1993-12-14 | General Electric Company | Nickel-base superalloy and article with high temperature strength and improved stability |
US5820700A (en) * | 1993-06-10 | 1998-10-13 | United Technologies Corporation | Nickel base superalloy columnar grain and equiaxed materials with improved performance in hydrogen and air |
US5695821A (en) * | 1995-09-14 | 1997-12-09 | General Electric Company | Method for making a coated Ni base superalloy article of improved microstructural stability |
JP3184882B2 (en) * | 1997-10-31 | 2001-07-09 | 科学技術庁金属材料技術研究所長 | Ni-based single crystal alloy and method for producing the same |
US20030041930A1 (en) | 2001-08-30 | 2003-03-06 | Deluca Daniel P. | Modified advanced high strength single crystal superalloy composition |
EP1398393A1 (en) * | 2002-09-16 | 2004-03-17 | ALSTOM (Switzerland) Ltd | Property recovering method |
JP4885530B2 (en) * | 2005-12-09 | 2012-02-29 | 株式会社日立製作所 | High strength and high ductility Ni-base superalloy, member using the same, and manufacturing method |
JP4719583B2 (en) * | 2006-02-08 | 2011-07-06 | 株式会社日立製作所 | Unidirectional solidification nickel-base superalloy excellent in strength, corrosion resistance and oxidation resistance and method for producing unidirectional solidification nickel-base superalloy |
ES2444407T3 (en) * | 2006-09-07 | 2014-02-24 | Alstom Technology Ltd | Procedure for heat treatment of nickel-based super-alloys |
-
2010
- 2010-06-30 CH CH01058/10A patent/CH703386A1/en not_active Application Discontinuation
-
2011
- 2011-06-22 EP EP11171088.5A patent/EP2402473B8/en not_active Not-in-force
- 2011-06-28 US US13/170,570 patent/US8435362B2/en not_active Expired - Fee Related
- 2011-06-30 JP JP2011145691A patent/JP5787643B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012012705A (en) | 2012-01-19 |
EP2402473A2 (en) | 2012-01-04 |
EP2402473A3 (en) | 2013-10-30 |
CH703386A1 (en) | 2011-12-30 |
US8435362B2 (en) | 2013-05-07 |
EP2402473B8 (en) | 2017-07-26 |
JP5787643B2 (en) | 2015-09-30 |
US20120000577A1 (en) | 2012-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2402473B1 (en) | Process for producing a single-crystal component made of a nickel-based superalloy | |
DE69903224T2 (en) | Monocrystalline nickel-based superalloy with a high gamma prime phase | |
DE69017625T2 (en) | Single-crystalline, nickel-based superalloy. | |
DE69017574T2 (en) | High strength fatigue crack resistant alloy workpiece. | |
DE3023576C2 (en) | ||
DE69701900T2 (en) | High-strength nickel-based superalloy for directionally solidified castings | |
DE4440229C2 (en) | Process for making cracked high strength superalloy articles | |
DE69017339T2 (en) | Alloys resistant to creep, breaking load and fatigue cracking. | |
DE69014476T2 (en) | Directional solidification alloy with low carbon content. | |
DE69320666T2 (en) | MONOCRISTALLINE SUPER ALLOY ON NICKEL BASE | |
DE2749080A1 (en) | NICKEL BASED SINGLE CRYSTAL SUPER-ALLOY ARTICLE AND METHOD FOR ITS MANUFACTURING | |
DE19624055A1 (en) | Nickel-based super alloy | |
DE3234083A1 (en) | HEAT-TREATED SINGLE-CRYSTAL OBJECT FROM A NICKEL-BASED SUPER ALLOY | |
DE60001249T2 (en) | Ti-Al (Mo, V, Si, Fe) alloys and process for their manufacture | |
EP1900839B1 (en) | Method for the heat treatment of nickel-based superalloys | |
DE112013003971T5 (en) | Nickel-based monocrystalline superalloy | |
EP2905350A1 (en) | High temperature TiAl alloy | |
DE69800263T2 (en) | Nickel-based alloy of stem-shaped crystals with good high-temperature resistance to intergranular corrosion, process for producing the alloy, large workpiece, and process for producing a large workpiece from this alloy | |
EP1420075B1 (en) | Nickel-base superalloy | |
CH695497A5 (en) | Nickel-base superalloy. | |
EP3091095B1 (en) | Low density rhenium-free nickel base superalloy | |
WO2003040419A1 (en) | Method for developing a nickel-base super alloy | |
DE2649529A1 (en) | FORMABLE COBALT-NICKEL-CHROME BASED ALLOY AND METHOD FOR ITS MANUFACTURING | |
EP2354261B1 (en) | Nickel-Basis-Superalloy with improved degradation behaviour | |
DE19617093C2 (en) | Heat treatment process for material bodies made of nickel-based superalloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 19/05 20060101ALI20130924BHEP Ipc: C22F 1/10 20060101AFI20130924BHEP Ipc: C30B 33/02 20060101ALI20130924BHEP |
|
17P | Request for examination filed |
Effective date: 20131206 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161125 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KUENZLER, ANDREAS Inventor name: GERDES, CLAUS PAUL Inventor name: NAZMY, MOHAMED YOUSSEF |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GRAT | Correction requested after decision to grant or after decision to maintain patent in amended form |
Free format text: ORIGINAL CODE: EPIDOSNCDEC |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 887955 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ANSALDO ENERGIA SWITZERLAND AG |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011012099 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170621 Year of fee payment: 7 Ref country code: GB Payment date: 20170620 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170426 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170727 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170731 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170826 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011012099 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180228 |
|
26N | No opposition filed |
Effective date: 20180129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170622 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 887955 Country of ref document: AT Kind code of ref document: T Effective date: 20170622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170622 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502011012099 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180622 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180622 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170426 |