[go: up one dir, main page]

EP2397809B1 - Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie - Google Patents

Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie Download PDF

Info

Publication number
EP2397809B1
EP2397809B1 EP11004608.3A EP11004608A EP2397809B1 EP 2397809 B1 EP2397809 B1 EP 2397809B1 EP 11004608 A EP11004608 A EP 11004608A EP 2397809 B1 EP2397809 B1 EP 2397809B1
Authority
EP
European Patent Office
Prior art keywords
pulse
conductor components
arrangement
antenna
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11004608.3A
Other languages
English (en)
French (fr)
Other versions
EP2397809A3 (de
EP2397809A2 (de
Inventor
Robert Stark
Thilo Ehlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP2397809A2 publication Critical patent/EP2397809A2/de
Publication of EP2397809A3 publication Critical patent/EP2397809A3/de
Application granted granted Critical
Publication of EP2397809B1 publication Critical patent/EP2397809B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0093Devices generating an electromagnetic pulse, e.g. for disrupting or destroying electronic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/0068Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being of microwave type, e.g. for causing a heating effect in the target

Definitions

  • the present invention relates to a method for generating microwave pulses of high energy according to the preamble of claim 1. Furthermore, the present invention relates to an arrangement for generating microwave pulses of high energy according to the preamble of claim 7.
  • Microwave pulses high energy or high energy density are nowadays used to electronic components threatening objects, such as those of time-triggered or mobile phone-controlled explosives such.
  • B. booby traps or the like To destroy or at least dysfunctional.
  • Corresponding microwave pulse generating systems are preferably used in the form of portable systems or carried on vehicles. They should therefore be as compact as possible. The possibility of using such systems is not limited to the near field, but can be extended to larger ranges, for example, with the aim of impairing the trajectory of electronically controlled objects such. B. missiles or the like. One strives for the applications described to produce pulses with the highest possible energy density and power.
  • a microwave pulse generator in which a pulse with a rise in the order of a nanosecond and an amplitude in the range of 12-20 kV is generated at a first spark gap.
  • This pulse is then converted into a damped sine wave (DS pulse) via another series-connected spark gap, which acts as a switch, and emitted via a reflector or an antenna.
  • DS pulse damped sine wave
  • the slope of the radiated pulse is usually limited.
  • the object of the present invention is to provide a generic method as well as a generic arrangement which, on the one hand, enables a high energy density of the microwave pulse to be radiated, a simple construction and a reduction in dimension compared with previous arrangements and, on the other hand allows increased flexibility in the field of pulse shaping.
  • the idea of the present invention is to provide in the area of the antenna a large-area, array-like arrangement consisting of a multiplicity of surface-distributed, preferably parallel and / or serially connected, conductor components.
  • the pulse originating from the pulse generator generates or induces in the planar arrangement of the conductor components a surface current which in turn generates the field to be radiated.
  • the idea offers the advantage of being able to undertake targeted measures concerning the shaping of the pulse to be radiated by means of the conductor components. For example, by using nonlinear conductor components, ie, conductor components having a non-linear characteristic, an effective increase in the edge steepness of the resultant pulse generated by the large-area arrangement can be achieved. Such a pulse has a very high energy density.
  • each conductor component is inversely proportional to the total number of conductor components by the incoming impulse loaded less. This in turn results in the advantage of using conductor components, in particular semiconductor components, as conductor components which would, in themselves, be exposed to physical limitations and therefore could not be used.
  • the cascading can be serial, parallel or preferably parallel and serial.
  • the energy flow resulting from the incoming impulse is optimally distributed in the latter case.
  • the non-linearity that is, the presence of a non-linear characteristic can be a property of the individual conductor components.
  • the cascade of the conductor components may also have a total of nonlinearity.
  • the invention makes it possible, in addition to passive d. H. non-controllable also to use active conductor elements. If the conductor components are active components, targeted activation and thus targeted shaping of the pulse can take place in the region of the antenna. In particular, additional patterns can be modeled on the pulse. A modulation of the pulse can be an important additional criterion, especially in the control of directional pulses (beam steering).
  • the active influencing can be carried out in particular by applying a voltage to the conductor components or by changing the applied voltage or the current intensity.
  • a reflector antenna z As regards the arrangement also claimed in the side-by-side order for the generation of microwave pulses of high energy, the use of a reflector antenna z.
  • IRA antenna impulse radiating antenna
  • the conductor components can be mounted well on the large-area reflector of the antenna.
  • the invention is not limited thereto.
  • a so-called horn antenna is also suitable, since the planar arrangement of the conductor components can in this case be located on the wall which closes the widening horn. This is irradiated by the pulse at the exit.
  • Other planar antennas can also be used.
  • Semiconductor components such as diodes, are particularly suitable for implementing nonlinear conductor components.
  • a diode makes it possible to increase the edge steepness of the outgoing pulse in comparison to the pulse entering the diode.
  • a diode can be used as a conductor component and an inductance, especially a non-linear inductance.
  • the patch panels are insulated from each other.
  • the patch fields can also be separated from each other, eg. B. resistive or inductive, decoupled or interconnected. This allows increased flexibility in the field of pulse shaping and design of the reflector.
  • Fig. 3 shows a greatly simplified arrangement for generating a microwave pulse of high energy, z. B. a DS (damped sinusoid) pulse.
  • the arrangement comprises a power source 1, z. B. a battery with a very high voltage.
  • the power source 1 feeds the pulse generator 2, for example, a so-called Marx generator, which generates a voltage pulse of the size unit of z. B. 0.3 to 3.0 MV and according to the form Fig. 1 generated.
  • the pulse generator 2 for example, a so-called Marx generator, which generates a voltage pulse of the size unit of z. B. 0.3 to 3.0 MV and according to the form Fig. 1 generated.
  • the pulse shaping unit 3 the aforementioned pulse is converted into a damped sine wave (DS), as in Fig. 2 is shown.
  • the DS pulse Via the antenna 4, the DS pulse is subsequently emitted to the environment.
  • a large-area arrangement 6, 15 of conductor components 5, in particular semiconductor components is provided.
  • the conductor components 5 are cascaded both in parallel and serially.
  • the arrangement 6, 15 is directly exposed to the electric and magnetic field of the pulse of the pulse generator 2 and the DS pulse of the pulse shaping unit 3.
  • the field of the incoming pulse generates a surface current, which in turn generates the field of the resulting pulse to be radiated.
  • An increase in the edge steepness of the pulse to be radiated with respect to the incoming pulse is achieved by a non-linear characteristic.
  • conductor elements 5 are used with non-linear characteristic.
  • FIGS. 6A and 6B it can be seen a plurality of individual mutually insulated patch panels 9 are provided on a reflector support 12.
  • the individual patch fields 9 are connected to one another in the direction of cascading via the nonlinear conductor components, in particular the diodes 7 or inductors 8.
  • the patch fields can also be separated from each other, eg. B. resistive or inductive, decoupled or interconnected. This allows increased flexibility in the field of pulse shaping and design of the reflector.
  • the planar arrangement 6 is expediently located in the region of the reflector 14 of an IRA antenna as shown in FIG Fig. 4 is shown.
  • the planar arrangement 6 of the individually distributed conductor elements 5 causes a total of a non-linear reflection characteristic, which leads to an effective increase in the edge steepness of the radiated from the reflector 14 pulse and thus to a higher energy density.
  • the planar arrangement 15 may also be part of a wall 13 of a horn antenna, as in Fig. 5A is shown.
  • the pulse is formed while it passes through the wall 13 including the planar array 15 thereon of non-linear conductor elements 5.
  • the planar arrangement 15 of non-linear conductor elements 5 is in the embodiment according to Fig. 5A arranged in a plane perpendicular to the longitudinal axis.
  • the orientation can also be provided differently, for example obliquely to the longitudinal axis o. The like.
  • Fig. 5B it is shown for. B. possible to provide a planar arrangement of conductor elements, which comprises mutually arranged at an angle partial surfaces. Accordingly, one part of the conductor elements 5 runs along the wall 13 of the other part along the diverging part of the antenna.
  • the active control and control of the pulse characteristic to activate the printed circuit elements 5 as a whole or even only partially in order to influence the formation of the pulse in a targeted manner.
  • the conductor components may be passive but also active conductor components.
  • a control device 10 as in FIG Fig. 6B indicated
  • a suitable voltage or a current additional influence on the shape of the pulse to be radiated be taken.
  • a modulation of the pulse can be made, which in the so-called beam steering can be beneficial.
  • the present invention enables the generation of pulses of increased energy density without sacrificing the compactness of the devices concerned.
  • the invention enables active control and control of the pulse characteristic by the reflector.
  • the present invention therefore represents a very special contribution in the relevant field of technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Erzeugung von Mikrowellen-Impulsen hoher Energie gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die vorliegende Erfindung eine Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie gemäß dem Oberbegriff des Anspruchs 7.
  • Mikrowellen-Impulse hoher Energie bzw. hoher Energiedichte, insbesondere solcher auf der Basis der HPEM (High Power Electromagnetics) Technologie werden heutzutage dazu eingesetzt, elektronische Komponenten bedrohlicher Gegenstände, beispielsweise solche von zeitgezündeten oder handygesteuerten Sprengsätzen wie z. B. Sprengfallen oder dgl. zu zerstören oder zumindest funktionsuntüchtig zu machen. Entsprechende Mikrowellen-Impulse generierende Systeme werden vorzugsweise in Form von tragbaren Systemen verwendet oder an Fahrzeugen mitgeführt. Sie sollen daher möglichst kompakt sein. Die Möglichkeit des Einsatzes derartiger Systeme ist aber nicht nur auf den Nahbereich beschränkt, sondern kann auch auf größere Reichweiten ausgedehnt werden, beispielsweise mit dem Ziel der Beeinträchtigung der Flugbahn von elektronisch gesteuerten Objekten wie z. B. Raketen oder dgl. Man ist für die beschriebenen Einsatzmöglichkeiten bestrebt, Impulse mit möglichst hoher Energiedichte und Leistung zu erzeugen.
  • Aus der US 3,748,528 ist ein Mikrowellen-Impuls-Generator bekannt, bei dem an einer ersten Funkenstrecke ein Impuls mit einem Flankenanstieg in der Größenordnung einer Nanosekunde und einer Amplitude im Bereich von 12-20 kV erzeugt wird. Dieser Impuls wird anschließend über eine weitere, in Serie geschaltete Funkenstrecke, die als Schalter fungiert, in eine gedämpfte Sinusschwingung (DS-Impuls) konvertiert und über einen Reflektor bzw. eine Antenne abgestrahlt. Mit derartigen Anordnungen ist die Flankensteilheit des abgestrahlten Impulses in der Regel begrenzt.
  • Zur Erhöhung der Energiedichte derartiger Impulse ist man zusätzlich dazu übergegangen, wie dies in der DE 10 2006 014 230 A1 oder in der DE 103 13 286 B3 aufgezeigt ist, Anordnungen aus einer Mehrzahl von parallel geschalteter Mikrowellengeneratoren vorzusehen. Solche Anordnungen haben allerdings den Nachteil, dass sie einen gewissen Platzbedarf benötigen und daher für Anordnungen mit reduzierten Dimensionen nur bedingt geeignet sind.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein gattungsgemäßes Verfahren sowie eine gattungsgemäße Anordnung zur Verfügung zu stellen, das bzw. die einerseits eine hohe Energiedichte des abzustrahlenden Mikrowellen-Impulses, eine einfache Bauweise sowie eine Reduzierung der Dimension im Vergleich zu bisherigen Anordnungen ermöglicht und andererseits eine erhöhte Flexibilität im Bereich der Pulsformung erlaubt.
  • Die vorstehende Aufgabe wird beim gattungsgemäßen Verfahren durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 sowie bei der gattungsgemäßen Anordnung durch die Merkmale des kennzeichnenden Teils des Anspruchs 7 gelöst.
  • Zweckmäßige Ausgestaltungen der Erfindung werden mit den Unteransprüchen beansprucht.
  • Die Idee der vorliegenden Erfindung besteht darin, im Bereich der Antenne eine großflächige, Array-artige Anordnung beststehend aus einer Vielzahl flächig verteilter, vorzugsweise parallel und/oder seriell zueinander geschalteten Leiterbauelementen vorzusehen. Der vom Impulsgenerator stammende Impuls erzeugt bzw. induziert in der flächigen Anordnung der Leiterbauelemente einen Oberflächenstrom, der seinerseits das abzustrahlende Feld generiert. Die Idee bietet den Vorteil, mittels der Leiterbauelemente gezielte Maßnahmen betreffend die Formung des abzustrahlenden Impulses vornehmen zu können. So kann beispielsweise durch Verwendung nichtlinearer Leiterbauelemente also Leiterbauelemente mit einer nichtlinearen Kennlinie eine wirksame Erhöhung der Flankensteilheit des von der großflächigen Anordnung erzeugten, resultierenden Impulses erreicht werden. Ein solcher Impuls besitzt eine sehr hohe Energiedichte. Zum anderen wird jedes Leiterbauelement umgekehrt proportional zur Gesamtzahl der Leiterbauelemente durch den eintreffenden Impuls geringer belastet. Daraus wiederum resultiert der Vorteil, Leiterbauelemente, vor allem auch Halbleiter-Bauelemente als Leiterbauelemente einzusetzen, die für sich betrachtet physikalischen Begrenzungen ausgesetzt wären und daher nicht einsetzbar wären.
  • Dadurch, dass die Leiterbauelemente in einer Kaskade angeordnet sind, wird eine gerichtete Hintereinanderschaltung (Kaskadierung) erreicht, so dass sich die physikalischen Effekte der einzelnen Leiterbauelemente insgesamt summieren, obgleich sie jeweils nur im anteiligen Bruchteil durch den entsprechenden Impuls belastet werden. Der gesamte Energiefluss teilt sich auf, er muss nicht über ein einziges Leiterbauelement geleitet werden.
  • Die Kaskadierung kann seriell, parallel oder vorzugsweiße parallel und seriell sein. Der durch den eintreffenden Impuls sich ergebenden Energiefluss verteilt sich in letzterem Fall optimal.
  • Die Nichtlinearität, also das vorliegen einer nichtlinearen Kennlinie kann eine Eigenschaft der einzelnen Leiterbauelemente sein.
  • Alternativ oder zusätzlich hierzu kann aber auch die Kaskade der Leiterbauelemente insgesamt eine Nichtlinearität besitzen.
  • Die Erfindung macht es möglich, neben passiven d. h. nicht ansteuerbaren auch aktive Leiterbauelemente einzusetzen. Sofern es sich bei den Leiterbauelementen um aktive Bauelementen handelt, kann im Bereich der Antenne eine gezielte Ansteuerung und damit eine gezielte Formung des Impulses erfolgen. Insbesondere können dem Impuls zusätzliche Muster aufmodelliert werden. Eine Aufmodulation des Impulses kann vor allem bei der Steuerung von gerichteten Impulsen (Beam Steering) ein wichtiges Zusatzkriterium sein.
  • Auch ist es möglich, einen Teil der großflächigen Anordnung der Vielzahl von Leiterbauelementen mit aktiven Leiterbauelementen einen weiteren Teil mit passiven Leiterbauelementen zu versehen. Hierdurch erreicht man große Freiheitsgrade in der Beeinflussung d. h. Kontrolle und Steuerung der Impulscharakteristik.
  • Die aktive Beeinflussung kann insbesondere durch Anlegen einer Spannung an die Leiterbauelemente oder durch Veränderung der angelegten Spannung oder der Stromstärke vorgenommen werden.
  • Was die auch nebengeordnet beanspruchte Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie anbelangt, ist die Verwendung einer Reflektorantenne z. B. einer sogenannten IRA-Antenne (impulse radiating antenna) besonders geeignet, da die Leiterbauelemente auf dem großflächigen Reflektor der Antenne gut angebracht werden können.
  • Die Erfindung ist aber hierauf nicht beschränkt. Auch eine sogenannte Hornantenne eignet sich, da die flächige Anordnung der Leiterbauelemente sich in diesem Fall auf der das sich erweiternde Horn verschließenden Wand befinden kann. Diese wird von dem Impuls beim Austritt durchstrahlt. Auch sonstige flächige Antennen können zum Einsatz kommen.
  • Zur Realisierung nichtlinearer Leiterbauelemente eigenen sich vor allem Halbleiterbauelemente, wie etwa Dioden. Eine Diode ermöglicht bei Beaufschlagung eines Impulses eine Erhöhung der Flankensteilheit des ausgehenden Impulses im Vergleich zu dem in die Diode einlaufenden Impuls.
  • Anstelle einer Diode kann als Leiterbauelement auch eine Induktivität vor allem eine nichtlineare Induktivität zum Einsatz kommen.
  • Besonders vorteilhaft sind einzelne, leitende Patchfelder, die in Summe die Antenne bilden und den Impuls generieren (Patchantenne). Zur Erzielung eines geeigneten Stromflusses durch die einzelnen Leiterbauelemente sind die Patchfelder gegeneinander isoliert.
  • Alternativ können die Patchfelder auch voneinander, z. B. resistiv oder induktiv, entkoppelt oder verschaltet sein. Dies ermöglicht eine erhöhte Flexibilität im Bereich der Impulsformung und Auslegung des Reflektors.
  • Zweckmäßige Ausgestaltungen der vorliegenden Erfindung werden anhand von Zeichnungsfiguren näher erläutert. Sich wiederholende Merkmale werden der Übersichtlichkeit halber lediglich einmal mit einem betreffenden Bezugszeichen versehen.
  • Es zeigen:
  • Fig. 1
    eine vereinfachte Darstellung der Impulsform eines von einem Impulsgenerators direkt erzeugten Impulses;
    Fig. 2
    eine vereinfachte Darstellung der Impulsform nach Konvertierung des Impulses nach Fig. 1 in einen DS-Impuls;
    Fig. 3
    eine stark vereinfachte schematische Darstellung einer Anordnung zur Erzeugung sowie Abstrahlung eines Mikrowellen-Impulses;
    Fig. 4
    eine stark vereinfachte schematische Darstellung des Bereichs der Antenne einer ersten Ausgestaltung der erfindungsgemäßen flächigen Anordnung von Leiterbauelementen;
    Fig. 5A
    eine stark vereinfachte schematische Darstellung des Bereichs der Antenne einer zweiten Ausgestaltung der erfindungsgemäßen flächigen Anordnung von Leiterbauelementen;
    Fig. 5B
    eine stark vereinfachte schematische Darstellung des Bereichs der Antenne einer dritten Ausgestaltung der erfindungsgemäßen flächigen Anordnung von Leiterbauelementen;
    Fig. 6A
    eine stark vereinfachte schematische Darstellung eines Teils der flächigen Anordnung von Dioden als nichtlineare Leiterbauelementen im Bereich des Reflektors der Ausgestaltung nach Fig. 4 oder im Bereich der Wand der Ausgestaltung nach Fig. 5A bzw. 5B; sowie
    Fig. 6B
    eine stark vereinfachte schematische Darstellung eines Teils der flächigen Anordnung von Induktivitäten als nichtlineare Leiterbauelementen im Bereich des Reflektors der Ausgestaltung nach Fig. 4 oder im Bereich der Wand der Ausgestaltung nach Fig. 5A bzw. 5B.
  • Fig. 3 zeigt eine stark vereinfachte Anordnung zur Erzeugung eines Mikrowellen-Impulses hoher Energie, z. B. eines DS (damped sinusoid) Impulses. Die Anordnung umfasst eine Energiequelle 1, z. B. eine Batterie mit einer sehr hohen Spannung. Die Energiequelle 1 speist den Impulsgenerator 2 beispielsweise einen sogenannte Marx-Generator, welcher einen Spannungsimpuls der Größeneinheit von z. B. 0,3 bis 3,0 MV und gemäß der Form nach Fig. 1 erzeugt. Über eine geeignete Impulsformungseinheit 3 wird der vorgenannte Impuls in eine gedämpfte Sinusschwingung (DS) konvertiert, wie sie in Fig. 2 dargestellt ist. Über die Antenne 4 wird der DS-Impuls anschließend an die Umgebung abgegeben.
  • Gemäß der Erfindung ist, vgl. Fig. 4, vorzugsweise im Bereich der Antenne 4 eine großflächige Anordnung 6, 15 von Leiterbauelementen 5, insbesondere Halbleiterbauelementen, vorgesehen. Die Leiterbauelemente 5 sind sowohl parallel als auch seriell kaskadiert. Die Anordnung 6, 15 ist unmittelbar dem elektrischen und magnetischen Feld des Impulses des Impulsgenerators 2 bzw. des DS-Impulses der Impulsformungseinheit 3 ausgesetzt. In Folge dessen wird der gesamte Energiefluss über die flächige Anordnung 6, 15 der einzelnen Leiterbauelemente 5 geleitet und nicht nur über ein einziges Element. Das Feld des eintreffenden Impulses erzeugt einen Oberflächenstrom, der seinerseits wiederum das Feld des resultierenden, abzustrahlenden Impulses generiert.
  • Eine Erhöhung der Flankensteilheit des abzustrahlenden Impulses gegenüber dem eintreffenden Impuls wird durch eine nichtlineare Kennlinie erreicht. Hierzu werden vorzugsweise Leiterbauelemente 5 mit nichtlinearer Kennlinie eingesetzt.
  • Gemäß Fig. 6 kann es sich bei den nichtlinearen Leiterbauelementen 5 um Dioden 7 (vgl. Fig. 6A) oder um Induktivitäten 8 (Fig. 6B) handeln. Wie aus Fig. 6A und 6B ersichtlich sind eine Vielzahl von einzelnen gegenseitig zueinander isolierten Patchfelder 9 auf einem Reflektorträger 12 vorgesehen. Die einzelnen Patchfelder 9 sind in Richtung der Kaskadierung über die nichtlinearen Leiterbauelemente insbesondere die Dioden 7 bzw. Induktivitäten 8 miteinander verbunden.
  • Alternativ können die Patchfelder auch voneinander, z. B. resistiv oder induktiv, entkoppelt oder verschaltet sein. Dies ermöglicht eine erhöhte Flexibilität im Bereich der Impulsformung und Auslegung des Reflektors.
  • Die flächige Anordnung 6 befindet sich zweckmäßigerweise im Bereich des Reflektors 14 einer IRA-Antenne, wie sie in Fig. 4 dargestellt ist. Die flächige Anordnung 6 der einzeln verteilten Leiterbauelemente 5 bewirkt insgesamt eine nichtlineare Reflektionskennlinie, die zu einer wirksamen Erhöhung der Flankensteilheit des vom Reflektor 14 abzustrahlenden Impulses und damit zu einer höheren Energiedichte führt.
  • Alternativ kann die flächige Anordnung 15 auch Bestandteil einer Wand 13 einer Hornantenne sein, wie sie in Fig. 5A dargestellt ist. Hierbei wird der Impuls geformt, während er die Wand 13 einschließlich der darauf befindlichen flächigen Anordnung 15 von nichtlinearen Leiterbauelementen 5 durchstrahlt. Die flächige Anordnung 15 von nichtlinearen Leiterbauelementen 5 ist bei der Ausgestaltung nach Fig. 5A in einer Ebene senkrecht zur Längsachse angeordnet. Die Orientierung kann jedoch auch anders vorgesehen sein, beispielsweise schräg zur Längsachse o. dgl.
  • Wie in Fig. 5B dargestellt ist es z. B. möglich, eine flächige Anordnung von Leiterbauelementen vorzusehen, die zueinander in einem Winkel angeordneter Teilflächen umfasst. Dementsprechend verläuft ein Teil der Leiterbauelemente 5 entlang der Wand 13 der andere Teil entlang des divergierenden Teils der Antenne.
  • Weiterhin ist es zur aktive Kontrolle und Steuerung der Impulscharakteristik möglich, die Leiterbauelemente 5 insgesamt oder auch nur bereichsweise aktiv anzusteuern, um die Ausbildung des Impulses hierdurch gezielt zu beeinflussen. So können beispielsweise Leiterbauelemente 5 entlang der Wand 13 passiv d. h. nicht angesteuert diejenigen entlang des divergierenden Teils der Antenne 4 aktiv d. h. angesteuert sein.
  • Bei den Leiterbauelementen kann es sich, wie bereits erwähnt, um passive aber auch um aktive Leiterbauelemente handeln. Im Falle von aktiven Leiterbauelementen kann mittels einer Steuereinrichtung 10 (wie in Fig. 6B angedeutet) durch Anlegen einer geeigneten Spannung oder eines Stroms zusätzlich Einfluss auf die Form des abzustrahlenden Impulses genommen werden. Vor allem kann eine Modulation des Impulses vorgenommen werden, was bei dem sogenannten Beam Steering von Vorteil sein kann.
  • Alles in allem ermöglicht die vorliegende Erfindung die Erzeugung von Impulsen erhöhter Energiedichte ohne Einbußen an Kompaktheit der betreffenden Einrichtungen. Zudem ermöglicht die Erfindung eine aktive Kontrolle und Steuerung der Impulscharakteristik durch den Reflektor. Die vorliegende Erfindung stellt daher einen ganz besonderen Beitrag auf dem einschlägigen Gebiet der Technik dar.
  • Bezugszeichenliste
  • 1
    Energiequelle
    2
    Impulsgenerator
    3
    Impulsformungseinheit
    4
    Antenne
    5
    Leiterbauelement
    6
    flächige Anordnung (Reflektor)
    7
    Diode
    8
    Induktivität
    9
    Patchfeld
    10
    Steuereinrichtung
    11
    Patchfeldbereich
    12
    Reflektorträger
    13
    Wand
    14
    Reflektor
    15
    flächige Anordnung (Transmitter)

Claims (15)

  1. Verfahren zur Erzeugung von Mikrowellen-Impulsen hoher Energie, insbesondere solcher auf Basis der HPEM-Technologie, wobei
    mittels eines von einer Energiequelle (1) gespeisten Impulsgenerators (2) ein Impuls, vorzugsweise ein sog. DS-Impuls, erzeugt wird,
    der anschließend über eine Antenne (4) abgestrahlt wird,
    dadurch gekennzeichnet,
    dass im Bereich der Antenne (4) eine flächige Anordnung (6, 15), welche eine Vielzahl von flächig verteilten Leiterbauelementen (5) umfasst, dem elektromagnetischen Feld des vom Impulsgenerator (2) erzeugten Impulses ausgesetzt wird,
    wobei aufgrund der Einwirkung des Impulses auf die Anordnung (6) der Leiterbauelemente (5) seinerseits in diesen ein resultierender Impuls erzeugt wird, der über die Antenne (4) abgestrahlt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass sich aufgrund der Einwirkung des Impulses auf die Anordnung (6, 15) der Leiterbauelemente (5) eine im Vergleich zum eingehenden Impuls erhöhte Flankensteilheit des resultierenden Impulses einstellt.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Leiterbauelemente (5) in einer Kaskade angeordnet sind.
  4. Verfahren nach mindestens einem der Anspruch 1 bis 3,
    dadurch gekennzeichnet,
    dass die Anordnung (6, 15) der Leiterbauelemente (5) insgesamt einen nichtlinearen Leiter bildet und/oder es sich bei den Leiterbauelementen (5) um einzelne nichtlineare Bauelemente handelt.
  5. Verfahren nach mindestens einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass es sich bei den Leiterbauelementen (5) um aktive, ansteuerbare Leiterbauelemente handelt, wobei durch entsprechende Ansteuerung die Form des ausgehenden Impulses aktiv beeinflusst wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    dass zur Ansteuerung die elektrische Vorspannung der aktiven, ansteuerbaren Leiterbauelemente verändert wird.
  7. Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie, insbesondere solcher auf Basis der HPEM-Technologie, wobei die Anordnung insbesondere zur Durchführung des Verfahrens gemäß mindestens einem der Ansprüche 1 bis 6 eingerichtet ist und folgendes umfasst:
    eine Energiequelle (1),
    einen von der Energiequelle (1) gespeisten Impulsgenerator (2) zur Erzeugung eines Impulses, vorzugsweise eines sog. DS-Impulses, sowie eine Antenne (4), die dazu vorgesehen ist, den Impuls abzustrahlen,
    gekennzeichnet durch
    eine großflächige Anordnung (6, 15) einer Vielzahl von Leiterbauelementen (5), insbesondere Halbleiterbauelementen, die im Bereich der Antenne (4) angeordnet sind.
  8. Anordnung nach Anspruch 7,
    dadurch gekennzeichnet,
    dass als Antenne (4) ein Reflektorantenne (IRA Antenne) vorgesehen ist und sich die Anordnung (6) der Leiterbauelemente (5) auf dem Reflektor (14) befindet.
  9. Anordnung nach Anspruch 7,
    dadurch gekennzeichnet,
    dass als Antenne eine Hornantenne vorgesehen ist und sich die Anordnung (15) der Leiterbauelemente (5) auf einer vom Impuls durchstrahlten, senkrecht zur Längsachse des Horns verlaufenden Wand (13) befindet.
  10. Anordnung nach einem der Ansprüche 7 bis 9,
    dadurch gekennzeichnet,
    dass die Leiterbauelemente (5) insgesamt eine nichtlineare Kennlinie begründen.
  11. Anordnung nach einem der Ansprüche 7 bis 10,
    dadurch gekennzeichnet,
    dass es sich bei den Leiterbauelementen (5) um nichtlineare Leiterbauelementen handelt.
  12. Anordnung nach einem der Ansprüche 7 bis 11,
    dadurch gekennzeichnet,
    dass es sich bei den Leiterbauelementen (5) um aktive Leiterbauelemente handelt.
  13. Anordnung nach einem der Ansprüche 7 bis 12,
    dadurch gekennzeichnet,
    dass die großflächige Anordnung (6, 15) der Vielzahl von Leiterbauelementen (5) aktive sowie passive Leiterbauelemente umfasst.
  14. Anordnung nach einem der Ansprüche 10 bis 13,
    dadurch gekennzeichnet,
    dass es sich bei den Leiterbauelementen (5) um Dioden (7) oder Induktivitäten (8) handelt.
  15. Anordnung nach einem der Ansprüche 8 bis 14,
    dadurch gekennzeichnet,
    dass der Reflektor (14) in einzelne Patchfelder (9) aufgeteilt ist,
    die einzelnen Patchfelder (9) gegenseitig isoliert oder voneinander elektrisch entkoppelt sein sind, und
    die Leiterbauelemente (5) die einzelnen Patchfelder (9) überbrücken.
EP11004608.3A 2010-06-17 2011-06-07 Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie Active EP2397809B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010024214A DE102010024214B4 (de) 2010-06-17 2010-06-17 Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie

Publications (3)

Publication Number Publication Date
EP2397809A2 EP2397809A2 (de) 2011-12-21
EP2397809A3 EP2397809A3 (de) 2015-01-21
EP2397809B1 true EP2397809B1 (de) 2016-01-06

Family

ID=44584845

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11004608.3A Active EP2397809B1 (de) 2010-06-17 2011-06-07 Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie

Country Status (3)

Country Link
US (1) US8576109B2 (de)
EP (1) EP2397809B1 (de)
DE (1) DE102010024214B4 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011107036A1 (de) * 2011-07-09 2013-01-10 Diehl Bgt Defence Gmbh & Co. Kg Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen
DE102014014117A1 (de) * 2014-09-24 2016-03-24 Diehl Bgt Defence Gmbh & Co. Kg Abwehrvorrichtung zum Bekämpfen eines unbemannten Luftfahrzeugs, Schutzeinrichtung zum Bekämpfen eines unbemannten Luftfahrzeugs und Verfahren zum Betrieb einer Schutzeinrichtung
DE102018004568B4 (de) 2018-06-08 2024-02-01 Diehl Defence Gmbh & Co. Kg Strahlungsquelle für Mikrowellen-Pulse und Strahlungseinrichtung
DE102018008381B4 (de) * 2018-10-19 2020-08-06 Diehl Defence Gmbh & Co. Kg HPEM-Quelle, Fahrzeug und Verfahren
US20230102869A1 (en) * 2020-06-22 2023-03-30 Epirus, Inc. Systems and methods for radio frequency power systems
US12068618B2 (en) * 2021-07-01 2024-08-20 Epirus, Inc. Systems and methods for compact directed energy systems
CN112054374B (zh) * 2020-09-10 2021-11-05 中国人民解放军国防科技大学 频率可调谐的窄带和超宽带相结合的高功率微波源

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748528A (en) 1972-03-23 1973-07-24 Ikor Inc Microwave generator
US5489818A (en) * 1989-05-22 1996-02-06 Olin Corporation High power compact microwave source
GB2368213B (en) * 1997-11-03 2002-12-31 British Aerospace A non-linear dispersive pulse generator
WO2001071849A2 (en) * 2000-03-20 2001-09-27 Sarnoff Corporation Reconfigurable antenna
DE10313286B3 (de) 2003-03-25 2005-01-20 Diehl Munitionssysteme Gmbh & Co. Kg Mikrowellengenerator
DE102005034295B4 (de) * 2005-07-22 2007-04-12 Diehl Bgt Defence Gmbh & Co. Kg Mikrowellengenerator mit veränderbarer Frequenzabstrahlung
US7629918B2 (en) * 2005-12-15 2009-12-08 Raytheon Company Multifunctional radio frequency directed energy system
DE102006014230A1 (de) 2006-03-28 2007-10-11 Diehl Bgt Defence Gmbh & Co. Kg Array aus Hochleistungs-Mikrowellengeneratoren zum Abstrahlen von Impulsen hoher Feldstärke
US7775146B1 (en) * 2006-08-02 2010-08-17 Xtreme Ads Limited System and method for neutralizing explosives and electronics
DE102006041225B4 (de) * 2006-09-02 2008-05-15 Diehl Bgt Defence Gmbh & Co. Kg Verfahren und System zur Abwehr von Boden-Luft-Flugkörpern

Also Published As

Publication number Publication date
DE102010024214B4 (de) 2012-05-03
US20110309870A1 (en) 2011-12-22
EP2397809A3 (de) 2015-01-21
DE102010024214A1 (de) 2011-12-22
EP2397809A2 (de) 2011-12-21
US8576109B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
EP2397809B1 (de) Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie
DE19744794C2 (de) Verfahren und Vorrichtung zur Räumung von Plastikminen
EP1895262B1 (de) Verfahren und System zur Abwehr von Boden-Luft-Flugkörpern
EP1895653B1 (de) Verfahren und Einrichtung zum Erzeugen und Abstrahlen eines Hochleistungs-Mikrowellenpulses
DE4136476C2 (de) Höchstfrequenzlinse und Antenne mit elektronischer Strahlschwenkung mit einer solchen Linse
DE2341111A1 (de) Antenne mit einem gerichteten strahlungsdiagramm
DE1953443A1 (de) Sendeantennensystem fuer ein Funkfeuer
EP2862235B1 (de) Antennenanordnung und verfahren
DE102013109458A1 (de) E-Feld-Abschirmung für kabelloses Ladegerät
EP2195679A1 (de) Echtzeitverzögerungssysteme mit gruppenantenne zur räumlich veränderbaren abstrahlcharakteristik für ultrabreitbandige pulse höchster leistung
EP2546928B1 (de) Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen
DE102018004568A1 (de) Strahlungsquelle für Mikrowellen-Pulse und Strahlungseinrichtung
DE4206797B4 (de) Verfahren zum Betreiben eines Radarantennensystems und Radarantennensystem
DE102018008381B4 (de) HPEM-Quelle, Fahrzeug und Verfahren
DE102008031751B3 (de) Photoleitende Antenne zur Abstrahlung oder zum Empfang von Terahertz-Strahlung
EP3996206B1 (de) Hornantenne und deren umkonstruktion
DE112010002639B4 (de) Antenneneinrichtung
EP2618640A2 (de) Verfahren und Vorrichtung zum Erzeugen von Plasmapulsen
CN103647527A (zh) 一种增强电磁脉冲等效辐射功率的方法
DE102010041649A1 (de) Elektromedizinische Vorrichtung zum nicht-invasiven Reduzieren oder Entfernen von subkutanem Fettgewebe
DE102009060657B4 (de) Pulsradargerät und -verfahren
DE102018218253A1 (de) Radarsensor
DE2261602C3 (de) Hochfrequenzverstärker
EP4030231A1 (de) Spintronisches bauelement
DE19850446A1 (de) Phasengesteuerte Radiofrequenz-Impulsgenerator-Gruppe

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F41H 13/00 20060101AFI20141218BHEP

Ipc: H01Q 23/00 20060101ALI20141218BHEP

17P Request for examination filed

Effective date: 20150701

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150903

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EHLEN, THILO

Inventor name: STARK, ROBERT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 769206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008595

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008595

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

26N No opposition filed

Effective date: 20161007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011008595

Country of ref document: DE

Owner name: DIEHL DEFENCE GMBH & CO. KG, DE

Free format text: FORMER OWNER: DIEHL BGT DEFENCE GMBH & CO. KG, 88662 UEBERLINGEN, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160607

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 769206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110607

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160607

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240619

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240815

Year of fee payment: 14