EP2397764A1 - Turbine burner - Google Patents
Turbine burner Download PDFInfo
- Publication number
- EP2397764A1 EP2397764A1 EP10166431A EP10166431A EP2397764A1 EP 2397764 A1 EP2397764 A1 EP 2397764A1 EP 10166431 A EP10166431 A EP 10166431A EP 10166431 A EP10166431 A EP 10166431A EP 2397764 A1 EP2397764 A1 EP 2397764A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel nozzle
- turbine burner
- burner according
- fuel
- blades
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 claims abstract description 94
- 239000012530 fluid Substances 0.000 claims abstract description 5
- 238000002485 combustion reaction Methods 0.000 claims description 23
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 19
- 238000003786 synthesis reaction Methods 0.000 description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 16
- 239000003345 natural gas Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 206010016754 Flashback Diseases 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/36—Supply of different fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/343—Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/00008—Burner assemblies with diffusion and premix modes, i.e. dual mode burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/00014—Pilot burners specially adapted for ignition of main burners in furnaces or gas turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D2900/00—Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
- F23D2900/14—Special features of gas burners
- F23D2900/14021—Premixing burners with swirling or vortices creating means for fuel or air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00002—Gas turbine combustors adapted for fuels having low heating value [LHV]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00004—Preventing formation of deposits on surfaces of gas turbine components, e.g. coke deposits
Definitions
- the invention relates to a turbine burner according to the preamble of claim 1.
- the combustible components of the synthesis gases are essentially CO and H2.
- the calorific value of the synthesis gas is about 5 to 10 times smaller compared to the calorific value of natural gas.
- Main constituents in addition to CO and H2 are inert fractions such as nitrogen and / or water vapor and possibly also carbon dioxide. Due to the low calorific value consequently high volume flows of fuel gas must be supplied through the burner of the combustion chamber. As a result, for the combustion of low calorific fuels - e.g. Synthesis gas one or more separate fuel passages must be made available.
- the synthesis gas is in the burner of the prior art - as in the EP 1 649 219 B1 described over a arranged around the burner axis Ringraumpassage the combustion chamber.
- the gas is carried out upstream of the burner nozzle through an existing in the burner nozzle nozzle ring with salaried holes, wherein the gas is acted upon by a peripheral speed component.
- the synthesis gas directly on the nozzle a relatively low Mach number is impressed.
- there is also only a relatively small intensity with regard to the mixing with the combustion air which encloses the annular fuel flow both from inside and outside.
- aggravating for a quick mixing of the fuel with the combustion air is the geometric design of the annular gap with a relatively large gap width and a correspondingly large mixing path.
- the nozzle ring of EP 1 649 219 B1 Anchored holes have been chosen, in particular, for synthesis gases having a relatively high calorific value in order to achieve a sufficiently high pressure loss at the nozzle for acoustic stability, without substantially changing the main dimensions.
- this embodiment has aerodynamic disadvantages. Thus, discrete jets are generated which can not be sufficiently evened out on the path available up to the burner exit, which leads to increased NO x emissions. In addition, due to the flow separations inside and in front of the nozzle, a considerable total pressure loss occurs, so that this pulse loss is not available as mixing energy.
- the invention causes a lower pressure drop to occur with the same swirl intensity compared to the nozzle ring of the prior art nozzle.
- the vanes cause a greater portion of the pressure loss to be applied to the fuel nozzle outlet for the same total pressure loss, resulting in higher acoustic stability in the combustion zone than in the prior art nozzle.
- the turbine burner after Fig.1 has a secondary supply unit for supplying a secondary fuel or air and for discharging the fuel or air from an opening 6 into a combustion zone 10.
- the secondary fuel may include natural gas and air.
- the secondary feed unit has a radius Ri.
- the secondary supply unit may also include a pilot burner 2, which is designed for a further fuel such as oil.
- a further, arranged around the pilot burner 2 annular natural gas duct 35 may be provided for supplying natural gas Gn.
- the natural gas can be diluted with steam or water to control the NOx levels.
- the secondary supply unit can provide a further annular air duct 30, into which compressor air L 'flows.
- the secondary supply unit comprises at the downstream end at least one swirl generator, a so-called axial grid 22 for generating a swirl.
- the axial grid 22 can be arranged in the downstream end of the air duct 30 of the secondary supply unit be.
- the natural gas Gn of the channel 35 is flowed into the air channel 30 in front of the axial grid 22.
- the resulting air-natural gas mixture is then introduced by the axial grid 22 twisted into the combustion zone 10.
- the burner further comprises a primary supply unit having a primary mixing tube 11 and a fuel nozzle 1 with an opening facing the combustion zone, the fuel nozzle outlet 4 for supplying a primary fuel, wherein the fuel nozzle 1 and the primary mixing tube 11 is arranged concentrically around the secondary supply unit.
- the primary mixing tube 11 and the fuel nozzle 1 have a fluid flow connection. Through the primary mixer tube 11 and the fuel nozzle 1 of the combustion zone 10 synthesis gas is supplied.
- annular channel 40 Arranged at least partially around the primary supply unit is an annular channel 40 which has a plurality of circumferentially arranged swirlers 45 with or without fuel nozzles. Compressor air L ", into which fuel can be injected by means of the swirlers 45, is flowed through this annular channel 40. The resulting compressor air L" fuel mixture or the air L "is likewise introduced into the combustion zone 10 in a twisted manner.
- the fuel nozzle 1 has an annular wall 9, which is radially spaced from the Sekundärzu GmbH in the axial direction, so that a gap height h is formed by the annular wall 9 and secondary feed.
- the fuel nozzle 1 has an inner wall 50 directed toward the secondary feed unit, wherein the inner wall 50 has annularly arranged blades 12 (FIG. Fig.2 ).
- the blades 12 may be disposed on the outer wall of the secondary feed unit (not shown).
- the outside wall of the secondary feed unit is understood to be the outside wall of the secondary feed unit directed toward the fuel nozzle.
- the fuel nozzle 1 also has a fuel nozzle inlet 20 and a fuel nozzle outlet 4.
- the pressure loss is applied to the fuel nozzle outlet 4. This has the advantage of setting higher acoustic stability in the combustion zone 10, that is, stability versus the known buzz in the combustion zone 10, than in the nozzles of the prior art burner.
- the pressure loss can also be adjusted in this embodiment on the speed of the synthesis gas or the cross section of the fuel nozzle outlet.
- the fuel nozzle 1 is formed downstream at least partially conical.
- the blades 12 have a blade leading edge 51 on the upstream side and a blade trailing edge 60 opposite thereto.
- the blade leading edge 51 has an axial distance s from the fuel nozzle inlet 20.
- the ratio of distance s and gap height h is greater than 1 and less than 4.
- the fuel nozzle inlet 20 is designed with a larger gap height h.
- the maximum utilization of the acceptable pressure loss and the avoidance of parasitic pressure losses takes place at the fuel nozzle outlet 4. This results in stable combustion.
- the fuel nozzle inlet 20 is also rounded, the rounding having a fuel nozzle inlet radius Re.
- the rounding points away from a fuel nozzle interior.
- the ratio of the fuel nozzle inlet radius Re and the gap height h is greater than 0.2 and less than 0.8. This results in a uniform flow acceleration up to the blade inflow edge 51, which causes a minimization of the inlet pressure losses and on the blades 12 a uniform flow profile.
- this can also be done by a straight nozzle 1 with a straight fuel nozzle inlet 20 are caused by an angle ⁇ 75 ° (not shown).
- the blade inflow edge 51 has the above-mentioned upstream relative axial distance of about 1 ⁇ s (distance) / h (gap height) ⁇ 4 to the fuel nozzle inlet 20.
- the nozzle 1 is thus designed such that by reducing the gap height h at the fuel nozzle inlet 20, the axial velocity is increased before the blades 12 and a uniform acceleration of the gas takes place until it leaves the nozzle 1.
- the gap height h at the fuel nozzle outlet 4 is between 0.1 ⁇ h (gap height) / Ra ⁇ 0.2, where Ra represents the outer fuel nozzle radius Ra, so that a Mach number in the range 0.4 ⁇ Ma ⁇ 0.8 is maintained, resulting in a better acoustic decoupling of the fuel system caused by combustion chamber pressure oscillations.
- an increase in the mixing energy is associated with the higher Mach number. Due to the smaller gap height h than in the nozzles of the prior art at the nozzle outlet 4 also mixing paths are minimized.
- the blades 12 additionally have a blade angle of attack ( Fig. 2 ).
- the blade angle of attack is to be selected in which the highest possible swirl number S is set, but without causing a flow separation at the blade trailing edge 60 and the hub 70, wherein the swirl number S sets the angular momentum current to the axial momentum ratio.
- the hub 70 that part of the secondary feed unit is referred to, which is located on the axial grid 22 and which represents the inner boundary of the fuel nozzle 1 at the nozzle outlet 4.
- the swirl number S is in a range of greater than 1.2 and less than 1.7.
- the ratio of the radius Ri of the secondary feed unit to the outer fuel nozzle radius Ra of the fuel nozzle 1 must be greater than 0.6 and less than 0.8 at the fuel nozzle outlet 4. Since the swirl number S depends on the ratio Ri / Ra, compliance with the ratio, that the synthesis gas flow still follows the contour of the fuel nozzle 1, without detaching itself on the hub side.
- the fuel-air mixture which flows through the axial grid 22, also has a tangential flow direction 100 (swirl). Also in the fuel nozzle 1, a tangential flow direction 110 is impressed on the synthesis gas stream by an angle of attack of the blades 12. The blade angle can now be arranged so that the tangential flow directions 100 and 110 now have an opposite direction of rotation. For this purpose, the blades 12 and the axial grid 22 must have an opposing arrangement. This causes a significant increase in the mixing intensity due to the increased shear rates in the contact zones of the flows 100 and 110.
- the relative velocities between the air-fuel mixture and synthesis gas is well above the relative velocities of a co-directional arrangement, which in turn significantly higher mixing of the two streams entails. This in turn has a positive effect on NOx emissions.
- the air flowing through the annular passage 40 has a twist 120. This is preferably rectified to the swirl flow 100.
- the fuel nozzle 1, seen in the flow direction after the blades 12 still have holes 130.
- the air of the annular channel 40 can occur when the burner is not in the synthesis gas operation.
- an operation of the burner without synthesis gas is possible when fuel is supplied via the pilot burner or fuel via the Ergaspassage 35.
- no hot gas, which is present in the combustion zone 10 can flow back through the nozzle 1 during operation without synthesis gas.
- the holes 130 may be formed in the flow direction with an inlet shell (7), which projects into the channel 40.
- the air L "can be more selectively flowed through the holes 130 into the nozzle 1, thus the hot gas even more targeted to prevent hot gas from the combustion zone 10 flows back into the nozzle 1.
- FIG. 2 shows a fuel nozzle 1 according to the invention in detail.
- This nozzle 1 has an inner wall 50.
- the blades 12 are arranged annularly over the circumference of the inner wall 50.
- the nozzle 1 is conical over the entire area of the hub 70 (FIG. Fig. 1 ), resulting in a lower gap height h at the fuel nozzle outlet 4 ( Fig. 1 ) than is the case with the nozzles of the prior art.
- the volume flow of the synthesis gas which must be supplied through the burner according to the invention of the combustion zone 10, can be reduced with the same NOx emissions.
- the better acoustic stability allows for an extended operating range of the burner according to the invention in terms of load and fuel quality.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Die Erfindung betrifft einen Turbinenbrenner der aufweist: Eine Sekundärzuführeinheit, und eine Primärzuführeinheit, welche eine Primärmischröhre (11) und eine Brennstoffdüse (1) mit einem Brennstoffdüsenaustritt(4) aufweist, wobei die Brennstoffdüse (1) sowie die Primärmischröhre (11) konzentrisch um die Sekundärzuführeinheit angeordnet ist, wobei die Primärmischröhre (11) und die Brennstoffdüse (1) eine Fluidflussverbindung haben, wobei die Brennstoffdüse (1) eine ringförmige Wand (9) aufweist, welche in axialer Richtung radial von der Sekundärzuführeinheit beabstandet ist, so dass durch die ringförmige Wand (9) und Sekundärzuführeinheit eine Spalthöhe (h) ausgebildet wird, wobei die ringförmige Wand (9) der Brennstoffdüse (1) eine zur Sekundärzufuhreinheit gerichtete Innenwand (50) aufweist, wobei die Innenwand (50) Schaufeln (12) aufweist.The invention relates to a turbine burner which has: A secondary feed unit, and a primary feed unit, which has a primary mixing tube (11) and a fuel nozzle (1) with a fuel nozzle outlet (4), the fuel nozzle (1) and the primary mixing tube (11) being arranged concentrically around the secondary feed unit, the primary mixing tube ( 11) and the fuel nozzle (1) have a fluid flow connection, the fuel nozzle (1) having an annular wall (9) which is axially spaced apart from the secondary feed unit, so that a gap height is created by the annular wall (9) and the secondary feed unit (h) is formed, the annular wall (9) of the fuel nozzle (1) having an inner wall (50) directed towards the secondary feed unit, the inner wall (50) having blades (12).
Description
Die Erfindung betrifft einen Turbinenbrenner gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a turbine burner according to the preamble of claim 1.
Verglichen mit den klassischen Gasturbinenbrennstoffen Erdgas und Erdöl, die überwiegend aus Kohlenwasserstoffverbindungen bestehen, sind die brennbaren Bestandteile der Synthesegase im Wesentlichen CO und H2. Abhängig vom Vergasungsverfahren und Gesamtanlagenkonzept ist der Heizwert des Synthesegases etwa 5 bis 10mal kleiner verglichen mit dem Heizwert von Erdgas. Hauptbestandteile neben CO und H2 sind inerte Anteile wie Stickstoff und/oder Wasserdampf und gegebenenfalls noch Kohlendioxid. Bedingt durch den kleinen Heizwert müssen demzufolge hohe Volumenströme an Brenngas durch den Brenner der Brennkammer zugeführt werden. Dies hat zur Folge, dass für die Verbrennung von niederkalorischen Brennstoffen - wie z.B. Synthesegas eine oder mehrere gesonderte Brennstoffpassagen zur Verfügung gestellt werden müssen. Wegen der im Vergleich zu konventionellen Brennstoffen wie Erdgas und Öl hohen Reaktivität (hohe Flammengeschwindigkeit, großer Zündbereich) von Synthesegasen besteht ein deutlich höheres Risiko bezüglich Flammenrückschlages, das heißt einer Brennerschädigung. Aus diesem Grunde erfolgt die Verbrennung von Synthesegasen in industriellen Gasturbinen zurzeit noch ausschließlich im Diffusionsbetrieb. Die damit verbundenen lokalen hohen Verbrennungstemperaturen führen zu hohen Stickoxid-Emissionen, welche wiederum durch eine zusätzliche Verdünnung durch Inertstoffe wie N2 oder Wasserdampf abgesenkt werden. Der damit verbundene zusätzliche Anstieg des Brennstoffmassenstromes stellt wiederum besondere Anforderungen an das Verbrennungssystem und die vorgelagerten Hilfssysteme.Compared with the traditional gas turbine fuels natural gas and petroleum, which mainly consist of hydrocarbon compounds, the combustible components of the synthesis gases are essentially CO and H2. Depending on the gasification process and overall plant concept, the calorific value of the synthesis gas is about 5 to 10 times smaller compared to the calorific value of natural gas. Main constituents in addition to CO and H2 are inert fractions such as nitrogen and / or water vapor and possibly also carbon dioxide. Due to the low calorific value consequently high volume flows of fuel gas must be supplied through the burner of the combustion chamber. As a result, for the combustion of low calorific fuels - e.g. Synthesis gas one or more separate fuel passages must be made available. Because of the high reactivity (high flame velocity, large ignition range) of synthesis gases compared to conventional fuels such as natural gas and oil, there is a significantly higher risk of flashback, ie damage to the burner. For this reason, the combustion of synthesis gases in industrial gas turbines is currently still exclusively in the diffusion mode. The associated local high combustion temperatures lead to high nitrogen oxide emissions, which in turn are lowered by an additional dilution by inert materials such as N2 or water vapor. The associated additional increase in the fuel mass flow in turn places special demands on the combustion system and the upstream auxiliary systems.
Das Synthesegas wird im Brenner des Stands der Technik - wie in der
Der Düsenring der
Es ist daher eine Aufgabe der Erfindung einen verbesserten Brenner mit einer verbesserten Brennstoffdüse anzugeben, welche eine verbesserte Durchmischung zur Folge hat und die obigen Nacheile vermeidet.It is therefore an object of the invention to provide an improved burner with an improved fuel nozzle, which results in improved mixing and avoids the above hot spots.
Diese Aufgabe wird durch die Angabe eines Turbinenbrenners nach Anspruch 1 gelöst. Die Unteransprüche enthalten vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung.This object is achieved by the specification of a turbine burner according to claim 1. The subclaims contain advantageous embodiments and further developments of the invention.
Die Erfindung bewirkt, dass sich bei gleicher Drallstärke ein niedrigerer Druckverlust einstellt, im Vergleich zu dem Düsenring der Düse des Stands der Technik. Zudem bewirken die Schaufeln, dass bei gleichem Gesamtdruckverlust ein größerer Anteil des Druckverlusts an den Brennstoffdüsenaustritt gelegt wird, was eine höhere akustische Stabilität in der Verbrennungszone bewirkt als bei der Düse des Stands der Technik.The invention causes a lower pressure drop to occur with the same swirl intensity compared to the nozzle ring of the prior art nozzle. In addition, the vanes cause a greater portion of the pressure loss to be applied to the fuel nozzle outlet for the same total pressure loss, resulting in higher acoustic stability in the combustion zone than in the prior art nozzle.
Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beiliegendenFurther features, characteristics and advantages of the present invention will become apparent from the following description of embodiments with reference to the accompanying
- Die Figur 1
- zeigt einen solchen erfindungsgemäßen Turbinenbrenner.
- Die Figur 2
- zeigt eine erfindungsgemäße Brennstoffdüse.
- The figure 1
- shows such a turbine burner according to the invention.
- The figure 2
- shows a fuel nozzle according to the invention.
Der Turbinenbrenner nach
Der Brenner umfasst weiter eine Primärzuführeinheit, welche eine Primärmischröhre 11 und eine Brennstoffdüse 1 mit einer in die Verbrennungszone weisenden Öffnung dem Brennstoffdüsenaustritt 4 zur Zuführung eines Primärbrennstoffes aufweist, wobei die Brennstoffdüse 1 sowie die Primärmischröhre 11 konzentrisch um die Sekundärzuführeinheit angeordnet ist. Dabei haben die Primärmischröhre 11 und die Brennstoffdüse 1 eine Fluidflussverbindung. Durch die Primärmischröhre 11 und die Brennstoffdüse 1 wird der Verbrennungszone 10 Synthesegas zugeführt.The burner further comprises a primary supply unit having a primary mixing tube 11 and a fuel nozzle 1 with an opening facing the combustion zone, the fuel nozzle outlet 4 for supplying a primary fuel, wherein the fuel nozzle 1 and the primary mixing tube 11 is arranged concentrically around the secondary supply unit. The primary mixing tube 11 and the fuel nozzle 1 have a fluid flow connection. Through the primary mixer tube 11 and the fuel nozzle 1 of the combustion zone 10 synthesis gas is supplied.
Um die Primärzuführeinheit ist zumindest teilweise ein Ringkanal 40 angeordnet, der mehrere auf dem Umfang angeordnete Swirler 45 mit oder ohne Brennstoffdüsen aufweist. Durch diesen Ringkanal 40 wird Verdichterluft L " geströmt, in das mittels den Swirlern 45 Brennstoff eingedüst werden kann. Das daraus entstehende Verdichterluft L " - Brennstoffgemisch oder die Luft L " wird ebenfalls verdrallt in die Verbrennungszone 10 eingebracht.Arranged at least partially around the primary supply unit is an annular channel 40 which has a plurality of circumferentially arranged swirlers 45 with or without fuel nozzles. Compressor air L ", into which fuel can be injected by means of the swirlers 45, is flowed through this annular channel 40. The resulting compressor air L" fuel mixture or the air L "is likewise introduced into the combustion zone 10 in a twisted manner.
Die Brennstoffdüse 1 weist eine ringförmige Wand 9 auf, welche in axialer Richtung radial von der Sekundärzuführeinheit beabstandet ist, so dass durch die ringförmige Wand 9 und Sekundärzuführeinheit eine Spalthöhe h ausgebildet wird. Dabei weist die Brennstoffdüse 1 eine zur Sekundärzufuhreinheit gerichtete Innenwand 50 auf, wobei die Innenwand 50 ringförmig angeordnete Schaufeln 12 aufweist (
Die Brennstoffdüse 1 ist stromab zumindest teilweise konisch ausgebildet.The fuel nozzle 1 is formed downstream at least partially conical.
Die Schaufeln 12 haben auf der stromaufwärtigen Seite eine Schaufelanströmkante 51 und gegenüberliegend eine Schaufelhinterkante 60. Dabei weist die Schaufelanströmkante 51 einen axialen Abstand s zu dem Brennstoffdüseneinlass 20 auf. Das Verhältnis von Abstand s und Spalthöhe h ist dabei größer als 1 und kleiner als 4. Durch diese Begrenzung des Abstandes s zu den Schaufel 12 in axialer Richtung wird die Ausbildung einer nennenswerten Grenzschicht verhindert.The blades 12 have a blade leading edge 51 on the upstream side and a blade trailing edge 60 opposite thereto. The blade leading edge 51 has an axial distance s from the fuel nozzle inlet 20. The ratio of distance s and gap height h is greater than 1 and less than 4. By this limitation of the distance s to the blade 12 in the axial direction, the formation of a significant boundary layer is prevented.
Zur Maximierung des akzeptablen, verfügbaren Druckverlustes in der Düse 1 wird der Brennstoffdüseneinlass 20 mit einer größeren Spalthöhe h ausgeführt. Dadurch erfolgt die maximale Ausnutzung des akzeptablen Druckverlustes und die Vermeidung von parasitären Druckverlusten am Brennstoffdüsenaustritt 4. Es stellt sich somit eine stabile Verbrennung ein.To maximize the acceptable, available pressure loss in the nozzle 1, the fuel nozzle inlet 20 is designed with a larger gap height h. As a result, the maximum utilization of the acceptable pressure loss and the avoidance of parasitic pressure losses takes place at the fuel nozzle outlet 4. This results in stable combustion.
Der Brennstoffdüseneinlass 20 ist zudem abgerundet, wobei die Abrundung einen Brennstoffdüseneinlassradius Re aufweist. Die Abrundung weist dabei von einem Brennstoffdüseninneren weg. Das Verhältnis von Brennstoffdüseneinlassradius Re und der Spalthöhe h ist dabei größer als 0.2 und kleiner als 0.8. Dadurch erfolgt bis zur Schaufelanströmkante 51 eine gleichmäßige Strömungsbeschleunigung, welche eine Minimierung der Einlaufdruckverluste und an den Schaufeln 12 ein gleichmäßiges Strömungsprofil bewirkt. Alternativ kann dies auch durch eine gerade Düse 1 mit einem geraden Brennstoffdüseneintritt 20 mit einem Winkel <75° bewirkt werden (nicht dargestellt). Die Schaufelanströmkante 51 weist dabei den oben erwähnten stromaufwärtigen relativen axialen Abstand von etwa 1<s (Abstand)/h(Spalthöhe)<4 zum Brennstoffdüseneintritt 20 auf.The fuel nozzle inlet 20 is also rounded, the rounding having a fuel nozzle inlet radius Re. The rounding points away from a fuel nozzle interior. The ratio of the fuel nozzle inlet radius Re and the gap height h is greater than 0.2 and less than 0.8. This results in a uniform flow acceleration up to the blade inflow edge 51, which causes a minimization of the inlet pressure losses and on the blades 12 a uniform flow profile. Alternatively, this can also be done by a straight nozzle 1 with a straight fuel nozzle inlet 20 are caused by an angle <75 ° (not shown). The blade inflow edge 51 has the above-mentioned upstream relative axial distance of about 1 <s (distance) / h (gap height) <4 to the fuel nozzle inlet 20.
Im Gegensatz zu bestehenden Lösungen ist die Düse 1 also derart ausgeführt, dass durch Reduzierung der Spalthöhe h am Brennstoffdüseneintritt 20 die Axialgeschwindigkeit bereits vor den Schaufeln 12 erhöht wird und eine gleichmäßige Beschleunigung des Gases bis zum Austritt aus der Düse 1 erfolgt. Dabei beträgt die Spalthöhe h am Brennstoffdüsenaustritt 4 zwischen 0.1<h (Spalthöhe)/Ra<0.2, wobei Ra den äußeren Brennstoffdüsenradius Ra darstellt, damit eine Mach-Zahl im Bereich 0.4<Ma<0.8 eingehalten wird, was eine bessere akustische Entkopplung des Brennstoffsystems von Brennkammerdruckschwingungen bewirkt. Zusätzlich ist mit der höheren Mach-Zahl eine Vergrößerung der Mischenergie verbunden. Durch die kleinere Spalthöhe h als bei den Düsen des Stands der Technik am Düsenaustritt 4 werden zudem Mischungswege minimiert.In contrast to existing solutions, the nozzle 1 is thus designed such that by reducing the gap height h at the fuel nozzle inlet 20, the axial velocity is increased before the blades 12 and a uniform acceleration of the gas takes place until it leaves the nozzle 1. Here, the gap height h at the fuel nozzle outlet 4 is between 0.1 <h (gap height) / Ra <0.2, where Ra represents the outer fuel nozzle radius Ra, so that a Mach number in the range 0.4 <Ma <0.8 is maintained, resulting in a better acoustic decoupling of the fuel system caused by combustion chamber pressure oscillations. In addition, an increase in the mixing energy is associated with the higher Mach number. Due to the smaller gap height h than in the nozzles of the prior art at the nozzle outlet 4 also mixing paths are minimized.
Die Schaufeln 12 weisen zusätzlich einen Schaufelanstellwinkel auf (
Das Brennstoff-Luftgemisch, welches durch das Axialgitter 22 durchströmt, weist zudem eine tangentiale Strömungsrichtung 100 (Drall) auf. Auch in der Brennstoffdüse 1 wird dem Synthesegasstrom durch einen Anstellwinkel der Schaufeln 12 eine tangentiale Strömungsrichtung 110 aufgeprägt. Der Schaufelanstellwinkel kann nun so angeordnet werden, dass die tangentiale Strömungsrichtungen 100 und 110 nun eine gegensinnige Drehrichtung aufweisen. Dazu müssen die Schaufeln 12 und das Axialgitter 22 eine gegensinnige Anordnung aufweisen. Dies bewirkt eine erhebliche Steigerung der Mischungsintensität wegen der vergrößerten Schergeschwindigkeiten in den Kontaktzonen der Strömungen 100 und 110. Aufgrund des Gegendralls liegt nämlich die Relativgeschwindigkeiten zwischen den Luft-Brennstoffgemisch und Synthesegas deutlich über der Relativgeschwindigkeiten einer gleichsinnigen Anordnung, was wiederum die deutlich höhere Durchmischung beider Ströme zur Folge hat. Dies wirkt sich wiederum positiv auf die NOx Emissionen aus. Auch die Luft, welches durch die Ringpassage 40 strömt weist einen Drall 120 auf. Diese ist bevorzugt gleichgerichtet zum Drallstrom 100.The fuel-air mixture, which flows through the axial grid 22, also has a tangential flow direction 100 (swirl). Also in the fuel nozzle 1, a tangential flow direction 110 is impressed on the synthesis gas stream by an angle of attack of the blades 12. The blade angle can now be arranged so that the tangential flow directions 100 and 110 now have an opposite direction of rotation. For this purpose, the blades 12 and the axial grid 22 must have an opposing arrangement. This causes a significant increase in the mixing intensity due to the increased shear rates in the contact zones of the flows 100 and 110. Because of the counter-roll, namely, the relative velocities between the air-fuel mixture and synthesis gas is well above the relative velocities of a co-directional arrangement, which in turn significantly higher mixing of the two streams entails. This in turn has a positive effect on NOx emissions. Also, the air flowing through the annular passage 40 has a twist 120. This is preferably rectified to the swirl flow 100.
Die Brennstoffdüse 1 kann in Strömungsrichtung gesehen nach den Schaufeln 12 noch Löcher 130 aufweisen. Durch diese kann die Luft des Ringkanals 40 eintreten, wenn der Brenner nicht im Synthesegasbetrieb ist. Somit ist eine Betreibung des Brenners auch ohne Synthesegas möglich, wenn Brennstoff über den Pilotbrenner oder aber Brennstoff über die Ergaspassage 35 zugeführt wird. Damit kann im Betrieb ohne Synthesegas kein Heißgas, welches im Verbrennungszone 10 vorhanden ist, über die Düse 1 zurückströmen. Die Löcher 130 können dabei in Strömungsrichtung mit einer Einlaufschale (7) ausgebildet sein, welche in den Kanal 40 hineinragt. Somit kann, im Betrieb ohne Synthesegas, die Luft L " gezielter durch die Löcher 130 in die Düse 1 geströmt werden, um somit das Heißgas noch gezielter daran zu hindern, dass Heißgas aus der Verbrennungszone 10 in die Düse 1 zurückströmt.The fuel nozzle 1, seen in the flow direction after the blades 12 still have holes 130. Through this, the air of the annular channel 40 can occur when the burner is not in the synthesis gas operation. Thus, an operation of the burner without synthesis gas is possible when fuel is supplied via the pilot burner or fuel via the Ergaspassage 35. Thus, no hot gas, which is present in the combustion zone 10, can flow back through the nozzle 1 during operation without synthesis gas. The holes 130 may be formed in the flow direction with an inlet shell (7), which projects into the channel 40. Thus, in operation without synthesis gas, the air L "can be more selectively flowed through the holes 130 into the nozzle 1, thus the hot gas even more targeted to prevent hot gas from the combustion zone 10 flows back into the nozzle 1.
Die
Im Gegensatz zu der Düse 1 des Brenners im Stand der Technik kann der Volumenstrom des Synthesegases, der durch den erfindungsgemäßen Brenner der Verbrennungszone 10 zugeführt werden muss, bei gleichen NOx Emissionen verringert werden. Daraus ergibt sich der Vorteil eines geringeren Bauraums der Primärzuführeinheit bzw. der Zufuhrsysteme zur Primärzuführeinheit. Die bessere akustische Stabilität lässt einen erweiterten Betriebsbereich des erfindungsgemäßen Brenners hinsichtlich Last und Brennstoffqualität zu.In contrast to the nozzle 1 of the burner in the prior art, the volume flow of the synthesis gas, which must be supplied through the burner according to the invention of the combustion zone 10, can be reduced with the same NOx emissions. This results in the advantage of a smaller installation space of the primary supply unit or of the supply systems for the primary supply unit. The better acoustic stability allows for an extended operating range of the burner according to the invention in terms of load and fuel quality.
Claims (14)
dadurch gekennzeichnet, dass zwischen Sekundärzuführeinheit und der ringförmigen Wand (9) ein Fluidkanal ausgebildet wird, und in dem Fluidkanal Schaufeln (12) angeordnet sind.A turbine burner having a secondary supply unit for supplying a secondary fuel or air and for discharging the fuel or air from an opening (6) into a combustion zone (10), and a primary supply unit having a primary mixer tube (11) and a fuel nozzle (1) with one in the Combustion zone facing fuel nozzle exit (4) for supplying a primary fuel, wherein the fuel nozzle (1) and the primary mixing tube (11) is arranged concentrically around the Sekundärzuführeinheit, wherein the primary mixing tube (11) and the fuel nozzle (1) having a fluid flow connection, wherein the fuel nozzle (1) has an annular wall (9) radially spaced axially from the secondary supply unit such that a gap height (h) is formed by the annular wall (9) and secondary supply unit, the annular wall (9) of the fuel nozzle (1) one to the secondary feed unit geric has inner wall (50),
characterized in that between the secondary feed unit and the annular wall (9), a fluid channel is formed, and in the fluid channel blades (12) are arranged.
dadurch gekennzeichnet, dass die Schaufeln (12) ringförmig über den Umfang der Innenwand (50) angeordnet sind.Turbine burner according to claim 1,
characterized in that the blades (12) are annular over the circumference of the inner wall (50).
die Sekundärzuführeinheit eine zur Brennstoffdüse (1) gerichtete Außenwand aufweist, wobei die Außenwand der Sekundärzufuhreinheit Schaufeln (12) aufweist, wobei die Schaufeln (12) ringförmig über den gesamten Umfang der Außenwand angeordnet sind.Turbine burner according to claim 1 or 2,
the secondary feed unit has an outer wall facing the fuel nozzle (1), the outer wall of the secondary feed unit having blades (12), the blades (12) being arranged annular over the entire circumference of the outer wall.
dadurch gekennzeichnet, dass die Brennstoffdüse (1) in Strömungsrichtung zumindest teilweise konisch ausgebildet ist.Turbine burner according to one of the preceding claims,
characterized in that the fuel nozzle (1) is at least partially conical in the flow direction.
dadurch gekennzeichnet, dass die Brennstoffdüse (1) in Strömungsrichtung nach den Schaufeln (12) gesehen eine kontinuierliche Reduktion der Spalthöhe (h) aufweist.Turbine burner according to claim 4,
characterized in that the fuel nozzle (1) seen in the flow direction after the blades (12) has a continuous reduction of the gap height (h).
dadurch gekennzeichnet, dass die die Schaufeln (12) auf ihrer stromaufwärtigen Seite eine Schaufelanströmkante (51) aufweisen und die Brennstoffdüse (1) einen Brennstoffdüseneinlass (20) aufweist und die Schaufeln (12) einen axialen Abstand (s) zu diesem Brennstoffdüseneinlass (20) aufweisen, wobei das Verhältnis des Abstands (s) und der Spalthöhe (h) größer als 1 und kleiner als 4 ist.Turbine burner according to one of the preceding claims,
characterized in that the blades (12) have a blade inflow edge (51) on their upstream side and the fuel nozzle (1) has a fuel nozzle inlet (20) and the blades (12) have an axial distance (s) to that fuel nozzle inlet (20). wherein the ratio of the distance (s) and the gap height (h) is greater than 1 and less than 4.
dadurch gekennzeichnet, dass der Brennstoffdüseneinlass (20) abgerundet ist, wobei die Abrundung einen Brennstoffdüseneinlassradius (Re) aufweist, wobei die Abrundung von einem Brennstoffdüseninneren weg weist.Turbine burner according to one of the preceding claims,
characterized in that the fuel nozzle inlet (20) is rounded, the rounding having a fuel nozzle inlet radius (Re), the rounding facing away from a fuel nozzle interior.
dadurch gekennzeichnet, dass das Verhältnis von Brennstoffdüseneinlassradius (Re) und die Spalthöhe (h) größer aus 0.2 und kleiner als 0.8 ist.Turbine burner according to claim 7,
characterized in that the ratio of the fuel nozzle inlet radius (Re) and the gap height (h) is greater than 0.2 and less than 0.8.
dadurch gekennzeichnet, dass die Brennstoffdüse (1) einen äußeren Brennstoffdüsenradius (Ra) aufweist.Turbine burner according to one of the preceding claims,
characterized in that the fuel nozzle (1) has an outer fuel nozzle radius (Ra).
dadurch gekennzeichnet, dass am Brennstoffdüseneintritt (20) das Verhältnis der Spalthöhe (h) und des Brennstoffdüsenradius (Ra) größer als 0.2 und kleiner als 0.3 ist.Turbine burner according to claim 9,
characterized in that at the fuel nozzle inlet (20) the ratio of the gap height (h) and the fuel nozzle radius (Ra) is greater than 0.2 and less than 0.3.
dadurch gekennzeichnet, dass die Sekundärzufuhreinheit einen Radius (Ri) aufweist und am Brennstoffdüsenaustritt (4) das Verhältnis von dem Radius (Ri) zu den äußeren Brennstoffdüsenradius (Ra) der Brennstoffdüse (1) größer als 0.6 und kleiner als 0.8 ist.Turbine burner according to claim 9 or 10,
characterized in that the secondary supply unit has a radius (Ri) and at the fuel nozzle outlet (4) the ratio of the radius (Ri) to the outer fuel nozzle radius (Ra) of the fuel nozzle (1) is greater than 0.6 and less than 0.8.
dadurch gekennzeichnet, dass die Brennstoffdüse (1) Löcher (130) aufweist, welche in Strömungsrichtung gesehen den Schaufeln (12) nachgeordnet sind und welche über den gesamten Umfang der Wand (9) der Brennstoffdüse (1) angeordnet sind.Turbine burner according to one of the preceding claims,
characterized in that the fuel nozzle (1) has holes (130) which, viewed in the flow direction, are arranged downstream of the blades (12) and which are arranged over the entire circumference of the wall (9) of the fuel nozzle (1).
dadurch gekennzeichnet, dass die Löcher (130) eine Einlaufschale (7) aufweisen.Turbine burner according to claim 12,
characterized in that the holes (130) have an inlet shell (7).
dadurch gekennzeichnet, dass zumindest teilweise um die Primärzuführeinheit ein Ringkanal (40) angeordnet ist, der mehrere auf dem Umfang angeordnete Swirler (45) mit Brennstoffdüsen aufweist.Turbine burner according to one of the preceding claims,
characterized in that at least partially around the Primärzuführeinheit an annular channel (40) is arranged, which has a plurality of circumferentially arranged Swirler (45) with fuel nozzles.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10166431A EP2397764A1 (en) | 2010-06-18 | 2010-06-18 | Turbine burner |
US13/699,801 US8869535B2 (en) | 2010-06-18 | 2011-03-29 | Turbine burner having premixing nozzle with a swirler |
EP11711862.0A EP2583033B1 (en) | 2010-06-18 | 2011-03-29 | Turbine burner |
PCT/EP2011/054777 WO2011157458A1 (en) | 2010-06-18 | 2011-03-29 | Turbine burner |
CN201180030001.5A CN102947650B (en) | 2010-06-18 | 2011-03-29 | Turbine burner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10166431A EP2397764A1 (en) | 2010-06-18 | 2010-06-18 | Turbine burner |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2397764A1 true EP2397764A1 (en) | 2011-12-21 |
Family
ID=43086876
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10166431A Withdrawn EP2397764A1 (en) | 2010-06-18 | 2010-06-18 | Turbine burner |
EP11711862.0A Active EP2583033B1 (en) | 2010-06-18 | 2011-03-29 | Turbine burner |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11711862.0A Active EP2583033B1 (en) | 2010-06-18 | 2011-03-29 | Turbine burner |
Country Status (4)
Country | Link |
---|---|
US (1) | US8869535B2 (en) |
EP (2) | EP2397764A1 (en) |
CN (1) | CN102947650B (en) |
WO (1) | WO2011157458A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015040228A1 (en) * | 2013-09-23 | 2015-03-26 | Siemens Aktiengesellschaft | Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2312215A1 (en) * | 2008-10-01 | 2011-04-20 | Siemens Aktiengesellschaft | Burner and Method for Operating a Burner |
US10731861B2 (en) * | 2013-11-18 | 2020-08-04 | Raytheon Technologies Corporation | Dual fuel nozzle with concentric fuel passages for a gas turbine engine |
EP2993406A1 (en) | 2014-09-03 | 2016-03-09 | Siemens Aktiengesellschaft | Method for operating a gas turbine and burner for a gas turbine |
DE102021002508A1 (en) | 2021-05-12 | 2022-11-17 | Martin GmbH für Umwelt- und Energietechnik | Nozzle for injecting gas into an incinerator with a tube and a swirler, flue with such a nozzle and method for using such a nozzle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999004196A1 (en) * | 1997-07-17 | 1999-01-28 | Siemens Aktiengesellschaft | Arrangement of burners for heating installation, in particular a gas turbine combustion chamber |
DE19757617A1 (en) * | 1997-12-23 | 1999-03-25 | Siemens Ag | Combustion system |
WO2006053866A1 (en) * | 2004-11-18 | 2006-05-26 | Siemens Aktiengesellschaft | Burner starting method |
EP1649219B1 (en) | 2003-07-25 | 2008-05-07 | Ansaldo Energia S.P.A. | Gas turbine burner |
US20090025394A1 (en) * | 2005-09-30 | 2009-01-29 | Ansaldo Energia S.P.A | Method For Starting A Gas Turbine Equipped With A Gas Burner, And Axial Swirler For Said Burner |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3133066B2 (en) * | 1991-04-25 | 2001-02-05 | シーメンス アクチエンゲゼルシヤフト | Burner burner for combusting coal gas and other fuels with low harmful emissions, especially for gas turbines |
DE19549143A1 (en) | 1995-12-29 | 1997-07-03 | Abb Research Ltd | Gas turbine ring combustor |
US7685823B2 (en) | 2005-10-28 | 2010-03-30 | Power Systems Mfg., Llc | Airflow distribution to a low emissions combustor |
US8393891B2 (en) * | 2006-09-18 | 2013-03-12 | General Electric Company | Distributed-jet combustion nozzle |
-
2010
- 2010-06-18 EP EP10166431A patent/EP2397764A1/en not_active Withdrawn
-
2011
- 2011-03-29 US US13/699,801 patent/US8869535B2/en active Active
- 2011-03-29 CN CN201180030001.5A patent/CN102947650B/en active Active
- 2011-03-29 WO PCT/EP2011/054777 patent/WO2011157458A1/en active Application Filing
- 2011-03-29 EP EP11711862.0A patent/EP2583033B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999004196A1 (en) * | 1997-07-17 | 1999-01-28 | Siemens Aktiengesellschaft | Arrangement of burners for heating installation, in particular a gas turbine combustion chamber |
DE19757617A1 (en) * | 1997-12-23 | 1999-03-25 | Siemens Ag | Combustion system |
EP1649219B1 (en) | 2003-07-25 | 2008-05-07 | Ansaldo Energia S.P.A. | Gas turbine burner |
WO2006053866A1 (en) * | 2004-11-18 | 2006-05-26 | Siemens Aktiengesellschaft | Burner starting method |
US20090025394A1 (en) * | 2005-09-30 | 2009-01-29 | Ansaldo Energia S.P.A | Method For Starting A Gas Turbine Equipped With A Gas Burner, And Axial Swirler For Said Burner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015040228A1 (en) * | 2013-09-23 | 2015-03-26 | Siemens Aktiengesellschaft | Burner for a gas turbine and method for reducing thermo-acoustic oscillations in a gas turbine |
Also Published As
Publication number | Publication date |
---|---|
EP2583033B1 (en) | 2014-06-25 |
US20130074506A1 (en) | 2013-03-28 |
EP2583033A1 (en) | 2013-04-24 |
US8869535B2 (en) | 2014-10-28 |
WO2011157458A1 (en) | 2011-12-22 |
CN102947650A (en) | 2013-02-27 |
CN102947650B (en) | 2014-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60310170T2 (en) | Fuel injection device | |
DE102007004864B4 (en) | Combustion chamber of a gas turbine and combustion control method for a gas turbine | |
DE102011055241B4 (en) | Apparatus and method for igniting a combustor assembly | |
DE102014102780A1 (en) | System and method for air flow conditioning at a rape level | |
CH708992A2 (en) | Fuel injector with premixed pilot nozzle. | |
CH703765A2 (en) | Nozzle and method of mixing fuel and air in a nozzle. | |
CH707771A2 (en) | System with multi-tube fuel nozzle having a plurality of fuel injectors. | |
DE102013114973A1 (en) | Fuel injector for supplying fuel to a combustion chamber | |
DE102015122927A1 (en) | Pilot nozzle in a gas turbine combustor | |
DE102014102584A1 (en) | Fuel nozzle to reduce the modal coupling of the combustion dynamics | |
DE102015121653A1 (en) | Pilot nozzle in a gas turbine combustor | |
DE102015122924A1 (en) | Pilot nozzle in a gas turbine combustor | |
DE102012100368A1 (en) | Combustor nozzle and method of making the combustion chamber nozzle | |
EP2583033B1 (en) | Turbine burner | |
DE102011055109A1 (en) | A system for directing the flow of air in a fuel nozzle assembly | |
WO2011023669A1 (en) | Burner, in particular for gas turbines | |
EP2439447A1 (en) | Fuel nozzle, gas turbine combustion chamber and burner with such a fuel nozzle | |
EP2601447A2 (en) | Gas turbine combustion chamber | |
WO2013083348A2 (en) | Combustion chamber for a gas turbine and gas turbine as well as a method | |
DE102014111070A1 (en) | System for injecting a liquid fuel into a combustion gas flow field | |
CH703764A2 (en) | Fuel injector for use in a turbine engine and turbine drive. | |
EP2558781B1 (en) | Swirl generator for a torch | |
WO2014023462A1 (en) | Local improvement of the mixture of air and fuel in burners comprising swirl generators having blade ends that are crossed in the outer region | |
WO2015150089A1 (en) | Dual-fuel burner for a gas turbine | |
DE102017118166A1 (en) | Burner head, burner system and use of the burner system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120622 |