EP2370771A1 - High pressure port on peninsula - Google Patents
High pressure port on peninsulaInfo
- Publication number
- EP2370771A1 EP2370771A1 EP09771363A EP09771363A EP2370771A1 EP 2370771 A1 EP2370771 A1 EP 2370771A1 EP 09771363 A EP09771363 A EP 09771363A EP 09771363 A EP09771363 A EP 09771363A EP 2370771 A1 EP2370771 A1 EP 2370771A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- plates
- flow channels
- skirt
- peninsula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
- F28D9/005—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
- F28F3/046—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2225/00—Reinforcing means
Definitions
- the present invention relates to a heat exchanger comprising a number of heat exchanger plates comprising a pressed pattern of ridges and grooves adapted to form flow channels for media to exchange heat flowing through said flow channels, the plates further comprising at least four port openings arranged to allow fluid communication to said flow channels and a skirt extending around the periphery of the heat exchanger plates, said skirt sealing the flow channels.
- a relatively common type of heat exchanger for carbon dioxide applications is the "dual pipe" exchanger, which comprises two parallel pipes, which are interconnected to enable heat transfer between the pipes. Usually, a pipe with a small diameter is used for the high pressure medium, whereas a pipe with a large diameter is used for the low pressure medium.
- Dual pipe heat exchangers have excellent properties concerning capability to withstand pressure, but are inefficient in terms of heat exchanging capability vs. weight.
- CBE Compact Brazed Exchanger
- a CBE generally comprises a number of heat exchanger plates, all of which being provided with a pressed pattern of ridges and grooves and port openings for fluid communication with flow channels formed by interaction between the pressed patterns of ridges and grooves of neighboring plates.
- the pressed patterns of neighboring plates are arranged such that ridges of one plate contact grooves of a neighboring plate.
- the contact points are brazed to one another to provide sufficient strength to the flow channel formed by the patterns of ridges and grooves of neighboring plates.
- the flow channels formed by the interaction between the ridges and grooves are laterally sealed by interacting skirts provided around the circumference of the heat exchanger plates.
- Fig. 1 is a perspective view of a heat exchanger plate according to a first embodiment of the present invention
- Fig. 2 is a plan view of a heat exchanger plate according to a second embodiment of the present invention
- Fig. 3 is a perspective view of a heat exchanger plate according to a third embodiment of the present invention
- Fig. 4 is a perspective view of a heat exchanger manufactured from a number of heat exchanger plates according to the third embodiment
- Fig. 5 is a perspective view of a heat exchanger plate according to a fourth embodiment of the present invention.
- a heat exchanger plate 100 comprises a heat exchanging area 1 10, provided with a pressed pattern (not shown) of ridges and grooves, in a way well known to persons skilled in the art.
- the patterns of ridges and grooves of neighboring plates are adapted to provide flow channels between the plates due to contact between ridges of one plate contacting grooves of its neighboring plate when the plates 100 are stacked onto one another in a way well known by persons skilled in the art.
- the heat exchanger 100 also comprises at least two low pressure port openings 120 and two high pressure openings 130. The port openings are in selective fluid communication with the flow channels formed by the pattern of ridges and grooves in a way to be described below.
- a skirt 140 surrounds the heat exchanging area 1 10 and is arranged such that two skirts of neighboring plates interact to form a seal between such neighboring plates by an overlapping engagement between neighboring skirts, hence sealing the flow channels formed by the pressed pattern of ridges and grooves.
- the high pressure port 130 is placed on a "peninsula" 150 extending out from the heat exchanging area 110.
- the peninsula 150 is closely surrounded by the skirt 140 over an angle ⁇ of about 180 degrees.
- Fig. 2 shows virtually the same embodiment as is shown in Fig, 1, with the exception that fig. 2 shows the skirt 140 being surrounded by a plate portion 160 which is provided with a pressed pattern of ridges and grooves.
- the ridges and grooves 165, 166, respectively, of the plate portion 160 are adapted to contact corresponding ridges and grooves of the plate portion 160 of a neighboring plate, and hence increase the strength of the seal formed by the skirt 140.
- Fig. 3. shows still a further embodiment of a heat exchanger plate 200 according to the present invention.
- a peninsula 210 extends in a direction parallel to a length axis of the heat exchanger plate 200, and a high pressure port 220 is located on such peninsula.
- the skirt 140 closely surrounds the high pressure poit 220 over about 180 degrees.
- a desired number of heat exchanger plates are stacked onto one another. Not all heat exchanger plates 100 or 200 are of the same design, every other plate in the stack is a mirror image of its neighboring plates; by varying the height of the areas surrounding both the high pressure ports and the low pressure ports, it is possible to determine which port opening that shall communicate with each flow channel. This method of determining the fluid communication in a heat exchanger is well known by persons skilled in the art, and will hence not be more thoroughly discussed.
- the entire plate package is subjected to a brazing operation, i.e. the plate package is put into a furnace and heated to a temperature sufficient to melt a brazing material arranged between the plates. After the brazing material has melted, it will concentrate to areas wherein the plates are lying close to one another (the concentration of the brazing material is due to capillary forces). Consequently, the plates will be joined by a brazing connection after the heat exchanger has cooled down sufficiently to allow the brazing material to solidify.
- a heat exchanger 400 comprising a number of heat exchanger plates 200 is shown.
- the skirts 140 form an edge around the circumference of the heat exchanger plates, and it is also very clear how the skirts 140 interact to form a half-pipe like closure around the high pressure port openings 130.
- the half-pipe like closure formed by the skirts 140 around the high pressure port openings 130 gives a very high strength around the port openings; the forces emanating from the surface area of the port will be transferred through the connections between the overlapping skirts.
- the peninsula placement of the high pressure port 130 increases the strength of the port by fact that a large portion of the port opening lies in the vicinity of the skirt 140; as previously described, skirts 140 of neighboring plates will overlap to form a sealed connection between the plates.
- the overlapping skirts will form a "half-pipe" of overlapping skirts.
- Such a half pipe-like array of overlapping skirts has proven to be very strong, it can absorb forces in a much more efficient way than e.g. the contact points between the pressed patterns of the heat exchanging areas.
- a heat exchanger plate according to a further embodiment embodying this feature of the present invention is shown.
- both a high pressure port 300 and a low pressure port 310 are placed on peninsulas 320, 330, respectively, the definition of a peninsula being that the skirts surrounding the plates closely surrounds the port openings over more than 90 degrees.
- the skirt 140 not necessarily must be arranged such that it only surrounds the heat exchanger as a whole; it is also possible to provide any portion of the heat exchanger plates with skirts.
- a skirt could be arranged such that an opening is formed in the heat exchanger; any arrangement wherein plate portions extend in a generally perpendicular direction vis-a-vis a plane of the heat exchanger, and wherein such plate portions of neighboring plates are designed to overlap corresponding plate portions of neighboring plates in a way that has been described above with reference to the skirt 140 are regarded as skirts in the wording of the claims.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0802596 | 2008-12-17 | ||
PCT/EP2009/066928 WO2010069871A1 (en) | 2008-12-17 | 2009-12-11 | High pressure port on peninsula |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2370771A1 true EP2370771A1 (en) | 2011-10-05 |
EP2370771B1 EP2370771B1 (en) | 2017-07-19 |
Family
ID=41819669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09771363.0A Active EP2370771B1 (en) | 2008-12-17 | 2009-12-11 | Brazed heat exchanger |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120118546A1 (en) |
EP (1) | EP2370771B1 (en) |
JP (1) | JP5882739B2 (en) |
CN (1) | CN102245993A (en) |
WO (1) | WO2010069871A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105705284B (en) * | 2013-10-29 | 2019-05-31 | 舒瑞普国际股份公司 | Use the method for silk-screen printing brazing material brazing plate type heat exchanger;The plate heat exchanger manufactured using this method |
JP6080746B2 (en) * | 2013-11-28 | 2017-02-15 | 三菱電機株式会社 | Plate laminate |
DE102013225321A1 (en) * | 2013-12-09 | 2015-06-11 | MAHLE Behr GmbH & Co. KG | Stacking disc for a heat exchanger and heat exchanger |
JP6552499B2 (en) * | 2013-12-10 | 2019-07-31 | スウェップ インターナショナル アクティエボラーグ | Heat exchanger with improved flow |
SE541905C2 (en) | 2017-12-05 | 2020-01-02 | Swep Int Ab | Heat exchanger and method for forming heat exchanger plates |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4182411A (en) * | 1975-12-19 | 1980-01-08 | Hisaka Works Ltd. | Plate type condenser |
SE466171B (en) * | 1990-05-08 | 1992-01-07 | Alfa Laval Thermal Ab | PLATTERS WORKS AATMONISONING A PLATHER WAS ASTMINSTERING A DIVISION WAS A DIVISIONALLY DIVISED BY A FAULTY OF A PORTABLE WORTH PREPARING ACHIEVENING, |
JPH0674672A (en) * | 1992-08-25 | 1994-03-18 | Hisaka Works Ltd | Plate heat exchanger |
DE4416391A1 (en) * | 1994-05-10 | 1995-11-16 | Schmidt Bretten Gmbh | Plate heat exchanger |
JP2887442B2 (en) * | 1994-09-22 | 1999-04-26 | 株式会社ゼクセル | Stacked heat exchanger |
DE19611447C1 (en) * | 1996-03-22 | 1997-07-10 | Laengerer & Reich Gmbh & Co | Panel heat exchanger without casing |
SE521916C2 (en) * | 1997-02-25 | 2003-12-16 | Ep Technology Ab | Flat heat exchanger with leakage emissions |
JP3064371U (en) * | 1999-05-28 | 2000-01-14 | 東洋ラジエーター株式会社 | Stacked heat exchanger |
JP2001050681A (en) * | 1999-08-06 | 2001-02-23 | Matsushita Electric Ind Co Ltd | Heat exchanger and freezing cycle device using the heat exchanger |
JP3448265B2 (en) * | 2000-07-27 | 2003-09-22 | 昭 藤山 | Manufacturing method of titanium plate heat exchanger |
US6478080B2 (en) * | 2001-03-29 | 2002-11-12 | Standard Motor Products, Inc. | Fluid cooling device |
DE10153877A1 (en) * | 2001-11-02 | 2003-05-15 | Behr Gmbh & Co | Heat exchanger |
SE520673C2 (en) * | 2001-12-17 | 2003-08-12 | Alfa Laval Corp Ab | Plate package, procedure for its manufacture, use of a plate package, and plate heat exchanger |
FR2843449B1 (en) * | 2002-08-09 | 2005-05-06 | Valeo Thermique Moteur Sa | HEAT EXCHANGER FOR THE INTAKE AIR CIRCUIT OF A THERMAL ENGINE |
DE10352880A1 (en) * | 2003-11-10 | 2005-06-09 | Behr Gmbh & Co. Kg | Heat exchanger, in particular charge air / coolant radiator |
DE20317469U1 (en) * | 2003-11-11 | 2004-03-11 | Viessmann Werke Gmbh & Co Kg | Plate heat exchanger |
DE102004003790A1 (en) * | 2004-01-23 | 2005-08-11 | Behr Gmbh & Co. Kg | Heat exchangers, in particular oil / coolant coolers |
SE528886C2 (en) * | 2005-08-26 | 2007-03-06 | Swep Int Ab | End plate |
DE102005044291A1 (en) * | 2005-09-16 | 2007-03-29 | Behr Industry Gmbh & Co. Kg | Stacking plate heat exchanger, in particular intercooler |
US7992628B2 (en) * | 2006-05-09 | 2011-08-09 | Modine Manufacturing Company | Multi-passing liquid cooled charge air cooler with coolant bypass ports for improved flow distribution |
US7377308B2 (en) * | 2006-05-09 | 2008-05-27 | Modine Manufacturing Company | Dual two pass stacked plate heat exchanger |
US7380544B2 (en) * | 2006-05-19 | 2008-06-03 | Modine Manufacturing Company | EGR cooler with dual coolant loop |
-
2009
- 2009-12-11 US US13/139,676 patent/US20120118546A1/en not_active Abandoned
- 2009-12-11 WO PCT/EP2009/066928 patent/WO2010069871A1/en active Application Filing
- 2009-12-11 CN CN2009801501156A patent/CN102245993A/en active Pending
- 2009-12-11 EP EP09771363.0A patent/EP2370771B1/en active Active
- 2009-12-11 JP JP2011541353A patent/JP5882739B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2010069871A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP5882739B2 (en) | 2016-03-09 |
CN102245993A (en) | 2011-11-16 |
EP2370771B1 (en) | 2017-07-19 |
US20120118546A1 (en) | 2012-05-17 |
WO2010069871A1 (en) | 2010-06-24 |
JP2012512378A (en) | 2012-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2370774B1 (en) | Brazed plate heat exchanger | |
EP2227668B1 (en) | Distribution pipe | |
JP4981063B2 (en) | Means for plate heat exchangers | |
EP2267391B1 (en) | Asymmetric heat exchanger | |
US9033026B2 (en) | Double plate heat exchanger | |
US9341415B2 (en) | Reinforced heat exchanger | |
EP2370771B1 (en) | Brazed heat exchanger | |
JP5882179B2 (en) | Internal heat exchanger with external manifold | |
WO2010069873A1 (en) | Port opening of brazed heat exchanger | |
KR20120075838A (en) | Heat exchanger for very high temperature nuclear reactor | |
EP2199723B1 (en) | Heat exchanger | |
US7265976B1 (en) | Microchannel thermal management system | |
US20050039899A1 (en) | Turbulator for heat exchanger | |
US11353268B2 (en) | Plate type heat exchanger | |
US11933547B2 (en) | Double plate heat exchanger | |
KR101987599B1 (en) | The plate heat exchanger of welding type | |
KR101987600B1 (en) | The plate heat exchanger of welding type | |
KR101897927B1 (en) | The plate heat exchanger of welding type for high pressure condition | |
JP2007093034A (en) | Triple tube heat exchanger | |
KR20190078047A (en) | Non-uniform semi-welded plate type heat exchanger | |
KR102505779B1 (en) | Heat exchanger for electric element cooling of vehicle having microchannel structure | |
EP4509791A1 (en) | Plate heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110627 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150708 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170208 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 910788 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009047240 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 910788 Country of ref document: AT Kind code of ref document: T Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171119 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171019 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171020 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009047240 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
26N | No opposition filed |
Effective date: 20180420 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171211 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171211 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091211 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170719 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230514 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241211 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241212 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241211 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241211 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241212 Year of fee payment: 16 |