EP2369172A2 - Fluid rotation machine with a sensor assembly - Google Patents
Fluid rotation machine with a sensor assembly Download PDFInfo
- Publication number
- EP2369172A2 EP2369172A2 EP11001518A EP11001518A EP2369172A2 EP 2369172 A2 EP2369172 A2 EP 2369172A2 EP 11001518 A EP11001518 A EP 11001518A EP 11001518 A EP11001518 A EP 11001518A EP 2369172 A2 EP2369172 A2 EP 2369172A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- housing
- rotary machine
- shaft
- encoder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 38
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 description 24
- 230000033001 locomotion Effects 0.000 description 13
- 230000005855 radiation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03C—POSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
- F03C2/00—Rotary-piston engines
- F03C2/08—Rotary-piston engines of intermeshing-engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/103—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
- F04C2/104—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement having an articulated driving shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/81—Sensor, e.g. electronic sensor for control or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/05—Speed
- F04C2270/052—Speed angular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/86—Detection
Definitions
- the invention relates to a fluid rotary machine comprising a housing, a shaft guided out of the housing and a sensor arrangement which has an encoder, which is in operative connection with the shaft, and a receiver.
- Such a machine is off US Pat. No. 6,539,710 B2 known.
- the first section has an externally toothed gear which cooperates with an internally toothed ring gear. Between the gear and the ring gear pressure pockets are formed, which are supplied via a rotating valve spool assembly each with pressurized fluid or connected to a low pressure region.
- the gear is connected via a cardan shaft with the shaft.
- the gear is engaged with a crankpin, which transmits the orbiting motion of the gear to a sensor shaft.
- US 4,593,555 describes a hydraulic motor in which one uses a pressure sensor to determine the rotational speed of the shaft.
- US Pat. No. 6,062,123 describes a power-assisted steering device with a motor and a sensor that scans a position of a steering handwheel shaft.
- the sensor is arranged radially to the axis of the steering wheel shaft.
- DE 198 24 926 C2 describes a further hydraulic steering device, in which an inner spool is provided on its front side with a row of teeth that can be scanned by a sensor.
- DE 10 2005 036 483 B4 describes a hydraulic rotary machine whose shaft is provided with a donor having on its outer periphery a tooth structure of teeth and grooves.
- a transmitter is arranged, which directs a light beam to the threaded structure. From the thread structure of the light beam is reflected to a receiver.
- the sensor arrangements in the machines mentioned in the introduction have proven themselves in principle. But they often require a relatively complicated installation of the sensor. The sensor is then often in a position where it basically bothers. If the sensor is placed in a position where it interferes less, there is the problem that it can not directly detect the rotation of the shaft, but is in communication with the shaft through a plurality of play-engaged engagement points. A similar problem arises when the shaft can twist, for example, at high torques within the movement train.
- the invention has the object of advantageously arranging the sensor arrangement on the fluid rotary machine.
- the sensor arrangement has a receiving area in which the encoder is arranged, wherein the receiving area is in fluid communication with the interior of the housing and is sealed to the outside and the receiver outside of Housing and the receiving area is arranged.
- the receiving area seals the interior of the machine to the outside, so that one in the sensor assembly requires no opening through which a moving element is guided and must then be sealed. If you can save a seal between moving parts, this increases the reliability. The wear remains small and the susceptibility to errors decreases.
- hydraulic fluid may enter the receiving area and then simultaneously lubricate the contact surfaces of the transmitter with the housing or other element. This in turn means that the encoder can rotate virtually freely, so that an extremely small moment is required to turn the encoder. This in turn keeps the twist of the transmission element very small when using a transmission element.
- a particularly simple embodiment is to arrange the receiving area within the housing.
- the receiving area may be formed as a receiving space.
- the receiving area is formed in an end cap of the fluid rotary machine.
- the receiving area may be formed, for example, as a bore or as a recess in the front cover. There will be no through hole provided. Otherwise, the tightness would no longer be guaranteed. Again, you need in the sensor assembly no opening through which a moving element is performed. You can make the front cover or other parts of the housing made of stainless steel. A Interaction between donor and receiver is not disturbed when the interaction is due to a magnetic field.
- the encoder on a support member which cooperates with low friction with the end cover.
- the sensor arrangement has a sensor housing in which the receiving area is arranged.
- it is the sensor housing that seals the interior of the machine to the outside.
- no opening for a moving element is required in the sensor assembly, which would have to be sealed.
- the sensor housing can be manufactured as a separate component. This simplifies the production on the one hand.
- the sensor housing can be particularly well adapted to the needs of the sensor arrangement, in particular to that of the encoder.
- the encoder has a carrier element which cooperates with low friction with the sensor housing.
- the sensor arrangement even if a liquid or a fluid which penetrates into the receiving area does not have a lubricating effect per se, as is the case, for example, with water-hydraulic machines.
- the sensor housing is screwed into a front cover of the fluid rotary machine.
- the sensor housing has for this purpose, for example, an external thread, which is in engagement with a corresponding internal thread in the end cap. This simplifies the manufacture of the sensor housing and the mounting of the sensor arrangement on the machine. Moreover, in this embodiment, it is relatively easy to seal the receiving area to the outside. You just have to arrange a seal between the sensor housing and the front cover and screw the sensor housing with sufficient force in the front cover.
- the receiver is clipped onto the sensor housing. So you connect the receiver to the sensor housing with a detachable connection that can be made relatively quickly and released again.
- This has the advantage that the fluid rotary machine can be relatively easily provided with different types of sensor arrangements by replacing the receiver. Also, a repair is simplified. In a sensor arrangement, the receiver is usually the most error-prone part.
- the encoder has a magnet.
- the magnet generates the magnetic field, which is also measurable at the receiver.
- the magnetic field has to be only a few millitesla. If the magnet is moved due to a movement of the encoder caused by the shaft itself, this causes a change in the magnetic field at the recipient's place. It is also possible that several magnets are arranged on the encoder. Due to the varying magnetic field, the receiver can then draw conclusions about the movement of the encoder and thus the shaft. If the transmitter has a magnet, ideally the sensor housing will be made of a material that is non-magnetic, so that the magnetic field at the receiver is undisturbed.
- the receiver has a magnetoresistive or a Hall sensor element.
- a magnetoresistive element changes its electrical resistance when an external magnetic field is applied. This can then be read out.
- a Hall sensor element when current flows through it, provides an output voltage that is proportional to a vertical component of the magnetic field and the current. That is, even with a non-moving magnet, unlike a coil magnet arrangement, a current can always be read out.
- the transmitter and receiver elements of a Hall, rotation, speedometer generator or optical sensor With all these sensors, the rotating movement of the shaft, which is in operative connection with the encoder, can be detected.
- the transmitter has a magnet and the receiver has a Hall sensor.
- the speedometer generator supplies a voltage proportional to the speed.
- an LED can scan the sensor through a transparent sensor housing.
- the sensor arrangement preferably has an output element for outputting a quadrilateral signal.
- the output element can also output an analog current signal, which varies in particular between 2 milliamps and 20 milliamps.
- an analog voltage signal may be output that typically varies between 0.1 volts and 0.9 volts.
- a quadrilateral signal has the advantage that it is less sensitive to noise. For example, one can select a quadrature signal as a TTL signal.
- the sensor arrangement has a memory in which at least two values can be stored.
- the storage of two values in the memory can be used in particular to determine a direction of rotation of the shaft. For example, one can first normalize two values stored at different times, and then calculate a rotational speed from them taking into account the transition from 360 ° to 0 °.
- An in Fig. 1 illustrated hydraulic motor 1 has a housing 2, from which a shaft 3 is led out. On the shaft 3, a mechanical power can be removed.
- the shaft 3 is rotatable about an axis 4. It forms the part of a movement train, which in addition to the shaft 3 has a propeller shaft 5 and an externally toothed gear 6, which is arranged in an internally toothed toothed ring 7 and forms with the toothed ring 7 in a conventional manner pressure pockets which, depending on their Position are supplied with hydraulic fluid under pressure or hydraulic fluid to a low pressure port can dismiss.
- a schematically illustrated spool 8 is provided, which is connected to the shaft 3.
- the motion strand thus has, with the gear 6, a first section which orbits around the axis 4. Furthermore, the movement strand in the region of the shaft 3 has a second section which rotates about the axis 4.
- the housing 2 is closed on the opposite side of the shaft by a front cover 9. Outside on the front cover 9, a sensor arrangement 10 is arranged. However, the sensor arrangement 10 can also be arranged at least partially in the housing 2 or in the front cover 9. With the sensor assembly 10, the rotation of the shaft 3 should be detected as accurately as possible.
- the sensor arrangement 10 can have a sensor housing 11 which surrounds a receiving area in which an encoder 12 is arranged.
- the receiving area may be formed as a receiving space.
- the encoder 12 has a support member 13 which is formed of a material which cooperates with low friction with the material of the sensor housing 11.
- On the carrier element one or more donor elements are arranged.
- the encoder elements 14 are formed as magnets 29 and as permanent magnets.
- On the outside of the sensor housing 11, a receiver 15 is arranged, which by the magnetic field of the donor elements 14 is applied and passed on a non-illustrated line or wireless electrical signals containing the information about the rotational movement of the shaft 3, and a controller, not shown.
- the front cover 9 has centrally a through opening 16. Via the passage opening 16, the interior of the housing 2 is in communication with the receiving area of the sensor housing 11, so that hydraulic fluid can also penetrate from the interior of the housing 2 into the interior of the sensor housing 11. Between the sensor housing 11 and the end cover 9, a seal 17 is arranged so that the hydraulic fluid can not escape to the outside. The necessary sealing forces are ensured by a mounting arrangement with which the sensor housing 11 is attached to the front cover 9. This fastening arrangement is symbolized here by a screw 18. In fact, a plurality of screws 18 will be provided.
- the sensor housing 11 is formed of a material that is non-magnetic and that allows the magnetic field from the donor elements 14 pass, so that this magnetic field can be detected by the receiver 15.
- the encoder 12 may have a carrier element 13. It is advantageous if the support element 13 cooperates with low friction with the end cover 9. If the encoder 12 in the sensor housing 11 is described below or in the preceding, it is alternatively always possible for the encoder 12 to be arranged generally in the receiving area and in particular in the housing 2 or in the front cover 9.
- the carrier element 13 is connected via a transmission element 19 to a second section of the movement strand, which rotates about the axis 4. This is the end of the propeller shaft 5, which is engaged with the shaft 3 via a Vernierungsgeomtrie 20.
- the transmission element 19 is designed as a tachometer shaft, ie it is torsionally rigid.
- the encoder 12 thus always has exactly the same angular position as the shaft 3 with a high degree of accuracy.
- the deviation amounts to a maximum of 5 °, preferably even to a maximum of 2 ° and in particularly preferred cases to a maximum of 1 °.
- the cardan shaft has a longitudinal channel 21, which also passes through the first section of the movement strand.
- the gear 6 rotates at the same speed as the cardan shaft 5 and thus at the same speed as the transmission element 19.
- a tachometer shaft instead of a tachometer shaft, one can also use another transmission element, for example a thin metal rod or the like.
- FIG Fig. 2 In order to eliminate this deviation, one can use an embodiment as shown in FIG Fig. 2 is shown. Here, the same elements are provided with the same reference numerals.
- the transmission element 19 is formed here longer than in the embodiment according to Fig. 1 so it's immediate can be fixed in the shaft 3. A possible play in the gearing geometry 20 then no longer plays a role.
- the transmission element 19 is rotatably connected to the encoder 12 and / or with the shaft 3, but slidably connected in a direction parallel to the axis 4.
- These ends of the transmission element 19 are then guided into corresponding recesses in the transmitter 12 and / or in the shaft 3, which have a corresponding polygonal cross-section. This allows the end to be displaced axially to a certain extent in the respective recesses, so that a change in length of the transmission element 19 can be accommodated, as may arise, for example, in the event of a temperature change.
- Fig. 3 shows another hydraulic machine. Same elements as in the Fig. 1 and 2 are provided with the same reference numerals.
- the shaft 3 is connected via a tooth geometry 20 with the propeller shaft 5, which in turn is connected via a second tooth geometry 22 with the gear 6.
- a second propeller shaft 23 is provided to connect the gear 6 with the valve spool 8, which rotates together with the shaft 3 to the formed between the gear 6 and the toothed ring 7 Pressure pockets to supply the hydraulic fluid position correct.
- the transmission element 19 is connected at one end to the shaft 3 and at the other end to the encoder 12. Accordingly, the encoder 12 with high accuracy the same angular position as the shaft 3. Game in the toothing geometries 20, 22 is without influence.
- Fig. 3b shows an enlarged view of a detail B from Fig. 3a ie the sensor arrangement 10.
- Fig. 3b shows a section CC after Fig. 3c , It can be seen that the transmission element 19 has at its end, which is received in the support member 13, a square cross-section and the support member 13 has a corresponding receptacle.
- the sensor housing 11 is formed, for example, of stainless steel and the support member 13 made of a plastic, preferably PEEK (polyetheretherketones).
- magnets 29 instead of magnets 29 as donor elements 14, of course, other donor elements can be used.
- the transmitter element 14 may also have an optical marking which is externally provided by the sensor housing 11, the housing 2 or the end cover 9 scanned through can be.
- the radiation does not necessarily have to be visible radiation. It is also possible to use radiation in the infrared or ultraviolet range. Other electromagnetic waves can, if they can penetrate the sensor housing 11, the housing 2 or the front cover 9, are used for the signal transmission from the transmitter 12 to the outside.
- the sensor housing 11 is sealed by the seal 17 with respect to the end cover 9. Accordingly, although hydraulic fluid can penetrate into the interior of the sensor housing 11, but not to the outside.
- the sensor housing 11 is designed so that it can absorb the pressures occurring in the interior of the housing 2. However, no seals are required in order to seal off moving parts in the area of the sensor arrangement 10.
- Fig. 4a shows an embodiment similar to the embodiment according to Fig. 3a , The same elements are provided with the same reference numerals.
- the transmission element 19 is connected to the propeller shaft 5 and indeed at the end which faces away from the shaft 3.
- the transmission element 19 is indeed arranged eccentrically in this area.
- the transmission element 19 is subjected to bending only to an extent that it can withstand during operation in the long term.
- a second difference relates to the sensor arrangement 10, which in Fig. 4b is shown enlarged.
- the sensor housing 11 has an external thread 24 which is screwed into an internal thread 25 in the passage opening 16 in the front cover 9. As a result, both the production of the sensor housing 11 and the mounting of the sensor housing 11 is simplified.
- the sensor housing 11 may be formed as a rotating part. The assembly takes place simply in that the sensor housing 11 is screwed into the front cover 9, wherein by sealing the seal 17 seals between the end cover 9 and the sensor housing 11.
- the carrier element 13 is held by a snap ring 26 in the sensor housing 11.
- the transmission element 19 protrudes through the end cover 9, so that the support element 13, which is already preassembled in the sensor housing 11, can be placed on the transmission element 19 before the sensor housing 11 is screwed into the end cover 9.
- the sensor housing 11 has a groove 27 on its outer periphery.
- a bracket 28 shown only schematically is clipped into the groove 27. This clamp 28 holds the receiver 15 on the front side of the sensor housing 11 fixed.
- the receiver 15 can be easily assembled in this way, but also replaced.
- Magnetoresistive sensor elements 30 may comprise Wheatstone bridges, which output a signal with which the angular position of the shaft 3 or that of the encoder 3 operatively connected to the shaft 3 can be measured.
- two output signals 31 and 32 may be a sine or a cosine, as shown in FIG Fig. 5a is shown. With the help of these two output signals 31, 32, the angle can then be determined.
- Fig. 5a Normalized output signals 31, 32 are shown as a function of the angle.
- a sawtooth voltage 33 is often output.
- the sawtooth voltage is shown as a function of time. At points of lowest voltage, the angles are 0 ° or 360 °. If the receiver 15 has a magnetoresistive or a Hall sensor element 30 and the transmitter 12 has a magnet 29, then one has the necessary elements for a Hall or rotation sensor 34. Of course, other types of rotation sensors 34 as a Hall sensor 34 conceivable. Also quite different types of sensors 34 are conceivable. In particular, the previously mentioned optical sensor 34, in which the encoder 12 is scanned by electromagnetic waves, represents a further possibility. In a tacho-generator sensor 34, a voltage proportional to the speed is supplied.
- the output signals 31, 32 or the sawtooth voltage 33 can be used for further processing.
- these signals are converted into a quadrilateral signal 35.
- quadrilateral signal 35 represents a digital signal that can be recognized and used by a variety of consumers. Voltage losses in the connecting lines have no influence on signal quality. The slope of the edge typically varies between 5 microseconds and 50 milliseconds, and at least 90 pulses per cycle are typically used.
- the output signals 31, 32 are cut into segments of a predetermined frequency, the frequency depending on the desired resolution.
- an output element 36 ( Fig. 6 ) to a spend.
- a memory 37 In order to obtain a direction of rotation of the shaft 3, you can see a memory 37, as in Fig. 6 is shown, use.
- the memory 37 then stores at least two values of the angular position of the shaft 3 it can use the sinusoidal or cosinusoidal output signals 31, 32 or the sawtooth voltage 33. Taking into account the transition from 360 ° to 0 °, the direction of rotation is also displayed next to the speed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
Die Erfindung betrifft eine Fluid-Rotationsmaschine mit einem Gehäuse, einer aus dem Gehäuse geführten Welle und eine Sensoranordnung, die einen Geber, der mit der Welle in Wirkverbindung steht, und einen Empfänger aufweist.The invention relates to a fluid rotary machine comprising a housing, a shaft guided out of the housing and a sensor arrangement which has an encoder, which is in operative connection with the shaft, and a receiver.
Eine derartige Maschine ist aus
In vielen Anwendungsbereichen derartiger Maschinen, insbesondere bei hydraulischen Rotationsmaschinen, benötigt man Sensoren, um die Maschine mit ausreichender Genauigkeit steuern zu können, beispielsweise in Verbindung mit einem zugehörigen Dieselmotor, um Energie zu sparen.In many applications of such machines, especially in hydraulic rotary machines, one needs sensors to control the machine with sufficient accuracy can, for example in conjunction with an associated diesel engine to save energy.
Die eingangs erwähnten Sensoranordnungen in den Maschinen haben sich zwar prinzipiell bewährt. Sie erfordern aber vielfach einen verhältnismäßig komplizierten Einbau des Sensors. Der Sensor befindet sich dann oft an einer Position, wo er im Grunde stört. Wenn der Sensor an einer Position angeordnet wird, wo er weniger stört, besteht das Problem, dass er nicht die Drehung der Welle direkt ermitteln kann, sondern mit der Welle über mehrere spielbehaftete Eingriffsstellen in Verbindung steht. Eine ähnliche Problematik ergibt sich dann, wenn sich die Welle verwinden kann, beispielsweise bei großen Drehmomenten innerhalb des Bewegungsstranges.The sensor arrangements in the machines mentioned in the introduction have proven themselves in principle. But they often require a relatively complicated installation of the sensor. The sensor is then often in a position where it basically bothers. If the sensor is placed in a position where it interferes less, there is the problem that it can not directly detect the rotation of the shaft, but is in communication with the shaft through a plurality of play-engaged engagement points. A similar problem arises when the shaft can twist, for example, at high torques within the movement train.
Der Erfindung liegt die Aufgabe zugrunde, die Sensoranordnung vorteilhaft an der Fluid-Rotationsmaschine anzuordnen.The invention has the object of advantageously arranging the sensor arrangement on the fluid rotary machine.
Diese Aufgabe wird bei einer Fluid-Rotationsmaschine der eingangs genannten Art dadurch gelöst, dass die Sensoranordnung einen Aufnahmebereich aufweist, in dem der Geber angeordnet ist, wobei der Aufnahmebereich mit dem Inneren des Gehäuses in Fluidverbindung steht und nach außen abgedichtet ist und der Empfänger außerhalb des Gehäuses und des Aufnahmebereichs angeordnet ist.This object is achieved in a fluid rotary machine of the type mentioned above in that the sensor arrangement has a receiving area in which the encoder is arranged, wherein the receiving area is in fluid communication with the interior of the housing and is sealed to the outside and the receiver outside of Housing and the receiving area is arranged.
Man macht sich bei einer derartigen Ausbildung in vorteilhafter Weise zunutze, dass der Aufnahmebereich das Innere der Maschine nach außen abdichtet, so dass man bei der Sensoranordnung keine Öffnung benötigt, durch die ein sich bewegendes Element geführt wird und die dann abgedichtet werden muss. Wenn man eine Dichtung zwischen bewegten Teilen einsparen kann, erhöht dies die Betriebssicherheit. Der Verschleiß bleibt klein und die Fehleranfälligkeit sinkt. Wenn die Sensoranordnung beispielsweise mit einer hydraulischen Maschine gekoppelt ist, dann kann Hydraulikflüssigkeit in den Aufnahmebereich eindringen und schmiert dann gleichzeitig die Berührungsflächen des Gebers mit dem Gehäuse oder einem anderen Element. Dies wiederum führt dazu, dass sich der Geber praktisch frei drehen kann, so dass ein außerordentlich kleines Moment erforderlich ist, um den Geber zu drehen. Dies wiederum hält bei Verwendung eines Übertragungselements die Verwindung des Übertragungselements sehr klein. Eine besonders einfache Ausgestaltung ist es, den Aufnahmebereich innerhalb des Gehäuses anzuordnen. Der Aufnahmebereich kann als Aufnahmeraum ausgebildet sein.One makes use of such a configuration in an advantageous manner that the receiving area seals the interior of the machine to the outside, so that one in the sensor assembly requires no opening through which a moving element is guided and must then be sealed. If you can save a seal between moving parts, this increases the reliability. The wear remains small and the susceptibility to errors decreases. For example, if the sensor assembly is coupled to a hydraulic machine, hydraulic fluid may enter the receiving area and then simultaneously lubricate the contact surfaces of the transmitter with the housing or other element. This in turn means that the encoder can rotate virtually freely, so that an extremely small moment is required to turn the encoder. This in turn keeps the twist of the transmission element very small when using a transmission element. A particularly simple embodiment is to arrange the receiving area within the housing. The receiving area may be formed as a receiving space.
Vorzugsweise ist der Aufnahmebereich in einem Stirndeckel der Fluid-Rotationsmaschine ausgebildet. Ein solcher Aufbau ist besonders kompakt. Der Aufnahmebereich kann beispielsweise als Bohrung beziehungsweise als Einbuchtung im Stirndeckel ausgebildet sein. Man wird dabei keine durchgehende Bohrung vorsehen. Ansonsten wäre die Dichtigkeit nicht mehr gewährleistet. Auch hier benötigt man bei der Sensoranordnung keine Öffnung, durch die ein sich bewegendes Element geführt ist. Man kann den Stirndeckel oder auch andere Teile des Gehäuses aus rostfestem Stahl herstellen. Eine Wechselwirkung zwischen Geber und Empfänger wird, wenn die Wechselwirkung durch ein Magnetfeld bedingt ist, so nicht gestört.Preferably, the receiving area is formed in an end cap of the fluid rotary machine. Such a construction is particularly compact. The receiving area may be formed, for example, as a bore or as a recess in the front cover. There will be no through hole provided. Otherwise, the tightness would no longer be guaranteed. Again, you need in the sensor assembly no opening through which a moving element is performed. You can make the front cover or other parts of the housing made of stainless steel. A Interaction between donor and receiver is not disturbed when the interaction is due to a magnetic field.
Bevorzugterweise weist der Geber ein Trägerelement auf, das mit dem Stirndeckel reibungsarm zusammenwirkt. Man benötigt dann an sich im Aufnahmebereich keine Flüssigkeit oder ein Fluid, das eine schmierende Wirkung hat. Aufgrund des reibungsarmen Zusammenwirkens von Stirndeckel und Trägerelement ist die Sensoranordnung auch so verwendbar.Preferably, the encoder on a support member which cooperates with low friction with the end cover. One then does not need a liquid or a fluid in the receiving area which has a lubricating effect. Due to the low-friction interaction of the front cover and the carrier element, the sensor arrangement is also usable.
Vorzugsweise weist die Sensoranordnung ein Sensorgehäuse auf, in dem der Aufnahmebereich angeordnet ist. In dieser Ausgestaltung ist es das Sensorgehäuse, das das Innere der Maschine nach außen abdichtet. Auch in diesem Fall wird bei der Sensoranordnung keine Öffnung für ein sich bewegendes Element benötigt, das abgedichtet werden müsste. Das Sensorgehäuse kann als separates Bauteil hergestellt werden. Dies vereinfacht zum einen die Herstellung. Zum anderen kann das Sensorgehäuse so besonders gut an die Bedürfnisse der Sensoranordnung, insbesondere an die des Gebers, adaptiert werden.Preferably, the sensor arrangement has a sensor housing in which the receiving area is arranged. In this embodiment, it is the sensor housing that seals the interior of the machine to the outside. Also in this case, no opening for a moving element is required in the sensor assembly, which would have to be sealed. The sensor housing can be manufactured as a separate component. This simplifies the production on the one hand. On the other hand, the sensor housing can be particularly well adapted to the needs of the sensor arrangement, in particular to that of the encoder.
Bevorzugterweise weist der Geber ein Trägerelement auf, das mit dem Sensorgehäuse reibungsarm zusammenwirkt. In diesem Fall kann man die Sensoranordnung auch dann verwenden, wenn eine Flüssigkeit oder ein Fluid, das in den Aufnahmebereich eindringt, an sich keine schmierende Wirkung hat, wie dies beispielsweise bei wasserhydraulischen Maschinen der Fall ist.Preferably, the encoder has a carrier element which cooperates with low friction with the sensor housing. In this case, one can use the sensor arrangement even if a liquid or a fluid which penetrates into the receiving area does not have a lubricating effect per se, as is the case, for example, with water-hydraulic machines.
Vorzugsweise ist das Sensorgehäuse in einen Stirndeckel der Fluid-Rotationsmaschine eingeschraubt. Das Sensorgehäuse weist zu diesem Zweck beispielsweise ein Außengewinde auf, das mit einem entsprechenden Innengewinde im Stirndeckel in Eingriff steht. Dies vereinfacht die Herstellung des Sensorgehäuses und die Montage der Sensoranordnung an der Maschine. Darüber hinaus ist es bei dieser Ausgestaltung relativ einfach, den Aufnahmebereich nach außen abzudichten. Man muss lediglich eine Dichtung zwischen dem Sensorgehäuse und dem Stirndeckel anordnen und das Sensorgehäuse mit ausreichender Kraft in den Stirndeckel einschrauben.Preferably, the sensor housing is screwed into a front cover of the fluid rotary machine. The sensor housing has for this purpose, for example, an external thread, which is in engagement with a corresponding internal thread in the end cap. This simplifies the manufacture of the sensor housing and the mounting of the sensor arrangement on the machine. Moreover, in this embodiment, it is relatively easy to seal the receiving area to the outside. You just have to arrange a seal between the sensor housing and the front cover and screw the sensor housing with sufficient force in the front cover.
Vorzugsweise ist der Empfänger auf das Sensorgehäuse aufgeclipst. Man verbindet also den Empfänger mit dem Sensorgehäuse mit einer lösbaren Verbindung, die relativ schnell hergestellt und wieder gelöst werden kann. Dies hat den Vorteil, dass man die Fluid-Rotationsmaschine durch Auswechseln des Empfängers relativ einfach mit unterschiedlichen Arten von Sensoranordnungen versehen kann. Auch wird eine Reparatur vereinfacht. Bei einer Sensoranordnung ist in der Regel der Empfänger das fehleranfälligste Teil.Preferably, the receiver is clipped onto the sensor housing. So you connect the receiver to the sensor housing with a detachable connection that can be made relatively quickly and released again. This has the advantage that the fluid rotary machine can be relatively easily provided with different types of sensor arrangements by replacing the receiver. Also, a repair is simplified. In a sensor arrangement, the receiver is usually the most error-prone part.
Bevorzugterweise weist der Geber einen Magnet auf. Der Magnet erzeugt das Magnetfeld, das auch noch am Empfänger messbar ist. Das Magnetfeld muss dabei nur wenige Millitesla betragen. Wird der Magnet aufgrund einer durch die Welle hervorgerufenen Bewegung des Gebers selbst bewegt, so bewirkt dies eine Änderung des Magnetfelds am Ort des Empfängers. Dabei ist es auch möglich, dass mehrere Magnete am Geber angeordnet sind. Aufgrund des variierenden Magnetfeldes kann der Empfänger dann Rückschlüsse auf die Bewegung des Gebers und damit der Welle ziehen. Weist der Geber einen Magnet auf, so wird man das Sensorgehäuse idealerweise aus einem Material bilden, das unmagnetisch ist, so dass das Magnetfeld am Empfänger ungestört anliegt.Preferably, the encoder has a magnet. The magnet generates the magnetic field, which is also measurable at the receiver. The magnetic field has to be only a few millitesla. If the magnet is moved due to a movement of the encoder caused by the shaft itself, this causes a change in the magnetic field at the recipient's place. It is also possible that several magnets are arranged on the encoder. Due to the varying magnetic field, the receiver can then draw conclusions about the movement of the encoder and thus the shaft. If the transmitter has a magnet, ideally the sensor housing will be made of a material that is non-magnetic, so that the magnetic field at the receiver is undisturbed.
Vorzugsweise weist der Empfänger ein magnetoresistives oder ein Hall-Sensorelement auf. Ein magnetoresistives Element ändert seinen elektrischen Widerstand, wenn ein äußeres Magnetfeld angebracht wird. Dieser kann dann ausgelesen werden. Ein Hall-Sensorelement liefert, wenn es von einem Strom durchflossen wird, eine Ausgangsspannung, die einer senkrechten Komponente des Magnetfeldes und dem Strom proportional ist. Das heißt, auch bei einem nicht bewegten Magnet kann anders als bei einer Spulen-Magnetanordnung immer ein Strom ausgelesen werden.Preferably, the receiver has a magnetoresistive or a Hall sensor element. A magnetoresistive element changes its electrical resistance when an external magnetic field is applied. This can then be read out. A Hall sensor element, when current flows through it, provides an output voltage that is proportional to a vertical component of the magnetic field and the current. That is, even with a non-moving magnet, unlike a coil magnet arrangement, a current can always be read out.
Vorzugsweise sind Geber und Empfänger Elemente eines Hall-, Rotations-, Tacho-Generator- oder Optik-Sensors. Mit all diesen Sensoren kann die rotierende Bewegung der Welle, die mit dem Geber in Wirkverbindung steht, erfasst werden. Im Fall des Hall-Sensors weist der Geber einen Magnet und der Empfänger einen Hall-Sensor auf. Der Tacho-Generator liefert eine zur Drehzahl proportionale Spannung. Eine LED kann im Falle des Optik-Sensors durch ein transparentes Sensorgehäuse hindurch den Geber abtasten.Preferably, the transmitter and receiver elements of a Hall, rotation, speedometer generator or optical sensor. With all these sensors, the rotating movement of the shaft, which is in operative connection with the encoder, can be detected. In the case of the Hall sensor, the transmitter has a magnet and the receiver has a Hall sensor. The speedometer generator supplies a voltage proportional to the speed. In the case of the optical sensor, an LED can scan the sensor through a transparent sensor housing.
Bevorzugterweise weist die Sensoranordnung ein Ausgabeelement zum Ausgeben eines Vierecksignals auf. Das Ausgabeelement kann aber auch ein analoges Stromsignal ausgeben, das insbesondere zwischen 2 Milliampere und 20 Milliampere variiert. Alternativ kann ein analoges Spannungssignal ausgegeben werden, das typischerweise zwischen 0,1 Volt und 0,9 Volt variiert. Ein Vierecksignal hat aber den Vorteil, dass es weniger rauschempfindlich ist. Beispielsweise kann man als Vierecksignal ein TTL-Signal wählen.The sensor arrangement preferably has an output element for outputting a quadrilateral signal. However, the output element can also output an analog current signal, which varies in particular between 2 milliamps and 20 milliamps. Alternatively, an analog voltage signal may be output that typically varies between 0.1 volts and 0.9 volts. A quadrilateral signal has the advantage that it is less sensitive to noise. For example, one can select a quadrature signal as a TTL signal.
Vorzugsweise weist die Sensoranordnung einen Speicher auf, in dem zumindest zwei Werte speicherbar sind. Das Speichern von zwei Werten im Speicher kann insbesondere dazu benutzt werden, eine Drehrichtung der Welle zu ermitteln. Man kann beispielsweise zwei zu verschiedenen Zeiten gespeicherte Werte erst normalisieren und dann aus diesen unter Berücksichtigung des Übergangs von 360° zu 0° eine Drehgeschwindigkeit berechnen.Preferably, the sensor arrangement has a memory in which at least two values can be stored. The storage of two values in the memory can be used in particular to determine a direction of rotation of the shaft. For example, one can first normalize two values stored at different times, and then calculate a rotational speed from them taking into account the transition from 360 ° to 0 °.
Die Erfindung wird im Folgenden anhand von bevorzugten Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. Hierin zeigen:
- Fig. 1
- einen hydraulischen Motor als Beispiel für eine Fluid-Rotationsmaschine,
- Fig. 2
- eine zweite Ausführungsform eines hydraulischen Motors,
- Fig. 3
- eine dritte Ausführungsform eines hydraulischen Motors,
- Fig. 4
- eine vierte Ausführungsform eines hydraulischen Motors,
- Fig. 5
- Darstellungen eines Ausgabesignals einer Sensoranordnung und
- Fig. 6
- eine schematische Darstellung der Fluid-Rotationsmaschine mit einem Ausgabeelement und einem Speicher.
- Fig. 1
- a hydraulic motor as an example of a fluid rotary machine,
- Fig. 2
- a second embodiment of a hydraulic motor,
- Fig. 3
- a third embodiment of a hydraulic motor,
- Fig. 4
- a fourth embodiment of a hydraulic motor,
- Fig. 5
- Representations of an output signal of a sensor arrangement and
- Fig. 6
- a schematic representation of the fluid rotary machine with an output element and a memory.
Die Erfindung wird im Folgenden anhand eines hydraulischen Motors als Beispiel für eine Fluid-Rotationsmaschine erläutert. Sie ist jedoch nicht auf hydraulische Motoren beschränkt.The invention will be explained below with reference to a hydraulic motor as an example of a fluid rotary machine. However, it is not limited to hydraulic motors.
Ein in
Die Welle 3 ist um eine Achse 4 drehbar. Sie bildet den Teil eines Bewegungsstranges, der neben der Welle 3 eine Kardanwelle 5 und ein außen verzahntes Zahnrad 6 aufweist, das in einem innen verzahnten Zahnring 7 angeordnet ist und mit dem Zahnring 7 in an sich bekannter Weise Drucktaschen bildet, die in Abhängigkeit von ihrer Position mit Hydraulikflüssigkeit unter Druck versorgt werden oder Hydraulikflüssigkeit zu einem Niederdruckanschluss entlassen können. Zur Steuerung der Flüssigkeitsversorgung dieser Drucktaschen ist ein schematisch dargestellter Steuerschieber 8 vorgesehen, der mit der Welle 3 verbunden ist.The
Der Bewegungsstrang weist also mit dem Zahnrad 6 einen ersten Abschnitt auf, der um die Achse 4 orbitiert. Ferner weist der Bewegungsstrang im Bereich der Welle 3 einen zweiten Abschnitt auf, der um die Achse 4 rotiert.The motion strand thus has, with the
Das Gehäuse 2 ist an der der Welle gegenüberliegenden Seite durch einen Stirndeckel 9 verschlossen. Außen am Stirndeckel 9 ist eine Sensoranordnung 10 angeordnet. Die Sensoranordnung 10 kann aber auch zumindest teilweise im Gehäuse 2 oder im Stirndeckel 9 angeordnet sein. Mit der Sensoranordnung 10 soll die Drehung der Welle 3 möglichst genau erfasst werden können.The
Die Sensoranordnung 10 kann ein Sensorgehäuse 11 aufweisen, das einen Aufnahmebereich umgibt, in dem ein Geber 12 angeordnet ist. Der Aufnahmebereich kann als Aufnahmeraum ausgebildet sein. Der Geber 12 weist ein Trägerelement 13 auf, das aus einem Material gebildet ist, das mit dem Material des Sensorgehäuses 11 reibungsarm zusammenwirkt. Auf dem Trägerelement ist ein oder sind mehrere Geberelemente angeordnet. Im vorliegenden Ausführungsbeispiel sind die Geberelemente 14 als Magnete 29 bzw. als Permanentmagnete ausgebildet. Auf der Außenseite des Sensorgehäuses 11 ist ein Empfänger 15 angeordnet, der durch das Magnetfeld der Geberelemente 14 beaufschlagt wird und über eine nicht näher dargestellte Leitung oder leitungslos elektrische Signale, die die Information über die Drehbewegung der Welle 3 enthalten, und eine nicht näher dargestellte Steuerung weitergeben.The
Der Stirndeckel 9 weist zentrisch eine Durchgangsöffnung 16 auf. Über die Durchgangsöffnung 16 steht das Innere des Gehäuses 2 mit dem Aufnahmebereich des Sensorgehäuses 11 in Verbindung, so dass Hydraulikflüssigkeit aus dem Inneren des Gehäuses 2 auch in das Innere des Sensorgehäuses 11 vordringen kann. Zwischen dem Sensorgehäuse 11 und dem Stirndeckel 9 ist eine Dichtung 17 angeordnet, so dass die Hydraulikflüssigkeit nicht nach außen gelangen kann. Die notwendigen Dichtungskräfte werden durch eine Befestigungsanordnung gewährleistet, mit der das Sensorgehäuse 11 am Stirndeckel 9 befestigt ist. Diese Befestigungsanordnung ist hier durch eine Schraube 18 symbolisiert. Tatsächlich werden mehrere Schrauben 18 vorgesehen sein.The
Das Sensorgehäuse 11 ist aus einem Material gebildet, das unmagnetisch ist und das das Magnetfeld von den Geberelementen 14 hindurchtreten lässt, so dass dieses Magnetfeld vom Empfänger 15 erfasst werden kann.The
Statt ein Sensorgehäuse 11 zu verwenden, kann man den Aufnahmebereich auch im Stirndeckel 9 anordnen. Es ist auch möglich, den Aufnahmebereich an einer anderen Stelle im Gehäuse anzuordnen. Will man den Aufnahmebereich im Stirndeckel 9 anordnen, so wird man statt der Durchgangsöffnung 16 eine nicht durchgehende Bohrung oder eine Einbuchtung vorsehen. Auf diese Weise ist die Dichtigkeit auch ohne Sensorgehäuse 11 gewährleistet. Auch in diesem Fall kann der Geber 12 ein Trägerelement 13 aufweisen. Vorteilhaft ist es, wenn das Trägerelement 13 mit dem Stirndeckel 9 reibungsarm zusammenwirkt. Wenn im Folgenden oder im vorherigen der Geber 12 im Sensorgehäuse 11 beschrieben ist, so ist es alternativ immer möglich, dass der Geber 12 generell im Aufnahmebereich und insbesondere im Gehäuse 2 oder im Stirndeckel 9 angeordnet ist.Instead of using a
Das Trägerelement 13 ist über ein Übertragungselement 19 mit einem zweiten Abschnitt des Bewegungsstranges verbunden, der um die Achse 4 rotiert. Dies ist das Ende der Kardanwelle 5, das mit der Welle 3 über eine Verzahnungsgeomtrie 20 in Eingriff steht.The
Das Übertragungselement 19 ist als Tachometerwelle ausgebildet, d.h. es ist verwindungssteif. Zum Antrieb des Gebers 12, der im Aufnahmebereich bzw. im Sensorgehäuse 11 durch die Hydraulikflüssigkeit zusätzlich geschmiert ist, ist praktisch kein Drehmoment erforderlich, so dass das Übertragungselement 19 praktisch nicht auf Torsion beansprucht wird. Der Geber 12 hat also mit einer hohen Genauigkeit immer genau die gleiche Drehwinkellage wie die Welle 3. Die Abweichung beträgt maximal 5°, vorzugsweise sogar nur maximal 2° und in besonders bevorzugten Fällen maximal 1°.The
Damit das Übertragungselement 19 zum Geber 12 geführt werden kann, weist die Kardanwelle einen Längskanal 21 auf, der auch den ersten Abschnitt des Bewegungsstranges durchsetzt. Das Zahnrad 6 dreht sich mit der gleichen Geschwindigkeit wie die Kardanwelle 5 und damit mit der gleichen Geschwindigkeit wie das Übertragungselement 19. Es entsteht also im Längskanal 21 in Rotationsrichtung keine Relativbewegung zwischen dem Übertragungselement 19 und der Kardanwelle 5. Wenn der Längskanal 21 einen zu geringen Durchmesser aufweist, um dem Übertragungselement 19 über eine volle Umdrehung den notwendigen Freiraum zu lassen, dann erfolgt allenfalls eine Biegebewegung des Übertragungselements 19, die aber unkritisch ist.So that the
Anstelle einer Tachometerwelle kann man auch ein anderes Übertragungselement verwenden, beispielsweise einen dünnen Metallstab oder dergleichen.Instead of a tachometer shaft, one can also use another transmission element, for example a thin metal rod or the like.
Bei der Ausgestaltung nach
Um diese Abweichung zu beseitigen, kann man eine Ausgestaltung verwenden, wie sie in
Das Übertragungselement 19 ist hier länger ausgebildet als bei der Ausgestaltung nach
In beiden Fällen ist das Übertragungselement 19 mit dem Geber 12 und/oder mit der Welle 3 drehfest verbunden, aber in eine Richtung parallel zur Achse 4 verschiebbar verbunden. Dies lässt sich beispielsweise dadurch erreichen, dass die Enden des Übertragungselements 19 einen polygonartigen Querschnitt haben, beispielsweise in Form eines Quadrats. Diese Enden des Übertragungselements 19 sind dann in entsprechende Ausnehmungen im Geber 12 und/oder in der Welle 3 geführt, die einen entsprechenden polygonartigen Querschnitt haben. Damit lässt sich das Ende in gewissem Umfang in den jeweiligen Ausnehmungen axial verschieben, so dass eine Längenänderung des Übertragungselements 19 aufgenommen werden kann, wie sie sich beispielsweise bei einer Temperaturänderung ergeben kann.In both cases, the
Auch hier ist die Welle 3 über eine Verzahnungsgeometrie 20 mit der Kardanwelle 5 verbunden, die ihrerseits wiederum über eine zweite Verzahnungsgeometrie 22 mit dem Zahnrad 6 verbunden ist. Eine zweite Kardanwelle 23 ist vorgesehen, um das Zahnrad 6 mit dem Ventilschieber 8 zu verbinden, der gemeinsam mit der Welle 3 rotiert, um den zwischen dem Zahnrad 6 und dem Zahnring 7 ausgebildeten Drucktaschen die Hydraulikflüssigkeit positionsrichtig zuzuführen.Again, the
Das Übertragungselement 19 ist an einem Ende mit der Welle 3 verbunden und am anderen Ende mit dem Geber 12. Dementsprechend hat der Geber 12 mit hoher Genauigkeit die gleiche winkelmäßige Position wie die Welle 3. Spiel in den Verzahnungsgeometrien 20, 22 ist hier ohne Einfluss.The
Das Sensorgehäuse 11 ist beispielsweise aus Edelstahl gebildet und das Trägerelement 13 aus einem Kunststoff, vorzugsweise PEEK (Polyetheretherketone).The
Anstelle von Magneten 29 als Geberelemente 14 lassen sich natürlich auch andere Geberelemente verwenden.Instead of
Wenn beispielsweise das Sensorgehäuse 11, das Gehäuse 2 oder der Stirndeckel 9 für eine Strahlung, beispielsweise eine optische Strahlung, durchlässig ist, dann kann das Geberelement 14 auch eine optische Markierung aufweisen, die von außen durch das Sensorgehäuse 11, das Gehäuse 2 oder den Stirndeckel 9 hindurch abgetastet werden kann. Bei der Strahlung muss es sich nicht unbedingt um eine sichtbare Strahlung handeln. Möglich ist auch die Verwendung von Strahlung im infraroten oder ultravioletten Bereich. Auch andere elektromagnetische Wellen können, sofern sie das Sensorgehäuse 11, das Gehäuse 2 oder den Stirndeckel 9 durchdringen können, für die Signalübertragung vom Geber 12 nach außen verwendet werden.If, for example, the
Das Sensorgehäuse 11 ist über die Dichtung 17 gegenüber dem Stirndeckel 9 abgedichtet. Dementsprechend kann Hydraulikflüssigkeit zwar in das Innere des Sensorgehäuses 11 vordringen, nicht jedoch nach außen. Das Sensorgehäuse 11 ist so ausgelegt, dass es die im Inneren des Gehäuses 2 auftretenden Drücke aufnehmen kann. Man benötigt allerdings keine Dichtungen, um im Bereich der Sensoranordnung 10 bewegte Teile gegeneinander abzudichten.The
Im Wesentlichen ergeben sich zwei Änderungen:In essence, there are two changes:
Zum einen ist das Übertragungselement 19 mit der Kardanwelle 5 verbunden und zwar an dem Ende, das von der Welle 3 abgewandt ist. Damit ist das Übertragungselement 19 zwar in diesem Bereich exzentrisch angeordnet. Man macht sich aber die Erkenntnis zunutze, dass die Kardanwelle 5 mit der gleichen Geschwindigkeit wie die Welle 3 rotiert und es somit im Grunde unerheblich ist, ob man das Übertragungselement 19 an einem rotierenden und orbitierenden Abschnitt der Kardanwelle 5 befestigt oder, wie in
Ein zweiter Unterschied betrifft die Sensoranordnung 10, die in
Das Sensorgehäuse 11 weist ein Außengewinde 24 auf, das in ein Innengewinde 25 in der Durchgangsöffnung 16 im Stirndeckel 9 eingeschraubt ist. Dadurch wird sowohl die Herstellung des Sensorgehäuses 11 als auch die Montage des Sensorgehäuses 11 vereinfacht. Das Sensorgehäuse 11 kann als Drehteil ausgebildet werden. Die Montage erfolgt einfach dadurch, dass das Sensorgehäuse 11 in den Stirndeckel 9 eingeschraubt wird, wobei durch das Einschrauben die Dichtung 17 zwischen dem Stirndeckel 9 und dem Sensorgehäuse 11 abdichtet.The
Das Trägerelement 13 ist durch einen Sprengring 26 im Sensorgehäuse 11 gehalten. Das Übertragungselement 19 ragt durch den Stirndeckel 9 hindurch, so dass das im Sensorgehäuse 11 bereits vormontierte Trägerelement 13 auf das Übertragungselement 19 aufgesetzt werden kann, bevor das Sensorgehäuse 11 in den Stirndeckel 9 eingeschraubt wird.The
Das Sensorgehäuse 11 weist eine Nut 27 an seinem Außenumfang auf. Eine nur schematisch dargestellte Klammer 28 ist in die Nut 27 eingeclipst. Diese Klammer 28 hält den Empfänger 15 an der Stirnseite des Sensorgehäuses 11 fest. Der Empfänger 15 kann auf diese Weise leicht montiert, aber auch ausgetauscht werden.The
Man kann als Empfänger 15 ein magnetoresistives oder ein Hall-Sensorelement 30 verwenden. Dies bietet sich insbesondere dann an, wenn der Geber 12 ein Magnet 29 ist. Magnetoresistive Sensorelemente 30 können Wheatstone-Brücken aufweisen, die ein Signal ausgeben, mit dem die Winkelposition der Welle 3 beziehungsweise die des mit der Welle 3 in Wirkverbindung stehenden Gebers 12 gemessen werden kann. Insbesondere können zwei Ausgangssignale 31 und 32 ein Sinus bzw. ein Kosinus sein, wie es in
An sich kann man die Ausgangssignale 31, 32 beziehungsweise die Sägezahnspannung 33 benutzen und sie zur weiteren Verarbeitung weiterleiten. Vorteilhaft ist es aber, wenn man diese Signale in eine Vierecksignal 35 umwandelt. Ein solches Vierecksignal 35 stellt ein digitales Signal dar, das von einer Vielzahl von Verbrauchern erkannt und benutzt werden kann. Spannungsverluste in den verbindenden Leitungen haben keinen Einfluss auf eine Signalqualität. Die Steilheit der Flanke variiert typischerweise zwischen 5 Mikrosekunden und 50 Millisekunden, und es werden in der Regel zumindest 90 Pulse pro Zyklus verwendet. Um die sinus- beziehungsweise kosinusförmigen Ausgangssignale 31, 32 in das Vierecksignal 35 zu verwandeln, werden die Ausgangssignale 31, 32 in Segmente mit einer vorgegebenen Frequenz geschnitten, wobei die Frequenz von der gewünschten Auflösung abhängt.In itself, one can use the output signals 31, 32 or the
Unabhängig von einem Signaltyp dient ein Ausgabeelement 36 (
Um auch eine Drehrichtung der Welle 3 zu erhalten, kann man einen Speicher 37, wie er in
Claims (12)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010012850A DE102010012850A1 (en) | 2010-03-25 | 2010-03-25 | Fluid rotary machine with a sensor arrangement |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2369172A2 true EP2369172A2 (en) | 2011-09-28 |
EP2369172A3 EP2369172A3 (en) | 2017-05-10 |
EP2369172B1 EP2369172B1 (en) | 2020-02-19 |
Family
ID=44117027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11001518.7A Active EP2369172B1 (en) | 2010-03-25 | 2011-02-24 | Fluid rotation machine with a sensor assembly |
Country Status (4)
Country | Link |
---|---|
US (1) | US8893566B2 (en) |
EP (1) | EP2369172B1 (en) |
CN (1) | CN102207086B (en) |
DE (1) | DE102010012850A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202200025968A1 (en) * | 2022-12-19 | 2024-06-19 | Casappa Spa | VOLUMETRIC MACHINE WITH SPEED SENSOR |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5401902B2 (en) * | 2008-10-03 | 2014-01-29 | 日本電産株式会社 | motor |
DE102017210426B4 (en) * | 2017-06-21 | 2024-06-27 | Vitesco Technologies Germany Gmbh | Pump, especially transmission oil pump |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4593555A (en) | 1983-12-16 | 1986-06-10 | Gary W. Krutz | Speed and torque sensor for hydraulic motor |
DE19824926C2 (en) | 1998-06-04 | 2000-03-30 | Danfoss As | Hydraulic steering device |
US6062123A (en) | 1997-07-29 | 2000-05-16 | Koyo Seiko Co., Ltd. | Power steering system and steering-angle detecting device for use therein |
US6539710B2 (en) | 2001-02-09 | 2003-04-01 | Eaton Corporation | Hydrostatic steering system having improved steering sensing |
DE102005036483B4 (en) | 2005-08-03 | 2008-01-10 | Sauer-Danfoss Aps | Hydraulic rotary machine |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54177960U (en) * | 1978-06-02 | 1979-12-15 | ||
JPS5580745U (en) | 1978-11-28 | 1980-06-03 | ||
US4316144A (en) | 1979-11-23 | 1982-02-16 | General Motors Corporation | Integral mechanical and electrical vehicle speed sensor |
GB2102129A (en) * | 1981-07-17 | 1983-01-26 | Flight Refueling Ltd | Fluid flow meters using Wiegand effect devices |
DE3401858C1 (en) * | 1984-01-20 | 1985-02-14 | Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart | Device for optoelectronic detection of the speed of a shaft |
DE8703108U1 (en) * | 1987-02-28 | 1988-03-31 | Leybold AG, 5000 Köln | Vacuum pump with a device for measuring speed |
DE3912277A1 (en) * | 1989-04-14 | 1990-10-18 | Kracht Pumpen Motoren | Hydraulic machine suitable for regulating circuit - has revolution rate measurement arrangement with pulse generator and sensor inside requiring no external elements |
US5119898A (en) | 1989-08-10 | 1992-06-09 | General Motors Corporation | Electromagnetic control apparatus for varying the driver steering effort of a hydraulic power steering system |
US5199307A (en) * | 1990-01-20 | 1993-04-06 | Kimmon Manufacturing Co., Ltd. | Automatic power generation type flowmeter |
JP3595348B2 (en) * | 1993-04-30 | 2004-12-02 | 三菱重工業株式会社 | Scroll type fluid machine rotation speed detection device |
DE19547537C1 (en) * | 1995-12-20 | 1997-02-20 | Hydraulik Nord Gmbh | Rotation monitor for hydraulic motor |
US5933795A (en) | 1996-03-19 | 1999-08-03 | Sauer Inc. | Speed sensing device |
GB9813447D0 (en) | 1998-06-22 | 1998-08-19 | Digital Fleet Management Ltd | A sensor |
EP1360098B1 (en) * | 2001-02-02 | 2005-09-07 | Continental Teves AG & Co. oHG | Unit for an electronically regulated braking system |
JP2003065753A (en) | 2001-08-28 | 2003-03-05 | Showa Corp | Power steering steering angle detection device |
US20060230824A1 (en) * | 2002-04-08 | 2006-10-19 | White Drive Products, Inc. | Speed sensor flange assemblies |
DE102004060198B3 (en) | 2004-12-14 | 2006-03-30 | Pleiger Maschinenbau Gmbh & Co. Kg | Control device for operation of radial piston motor has second sensor to detect of rotation of shaft, both sensors being connected to calculating unit |
GB2424452B (en) * | 2005-03-22 | 2011-01-19 | Schlumberger Holdings | Progressive cavity motor with rotor having an elastomer sleeve |
JP2007168756A (en) | 2005-12-26 | 2007-07-05 | Showa Corp | Electric power steering device |
JP5326889B2 (en) | 2009-07-13 | 2013-10-30 | 株式会社ジェイテクト | Electric power steering device |
US20110186758A1 (en) * | 2010-02-01 | 2011-08-04 | Calbrandt, Inc. | Hydraulic Motor With Non-Contact Encoder System |
-
2010
- 2010-03-25 DE DE102010012850A patent/DE102010012850A1/en not_active Withdrawn
-
2011
- 2011-02-24 EP EP11001518.7A patent/EP2369172B1/en active Active
- 2011-03-24 US US13/070,600 patent/US8893566B2/en active Active
- 2011-03-25 CN CN201110134430.9A patent/CN102207086B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4593555A (en) | 1983-12-16 | 1986-06-10 | Gary W. Krutz | Speed and torque sensor for hydraulic motor |
US6062123A (en) | 1997-07-29 | 2000-05-16 | Koyo Seiko Co., Ltd. | Power steering system and steering-angle detecting device for use therein |
DE19824926C2 (en) | 1998-06-04 | 2000-03-30 | Danfoss As | Hydraulic steering device |
US6539710B2 (en) | 2001-02-09 | 2003-04-01 | Eaton Corporation | Hydrostatic steering system having improved steering sensing |
DE102005036483B4 (en) | 2005-08-03 | 2008-01-10 | Sauer-Danfoss Aps | Hydraulic rotary machine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT202200025968A1 (en) * | 2022-12-19 | 2024-06-19 | Casappa Spa | VOLUMETRIC MACHINE WITH SPEED SENSOR |
WO2024134328A1 (en) * | 2022-12-19 | 2024-06-27 | Casappa S.P.A. | Positive displacement machine with speed sensor |
Also Published As
Publication number | Publication date |
---|---|
EP2369172B1 (en) | 2020-02-19 |
US20110236244A1 (en) | 2011-09-29 |
US8893566B2 (en) | 2014-11-25 |
DE102010012850A1 (en) | 2011-09-29 |
CN102207086B (en) | 2015-06-17 |
CN102207086A (en) | 2011-10-05 |
EP2369172A3 (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2247925B1 (en) | Arrangement for detecting a rotation angle | |
DE102009048389A1 (en) | Arrangement for detecting more than one revolution with magnets as position transmitter | |
DE10346052A1 (en) | Device for detecting absolute angle of shaft, especially of electric motor, has single turn rotation sensors for detecting positions of shaft and rotary element in multi-turn rotation sensor | |
EP1859230B1 (en) | Method and device for determining the rotational angle of a rotatable element in a non-contact manner | |
EP1128159A2 (en) | Mechanical shaft with integrated magnet arrangement | |
DE102009042506B3 (en) | Use of a tape sensor for position determination inside a container | |
DE102019134392B4 (en) | Device for determining the torque and/or the angle of rotation between a first shaft and a second shaft | |
DE102005040647A1 (en) | Electromotive auxiliary drive e.g. windshield wiper drive, for e.g. road vehicle, has permanent magnet provided at shaft extension or at gearing unit, and magnetic sensors provided within bearing arrangement toward shaft axis | |
DE102009021081B4 (en) | Magnetic angle sensor | |
DE102011121842A1 (en) | Device for measuring torque, direction of rotation and Drehverwidigkeit a shaft of a transmission, in particular an output shaft of an azimuth gear of a wind turbine | |
EP1901040A2 (en) | Contactless rotation angle sensor | |
DE102005038663A1 (en) | Rotary table | |
EP1979716A2 (en) | Measuring arrangement comprising a magnet | |
EP2369172B1 (en) | Fluid rotation machine with a sensor assembly | |
EP3611088A1 (en) | Crank and bicycle comprising same | |
DE19513781B4 (en) | Device for volume measurement of flowing media | |
DE102013000898A1 (en) | Steering device of motor vehicle, has motor including drive element which is operatively connected to rotatably mounted shaft having freely accessible axial shaft end arranged with an element of magnetic angle sensor | |
EP1312534B1 (en) | Steering wheel steering angle determination apparatus | |
DE102014014391A1 (en) | Combined sensor concept for steering systems of motor vehicles | |
WO2012151708A1 (en) | Operating cylinder sensor | |
DE102010012848B4 (en) | Rotary fluid machine | |
DE102009030981A1 (en) | Adjusting mechanism for use in crank continuously variable transmission, has stopper mechanically defining relative adjusting angle between adjusting shaft and crankshaft, and sensor device detecting angle defined by end of adjusting shaft | |
EP3907473B1 (en) | Angle measuring device for single and multiturn measurement | |
DE102006007581A1 (en) | Traversing drive of a cylinder of a printing machine | |
DE102009002492B4 (en) | Rotary encoder with coaxially mounted encoder wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DANFOSS POWER SOLUTIONS APS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F03C 2/08 20060101AFI20170401BHEP Ipc: F04C 2/10 20060101ALI20170401BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170914 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190208 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190925 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011016457 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1235263 Country of ref document: AT Kind code of ref document: T Effective date: 20200315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200519 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200224 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200712 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011016457 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20201120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1235263 Country of ref document: AT Kind code of ref document: T Effective date: 20200224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011016457 Country of ref document: DE Owner name: WHITE DRIVE MOTORS AND STEERING SP. Z.O.O., PL Free format text: FORMER OWNER: DANFOSS POWER SOLUTIONS APS, NORDBORG, DK Ref country code: DE Ref legal event code: R081 Ref document number: 502011016457 Country of ref document: DE Owner name: DANFOSS POWER SOLUTIONS SP. Z.O.O, PL Free format text: FORMER OWNER: DANFOSS POWER SOLUTIONS APS, NORDBORG, DK |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20210805 AND 20210811 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011016457 Country of ref document: DE Owner name: WHITE DRIVE MOTORS AND STEERING SP. Z.O.O., PL Free format text: FORMER OWNER: DANFOSS POWER SOLUTIONS SP. Z.O.O, WROCLAW, PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200219 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240219 Year of fee payment: 14 Ref country code: BG Payment date: 20240222 Year of fee payment: 14 Ref country code: GB Payment date: 20240219 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240221 Year of fee payment: 14 |