EP2368625A1 - Verfahren und Vorrichtung zur Dispergierung - Google Patents
Verfahren und Vorrichtung zur Dispergierung Download PDFInfo
- Publication number
- EP2368625A1 EP2368625A1 EP10157132A EP10157132A EP2368625A1 EP 2368625 A1 EP2368625 A1 EP 2368625A1 EP 10157132 A EP10157132 A EP 10157132A EP 10157132 A EP10157132 A EP 10157132A EP 2368625 A1 EP2368625 A1 EP 2368625A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dispersing
- foam structure
- fluid
- channel
- dispersing element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/45—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
- B01F25/452—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
- B01F25/4522—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through porous bodies, e.g. flat plates, blocks or cylinders, which obstruct the whole diameter of the tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/09—Mixing systems, i.e. flow charts or diagrams for components having more than two different of undetermined agglomeration states, e.g. supercritical states
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/45—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
- B01F25/452—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
- B01F25/4524—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through foam-like inserts or through a bed of loose bodies, e.g. balls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/45—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
- B01F25/452—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
- B01F25/4524—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through foam-like inserts or through a bed of loose bodies, e.g. balls
- B01F25/45243—Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through foam-like inserts or through a bed of loose bodies, e.g. balls through a foam or expanded material body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/714—Feed mechanisms for feeding predetermined amounts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/90—Heating or cooling systems
Definitions
- the invention relates to a method and a device for dispersing immiscible liquids or gases and liquids.
- Static mixers with static mixing elements according to DE 22 05 371 or according to CH 642 564 are configured, well-known way very well for this process step.
- a certain volumetric power must be introduced into the fluid mixture via shear in the mixer over a certain dispersing distance. If the dispersing path, via which the shear or dispersing power is introduced into the fluid mixture, is not sufficiently long, the resulting droplets are larger and the resulting droplet size distribution wider than in the equilibrium state for the present volumetric input of power. If the dispersing distance is longer than until reaching the equilibrium state of the droplet distribution, the droplet size distribution no longer changes with respect to the equilibrium distribution. Different dispersing systems now differ in the dispersing distance, which is necessary until the equilibrium distribution is reached. The shorter this dispersing distance, the less total power is required to produce the dispersion.
- a static dispersing system which can produce the equilibrium distribution of the droplets in the dispersion over a very short dispersion path, has a high dispersing power, respectively, requires very little power for producing the dispersion with predetermined droplet distribution.
- points a static dispersing system with very high dispersing power typically a small length / diameter ratio.
- the object of the invention is to achieve a dispersion of gases in liquids or liquids in other, immiscible liquids with lower specific dispersing power.
- a dispersing element comprising a channel in which an insert element comprising a foam structure is arranged.
- the insert element may contain a foam structure which is open-pore.
- a foam structure which is characterized as open-pored is to be understood below to mean a foam structure in which the individual pores are not separated from one another by walls.
- the pore can be considered a hole or cavity.
- the walls between the pores are virtually completely eliminated. The openings in the walls are so large that only one web of the wall remains, which forms the boundary of adjacent pores.
- a plurality of webs may be provided.
- the foam structure may comprise a metal, a metal alloy, in particular an aluminum alloy, a ceramic, glass, carbon and / or a plastic.
- This foam structure has the advantage that it has a very large inner surface that can be used for breaking up and crushing the phase boundary.
- the foam structure may have a pore size up to and including 100 PPI.
- PPI is a common measure for characterizing the pore size of a foam structure. It is the acronym for "Pores per Inch”. Most preferably, the pore size ranges from 10 to 100 PPI inclusive.
- the free volume fractions of the foam structure which can be used for the dispersing element are from 40 to 97%, preferably from 50% to 95%.
- a foam structure can be produced by various methods. For example, in a first process step, an open-pored polyurethane foam can be used as a template. An essential advantage of using a polyurethane foam is that a wide variety of shapes and pore sizes can be produced industrially. From the polyurethane foam can be produced in a second process step, a mold for light metal casting with lost shape. This mold contains the desired foam structure. Also, CVD techniques or other methods based on polyurethane foams as precursors are used in the industry to produce foam structures. There are also different ones other methods of producing open-pore foam structures in development or already in use. Alternatively, a foam structure can also be produced computer-assisted by means of rapid manufacturing techniques of different materials, in particular those mentioned above.
- compact means that the length of the dispersing element is reduced compared to the length of a static mixer.
- the reduction in length can be between 5 and 99%.
- the insert element has a length L and a diameter D, wherein the ratio L / D is less than 5, preferably less than 3, more preferably less than 2.
- a ratio L / D of less than 5 it is possible to produce dispersions of the same quality as with the static mixer previously known from the prior art.
- dispersion unit Since the foam structures have hardly any mixing effect, combinations of static mixing elements for macro-mixing and predispersion with at least one insert element containing a foam structure can be combined to form a dispersion unit.
- the dispersing unit may also include the effect as a homogenizing unit.
- Dispersing units comprising an insert element which contains a foam structure are suitable for producing emulsions, dispersions or foams.
- dispersion is for systems in which drops and / or bubbles are greater than about 50-100 microns in size.
- emulsion is used for systems with smaller drops and / or. Used bubbles.
- a dispersing unit may in particular consist of a dispersing element which contains an insert element which contains a foam structure.
- a dispersing unit may comprise a plurality of dispersing elements containing a foam structure. each This dispersing elements may contain a foam structure with a different pore size.
- a dispersing unit may be composed of combinations of static mixing elements and dispersing elements arranged one behind the other or comprising a plurality of dispersing elements.
- the individual dispersing elements can be installed directly behind one another in the channel or spaces can be kept free between the dispersing elements.
- the dispersing element according to one of the preceding embodiments may also contain a tempering agent.
- the channel may be equipped with a temperature control or be surrounded by a temperature control.
- At least part of the dispersing element may be formed as a catalyst surface, in particular as a hydrolysis catalyst surface.
- the dispersing element can either be used for processing already premixed or predispersed fluid systems, or the liquid or gas phase to be dispersed is metered in during processing. If the fluid to be dispersed is metered in, at least one metering element can open into the channel in which the dispersing element is arranged. The metering element serves to introduce a fluid into the first liquid flowing in the channel.
- the fluid may be a gas or a second liquid. In particular, the fluid and the first fluid flow in cocurrent through the channel.
- the metering element is advantageously arranged upstream of the dispersing element. It is also possible to install a metering element in the dispersing elements. For uniform distribution of the phase to be dispersed, it is also possible for a plurality of metering elements to open into the channel or to be installed in the dispersing element.
- the metering element can be designed as a tube with metering openings.
- the metering element can be designed as a capillary, which comprises a metering opening, which can be designed, for example, as a nozzle.
- a curvature can be provided in the area of the metering opening so that the phase to be dispersed can be distributed optimally in the dispersing element.
- the feed line can feed a plurality of metering elements, so that the number of feed points arranged in the channel for the phase to be dispersed is increased.
- the method for producing a dispersion comprises the following steps: in a first step, a first liquid and at the same time a second fluid are introduced into the channel, wherein the first liquid is brought into contact with the second fluid in a second step in a dispersing element wherein the dispersing element comprises an insert member containing a foam structure disposed in the channel, wherein the first liquid and the second fluid are co-directed by the dispersing element, the first liquid and the second fluid being passed through the insert member , whereby the second fluid is dispersed in the first liquid.
- the process for producing a dispersion of an immiscible or poorly miscible liquid in another liquid or gas in a liquid is described e.g. used in the preparation of emulsions in food, household products or cosmetics. Also in the generation of large surfaces for reactions, the dissolution of a gas in a liquid, such as the water treatment by ozone, a dispersion is required.
- the energy input into the dispersion also plays a decisive role. Thanks to the better dispersing performance of foam structures, equivalent results can be achieved with less energy input into the dispersion Dispersion can be generated.
- the energy input is surprisingly up to 99% lower than in static mixers from the prior art.
- the dispersing element 1 according to Fig. 1 comprises a channel 2, in which an insert element 3, which contains a foam structure, is arranged.
- the channel is in Fig. 1 shown partially cut so that the insert is visible.
- the insert element according to Fig. 1 consists entirely of the foam structure.
- the foam structure may be surrounded by a jacket member to facilitate installation in the channel 2.
- the channel 2 according to Fig. 1 is shown as a pipe with a circular cross-section.
- the channel may have any other cross-sectional shapes, in particular be formed rectangular.
- a dispersion unit 10 is shown.
- the dispersing unit also comprises a channel 2, in which a first and a second insert element 3, 4 are arranged.
- a first static mixer 5 is provided, which according to the CH 642 564 is designed.
- a second static mixer 6 is shown, whose internals are essentially the DE 22 05 371 correspond.
- the first static mixer 5 is arranged immediately adjacent to the first and the second insert element.
- the second static mixer 6 is arranged at a distance from the second insert element 4.
- Zeichnerisch not shown is a metering element to introduce a fluid in the flowing through the channel 2 liquid. Such a metering element is for example in the EP 1 956 206 A2 shown.
- This embodiment is only an exemplary illustration of a possible arrangement of dispersing elements and static mixers to a dispersion unit, the invention is in no way to be regarded as limited to this embodiment.
- Fig. 3 shows an example of a foam structure which is porous.
- the in Fig. 3 shown section can, for example, in one of the foam structures according to Fig. 1 or Fig. 2 be integrated.
- the pore is a hole or cavity which in Fig. 3 by the corner points 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 limited.
- the individual pores are not separated by walls.
- This opening 21 is located between the above-mentioned pore and the drawing not shown before the plane lying pore.
- Adjacent pores can be traversed by the openings of a fluid.
- the opening 21 is bounded by webs 22, 23, 24, 25, 26, which form the boundary boundary of adjacent pores.
- foam structures for dispersion in DC operation hardly actual Maldistribution occurs and the large inner surface of the foam structure leads to a very efficient dispersion.
- the foam structure is not suitable.
- gross-scale mixing is meant a mixing process in which fluid is moved over greater distances perpendicular to the main flow direction and inhomogeneities of the distribution of the individual components in the fluid in planes perpendicular to the main flow direction are compensated by the movements of the fluid. Therefore, a combination of classical static mixing elements for large - scale mixing and predispersion and foam structures for Fine dispersion advantageous. A similar effect can be achieved by combining sections of foam structures with different pore densities.
- ball packages which is also porous.
- An essential difference of ball packages to the foam structures, as described above, is that ball packages typically have 25-40% free volume and thus a significantly poorer volume to surface ratio and greater pressure drops.
- the foam structures described have a free volume of from 40 up to and including 97%.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Accessories For Mixers (AREA)
Abstract
Die Erfindung betrifft ein Dispergierelement (1), umfassend einen Kanal (2), in welchem ein Einsatzelement (3), welches eine Schaumstruktur enthält, angeordnet ist. Des weiteren ist eine Dispergiereinheit (10) offenbart, welche zumindest ein Dispergierelement (3,4) und/oder zumindest einen statischen Mischer (5,6) enthält.
Description
- Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Dispergierung von nicht mischbaren Flüssigkeiten oder Gasen und Flüssigkeiten.
- In verschiedensten Anwendungen müssen unmischbare oder schwer mischbare Flüssigkeiten dispergiert werden oder Gase in Flüssigkeiten dispergiert werden. Statische Mischer mit statischen Mischelementen, die gemäss
DE 22 05 371 oder gemässCH 642 564 - Um mittels statischen Mischern eine Dispersion einer vorgegebenen Tropfengrösse zu erzeugen, muss in das fluide Gemisch über Scherung im Mischer über eine gewisse Dispergierstrecke eine gewisse volumetrische Leistung eingetragen werden. Ist die Dispergierstrecke, über die die Scher-oder Dispergierleistung in das fluide Gemisch eingetragen wird, nicht ausreichend lang, sind die entstehenden Tropfen grösser und die entstehende Tropfengrössenverteilung breiter als beim Gleichgewichtszustand für den vorliegenden volumetrischen Leistungseintrag. Ist die Dispergierstrecke länger als bis zur Erreichung des Gleichgewichtszustandes der Tropfenverteilung, ändert sich die Tropfengrössenverteilung nicht mehr gegenüber der Gleichgewichtsverteilung. Unterschiedliche Dispergiersysteme unterscheiden sich nun in der Dispergierstrecke, die nötig ist, bis die Gleichgewichtsverteilung erreicht wird. Je kürzer diese Dispergierstrecke ist, desto weniger Gesamtleistung ist zur Erzeugung der Dispersion erforderlich. Ein statisches Dispergiersystem, das über eine sehr kurze Dispergierstrecke die Gleichgewichtsverteilung der Tropfen in der Dispersion erzeugen kann, hat eine hohe Dispergierleistung, respektive benötigt sehr wenig Leistung zur Erzeugung der Dispersion mit vorgegebener Tropfenverteilung. Somit weist ein statisches Dispergiersystem mit sehr grosser Dispergierleistung typischerweise ein kleines Längen/Durchmesserverhältnis auf.
- Bisher ist die Dispergierung mit konventionellen statischen Mischern oder mit Rührelementen erfolgt. In beiden Fällen ist normalerweise ein sehr grosser spezifischer Energieeintrag in das fluide Gemisch notwendig, um die gewünschten Tropfengrössen zu erreichen. Bei Prozessen mit statischen Mischern geschieht dieser grosse spezifische Leistungseintrag über eine sehr hohe Produktscherung während der kurzen Zeit, in der sich das fluide Gemisch im statischen Mischer befindet. Diese grosse Scherung führt zu einem grossen Druckverlust über den statischen Mischer. Typischerweise wird in statischen Mischern ein Längen- zu Durchmesserverhältnis im Bereich von 5 oder mehr vorgesehen, um eine gute Dispergierung zu erreichen. Bei Prozessen in Rührkesseln erfolgt dieser Energieeintrag typischerweise auf niedrigerem Leistungsniveau aber dafür über sehr lange Rührzeiten. Insgesamt zeigt sich, dass Dispersionsprozesse in Rührkesseln oft höhere Gesamtleistungseinträge bedingen und sich wegen der langen Prozesszeiten schlecht zur Integration in kontinuierliche Prozesse eignen. Ausserdem sind sie aufgrund der verwendeten dynamischen Apparatur teurer und wartungsintensiver.
- Aufgabe der Erfindung ist es, eine Dispergierung von Gasen in Flüssigkeiten oder Flüssigkeiten in anderen, nicht mischbaren Flüssigkeiten mit niedrigerer spezifischer Dispergierleistung zu erreichen.
- Die Aufgabe der Erfindung wird durch ein Dispergierelement gelöst, welches einen Kanal umfasst, in welchem ein Einsatzelement umfassend eine Schaumstruktur angeordnet ist. Insbesondere kann das Einsatzelement eine Schaumstruktur enthalten, die offenporig ist. Unter einer Schaumstruktur, die als offenporig charakterisiert ist, soll nachfolgend eine Schaumstruktur verstanden werden, bei denen die einzelnen Poren nicht durch Wände voneinander getrennt sind. Die Pore kann als Loch oder Hohlraum angesehen werden. Es existieren grosse Öffnungen zwischen angrenzenden Poren, durch die ein Fluid strömen kann. Für eine offenporige Schaumstruktur sind die Wände zwischen den Poren praktisch vollständig eliminiert. Die Öffnungen in den Wänden sind so gross, dass von der Wand nur noch ein Steg bestehen bleibt, der die Randbegrenzung benachbarter Poren bildet. Selbstverständlich kann eine Mehrzahl von Stegen vorgesehen sein.
- Die Schaumstruktur kann ein Metall, eine Metallegierung, insbesondere eine Aluminiumlegierung, eine Keramik, Glas, Kohlenstoff und/oder einen Kunststoff umfassen. Diese Schaumstruktur hat den Vorteil, dass sie eine sehr grosse innere Oberfläche aufweist, die zum Aufbrechen und Zerkleinern der Phasengrenze genutzt werden kann.
- Die Schaumstruktur kann eine Porengrösse bis einschliesslich 100 PPI aufweisen. PPI ist ein übliches Mass zur Charakterisierung der Porengrösse einer Schaumstruktur. Es ist die Abkürzung für "Pores per Inch". Besonders bevorzugt liegt die Porengrösse in einem Bereich von 10 bis einschliesslich 100 PPI.
- Die freien Volumenanteile der Schaumstruktur, die für das Dispergierelement zum Einsatz kommen kann, betragen von 40 bis zu 97%, vorzugsweise von 50% bis zu 95%.
- Eine Schaumstruktur kann mittels verschiedener Verfahren hergestellt werden. Beispielsweise kann in einem ersten Verfahrensschritt ein offenporiger Polyurethanschaum als Vorlage verwendet werden. Ein wesentlicher Vorteil bei der Verwendung eines Polyurethanschaums besteht darin, dass unterschiedlichste Formen und Porengrössen definiert industriell hergestellt werden können. Aus dem Polyurethanschaum kann in einem zweiten Verfahrensschritt eine Gussform für Leichtmetallguss mit verlorener Form hergestellt werden. Diese Gussform enthält die gewünschte Schaumstruktur. Auch CVD Techniken oder andere Verfahren, die auf Polyurethanschäumen als Vorläufer basieren, werden in der Industrie zur Erzeugung von Schaumstrukturen eingesetzt. Ausserdem sind verschiedene andere Verfahren zur Erzeugung von offenporigen Schaumstrukturen in der Entwicklung oder schon im Einsatz. Alternativ kann eine Schaumstruktur auch computergestützt mittels Rapid Manufacturing Techniken aus verschiedenen Materialien, insbesondere den oben genannten, hergestellt werden.
- Erstaunlicherweise kann durch den Einsatz einer Schaumstruktur zum Dispergieren der notwendige Leistungseintrag für die Dispergierung reduziert werden. Dadurch können kompakte Dispergierelemente gebaut werden. Hierbei bedeutet kompakt, dass die Länge des Dispergierelements im Vergleich zu der Länge eines statischen Mischers reduziert ist. Die Reduktion der Länge kann zwischen 5 und 99% liegen. Das Einsatzelement weist eine Länge L und einen Durchmesser D auf, wobei das Verhältnis L/D kleiner als 5, vorzugsweise kleiner als 3, besonders bevorzugt kleiner als 2 ist. Überraschenderweise gelingt es mit einem Verhältnis L/D von kleiner als 5, Dispersionen von gleicher Qualität wie mit dem aus dem Stand der Technik vorbekannten statischen Mischer herzustellen.
- Da die Schaumstrukturen kaum eine Mischwirkung aufweisen, können Kombinationen von statischen Mischelementen zur Makrovermischung und Vordispergierung mit zumindest einem Einsatzelement, welches eine Schaumstruktur enthält, zu einer Dispergiereinheit zusammengestellt werden. Die Dispergiereinheit kann auch die Wirkung als Homogenisiereinheit einschliessen. Dispergiereinheiten enthaltend ein Einsatzelement, welches eine Schaumstruktur enthält, eignen sich zur Erzeugung von Emulsionen, Dispersionen oder Schäumen. In dieser Anmeldung steht der Begriff Dispersion für Systeme, in denen Tropfen und/oder Blasen grösser als etwa 50-100 Mikrometer gross sind. Der Begriff Emulsion wird für Systeme mit kleineren Tropfen und/oder. Blasen verwendet.
- Eine Dispergiereinheit kann insbesondere aus einem Dispergierelement, welches ein Einsatzelement enthält, welches eine Schaumstruktur enthält, bestehen. Alternativ kann eine Dispergiereinheit eine Mehrzahl von Dispergierelementen, die eine Schaumstruktur enthalten, umfassen. Jedes dieser Dispergierelemente kann eine Schaumstruktur mit einer unterschiedlichen Porengrösse enthalten.
- Eine Dispergiereinheit kann aus Kombinationen von hintereinander angeordneten statischen Mischelementen und Dispergierelementen aufgebaut sein oder eine Mehrzahl von Dispergierelementen umfassen. Dabei können die einzelnen Dispergierelemente direkt hintereinander im Kanal eingebaut werden oder zwischen den Dispergierelementen können Abstände frei gehalten sein.
- Das Dispergierelement nach einem der vorhergehenden Ausführungsbeispiele kann auch ein Temperiermittel enthalten. Beispielsweise kann der Kanal mit einem Temperiermittel ausgestattet sein oder von einem Temperiermittel umgeben sein.
- Zumindest ein Teil des Dispergierelements kann als Katalysatoroberfläche, insbesondere als Hydrolysekatalysatoroberfläche, ausgebildet sein.
- Das Dispergierelement kann entweder zur Verarbeitung von schon vorgemischten oder vordispergierten Fluidsystemen eingesetzt werden oder die zu dispergierende Flüssigkeits- oder Gasphase wird bei der Verarbeitung hinzu dosiert. Falls das zu dispergierende Fluid zudosiert wird, kann zumindest ein Dosierelement in den Kanal münden, in welchem das Dispergierelement angeordnet ist. Das Dosierelement dient zum Eintrag eines Fluids in die im Kanal strömende erste Flüssigkeit. Das Fluid kann ein Gas oder eine zweite Flüssigkeit sein. Insbesondere strömen das Fluid und die erste Flüssigkeit im Gleichstrom durch den Kanal.
- Das Dosierelement ist vorteilhafterweise stromaufwärts des Dispergierelements angeordnet. Es ist auch möglich, ein Dosierelement in die Dispergierelemente einzubauen. Zur gleichmässigen Verteilung der zu dispergierenden Phase kann auch eine Mehrzahl von Dosierelementen in den Kanal münden oder in der Dispergierelement eingebaut werden.
- Das Dosierelement kann als ein Rohr mit Dosieröffnungen ausgestaltet sein. Das Dosierelement kann als eine Kapillare ausgestaltet sein, die eine Dosieröffnung umfasst, die beispielsweise als eine Düse ausgebildet sein kann. Im Bereich der Dosieröffnung kann eine Krümmung vorgesehen sein, damit die zu dispergierende Phase sich optimal im Dispergierelement verteilen kann. Zur besseren Verteilung der zu dispergierenden Phase kann die Zuleitung eine Mehrzahl von Dosierelementen speisen, sodass die Anzahl der im Kanal angeordneten Einspeispunkte für die zu dispergierende Phase erhöht wird.
- Das Verfahren zur Erzeugung einer Dispersion gemäss der Erfindung umfasst folgende Schritte: in einem ersten Schritt wird eine erste Flüssigkeit und gleichzeitig ein zweites Fluid in den Kanal eingeleitet, wobei die erste Flüssigkeit mit dem zweiten Fluid in einem zweiten Schritt in einem Dispergierelement in Kontakt gebracht wird, wobei das Dispergierelement ein Einsatzelement, welches eine Schaumstruktur enthält, umfasst, die in dem Kanal angeordnet ist, wobei die erste Flüssigkeit und das zweite Fluid im Gleichstrom durch das Dispergierelement geleitet werden, wobei die erste Flüssigkeit und das zweite Fluid durch das Einsatzelement geleitet werden, wodurch das zweite Fluid in die erste Flüssigkeit dispergiert wird.
- Das Verfahren zur Erzeugung einer Dispersion aus einer unmischbaren oder schlecht mischbaren Flüssigkeit in einer anderen Flüssigkeit oder einem Gas in einer Flüssigkeit wird z.B. bei der Herstellung von Emulsionen bei Lebensmitteln, Haushaltprodukten oder Kosmetik angewendet. Auch bei der Erzeugung grosser Oberflächen für Reaktionen, dem Lösen eines Gases in einer Flüssigkeit, wie beispielsweise der Wasserbehandlung durch Ozon, ist eine Dispergierung erforderlich.
- Neben der Dispergierleistung ist auch der Energieeintrag in die Dispersion massgebend, dank der besseren Dispergierleistung von Schaumstrukturen können gleichwertige Resultate mit geringerem Energieeintrag in die Dispersion erzeugt werden. Der Energieeintrag liegt überraschenderweise um bis zu 99% niedriger als bei statischen Mischern aus dem Stand der Technik.
- Nachfolgend wird die Erfindung anhand der Zeichnungen erläutert. Es zeigen:
-
Fig. 1 eine schematische Ansicht eines Dispergierelements -
Fig. 2 eine Ansicht einer Anordnung enthaltend ein Dispergierelement gemässFig. 1 -
Fig. 3 ein Detail einer offenporigen Schaumstruktur - Das Dispergierelement 1 gemäss
Fig. 1 umfasst einen Kanal 2, in welchem ein Einsatzelement 3, welches eine Schaumstruktur enthält, angeordnet ist. Der Kanal ist inFig. 1 teilweise geschnitten dargestellt, sodass das Einsatzelement sichtbar ist. Das Einsatzelement gemässFig. 1 besteht vollständig aus der Schaumstruktur. Gegebenenfalls kann die Schaumstruktur von einem Mantelelement umgeben sein, um den Einbau in den Kanal 2 zu erleichtern. - Der Kanal 2 gemäss
Fig. 1 ist als Rohr mit kreisförmigem Querschnitt dargestellt. Selbstverständlich kann der Kanal beliebige andere Querschnittsformen aufweisen, insbesondere rechteckförmig ausgebildet sein. - In
Fig. 2 ist eine Dispergiereinheit 10 dargestellt. Die Dispergiereinheit umfasst ebenfalls einen Kanal 2, in welchem ein erstes und ein zweites Einsatzelement 3, 4 angeordnet sind. Zwischen dem ersten und zweiten Einsatzelement 3, 4 ist ein erster statischer Mischer 5 vorgesehen, welcher gemäss derCH 642 564 DE 22 05 371 entsprechen. Der erste statische Mischer 5 ist unmittelbar angrenzend an das erste sowie das zweite Einsatzelement angeordnet. Der zweite statische Mischer 6 ist in einem Abstand zum zweiten Einsatzelement 4 angeordnet. Zeichnerisch nicht dargestellt ist ein Dosierelement, um ein Fluid in die durch den Kanal 2 strömende Flüssigkeit einzubringen. Ein derartiges Dosierelement ist beispielsweise in derEP 1 956 206 A2 gezeigt. - Dieses Ausführungsbeispiel ist nur ein exemplarische Darstellung einer möglichen Anordnung von Dispergierelementen und statischen Mischern zu einer Dispergiereinheit, die Erfindung ist in keiner Weise als auf dieses Ausführungsbeispiel beschränkt anzusehen.
-
Fig. 3 zeigt ein Beispiel für eine Schaumstruktur die offenporig ist. Der inFig. 3 dargestellte Ausschnitt kann beispielsweise in eine der Schaumstrukturen gemässFig. 1 oder Fig. 2 integriert sein. Die Pore ist ein Loch oder Hohlraum welche InFig. 3 durch die Eckpunkte 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 begrenzt. Die einzelnen Poren sind nicht durch Wände voneinander getrennt. Beispielsweise ist die Fläche, welche von den Eckpunkten 11, 12, 13, 14, 15 aufgespannt wird, als eine Öffnung 21 ausgebildet. Diese Öffnung 21 befindet sich zwischen der oben genannten Pore und der zeichnerisch nicht dargestellten vor der Zeichenebene liegenden Pore. Angrenzende Poren können durch die Öffnungen von einem Fluid durchströmt werden. Die Öffnung 21 wird durch Stege 22, 23, 24, 25, 26 begrenzt, welche die Randbegrenzung benachbarter Poren bilden. - Die Praxis zeigt, dass beim Einsatz von Schaumstrukturen zur Dispersion im Gleichstrombetrieb kaum eigentliche Maldistribution auftritt und die grosse innere Oberfläche der Schaumstruktur zu einer sehr effizienten Dispergierung führt. Zur grossskaligen Vermischung eignet sich die Schaumstruktur nicht. Unter grossskaliger Vermischung versteht man dabei einen Mischprozess, bei dem Fluid über grössere Distanzen senkrecht zur Hauptströmungsrichtung bewegt und durch die Bewegungen des Fluids Inhomogenitäten der Verteilung der einzelnen Komponenten im Fluid in Ebenen senkrecht zur Hauptströmungsrichtung ausgeglichen werden. Deswegen ist eine Kombination von klassischen statischen Mischelementen zur grossskaligen Vermischung und Vordispergierung und Schaumstrukturen zur Feindispergierung vorteilhaft. Einen ähnlichen Effekt kann man durch die Kombination von Abschnitten aus Schaumstrukturen unterschiedlicher Porendichte erreichen.
- Es ist auch möglich, eine Kugelpackung einzusetzen, welche ebenfalls offenporig ist. Ein wesentlicher Unterschied von Kugelpackungen zu den Schaumstrukturen, wie vorhin beschrieben, liegt darin, dass Kugelpackungen typischerweise 25-40% freies Volumen und somit ein deutlich schlechteres Verhältnis von Volumen zu Oberfläche sowie grössere Druckverluste aufweisen. Die beschriebenen Schaumstrukturen haben ein freies Volumen von 40 bis zu einschliesslich 97%.
Claims (15)
- Dispergierelement (1), umfassend einen Kanal (2), in welchem ein Einsatzelement (3,4), welches eine Schaumstruktur enthält, angeordnet ist.
- Dispergierelement (1) nach Anspruch 1, wobei die Schaumstruktur offenporig ist.
- Dispergierelement (1) nach Anspruch 1 oder 2, wobei das Einsatzelement (3, 4) eine Länge L und einen Durchmesser D aufweist, wobei das Verhältnis L/D kleiner als 5, vorzugsweise kleiner als 3, besonders bevorzugt kleiner als 2 ist.
- Dispergierelement (1) nach einem der vorhergehenden Ansprüche, wobei die Schaumstruktur ein Metall, eine Metallegierung, Keramik, Glas, Kohlenstoff und/oder einen Kunststoff umfasst.
- Dispergierelement (1) nach einem der vorhergehenden Ansprüche, wobei die Schaumstruktur eine mittlere Porengrösse von bis einschliesslich 100 PPI aufweist, bevorzugt eine mittlere Porengrösse von 10 bis einschliesslich 100 PPI aufweist.
- Dispergierelement (1) nach einem der vorhergehenden Ansprüche, wobei die Schaumstruktur ein freies Volumen von 40% bis zu 97% aufweist, vorzugsweise von 50% bis zu 95% aufweist.
- Dispergierelement (1) nach einem der vorhergehenden Ansprüche, welches ein Temperiermittel enthält.
- Dispergierelement (1) nach einem der vorhergehenden Ansprüche, welches zumindest teilweise als Katalysatoroberfläche, insbesondere als Hydrolysekatalysatoroberfläche, ausgebildet ist.
- Dispergierelement (1) nach einem der vorhergehenden Ansprüche, wobei zumindest ein Dosierelement zum Eintrag eines Fluids in den Kanal (2) mündet.
- Dispergierelement (1) nach Anspruch 8, wobei das Dosierelement stromaufwärts des Einsatzelements (3, 4) angeordnet ist.
- Dispergiereinheit (10) nach umfassend ein Dispergierelement (1) nach einem der vorhergehenden Ansprüche und ein statisches Mischelement oder eine Mehrzahl von Dispergierelementen (1) zur Makrovermischung und Vordispergierung.
- Dispergiereinheit (10) umfassend ein Dispergierelement (1) nach einem der vorhergehenden Ansprüche 1 bis 10, wobei eine Mehrzahl von Dispergierelementen (1) vorgesehen ist, wobei zumindest eines der Dispergierelemente (1) eine andere Porengrösse als jedes der weiteren Dispergierelemente (1) aufweist.
- Dispergiereinheit (10) nach Anspruch 12, wobei eine Mehrzahl von Dispergierelementen (1) im Kanal hintereinander angeordnet sind.
- Verfahren zur Erzeugung einer Dispersion, wobei in einem ersten Schritt gleichzeitig eine erste Flüssigkeit und ein zweites Fluid in einen Kanal eingeleitet werden, wobei die erste Flüssigkeit mit dem zweiten Fluid in einem zweiten Schritt in einem Dispergierelement in Kontakt gebracht wird, wobei das Dispergierelement ein Einsatzelement enthält, welches eine Schaumstruktur enthält, die in dem Kanal angeordnet ist, und wobei die erste Flüssigkeit und das zweite Fluid im Gleichstrom durch das Dispergierelement geleitet werden, wobei die erste Flüssigkeit und das zweite Fluid durch das Einsatzelement geleitet werden, wodurch das zweite Fluid in die erste Flüssigkeit dispergiert wird.
- Verfahren nach Anspruch 14, wobei das zweite Fluid ein Gas oder eine Flüssigkeit ist.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10157132A EP2368625A1 (de) | 2010-03-22 | 2010-03-22 | Verfahren und Vorrichtung zur Dispergierung |
BR112012021886A BR112012021886A2 (pt) | 2010-03-22 | 2010-10-08 | sistema para mistura ou dispersão e processo para mistura ou dispersão estática |
JP2013500346A JP2013522029A (ja) | 2010-03-22 | 2010-10-08 | 混合又は分散部材および静的な混合又は分散を行なう方法 |
PCT/EP2010/065146 WO2011116840A1 (de) | 2010-03-22 | 2010-10-08 | Misch- oder dispergierelement und verfahren zum statischen mischen oder dispergieren |
RU2012144729/05A RU2538879C2 (ru) | 2010-03-22 | 2010-10-08 | Смесительный или диспергирующий элемент и способ статического смешивания или диспергирования |
US13/636,581 US20130065973A1 (en) | 2010-03-22 | 2010-10-08 | Mixing or dispersing element and process for static mixing or dispersing |
CN201080065671.6A CN102917780B (zh) | 2010-03-22 | 2010-10-08 | 用于静态混合或者弥散的混合元件或者弥散元件以及用于静态混合或者弥散的方法 |
EP10768911.9A EP2550088B1 (de) | 2010-03-22 | 2010-10-08 | Misch- oder dispergierelement und verfahren zum statischen mischen oder dispergieren |
KR1020127024571A KR20130028711A (ko) | 2010-03-22 | 2010-10-08 | 혼합 또는 분산요소, 및 정적 혼합 또는 분산 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10157132A EP2368625A1 (de) | 2010-03-22 | 2010-03-22 | Verfahren und Vorrichtung zur Dispergierung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2368625A1 true EP2368625A1 (de) | 2011-09-28 |
Family
ID=42341572
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10157132A Withdrawn EP2368625A1 (de) | 2010-03-22 | 2010-03-22 | Verfahren und Vorrichtung zur Dispergierung |
EP10768911.9A Not-in-force EP2550088B1 (de) | 2010-03-22 | 2010-10-08 | Misch- oder dispergierelement und verfahren zum statischen mischen oder dispergieren |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10768911.9A Not-in-force EP2550088B1 (de) | 2010-03-22 | 2010-10-08 | Misch- oder dispergierelement und verfahren zum statischen mischen oder dispergieren |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130065973A1 (de) |
EP (2) | EP2368625A1 (de) |
JP (1) | JP2013522029A (de) |
KR (1) | KR20130028711A (de) |
CN (1) | CN102917780B (de) |
BR (1) | BR112012021886A2 (de) |
RU (1) | RU2538879C2 (de) |
WO (1) | WO2011116840A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2933015A1 (de) * | 2014-04-16 | 2015-10-21 | RWE Deutschland AG | Vorrichtung und Verfahren zur Odorierung eines Gasstroms in einem Gasnetz |
EP3851185A4 (de) * | 2018-09-11 | 2022-06-22 | Cataler Corporation | Vorrichtung und verfahren zur erzeugung feiner bläschen |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012008108A1 (de) | 2012-04-25 | 2013-10-31 | Umicore Ag & Co. Kg | Statischer Gasmischer |
US9572555B1 (en) * | 2015-09-24 | 2017-02-21 | Ethicon, Inc. | Spray or drip tips having multiple outlet channels |
FR3045226B1 (fr) * | 2015-12-15 | 2017-12-22 | Schneider Electric Ind Sas | Dispositif de refroidissement de gaz chauds dans un appareillage haute tension |
RU2633571C1 (ru) * | 2016-10-07 | 2017-10-13 | Общество с ограниченной ответственностью "ДжиКьюОйлРус" | Модуль для "холодного" смешивания смазочных материалов и смазочно-охлаждающих жидкостей |
US10329985B2 (en) | 2017-06-27 | 2019-06-25 | Tenneco Automotive Operating Company Inc. | Impingement mixer for exhaust treatment |
CN110652893A (zh) * | 2019-09-17 | 2020-01-07 | 李常德 | 一种微气泡发生装置以及气泡分割元件 |
CN114102853A (zh) * | 2020-08-28 | 2022-03-01 | 中国科学院金属研究所 | 一种基于三维开孔泡沫陶瓷材料的静态混合装置及其应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2205371A1 (de) | 1971-04-29 | 1972-11-16 | Gebrüder Sulzer AG, Winterthur (Schweiz) | Mischeinrichtung |
US4329067A (en) * | 1978-04-19 | 1982-05-11 | Bruce J. Landis | Fluid mixer |
CH642564A5 (de) | 1979-10-26 | 1984-04-30 | Sulzer Ag | Statische mischvorrichtung. |
US5424180A (en) * | 1990-03-27 | 1995-06-13 | Fuji Photo Film Co., Ltd. | Apparatus for uniform mixing of solutions |
DE10327986A1 (de) * | 2003-06-21 | 2005-01-27 | M.Pore Gmbh | Statischer Mischer und dessen Anwendung |
US20060293401A1 (en) * | 2005-06-22 | 2006-12-28 | Core Foam, Inc. | Cartridge foam insert for foam generating and injecting apparatus |
EP1956206A2 (de) | 2007-02-09 | 2008-08-13 | Sulzer Chemtech AG | Abgasreinigungssystem |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3861652A (en) * | 1972-11-15 | 1975-01-21 | Du Pont | Mixing device |
JPS5258100U (de) * | 1975-10-22 | 1977-04-27 | ||
SU1117077A1 (ru) * | 1983-03-24 | 1984-10-07 | Харьковский Ордена Ленина Политехнический Институт Им.В.И.Ленина | Устройство дл насыщени жидкости газом |
SU1456205A1 (ru) * | 1986-09-05 | 1989-02-07 | Центральный Научно-Исследовательский И Проектно-Технологический Институт Механизации И Электрификации Животноводства Южной Зоны Ссср | Смеситель |
JPH0221933A (ja) * | 1988-07-12 | 1990-01-24 | Sansei Giken Kk | 静的泡発生装置および静的泡発生方法 |
DE59204320D1 (de) | 1991-07-30 | 1995-12-21 | Sulzer Chemtech Ag | Einmischvorrichtung kleiner Fluidmengen. |
US5480589A (en) * | 1994-09-27 | 1996-01-02 | Nordson Corporation | Method and apparatus for producing closed cell foam |
JPH10128094A (ja) * | 1996-10-31 | 1998-05-19 | Dainippon Screen Mfg Co Ltd | 基板の薬液処理装置 |
JP3884596B2 (ja) * | 1999-06-22 | 2007-02-21 | 株式会社タクマ | 予混合装置 |
US6422734B1 (en) * | 1999-10-27 | 2002-07-23 | National Gypsum Properties, Llc | Static foam generating apparatus and method |
DE102004008755A1 (de) * | 2004-02-23 | 2005-09-08 | Hilti Ag | Statischer Mischer und seine Verwendung |
JP4989062B2 (ja) * | 2005-04-28 | 2012-08-01 | バブコック日立株式会社 | 流体混合装置 |
JP2007252979A (ja) * | 2006-03-20 | 2007-10-04 | National Institute Of Advanced Industrial & Technology | マイクロリアクタによる化合物の製造方法、そのマイクロリアクタ、及びマイクロリアクタ用の分流器 |
WO2010066457A1 (en) | 2008-12-10 | 2010-06-17 | Technische Universiteit Eindhoven | Static mixer comprising a static mixing element, method of mixing a fluid in a conduit and a formula for designing such a static mixing element |
CN101559336B (zh) * | 2009-06-04 | 2011-06-08 | 南京法宁格节能科技有限公司 | 两组份以上液体用静态混合器 |
-
2010
- 2010-03-22 EP EP10157132A patent/EP2368625A1/de not_active Withdrawn
- 2010-10-08 CN CN201080065671.6A patent/CN102917780B/zh not_active Expired - Fee Related
- 2010-10-08 JP JP2013500346A patent/JP2013522029A/ja active Pending
- 2010-10-08 BR BR112012021886A patent/BR112012021886A2/pt not_active IP Right Cessation
- 2010-10-08 RU RU2012144729/05A patent/RU2538879C2/ru not_active IP Right Cessation
- 2010-10-08 US US13/636,581 patent/US20130065973A1/en not_active Abandoned
- 2010-10-08 KR KR1020127024571A patent/KR20130028711A/ko not_active Application Discontinuation
- 2010-10-08 WO PCT/EP2010/065146 patent/WO2011116840A1/de active Application Filing
- 2010-10-08 EP EP10768911.9A patent/EP2550088B1/de not_active Not-in-force
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2205371A1 (de) | 1971-04-29 | 1972-11-16 | Gebrüder Sulzer AG, Winterthur (Schweiz) | Mischeinrichtung |
US4329067A (en) * | 1978-04-19 | 1982-05-11 | Bruce J. Landis | Fluid mixer |
CH642564A5 (de) | 1979-10-26 | 1984-04-30 | Sulzer Ag | Statische mischvorrichtung. |
US5424180A (en) * | 1990-03-27 | 1995-06-13 | Fuji Photo Film Co., Ltd. | Apparatus for uniform mixing of solutions |
DE10327986A1 (de) * | 2003-06-21 | 2005-01-27 | M.Pore Gmbh | Statischer Mischer und dessen Anwendung |
US20060293401A1 (en) * | 2005-06-22 | 2006-12-28 | Core Foam, Inc. | Cartridge foam insert for foam generating and injecting apparatus |
EP1956206A2 (de) | 2007-02-09 | 2008-08-13 | Sulzer Chemtech AG | Abgasreinigungssystem |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2933015A1 (de) * | 2014-04-16 | 2015-10-21 | RWE Deutschland AG | Vorrichtung und Verfahren zur Odorierung eines Gasstroms in einem Gasnetz |
EP3851185A4 (de) * | 2018-09-11 | 2022-06-22 | Cataler Corporation | Vorrichtung und verfahren zur erzeugung feiner bläschen |
US11890586B2 (en) | 2018-09-11 | 2024-02-06 | Cataler Corporation | Fine bubble generation device and method for generating fine bubbles |
Also Published As
Publication number | Publication date |
---|---|
RU2012144729A (ru) | 2014-04-27 |
US20130065973A1 (en) | 2013-03-14 |
JP2013522029A (ja) | 2013-06-13 |
EP2550088B1 (de) | 2013-12-04 |
WO2011116840A1 (de) | 2011-09-29 |
RU2538879C2 (ru) | 2015-01-10 |
EP2550088A1 (de) | 2013-01-30 |
KR20130028711A (ko) | 2013-03-19 |
CN102917780A (zh) | 2013-02-06 |
BR112012021886A2 (pt) | 2016-05-24 |
CN102917780B (zh) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2368625A1 (de) | Verfahren und Vorrichtung zur Dispergierung | |
DE19703779C2 (de) | Verfahren und Vorrichtung zur Herstellung eines dispersen Gemisches | |
DE3851106T2 (de) | Vorrichtung zum Mischen fliessfähiger Medien. | |
EP2403633B1 (de) | Koaxialer kompaktstatikmischer sowie dessen verwendung | |
EP0861121B1 (de) | Verfahren zur herstellung von dispersionen und zur durchführung chemischer reaktionen mit disperser phase | |
DE69917433T2 (de) | Verfahren und vorrichtung zum herstellen von flüssigdispersen systemen in flüssigkeiten | |
EP2181827B1 (de) | Statischer Mischer | |
EP0758918B1 (de) | Verfahren und vorrichtung zur durchführung chemischer reaktionen mittels mikrostruktur-mischung | |
DE69505999T2 (de) | Verfahren und vorrichtung zur herstellung von geschlossen-zelligen schaumprodukten | |
WO2001062373A1 (de) | Kavitationsmischer | |
EP2608875B1 (de) | Vorrichtung und verfahren zur gasdispergierung | |
EP0644271A1 (de) | Verfahren zur herstellung eines frei dispersen systems und einrichtung zur durchführung des verfahrens | |
EP1749564A2 (de) | Kavitationsmischer | |
WO2000078438A1 (de) | Statischer mikrovermischer | |
WO1996009112A1 (de) | Vorrichtung zur erzeugung flüssiger systeme, insbesondere von emulsionen, suspensionen od. dgl. in einem hydrodynamischen kavitationsfeld | |
EP1638675B1 (de) | Dispergiervorrichtung | |
DE10025699A1 (de) | Emulgier- und Trennvorrichtung für flüssige Phasen | |
WO2008017429A1 (de) | Emulgiereinrichtung und verfahren zur bildung einer emulsion | |
EP3055071B1 (de) | Verfahren zur erzeugung eines dispergierten fluidgemischs | |
WO2022223725A1 (de) | Vorrichtung und verfahren zum mischen von fluiden und zum erzeugen eines fluidgemisches | |
DE2648086A1 (de) | Statische mischvorrichtung | |
DE2704282C2 (de) | Verfahren zum Homogenisieren einer Mischung mindestens zweier Flüssigkeiten | |
DE10159985B4 (de) | Mikroemulgator | |
DE4433439A1 (de) | Verfahren zur Durchführung chemischer Reaktionen mittels Mikrostruktur-Mischung | |
EP3914379B1 (de) | Mischvorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA ME RS |
|
18W | Application withdrawn |
Effective date: 20110906 |