EP2322854B1 - Wärmetauscher zur Dampferzeugung für Solarkraftwerke - Google Patents
Wärmetauscher zur Dampferzeugung für Solarkraftwerke Download PDFInfo
- Publication number
- EP2322854B1 EP2322854B1 EP09014365.2A EP09014365A EP2322854B1 EP 2322854 B1 EP2322854 B1 EP 2322854B1 EP 09014365 A EP09014365 A EP 09014365A EP 2322854 B1 EP2322854 B1 EP 2322854B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- heat exchanger
- header
- tubes
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
- F28D7/082—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
- F28D7/085—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
- F28D7/087—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/061—Construction of tube walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
- F22B29/061—Construction of tube walls
- F22B29/062—Construction of tube walls involving vertically-disposed water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
- F28F9/16—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
- F28F9/18—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
- F28F9/185—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding with additional preformed parts
Definitions
- the invention relates to a heat exchanger for generating steam for solar power plants according to the preamble of claim 1.
- Modular heat exchangers are known from the prior art, which operate according to the so-called circulation principle, natural or forced circulation.
- the heat exchanger comprises a number of heat exchanger modules, for example a preheater module, one or more evaporator modules and a superheater module, which are interconnected by means of respective inlet and outlet headers, circulation pipes and an external steam drum to form a functional unit.
- a generic heat exchanger with running parallel to the longitudinal axis of the outer shell circulation pipe layers is eg in FR 1,359,081 A disclosed.
- the invention has for its object to provide a heat exchanger, which allows a compact design, cost-effective production and safe operation.
- the heat exchanger according to the invention for generating steam for solar power plants comprises an outer jacket with an inlet and an outlet for a heat-emitting medium. Furthermore, the heat exchanger comprises an inlet and an outlet header for a heat-absorbing medium, preferably water, wherein the inlet and the outlet header are arranged substantially inside the outer shell.
- a tube bundle with a number of tube layers with continuous tubes which are formed by the heat-emitting medium completely flow around and which are formed as flow paths for the heat-absorbing medium from the inlet collector to the outlet collector. In this case, the tube bundle is formed meandering.
- the heat exchanger according to the invention is designed for steam generation according to the forced-circulation principle, so that the heat-absorbing medium fed into the inlet collector successively undergoes preheating, evaporation and superheating in the course of the flow paths, so that a superheated steam exits from the outlet collector.
- the energy required for the preheating, evaporation and overheating is provided essentially only by the heat transfer from the heat-emitting medium to the heat-absorbing medium within the outer shell.
- the heat exchanger thus combines at least three different apparatus, namely preheater, evaporator and superheater, in one. Due to the meandering arrangement of the tubes, the heat exchange takes place according to the counter or cross flow principle.
- the meandering tubes are flowed through by a heat-absorbing medium, preferably water. Due to the meandering arrangement of the tube bundles, the size of the heat exchanger is reduced overall, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermal resilience of the structure.
- the heat-absorbing medium preferably water
- the heat-absorbing medium preferably water
- evaporated and then superheated becomes an extremely compact and efficient steam generator realized.
- the water entering the heat exchanger via the inlet header in the liquid state is preheated, evaporated and superheated in the course of its flow within the heat exchanger tubes in the direction of the outlet header that via the outlet collector, a superheated steam leaves the heat exchanger, which can be supplied to the steam turbine for power generation.
- Continuous tubes in this context means that each tube, which defines a respective flow path for the heat-absorbing medium, has no branching or mixing points between the inlet header and the outlet header.
- the tubes run completely "inside the outer jacket", which means that no parts of the tube bundle are outside the outer jacket and that the pipes are completely surrounded by the heat-emitting medium. So no external energy sources are needed to promote preheating, evaporation or overheating.
- the heating surfaces of the continuous tubes themselves thus form successively the preheater, evaporator and superheater zones viewed in the direction of flow. Externally, these individual “zones" are not recognizable, since only one tube bundle is arranged between the inlet header and the outlet header and the tube bundle has a constant course with a repetitive meandering pattern.
- the heat exchanger is set up vertically. Vertical placement is preferred because it allows even better land use.
- several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area.
- the space conditions are unfavorable because the parabolic trough collectors take up a lot of space.
- the space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner. The temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.
- a further preferred embodiment of the invention provides that the tube bundle has a number of vertical pipe layers when mounted vertically, each pipe layer an equal number of tubes is formed, and that the tube layers are arranged so that the tubes of the individual tube layers in the horizontal direction are aligned exactly juxtaposed, the flow directions of the heat-absorbing medium in the horizontally adjacent, arranged transversely to the central axis of the outer shell pipe sections opposite are.
- the design of the tube bundles in individual tube layers allows an extremely compact design.
- the fact that the tubes lie horizontally exactly next to each other, conventional spacers between the tubes can be used.
- the opposite flow in the horizontally adjacent pipe sections, which are arranged transversely to the central axis of the outer shell favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis.
- the inlet and the outlet header have a circular cross-section.
- the tubes of a pipe layer on a circumferential line of the inlet or outlet collector are offset from each other by an equal angle with the inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.
- the tubes of the adjacent tube layers are connected to the inlet and outlet header such that the tubes of one tube layer are offset relative to the tubes of the adjacent tube layer by an angle on an adjacent circumferential line of the respective inlet and outlet header.
- the tube bundle has a separate section, in which predominantly the preheating of the heat-absorbing medium takes place.
- the separate preheater section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this preheater section takes place mainly the preheating of the heat-absorbing medium. Alternatively, the preheating could be done completely outside the outer shell, ie in a separate preheater. In this case, the heat exchanger according to the invention would be designed primarily for the evaporation and overheating of the heat-absorbing medium.
- the tube bundle has a separate section in which predominantly the evaporation of the heat-absorbing medium takes place.
- the separate evaporator section can be realized for example by a local separation within the outer shell. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this evaporator section mainly the evaporation of the heat-absorbing medium takes place. Alternatively, the evaporation could completely outside the outer shell, d. H. in a separate evaporator. In this case, the heat exchanger according to the invention would be designed primarily for preheating and overheating of the heat-absorbing medium.
- the tube bundle has a separate section in which predominantly the overheating of the heat-absorbing medium takes place.
- the separate superheater section can be realized for example by a local separation within the outer jacket. It is also possible to control the flow of the heat-emitting medium and thus the temperature distribution in the heat exchanger so that in this superheater section takes place mainly the overheating of the heat-absorbing medium. Alternatively, the overheating could be completely outside the outer shell, d. H. in a separate superheater, done. In this case, the heat exchanger according to the invention would be designed primarily for the preheating and the evaporation of the heat-absorbing medium.
- the tubes are connected via nipples to the inlet and outlet header.
- the connection of the compact tube bundle at the inlet and outlet collector is simplified.
- the connection between the nipples and the individual tubes is preferably cohesively, for example by welding. The welding process can be automated. Subsequently, the welds are checked individually, for example with the help of X-rays.
- the tubes are connected without nipple directly to the inlet and outlet header.
- the connection between the collectors and the individual tubes is preferably cohesively, for example by welding. The welding process can also be automated here. Subsequently, the welds are checked individually, for example with the help of X-rays.
- the nipples are in turn cohesively, for example by welding, connected to the inlet and outlet collector. Again, the welding process can take place automatically.
- the nipples are machined directly from the material of the inlet or outlet collector.
- the nipples can be milled out of the initially tubular material of the inlet or outlet collector. This will reduce any damage due to welding. In addition, this eliminates the examination of the individual welds between the nipples and the respective collector.
- the tubes of the tube bundle are arranged in an inner housing, which is arranged concentrically within the outer jacket and has an inlet and an outlet opening for the heat-emitting medium.
- the cross-sectional profile of the inner housing is preferably rectangular, so that the Rohbündel is as closely as possible enclosed by this inner housing.
- the additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment.
- the inlet and the outlet opening of the inner housing may be connected to the corresponding inlet or outlet nozzle in such a way that a separate space between the outer shell and the inner housing is provided.
- a flow of the heat-emitting medium along the inner wall of the outer shell can be allowed.
- the inlet and the outlet of the heat-emitting medium in the vertical installation of the heat exchanger in the lower part of the outer shell are arranged.
- the compactness of the heat exchanger is further increased.
- the maintenance is facilitated because the shell-side connections are located within reach of the ground.
- the space between the outer shell and the inner housing is used as a flow channel for the heat-emitting medium.
- the hot heat-emitting medium passes through the inlet port of the outer shell and the inlet opening of the inner housing in the interior of the inner housing and flows upward.
- the heat-emitting medium flows through the annular flow channel, which results from the concentric arrangement of the outer shell and the inner housing, back down, where it then leaves the outer jacket via the outlet port.
- the residence time of the heat-emitting medium is prolonged in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved overall.
- FIGS 1 and 2 show an embodiment of the heat exchanger according to the invention 1.
- the heat exchanger 1 is placed vertically in a space-saving manner.
- the outer casing 2 is an inner housing 3, which has a rectangular cross-sectional profile.
- the meandering tubes of the tube bundle 11 are arranged in the inner housing 3.
- the heat-absorbing medium for example water, enters the heat exchanger 1 via the inlet header 6. After flowing through the tubes of the tube bundle 11, it passes out of the heat exchanger 1 via the outlet collector 7. On the way from the inlet collector 6 to the outlet collector 7, the water is preheated, then evaporated and then superheated. The exiting from the heat exchanger 1 superheated steam is passed to generate electricity in the downstream steam turbine (not shown).
- the forced-circulation principle for example Benson principle, working heat exchanger 1 for steam generation generated from the feed water, which enters the inlet collector in liquid form, in the course of the flow within the heat exchanger 1, a superheated steam, which can be removed from the outlet collector 7 ,
- the claws 8 are used to mount the heat exchanger 1.
- the heat-emitting medium is preferably thermal oil, which is heated in the absorber tubes of the parabolic troughs to about 400 ° C.
- thermal oil enters via the inlet port 4 of the outer shell 2 in the heat exchanger 1. From there it flows in the direction of the outlet nozzle 5 and flows around the meandering shaped tube bundle 11. After the thermal oil has released a portion of its heat energy to the water, it passes through the outlet nozzle 5 from the heat exchanger 1 out.
- the shell-side flow of the thermal oil can be directed so that the thermal oil in the lower part of the heat exchanger 1 and exits.
- the space between the inner housing 3 and the outer shell 2 serves as a flow path for the downwardly flowing thermal oil.
- both the inlet and the outlet are arranged in the lower region of the vertically mounted heat exchanger 1.
- FIG. 2 two pipes of a pipe layer are indicated.
- the number of tubes and the tube layers of a tube bundle 11 can be adapted to the different conditions.
- FIG. 3 a pipe layer 20 with four tubes 21, 22, 23, 24 shown. This clearly shows the meandering pattern of the tube bundle 11.
- FIG. 4 the arrangement of the individual pipe layers 20, 30 relative to one another is illustrated.
- the pipe sections 15 which are arranged transversely to the central axis 10 of the outer shell 1, each tube with respect to its horizontally adjacent tube when mounted vertically an opposite direction of the pipe flow.
- This opposite flow in the respectively adjacent pipe layers 20, 30 additionally ensures a uniform temperature distribution within the heat exchanger 1. Due to the uniform and compact arrangement of pipes and pipe layers to each other simple spacers 12 can be used.
- FIG. 5 an inventive collector is shown enlarged. These are the inlet header 6. Inlet and outlet header 6, 7 differ only slightly from each other. Well recognizable are the nipples 22a, 33a, which serve to secure the tubes 22, 33 to the inlet header 6. The nipples 21a, 22a, 23a, 24a and thus also the tubes 21, 22, 23, 24 of the first tube layer 20 lie on a first circumferential line 13 and each open at an equal angle ⁇ offset in the collector 6. Likewise, the tubes open 31st , 32, 33, 34 with the respective nipples 31 a, 32 a, 33 a, 34 a on an adjacent circumferential line 14 offset by the same angle ⁇ in the collector. 6
- FIG. 6 shows a plan view of the collector 6.
- the angle ⁇ by which a tube of a layer is offset from the next tube of the same position, in this case is in each case 45 °.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
- Die Erfindung betrifft einen Wärmetauscher zur Dampferzeugung für Solarkraftwerkegemäß dem Oberbegriff des Anspruchs 1.
- Aus dem Stand der Technik sind modular aufgebaute Wärmetauscher bekannt, welche nach dem sogenannten Umlauf-Prinzip, Natur- oder Zwangsumlauf, arbeiten. Dabei umfasst der Wärmetauscher eine Anzahl von Wärmetauschermodulen, beispielsweise ein Vorwärmermodul, ein oder mehrere Verdampfermodule und ein Überhitzermodul, die mittels jeweiliger Eintritts- und Austrittssammler, Umlaufrohre und einer externen Dampftrommel zu einer funktionellen Einheit zusammengeschaltet werden. Ein gattungsgemäßer Wärmetauscher mit parallel zur Längsachse des Außenmantels verlaufenden Umlaufrohrlagen ist z.B. in
FR 1,359,081 A - In Solarkraftwerken treten unter anderem in Abhängigkeit von der Jahreszeit, Tageszeit und auch der Wetterlage häufig große Last- und Temperaturwechsel auf, so dass sich die Auslegung des Dampferzeugers für solarthermische Kraftwerke als schwierig erweist. Schnelle Anfahrgeschwindigkeiten mit hohen Temperaturgradienten, geringer Platzbedarf sowie geringe Herstellungs- und Betriebskosten sind nur einige der wichtigen Anforderungen an einen Wärmetauscher zur Dampferzeugung für eine Solarkraftanlage.
- Es besteht also Bedarf an noch kompakteren und noch effizienteren Wärmetauschern für Solarkraftanlagen, die zudem kostengünstig hergestellt und sicher betrieben werden können.
- Daher liegt der Erfindung die Aufgabe zugrunde, einen Wärmetauscher anzugeben, welcher eine kompakte Bauweise, eine kostengünstige Herstellung sowie einen sicheren Betrieb ermöglicht.
- Die Aufgabe wird gelöst mit einem Wärmetauscher gemäß dem unabhängigen Anspruch. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen wiedergegeben.
- Der erfindungsgemäße Wärmetauscher zur Dampferzeugung für Solarkraftwerke umfasst einen Außenmantel mit einem Einlass- und einem Auslassstutzen für ein wärmeabgebendes Medium. Ferner umfasst der Wärmetauscher einen Eintritts- und einen Austrittssammler für ein wärmeaufnehmendes Medium, vorzugsweise Wasser, wobei der Eintritts- und der Austrittssammler im Wesentlichen innerhalb des Außenmantels angeordnet sind. Darüber hinaus befindet sich innerhalb des Außenmantels ein Rohrbündel mit einer Anzahl von Rohrlagen mit durchgehenden Rohren, welche vom wärmeabgebenden Medium vollständig umströmbar ausgebildet sind und welche als Strömungswege für das wärmeaufnehmende Medium vom Eintrittssammler zum Austrittssammler ausgebildet sind. Dabei ist das Rohrbündel mäanderartig ausgebildet. Der erfindungsgemäße Wärmetauscher ist für eine Dampferzeugung nach dem Zwangsdurchlauf-Prinzip ausgelegt, so dass das in den Eintrittssammler eingespeiste wärmeaufnehmende Medium im Verlauf der Strömungswege nacheinander eine Vorwärmung, eine Verdampfung und eine Überhitzung erfährt, so dass aus dem Austrittssammler ein überhitzter Dampf austritt. Dabei wird die für die Vorwärmung, Verdampfung und Überhitzung erforderliche Energie im Wesentlichen nur durch die Wärmeübertragung vom wärmeabgebenden Medium auf das wärmeaufnehmende Medium innerhalb des Außenmantels zur Verfügung gestellt.
- Der Wärmetauscher vereint also mindestens drei verschiedene Apparate, nämlich Vorwärmer, Verdampfer und Überhitzer, in einem. Durch die mäanderartige Anordnung der Rohre erfolgt der Wärmeaustausch nach dem Gegen- bzw. Kreuzstromprinzip. Die mäanderförmigen Rohre werden von einem wärmeaufnehmenden Medium, vorzugsweise Wasser, durchströmt. Durch die mäanderförmige Anordnung der Rohrbündel wird die Baugröße des Wärmetauschers insgesamt verringert, die Wärmeübertragung vom wärmeabgebenden zum wärmeaufnehmenden Medium verbessert und ferner die Thermoelastizität des Aufbaus erhöht.
- Durch die Auslegung des Wärmetauschers zur Dampferzeugung für Solarkraftanlagen nach dem Zwangsdurchlauf-Prinzip, d. h. das eingespeiste wärmeaufnehmende Medium, vorzugsweise Wasser, wird "in einem Durchlauf" vom Eintrittssammler hin zum Austrittssammler vorgewärmt, anschließend verdampft und anschließend überhitzt, wird ein äußert kompakter und effizienter Dampferzeuger verwirklicht. Anstelle der Verwendung von mehreren, separaten Wärmetauschermodulen, die eine kostenaufwändige und komplizierte Zusammenschaltung benötigen, wird das Wasser, welches in flüssigem Zustand über den Eintrittssammler in den Wärmetauscher eintritt, im Verlauf seiner Strömung innerhalb der Wärmetauscherrohre in Richtung Austrittssammler vorgewärmt, verdampft und überhitzt, so dass über den Austrittssammler ein überhitzter Dampf den Wärmetauscher verlässt, welcher der Dampfturbine zur Stromgewinnung zugeführt werden kann.
- Durch die Einsparung von zusätzlichen Dampftrommeln, Umlaufleitungen und Verbindungen zwischen den Einzelmodulen werden nicht nur Materialkosten in erheblichem Maße reduziert, sondern auch die Herstellungs- und Betriebskosten, da ein Großteil von aufwändigen Schweißarbeiten und die anschließende Prüfung derselben entfallen. Durch den Wegfall der sich außerhalb des Außenmantels befindlichen Bauteile, wie beispielsweise Dampftrommel sowie diversen Rohrleitungen, wird erfindungsgemäß ein kompakter Aufbau ermöglicht und zugleich ein höherer Wirkungsgrad des Wärmetauschers erzielt, da die Wärmeübertragung zur Dampferzeugung im Wesentlichen nur innerhalb des Außenmantels des Wärmetauschers stattfindet und somit keine zusätzlichen Wärmeverluste aufgrund von sich außerhalb des Wärmetauscheraußenmantels befindlichen Bauteilen auftreten.
- "Durchgehende Rohre" bedeutet in diesem Zusammenhang, dass jedes Rohr, welches jeweils einen Strömungsweg für das wärmeaufnehmende Medium definiert, zwischen dem Eintrittssammler und dem Austrittssammler keinerlei Verzweigungs- oder Vermischungsstellen aufweist. Die Rohre verlaufen zudem vollständig "innerhalb des Außenmantels", das bedeutet, dass keine Teile des Rohrbündels sich außerhalb des Außenmantels befinden und dass die Rohre vollständig vom wärmeabgebenden Medium umströmt werden. Es werden also keinerlei externe Energiequellen benötigt, die eine Vorwärmung, Verdampfung oder Überhitzung fördern. Die Heizflächen der durchgehenden Rohre selbst bilden also in Strömungsrichtung betrachtet nacheinander die Vorwärmer-, Verdampfer- und Überhitzerzone. Äußerlich sind diese einzelnen "Zonen" nicht erkennbar, da nur ein Rohrbündel zwischen dem Eintrittssammler und dem Austrittssammler angeordnet ist und das Rohrbündel einen gleichbleibenden Verlauf mit sich wiederholendem Mäander-Muster aufweist.
- Erfindungsgemäß wird der Wärmetauscher vertikal aufgestellt. Die vertikale Aufstellung ist bevorzugt, da sie eine noch bessere Flächennutzung erlaubt. Dabei können mehrere der erfindungsgemäßen Wärmetauscher nebeneinander parallel auf einer relativ kleinen Fläche betrieben werden. Bei thermischen Solarkraftanlagen sind die Platzverhältnisse ungünstig, da die Parabolrinnenkollektoren sehr viel Platz einnehmen. Die platzsparende Bauweise der erfindungsgemäßen Wärmetauscher erlaubt eine fast ortsungebundene Aufstellung, so dass die Strömungswege der aufgeheizten Medien zum Wärmetauscher zweckmäßiger Weise verkürzt werden können. Die Temperaturen des wärmeabgebenden Mediums bei Eintritt in den Wärmetauscher sind höher, so dass die Wärmeausbeute besser wird.
- Eine weitere bevorzugte Ausführungsvariante der Erfindung sieht vor, dass das Rohrbündel bei vertikaler Aufstellung eine Anzahl von vertikalen Rohrlagen aufweist, wobei jede Rohrlage aus einer gleichen Anzahl von Rohren gebildet wird, und dass die Rohrlagen so angeordnet sind, dass die Rohre der einzelnen Rohrlagen in horizontaler Richtung genau nebeneinander liegend ausgerichtet sind, wobei die Strömungsrichtungen des wärmeaufnehmenden Mediums in den horizontal benachbarten, quer zur Mittelachse des Außenmantels angeordneten Rohrabschnitten entgegengesetzt sind. Die Ausführung der Rohrbündel in einzelnen Rohrlagen ermöglicht eine extrem kompakte Bauweise. Dadurch dass die Rohre horizontal genau nebeneinander liegen, können herkömmliche Abstandhalter zwischen den Rohren verwendet werden. Die entgegengesetzte Strömung in den horizontal benachbarten Rohrabschnitten, die quer zur Mittelachse des Außenmantels angeordnet sind, begünstigt die symmetrische Temperaturverteilung im Wärmetauscher in Bezug auf die Mittelachse.
- Vorzugsweise weisen der Eintritts- und der Austrittssammler einen kreisförmigen Querschnitt auf. Dabei sind die Rohre einer Rohrlage auf einer Umfangslinie des Eintritts- bzw. Austrittssammlers voneinander um einen gleichen Winkel versetzt mit dem Eintritts- bzw. Austrittssammler verbunden. Auf diese Weise wird das Herstellungsverfahren erleichtert, da genug Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern geboten wird.
- Weiterhin bevorzugt, sind die Rohre der benachbarten Rohrlagen so mit dem Eintritts- bzw. Austrittssammler verbunden, dass die Rohre der einen Rohrlage bezüglich der Rohre der benachbarten Rohrlage um einen Winkel versetzt auf einer benachbarten Umfangslinie des jeweiligen Eintritts- und Austrittssammlers angeordnet sind. Hierdurch können die Umfangsflächen der Ein- bzw. Austrittssammler optimal ausgenutzt werden, so dass die Anordnung der Rohrlagen kompakt gestaltet werden kann. Es bleibt immer noch genügend Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern.
- Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Vorwärmung des wärmeaufnehmenden Mediums stattfindet. Der separate Vorwärmerabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Vorwärmerabschnitt hauptsächlich die Vorwärmung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Vorwärmung komplett außerhalb des Außenmantels, d. h. in einem separaten Vorwärmer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Verdampfung und die Überhitzung des wärmeaufnehmenden Mediums ausgelegt.
- Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Verdampfung des wärmeaufnehmenden Mediums stattfindet. Der separate Verdampferabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Verdampferabschnitt hauptsächlich die Verdampfung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Verdampfung komplett außerhalb des Außenmantels, d. h. in einem separaten Verdampfer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Vorwärmung und die Überhitzung des wärmeaufnehmenden Mediums ausgelegt.
- Gemäß einer weiteren Ausführungsform der Erfindung weist das Rohrbündel einen separaten Abschnitt auf, in dem vorwiegend die Überhitzung des wärmeaufnehmenden Mediums stattfindet. Der separate Überhitzerabschnitt kann beispielsweise durch eine örtliche Trennung innerhalb des Außenmantels realisiert werden. Es ist auch möglich, die Strömung des wärmeabgebenden Medium und folglich die Temperaturverteilung im Wärmetauscher so zu steuern, dass in diesem Überhitzerabschnitt hauptsächlich die Überhitzung des wärmeaufnehmenden Mediums stattfindet. Alternativ könnte auch die Überhitzung komplett außerhalb des Außenmantels, d. h. in einem separaten Überhitzer, erfolgen. In diesem Fall wäre der erfindungsgemäße Wärmetauscher vorwiegend für die Vorwärmung und die Verdampfung des wärmeaufnehmenden Mediums ausgelegt.
- Vorzugsweise sind die Rohre über Nippel mit dem Eintritts- und Austrittssammler verbunden. Hierdurch wird die Verbindung des kompakten Rohrbündels am Eintritts- und Austrittssammler vereinfacht. Die Verbindung zwischen den Nippeln und den einzelnen Rohren erfolgt vorzugsweise stoffschlüssig, beispielsweise durch Schweißen. Der Schweißvorgang kann automatisiert ablaufen. Anschließend werden die Schweißnähte einzeln überprüft, beispielsweise mit Hilfe des Röntgens.
- In einer bevorzugten Ausführungsform der Erfindung sind die Rohre ohne Nippel direkt mit dem Eintritts- bzw. Austrittssammler verbunden. Auch in diesem Fall erfolgt die Verbindung zwischen den Sammlern und den einzelnen Rohren vorzugsweise stoffschlüssig, beispielsweise durch Schweißen. Der Schweißvorgang kann auch hier automatisiert ablaufen. Anschließend werden die Schweißnähte einzeln überprüft, beispielsweise mit Hilfe des Röntgens.
- Vorzugsweise sind die Nippel ihrerseits stoffschlüssig, beispielsweise mittels Schweißen, mit dem Eintritts- und Austrittssammler verbunden. Auch hier kann der Schweißvorgang automatisch ablaufen.
- Gemäß einer weiteren Ausführungsform der Erfindung sind die Nippel direkt aus dem Material des Eintritts- bzw. Austrittssammlers spanend gefertigt. Beispielsweise können die Nippel aus dem zunächst rohrförmigen Material des Eintritts- bzw. Austrittssammlers herausgefräst sein. Hierdurch werden eventuelle Schäden infolge von Schweißarbeiten verringert. Zudem entfällt hierdurch die Prüfung der einzelnen Schweißnähte zwischen den Nippeln und dem jeweiligen Sammler.
- Gemäß einer bevorzugten Weiterbildung der Erfindung sind die Rohre des Rohrbündels in einem Innengehäuse angeordnet, welches konzentrisch innerhalb des Außenmantels angeordnet ist und eine Ein- und eine Austrittsöffnung für das wärmeabgebende Medium aufweist. Das Querschnittsprofil des Innengehäuses ist vorzugsweise rechteckig, so dass das Rohbündel möglichst eng von diesem Innengehäuse umschlossen wird. Durch die zusätzliche Umschließung der wärmeaustauschenden Komponenten wird eine weitere Isolierung zwischen den Wärmetauschermodulen und der Umgebung geschaffen. Dabei können die Eintritts- und die Austrittsöffnung des Innengehäuses mit dem korrespondieren Einlass- bzw. Auslassstutzen derart verbunden sein, dass ein abgetrennter Raum zwischen dem Außenmantel und dem Innengehäuse geschaffen wird. Alternativ kann auch eine Strömung des wärmeabgebenden Medium entlang der Innenwandung des Außenmantels zugelassen werden.
- In einer vorteilhaften Ausführungsform der Erfindung sind der Einlass- und der Auslassstutzen für das wärmeabgebende Medium bei der vertikalen Aufstellung des Wärmetauschers im unteren Teil des Außenmantels angeordnet. Hierdurch wird die Kompaktheit des Wärmetauschers noch weiter erhöht. Ferner werden dadurch die Wartungsarbeiten erleichtert, da die mantelseitigen Anschlüsse in greifbarer Bodennähe angeordnet sind. Dabei wird der Raum zwischen dem Außenmantel und dem Innengehäuse als Strömungskanal für das wärmeabgebende Medium genutzt. Das heiße wärmeabgebende Medium tritt über den Einlassstutzen des Außenmantels und die Eintrittsöffnung des Innengehäuses in das Innere des Innengehäuses und strömt nach oben. Anschließend strömt das wärmeabgebende Medium durch den ringförmigen Strömungskanal, welcher durch die konzentrische Anordnung des Außenmantels und des Innengehäuses entsteht, zurück nach unten, wo es dann über den Auslassstutzen den Außenmantel verlässt. Auf diese Weise wird die Verweilzeit des wärmeabgebenden Mediums im Wärmetauscher verlängert, so dass die Wärmeübertragung zum wärmeaufnehmenden Medium insgesamt verbessert wird.
- Nachfolgend wird die Erfindung anhand von Figuren näher beschrieben. Es zeigen schematisch:
-
Fig. 1 eine Seitenansicht einer Ausführungsform des erfindungsgemäßen Wärmetauschers; -
Fig. 2 eine Schnittansicht entlang der Linie A-A ausFig. 1 ; -
Fig. 3 eine Detailansicht "X" ausFig. 2 ; -
Fig. 4 eine Schnittansicht entlang der Linie B-B ausFig. 3 ; -
Fig. 5 eine Detailansicht des Eintrittssammlers ausFig. 1 und 2 ; -
Fig. 6 eine Draufsicht des Eintrittssammlers ausFig. 5 ; -
Figuren 1 und 2 zeigen ein Ausführungsbeispiel des erfindungsgemäßen Wärmetauschers 1. Der Wärmetauscher 1 ist in platzsparender Weise vertikal aufgestellt. In dem Außenmantel 2 befindet sich ein Innengehäuse 3, welches ein rechteckiges Querschnittsprofil aufweist. In dem Innengehäuse 3 sind die mäanderförmig verlaufenden Rohre des Rohrbündels 11 angeordnet. Das wärmeaufnehmende Medium, beispielsweise Wasser, tritt über den Eintrittssammler 6 in den Wärmetauscher 1 ein. Nach dem Durchströmen der Rohre des Rohrbündels 11 tritt es über den Austrittssammler 7 aus dem Wärmetauscher 1 heraus. Auf dem Weg vom Eintrittssammler 6 zum Austrittssammler 7 wird das Wasser vorgewärmt, anschließend verdampft und anschließend überhitzt. Der aus dem Wärmetauscher 1 austretende überhitzte Dampf wird zur Stromerzeugung in die nachgeschaltete Dampfturbine (nicht dargestellt) geleitet. Äußerlich sind die einzelnen "Zonen", nämlich Vorwärmer, Verdampfer und Überhitzer, nicht erkennbar. Der nach dem Zwangsdurchlauf-Prinzip, beispielsweise Benson-Prinzip, arbeitende Wärmetauscher 1 zur Dampferzeugung erzeugt aus dem Speisewasser, das in flüssiger Form in den Eintrittssammler eintritt, im Laufe der Strömung innerhalb des Wärmetauschers 1 einen überhitzten Wasserdampf, welcher dem Austrittssammler 7 entnommen werden kann. Damit entfallen die üblicherweise verwendeten Dampftrommeln, Umlaufrohre, Eintritts- und Austrittssammler sowie unzählige Schweißnähte, so dass die Kompaktheit erhöht wird und die Produktionskosten eingespart werden. Die Pratzen 8 dienen der Montage des Wärmetauschers 1. Über die Mannlöcher 9, die durchsichtige Glasfenster und/oder Verschlussmittel aufweisen, können in einfacher Weise Wartungsarbeiten durchgeführt werden. - Beim wärmeabgebenden Medium handelt es sich um vorzugsweise Thermoöl, welches in den Absorberrohren der Parabolrinnen auf ca. 400 °C erhitzt wird. Alternativ können flüssige Salze oder andere geeignete Wärmeträgermedien verwendet werden. Das Thermoöl tritt über den Einlassstutzen 4 des Außenmantels 2 in den Wärmetauscher 1 ein. Von dort strömt es in Richtung des Auslassstutzens 5 und umströmt dabei das mäanderartig geformte Rohrbündel 11. Nachdem das Thermoöl einen Teil seiner Wärmeenergie an das Wasser abgegeben hat, tritt es über den Austrittsstutzen 5 aus dem Wärmetauscher 1 heraus.
- Gemäß einem nicht dargestellten Ausführungsbeispiel kann die mantelseitige Strömung des Thermoöls derart geleitet werden, dass das Thermoöl im unteren Teil des Wärmetauschers 1 ein- und austritt. Dabei dient der Raum zwischen dem Innengehäuse 3 und dem Außenmantel 2 als Strömungsweg für das nach unten strömende Thermoöl. In diesem Fall sind sowohl der Einlass- als auch der Auslassstutzen im unteren Bereich des vertikal aufgestellten Wärmetauschers 1 angeordnet.
- In
Figur 2 sind zwei Rohre einer Rohrlage angedeutet. Selbstverständlich kann die Anzahl der Rohre sowie der Rohrlagen eines Rohrbündels 11 den unterschiedlichen Bedingungen entsprechend angepasst werden. So ist beispielsweise inFigur 3 eine Rohrlage 20 mit vier Rohren 21, 22, 23, 24 dargestellt. Darin ist deutlich das mäanderartige Muster des Rohrbündels 11 erkennbar. -
Figur 4 verschaulicht die Anordnung der einzelnen Rohrlagen 20, 30 zueinander. In den Rohrabschnitten 15 (Fig. 3 ), die quer zur Mittelachse 10 des Außenmantels 1 angeordnet sind, weist jedes Rohr bezüglich seines horizontal benachbarten Rohres bei vertikaler Aufstellung eine entgegengesetzte Richtung der Rohrströmung auf. Dies bedeutet beispielsweise, dass die Strömung im Rohr 21 der Strömung im horizontal benachbarten Rohr 34 entgegengesetzt ist. Diese entgegengesetzte Strömung in den jeweils benachbarten Rohrlagen 20, 30 sorgt zusätzlich für eine gleichmäßige Temperaturverteilung innerhalb des Wärmetauschers 1. Aufgrund der gleichmäßigen und kompakten Anordnung von Rohren und Rohrlagen zueinander können einfache Abstandshalter 12 verwendet werden. - In
Figur 5 wird ein erfindungsgemäßer Sammler vergrößert dargestellt. Es handelt sich hierbei um den Eintrittssammler 6. Eintritts- und Austrittssammler 6, 7 unterscheiden sich nur geringfügig voneinander. Gut erkennbar sind die Nippel 22a, 33a, die der Befestigung der Rohre 22, 33 am Eintrittssammler 6 dienen. Die Nippel 21a, 22a, 23a, 24a und somit auch die Rohre 21, 22, 23, 24 der ersten Rohrlage 20 liegen auf einer ersten Umfangslinie 13 und münden jeweils um einen gleichen Winkel α versetzt in den Sammler 6. Ebenso münden die Rohre 31, 32, 33, 34 mit den jeweiligen Nippeln 31 a, 32a, 33a, 34a auf einer benachbarten Umfangslinie 14 um den gleichen Winkel α versetzt in den Sammler 6. -
Figur 6 zeigt eine Draufsicht auf den Sammler 6. Der Winkel α, um den ein Rohr einer Lage vom nächsten Rohr der gleichen Lage versetzt ist, beträgt in diesem Fall jeweils 45°. Die zweite Lage 30, die zur ersten Lage 20 benachbart ist, ist auf dem Sammler 6 gegenüber der ersten Lage 20 um genau β = 22,5° versetzt angeordnet, so dass die Rohre 31, 32, 33, 34 der zweiten Lage 30 inFigur 6 jeweils mittig zwischen den Rohren 21, 22, 23, 24 der ersten Lage 20 sichtbar sind. Durch diese regelmäßig horizontal und vertikal versetzte Anordnung von Nippeln am Sammler 6 bleibt trotz der hohen Kompaktheit immer ein genügender Abstand für Schweißarbeiten oder weitere Fertigungsschritte.
Claims (12)
- Wärmetauscher (1)mit vertikaler Aufstellung zur Dampferzeugung für Solarkraftwerke, umfassend:- einen Außenmantel (2) mit einem Einlass- (4) und einem Auslassstutzen (5) für ein wärmeabgebendes Medium,- einen Eintritts- (6) und einen Austrittssammler (7) für ein wärmeaufnehmendes Medium, vorzugsweise Wasser, wobei der Eintritts- (6) und der Austrittssammler (7) im Wesentlichen innerhalb des Außenmantels (2) angeordnet sind,- ein Rohrbündel (11) innerhalb des Außenmantels (2) mit einer Anzahl von Rohrlagen (20, 30) mit durchgehenden Rohren (21, 22, 23, 24, 33, 34), welche vom wärmeabgebenden Medium vollständig umströmbar ausgebildet sind und welche als Strömungswege für das wärmeaufnehmende Medium vom Eintrittssammler (6) zum Austrittssammler (7) ausgebildet sind, wobei das Rohrbündel (11) mäanderartig ausgebildet ist,die Rohrlagen (20, 30) so angeordnet sind, dass die Rohre (21, 22, 23, 24, 33, 34) der einzelnen Rohrlagen (20, 30) in horizontaler Richtung genau nebeneinander liegend ausgerichtet sind, wobei die Strömungsrichtungen des wärmeaufnehmenden Mediums in den horizontal benachbarten, quer zur Mittelachse (10) des Außenmantels (2) angeordneten Rohrabschnitten (15) entgegengesetzt sind, und dass die Rohrlagen (20, 30) vertikal benachbart sind, wobei jede Rohrlage (20, 30) aus einer gleichen Anzahl von Rohren (21, 22, 23, 24, 33, 34) gebildet wird.
wobei der Wärmetauscher (1) für die Dampferzeugung nach dem Zwangsdurchlauf-Prinzip ausgelegt ist, so dass das in den Eintrittssammler (6) eingespeiste wärmeaufnehmende Medium im Verlauf der Strömungswege nacheinander eine Vorwärmung, eine Verdampfung und eine Überhitzung erfährt, so dass aus dem Austrittssammler (7) ein überhitzter Dampf austritt, und
wobei die für die Vorwärmung, Verdampfung und Überhitzung erforderliche Energie im Wesentlichen allein durch die Wärmeübertragung vom wärmeabgebenden Medium auf das wärmeaufnehmende Medium innerhalb des Wärmetauschers (1) zur Verfügung gestellt wird, dadurch gekennzeichnet, dass - Wärmetauscher (1) nach Anspruch 1,
dadurch gekennzeichnet,
dass der Eintritts- (6) und der Austrittssammler (7) einen kreisförmigen Querschnitt aufweisen, und die Rohre (21, 22, 23, 24) einer Rohrlage (20) auf einer Umfangslinie (13) des Eintritts-(6) und Austrittssammlers (7) voneinander um einen gleichen Winkel (α) versetzt mit dem Eintritts- (6) und Austrittssammler (7) verbunden sind. - Wärmetauscher (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Rohre (21, 22, 23, 24, 33, 34) der benachbarten Rohrlagen (20, 30) so mit dem Eintritts- (6) und Austrittssammler (7) verbunden sind, dass die Rohre (33, 34) der einen Rohrlage (30) bezüglich der Rohre (21, 22, 23, 24) der benachbarten Rohrlage (20) um einen Winkel (β) versetzt auf einer benachbarten Umfangslinie (14) des Eintritts- (6) und Austrittssammlers (7) angeordnet sind. - Wärmetauscher (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Rohrbündel (11) einen separaten Abschnitt aufweist, in dem vorwiegend die Vorwärmung des wärmeaufnehmenden Mediums stattfindet. - Wärmetauscher (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Rohrbündel (11) einen separaten Abschnitt aufweist, in dem vorwiegend die Verdampfung des wärmeaufnehmenden Mediums stattfindet - Wärmetauscher (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Rohrbündel (11) einen separaten Abschnitt aufweist, in dem vorwiegend die Überhitzung des wärmeaufnehmenden Mediums stattfindet. - Wärmetauscher (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Rohre (21, 22, 23, 24, 33, 34) über Nippel (21 a, 22a, 23a, 24a, 31 a, 32a, 33a, 34a) mit dem Eintritts- (6) bzw. Austrittssammler (7) verbunden sind. - Wärmetauscher (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Rohre (21, 22, 23, 24, 33, 34) ohne Nippel direkt mit dem Eintritts- (6) bzw. Austrittssammler (7) verbunden sind. - Wärmetauscher (1) nach Anspruch 7,
dadurch gekennzeichnet,
dass die Nippel (21a, 22a, 23a, 24a, 31a, 32a, 33a, 34a) stoffschlüssig mit dem Eintritts- (6) bzw. dem Austrittssammler (7) verbunden sind. - Wärmetauscher (1) nach Anspruch 7,
dadurch gekennzeichnet,
dass die Nippel (21a, 22a, 23a, 24a, 31a, 32a, 33a, 34a) aus dem Material des Eintritts- (6) bzw. Austrittssammlers (7) spanend gefertigt sind. - Wärmetauscher (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Rohrbündel (11) in einem Innengehäuse (3) angeordnet ist, welches konzentrisch innerhalb des Außenmantels (2) angeordnet ist und eine Ein- und eine Austrittsöffnung für das wärmeabgebende Medium aufweist. - Wärmetauscher (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Einlass- (4) und der Auslassstutzen (5) für das wärmeabgebende Medium bei der vertikalen Aufstellung des Wärmetauschers (1) im unteren Teil des Außenmantels (2) angeordnet sind.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09014365.2A EP2322854B1 (de) | 2009-11-17 | 2009-11-17 | Wärmetauscher zur Dampferzeugung für Solarkraftwerke |
ES09014365T ES2435550T3 (es) | 2009-11-17 | 2009-11-17 | Intercambiador de calor para la generación de vapor para centrales de energía solar. |
PT90143652T PT2322854E (pt) | 2009-11-17 | 2009-11-17 | Permutador térmico para a produção de vapor para centrais de energia solar |
KR1020127013213A KR20120117748A (ko) | 2009-11-17 | 2010-10-25 | 태양열 발전기용의 증기 발생을 위한 열 교환기 |
US13/510,374 US20130112156A1 (en) | 2009-11-17 | 2010-10-25 | Heat exchanger for generating steam for solar power plants |
AU2010321334A AU2010321334B2 (en) | 2009-11-17 | 2010-10-25 | Heat exchanger for generating steam for solar power plants |
PCT/EP2010/006512 WO2011060870A1 (de) | 2009-11-17 | 2010-10-25 | Wärmetauscher zur dampferzeugung für solarkraftwerke |
CN201080052149.4A CN102667338B (zh) | 2009-11-17 | 2010-10-25 | 用于太阳能发电厂的产生蒸汽的热交换器 |
ZA2012/03459A ZA201203459B (en) | 2009-11-17 | 2012-05-11 | Heat exchanger for generating steam for solar power plants |
MA34955A MA33812B1 (fr) | 2009-11-17 | 2012-06-11 | Echangeur thermique pour la production de vapeur pour centrales solaires |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09014365.2A EP2322854B1 (de) | 2009-11-17 | 2009-11-17 | Wärmetauscher zur Dampferzeugung für Solarkraftwerke |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2322854A1 EP2322854A1 (de) | 2011-05-18 |
EP2322854B1 true EP2322854B1 (de) | 2013-09-04 |
Family
ID=43003437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09014365.2A Not-in-force EP2322854B1 (de) | 2009-11-17 | 2009-11-17 | Wärmetauscher zur Dampferzeugung für Solarkraftwerke |
Country Status (10)
Country | Link |
---|---|
US (1) | US20130112156A1 (de) |
EP (1) | EP2322854B1 (de) |
KR (1) | KR20120117748A (de) |
CN (1) | CN102667338B (de) |
AU (1) | AU2010321334B2 (de) |
ES (1) | ES2435550T3 (de) |
MA (1) | MA33812B1 (de) |
PT (1) | PT2322854E (de) |
WO (1) | WO2011060870A1 (de) |
ZA (1) | ZA201203459B (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020253924A1 (en) | 2019-06-17 | 2020-12-24 | Aalborg Csp A/S | Heat exchanger with pipe bundle |
US11739931B2 (en) | 2018-10-01 | 2023-08-29 | Header-coil Company A/S | Heat exchanger, such as for a solar power plant |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102721031A (zh) * | 2012-06-11 | 2012-10-10 | 东方电气集团东方汽轮机有限公司 | 一种直流式蒸汽发生器 |
WO2015191266A1 (en) * | 2014-06-10 | 2015-12-17 | Siemens Aktiengesellschaft | Modular heat recovery steam generator construction |
JP6767975B2 (ja) * | 2014-07-03 | 2020-10-14 | タイル ソーラー, エルエルシーTyll Solar, Llc | 太陽エネルギーシステム |
US11150037B2 (en) | 2014-10-10 | 2021-10-19 | Baltimore Aircoil Company, Inc. | Heat exchange apparatus |
CN104949150A (zh) * | 2015-07-03 | 2015-09-30 | 哈尔滨哈锅锅炉工程技术有限公司 | 一种锅炉管式空气预热器管箱与连通箱的连接结构 |
CN107606641A (zh) * | 2017-10-27 | 2018-01-19 | 四川省洪雅青衣江元明粉有限公司 | 一种基于mvr技术中的预热器 |
US11283400B2 (en) | 2018-08-11 | 2022-03-22 | Tyll Solar, Llc | Solar energy system |
CN111912260A (zh) * | 2020-06-24 | 2020-11-10 | 哈尔滨汽轮机厂辅机工程有限公司 | 一种集预热、蒸发、过热为一体的换热设备 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2221382A (en) * | 1937-12-14 | 1940-11-12 | Riley Stoker Corp | Steam generator |
US2547589A (en) * | 1947-07-02 | 1951-04-03 | Comb Eng Superheater Inc | Apparatus for extracting heat from gases under pressure |
US3110288A (en) * | 1958-06-26 | 1963-11-12 | Babcock & Wilcox Ltd | Heat exchanger construction |
US2980083A (en) * | 1958-09-22 | 1961-04-18 | Combustion Eng | Heat exchange organization |
FR1359081A (fr) | 1961-09-07 | 1964-04-24 | Foster Wheeler Ltd | Perfectionnements aux échangeurs de chaleurs, particulièrement pour centrales nucléaires |
FR1351602A (fr) * | 1962-12-29 | 1964-02-07 | Babcock & Wilcox France | Perfectionnements aux échangeurs de chaleur de récupération |
US4296804A (en) * | 1979-06-28 | 1981-10-27 | Resistoflex Corporation | Corrosion resistant heat exchanger element and method of manufacture |
US4325171A (en) * | 1979-10-15 | 1982-04-20 | Econo-Therm Energy Systems Corporation | Means and method for sealing heat exchanger walls |
FR2540971B1 (fr) * | 1983-02-10 | 1985-09-27 | Novatome | Generateur de vapeur pour un reacteur nucleaire refroidi par du metal liquide |
US4753773A (en) * | 1985-05-09 | 1988-06-28 | Stone & Webster Engineering Corporation | Double tube steam generator |
US5044427A (en) * | 1990-08-31 | 1991-09-03 | Phillips Petroleum Company | Heat exchanger |
DE4321250A1 (de) * | 1993-06-25 | 1995-01-05 | Fritz Egger Gmbh | Rohrbündel-Wärmetauscher |
DE29510720U1 (de) * | 1995-07-01 | 1995-09-07 | BDAG Balcke-Dürr AG, 40882 Ratingen | Wärmetauscher |
DE19545308A1 (de) * | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Konvektiver Gegenstromwärmeübertrager |
US6019070A (en) * | 1998-12-03 | 2000-02-01 | Duffy; Thomas E. | Circuit assembly for once-through steam generators |
JP2003090690A (ja) * | 2001-09-18 | 2003-03-28 | Hitachi Ltd | 積層型熱交換器及び冷凍サイクル |
US6779596B2 (en) * | 2002-03-22 | 2004-08-24 | Exxonmobil Research And Engineering Company | Heat exchanger with reduced fouling |
US6820685B1 (en) * | 2004-02-26 | 2004-11-23 | Baltimore Aircoil Company, Inc. | Densified heat transfer tube bundle |
DE102004032611A1 (de) * | 2004-07-05 | 2006-02-02 | Babcock-Hitachi Europe Gmbh | Herstellung einer Verbindung zwischen Dampferzeuger-Heizflächen und einem Sammler und/oder Verteiler |
CN101245972A (zh) * | 2008-03-14 | 2008-08-20 | 泰州市新恒盛机械制造有限公司 | 穿片式换热器 |
ES2582657T3 (es) * | 2008-09-08 | 2016-09-14 | Balcke-Dürr GmbH | Intercambiador térmico en modo de construcción modular |
CA2842856A1 (en) * | 2011-07-29 | 2013-02-07 | Babcock & Wilcox Power Generation Group, Inc. | Shop assembled vertical serpentine flow molten salt solar receiver |
-
2009
- 2009-11-17 PT PT90143652T patent/PT2322854E/pt unknown
- 2009-11-17 ES ES09014365T patent/ES2435550T3/es active Active
- 2009-11-17 EP EP09014365.2A patent/EP2322854B1/de not_active Not-in-force
-
2010
- 2010-10-25 KR KR1020127013213A patent/KR20120117748A/ko not_active Application Discontinuation
- 2010-10-25 WO PCT/EP2010/006512 patent/WO2011060870A1/de active Application Filing
- 2010-10-25 CN CN201080052149.4A patent/CN102667338B/zh not_active Expired - Fee Related
- 2010-10-25 US US13/510,374 patent/US20130112156A1/en not_active Abandoned
- 2010-10-25 AU AU2010321334A patent/AU2010321334B2/en not_active Ceased
-
2012
- 2012-05-11 ZA ZA2012/03459A patent/ZA201203459B/en unknown
- 2012-06-11 MA MA34955A patent/MA33812B1/fr unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11739931B2 (en) | 2018-10-01 | 2023-08-29 | Header-coil Company A/S | Heat exchanger, such as for a solar power plant |
WO2020253924A1 (en) | 2019-06-17 | 2020-12-24 | Aalborg Csp A/S | Heat exchanger with pipe bundle |
US12146656B2 (en) | 2019-06-17 | 2024-11-19 | Alfa Laval Aalborg Header-coil Company A/S | Heat exchanger with pipe bundle |
Also Published As
Publication number | Publication date |
---|---|
WO2011060870A1 (de) | 2011-05-26 |
MA33812B1 (fr) | 2012-12-03 |
ES2435550T3 (es) | 2013-12-20 |
CN102667338B (zh) | 2015-02-11 |
KR20120117748A (ko) | 2012-10-24 |
EP2322854A1 (de) | 2011-05-18 |
AU2010321334A1 (en) | 2012-06-14 |
AU2010321334B2 (en) | 2015-12-03 |
PT2322854E (pt) | 2013-09-12 |
CN102667338A (zh) | 2012-09-12 |
US20130112156A1 (en) | 2013-05-09 |
ZA201203459B (en) | 2013-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2322854B1 (de) | Wärmetauscher zur Dampferzeugung für Solarkraftwerke | |
EP2161525B1 (de) | Wärmetauscher in Modulbauweise | |
DE102007024934B4 (de) | Rohrbündelreaktoren mit Druckflüssigkeitskühlung | |
EP2521861B1 (de) | Solarthermisches kraftwerk mit indirekter verdampfung und verfahren zum betrieb eines solchen solarthermischen kraftwerks | |
EP2324285B1 (de) | Abhitzedampferzeuger | |
EP2278220B1 (de) | Wärmetauscher zur Dampferzeugung für ein solarthermisches Kraftwerk | |
EP2321578B1 (de) | Durchlaufdampferzeuger | |
EP2491304B1 (de) | Zyklonabscheider zur phasenseparation eines mehrphasen-fluidstroms, dampfturbinenanlage mit einem zyklonabscheider und zugehöriges betriebsverfahren | |
EP2856055B1 (de) | Verfahren zum wärmeaustausch zwischen einer salzschmelze und einem weiteren medium in einem gewickelten wärmeaustauscher | |
DE1927949A1 (de) | Dampferzeugungs- und -ueberhitzungsvorrichtung,insbesondere fuer mit geschmolzenem Metall,geschmolzenem Metallsalz od.dgl. als Waermeuebertrager arbeitende Kernreaktoren | |
EP0011834B1 (de) | Flüssigmetall-beheizter Dampferzeuger mit integrierter Zwischenüberhitzung | |
EP0265908B1 (de) | Würzekochvorrichtung | |
WO2013026928A2 (de) | Mittels eines wärmeträgermediums beheizbares wärmetauscherrohr einer solarthermischen anlage und wärmeübertragungsverfahren | |
DE1932027A1 (de) | Waermetauscher | |
EP2414730B1 (de) | Vorrichtung zur phasenseparation eines mehrphasen-fluidstroms, dampfturbinenanlage mit einer derartigen vorrichtung und zugehöriges betriebsverfahren | |
EP0172363B1 (de) | Wärmeübertrager, insbesondere zum Kühlen von Gas aus einem Hochtemperaturreaktor | |
DE2249811A1 (de) | Waermeaustauscher | |
EP2080976B1 (de) | Wärmetauscher | |
EP2369265A2 (de) | Solarkollektor mit einem Wellrohr und Anschlüssen | |
DE2711545C2 (de) | Wärmetauscher mit einer Vielzahl von Geradrohrbündeln | |
DE2437016A1 (de) | Waermeaustauscher von kreisfoermigem querschnitt | |
DE102011004278A1 (de) | Solarthermisches Kraftwerk | |
WO1998038457A1 (de) | Solarkraftwerk, insbesondere parabolrinnen-solarkraftwerk | |
DE3215581A1 (de) | Waermetauscher fuer eine kernkraftanlage | |
WO1994005950A1 (de) | Dampferzeuger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20111118 |
|
17Q | First examination report despatched |
Effective date: 20121129 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 9/18 20060101ALI20130301BHEP Ipc: F24J 1/00 20060101ALI20130301BHEP Ipc: F22B 29/06 20060101AFI20130301BHEP Ipc: F28D 7/08 20060101ALI20130301BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130701 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20130905 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 630741 Country of ref document: AT Kind code of ref document: T Effective date: 20130915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009007930 Country of ref document: DE Effective date: 20131031 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2435550 Country of ref document: ES Kind code of ref document: T3 Effective date: 20131220 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20130402033 Country of ref document: GR Effective date: 20131118 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131204 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130717 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140104 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
BERE | Be: lapsed |
Owner name: BALCKE-DURR G.M.B.H. Effective date: 20131130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009007930 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
26N | No opposition filed |
Effective date: 20140605 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131204 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009007930 Country of ref document: DE Effective date: 20140605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091117 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131117 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 630741 Country of ref document: AT Kind code of ref document: T Effective date: 20141117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141117 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20191104 Year of fee payment: 11 Ref country code: DE Payment date: 20191122 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20191127 Year of fee payment: 11 Ref country code: FR Payment date: 20191125 Year of fee payment: 11 Ref country code: IT Payment date: 20191125 Year of fee payment: 11 Ref country code: ES Payment date: 20191202 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20191104 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009007930 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201117 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210601 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201117 |