[go: up one dir, main page]

EP2317533B1 - Capacitive micro-switch comprising a charge drain made up of directed nanotubes on the bottom electrode and method for manufacturing same - Google Patents

Capacitive micro-switch comprising a charge drain made up of directed nanotubes on the bottom electrode and method for manufacturing same Download PDF

Info

Publication number
EP2317533B1
EP2317533B1 EP10189620.7A EP10189620A EP2317533B1 EP 2317533 B1 EP2317533 B1 EP 2317533B1 EP 10189620 A EP10189620 A EP 10189620A EP 2317533 B1 EP2317533 B1 EP 2317533B1
Authority
EP
European Patent Office
Prior art keywords
nanotubes
micro
electrode
membrane
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10189620.7A
Other languages
German (de)
French (fr)
Other versions
EP2317533A1 (en
Inventor
Afshin Ziaei
Matthieu Le Baillif
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2317533A1 publication Critical patent/EP2317533A1/en
Application granted granted Critical
Publication of EP2317533B1 publication Critical patent/EP2317533B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • H01P1/127Strip line switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • H01H2059/0018Special provisions for avoiding charge trapping, e.g. insulation layer between actuating electrodes being permanently polarised by charge trapping so that actuating or release voltage is altered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/036Application nanoparticles, e.g. nanotubes, integrated in switch components, e.g. contacts, the switch itself being clearly of a different scale, e.g. greater than nanoscale

Definitions

  • the field of the invention is that of micro-systems components also called MEMS (acronym for Micro Electro Mechanical Systems) and more particularly microswitches radiofrequency or microwave integrating a deformable membrane under the action of an electrostatic field.
  • MEMS Micro Electro Mechanical Systems
  • the main application areas are telecommunications systems and radars.
  • Micro-system components have been developed for some decades from the technologies implemented for the realization of electronic circuits.
  • They generally comprise a membrane or a thin metal beam, held suspended by supports above conductive surfaces insulated from each other.
  • a control electrode placed under the conductive surfaces and optionally separated from said conductive surfaces by an insulating layer completes the device.
  • the membrane-control electrode assembly is subjected to an electrical voltage by means of the control electrode. In the absence of applied voltage, the membrane is suspended above the conductive surfaces and there is no electrical contact therebetween.
  • the microswitches MEMS radiofrequency or microwave in simple switch.
  • the direct contact between the membrane and the conductive surfaces or the control electrode significantly reduces the service life of the device.
  • a dielectric layer is interposed between the surfaces and the membrane. The simple function is thus transformed into a capacity variation of a capacitor whose armatures consist, on the one hand, of the membrane and, on the other hand, of the control electrode opposite each other. The capacity then varies from a C up value to a C down value.
  • the deformable upper membrane is made by depositing one or more layers of materials, at least one of these layers being a conductive material. These materials are those usually used in microelectronics.
  • the membrane 11 In the initial position, the membrane 11 is at a distance d with respect to an RF line 12, on which a nitride layer 13 is deposited as illustrated in FIG. figure 1 . Assuming that the RF line is also used as an electrode, both ends of the membrane are grounded as illustrated in FIG. figure 2 .
  • the signal passes in the RF line and is short-circuited by the membrane which creates a reflection of the EM wave (microwave signal) on the membrane, the signal does not cross the RF MEMS switch.
  • the actuation used for the RF MEMS switch of the figure 3 is an electrostatic actuation performed by applying a potential between the line (low electrode) and the membrane (high electrode).
  • Other actuations are conceivable such as thermal, piezoelectric, magnetostatic or hybrid actuations (using two or more of the four aforementioned actuations).
  • the type of contact between the membrane and the line is of the capacitive type on the RF MEMS switch of the figure 3 that is, a dielectric layer was deposited on the low electrode.
  • the line, the dielectric layer, the air gap and the membrane form a variable capacitance making it possible to let the microwave signal pass or block.
  • the second type of possible contact is the ohmic contact (metal-metal) between the membrane and the line.
  • the center line is covered with a dielectric at the level of the membrane to prevent there being an ohmic contact and therefore a charge circulation when the membrane is in the low state. This gives the advantage of little or no power consumption to keep the membrane low by using the center line as an actuating electrode.
  • the present invention proposes a new type of micro-switch comprising a drain of electrical charges inserted at the level of the dielectric layer covering the RF line.
  • the subject of the present invention is a condenser-type electrostatic actuator microswitch composed of two armatures, the first of which is a flexible membrane and the second comprises at least one control electrode, the two armatures being separated by a vacuum thickness. or gas and at least one layer of at least one electrical insulating material located on the control electrode characterized in that it further comprises a charge drain consisting of conducting nanotubes oriented on the surface of said electrode, said drain being covered by said layer of electrical insulating material.
  • the orientation of the nanotubes is perpendicular to the surface of said electrode.
  • the nanotubes are carbon nanotubes.
  • the electrical insulating material is a dielectric.
  • the dielectric material is of the Si 3 N 4 or ZrO 2 or PZT type.
  • the ratio of the height of the nanotubes to the thickness of the layer of electrical insulating material is close to 0.5.
  • the nanotubes are separated from each other by a distance greater than their height, so as to avoid electrical breakdown phenomena.
  • the growth of nanotubes oriented on the surface of the electrode comprises the growth of nanotubes oriented on the surface of the electrode by growth or catalytic decomposition of hydrocarbons from catalytic particles of the " CVD “for” Chemical Vapor Deposition “or” PECVD “for” Plasma Enhanced Chemical Vapor Deposition ".
  • FIG. figure 4 An example of a condenser-type electrostatic actuation microswitch according to the invention is illustrated in FIG. figure 4 .
  • RF signal line 42 on the surface of which is developed the drain based on oriented carbon nanotubes 43 and covered with a layer of dielectric material 44.
  • a metal membrane upper 45 rests on the surface of pillars 41.
  • the membrane may be composed of one or two metal layers that may be, for example, a gold layer (Au) or a two-layer aluminum (Al) structure and a titanium-tungsten alloy (TiW) structure. suspended between the two lines of mass.
  • Au gold layer
  • Al two-layer aluminum
  • TiW titanium-tungsten alloy
  • the dielectric layer may be a layer of dielectric material, for example ferromagnetic material that can typically be PZT: Pb (Zr x Ti 1-x ) O 3 .
  • the signal line is directly covered by the layer of dielectric material, the latter is subjected to electrical discharges when the membrane reaches its low state due to the high voltage required for actuation and the very small distance that results in the end when the membrane touches the dielectric. This causes a loading of the dielectric as it becomes critical when the accumulated charge is sufficient to permanently retain the membrane in the low state.
  • the invention proposes a solution consisting in producing capacitive RF MEMS switches whose dielectric layer consists of two elements: a vertical oriented carbon nanotube forest on which the normally used dielectric layer is deposited for the realization capacitive MEMS switch.
  • the mesh of nanotubes is transparent to the operation of the capacitive RF MEMS switch and therefore does not constitute a disruption to the performance of the latter.
  • the dielectric layer thus separated in two by an intermediate deposition of nano-structured compounds makes it possible to obtain a conductive middle layer allowing the supply or the evacuation of charge carriers inside the dielectric to avoid that the latter does not charge during the operation of the RF MEMS switch.
  • the figure 5 illustrates in more detail the assembly constituted by the drain of nanotubes and dielectric and schematized by arrows the mobility of the charges along the nanotubes.
  • the figure 6 illustrates in more detail, the nanotube growth operation at the surface of the RF line consisting of a metal line. It may advantageously be a conventional operation of growth in an electric field from catalytic elements 43c distributed relative to each other on the surface of the lower electrode 42, and put under a hydrocarbon plasma generate the growth of oriented nanotubes 43.

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Micromachines (AREA)
  • Contacts (AREA)
  • Push-Button Switches (AREA)

Description

Le domaine de l'invention est celui des composants micro-systèmes encore appelés MEMS (acronyme pour Micro Electro Mechanical Systems) et plus particulièrement des micro-commutateurs radiofréquence ou hyperfréquence intégrant une membrane déformable sous l'action d'un champ électrostatique. Les domaines d'applications principaux sont les systèmes de télécommunications et les radars.The field of the invention is that of micro-systems components also called MEMS (acronym for Micro Electro Mechanical Systems) and more particularly microswitches radiofrequency or microwave integrating a deformable membrane under the action of an electrostatic field. The main application areas are telecommunications systems and radars.

Les composants micro-systèmes se sont développés depuis quelques dizaines d'années à partir des technologies mises en oeuvre pour la réalisation des circuits électroniques.Micro-system components have been developed for some decades from the technologies implemented for the realization of electronic circuits.

Ils comprennent généralement une membrane ou une poutre métallique de faible épaisseur, maintenue suspendue par des supports au-dessus de surfaces conductrices isolées entre elles. Une électrode de commande placée sous les surfaces conductrices et éventuellement séparée desdites surfaces conductrices par une couche isolante complète le dispositif.They generally comprise a membrane or a thin metal beam, held suspended by supports above conductive surfaces insulated from each other. A control electrode placed under the conductive surfaces and optionally separated from said conductive surfaces by an insulating layer completes the device.

L'ensemble membrane - électrode de commande est soumis à une tension électrique au moyen de l'électrode de commande. En l'absence de tension appliquée, la membrane est suspendue au-dessus des surfaces conductrices et il n'y a aucun contact électrique entre celles-ci.The membrane-control electrode assembly is subjected to an electrical voltage by means of the control electrode. In the absence of applied voltage, the membrane is suspended above the conductive surfaces and there is no electrical contact therebetween.

En général, on n'utilise pas les micro-commutateurs MEMS radiofréquence ou hyperfréquence en interrupteur simple. En effet, le contact direct entre la membrane et les surfaces conductrices ou l'électrode de commande diminue notablement la durée de vie du dispositif. On interpose entre les surfaces et la membrane une couche de diélectrique. On transforme ainsi la fonction simple en variation de capacité d'un condensateur dont les armatures sont constituées d'une part de la membrane et d'autre part de l'électrode de commande en regard. La capacité varie alors d'une valeur Cup à une valeur Cdown.In general, one does not use the microswitches MEMS radiofrequency or microwave in simple switch. Indeed, the direct contact between the membrane and the conductive surfaces or the control electrode significantly reduces the service life of the device. A dielectric layer is interposed between the surfaces and the membrane. The simple function is thus transformed into a capacity variation of a capacitor whose armatures consist, on the one hand, of the membrane and, on the other hand, of the control electrode opposite each other. The capacity then varies from a C up value to a C down value.

Les principaux avantages de ce type de dispositif sont essentiellement :

  • les techniques de réalisation qui sont dérivées des technologies classiques de fabrication de circuits intégrés électroniques. Elles permettent de simplifier la réalisation et l'intégration et par conséquent, d'obtenir des coûts de fabrication faibles comparés à ceux d'autres technologies, tout en garantissant une fiabilité élevée ;
  • les très faibles puissances électriques consommées, quelques microwatts étant nécessaires à l'activation ;
  • l'encombrement. On réalise ainsi un micro-commutateur dans une surface de l'ordre du dixième de millimètre carré, permettant d'atteindre une forte capacité d'intégration ;
  • les performances hyperfréquence. Ce type de micro-commutateur présente des pertes d'insertion très faibles, de l'ordre du dixième de déciBel, bien inférieures à celles de dispositifs assurant les mêmes fonctions.
The main advantages of this type of device are essentially:
  • production techniques that are derived from conventional technologies for manufacturing electronic integrated circuits. They simplify the realization and integration and therefore, to obtain low manufacturing costs compared to other technologies, while ensuring high reliability;
  • the very low electric powers consumed, some microwatts being necessary for the activation;
  • clutter. A micro-switch is thus produced in a surface of the order of one tenth of a square millimeter, making it possible to achieve a high integration capacity;
  • microwave performance. This type of micro-switch has very low insertion losses, of the order of one-tenth of decibel, much lower than those of devices providing the same functions.

En général, la membrane supérieure déformable est réalisée par dépôt d'une ou plusieurs couches de matériaux, au moins l'une de ces couches étant un matériau conducteur. Ces matériaux sont ceux habituellement utilisés en micro-électronique.In general, the deformable upper membrane is made by depositing one or more layers of materials, at least one of these layers being a conductive material. These materials are those usually used in microelectronics.

Il est notamment connu du brevet US 2006/012940 un micro-commutateur à actuation électrostatique de type condensateur composé de deux armatures dont la première est une membrane flexible et la seconde comporte au moins une électrode de commande, les deux armatures étant séparées par une épaisseur de vide ou de gaz et au moins une couce d'au moins un matériau isolant électrique située sur l'électrode de commande.It is notably known from the patent US 2006/012940 a condenser-type electrostatic actuation microswitch composed of two armatures, the first of which is a flexible membrane and the second comprises at least one control electrode, the two armatures being separated by a thickness of vacuum or gas and at least one couce at least one electrical insulating material located on the control electrode.

Une application particulièrement intéressante de ces microsystèmes réside dans leur utilisation en tant que commutateurs hyperfréquences. Le fonctionnement de ce type de commutateur est notamment illustré en figure 1, 2 et 3.A particularly interesting application of these microsystems lies in their use as microwave switches. The operation of this type of switch is particularly illustrated in figure 1, 2 and 3 .

Dans la position initiale, la membrane 11 se trouve à une distance d par rapport à une ligne RF 12, sur laquelle une couche de nitrure 13 est déposée comme illustré en figure 1. En supposant que la ligne RF soit également utilisée comme électrode, les deux extrémités de la membrane sont à la masse 14 comme illustré en figure 2.In the initial position, the membrane 11 is at a distance d with respect to an RF line 12, on which a nitride layer 13 is deposited as illustrated in FIG. figure 1 . Assuming that the RF line is also used as an electrode, both ends of the membrane are grounded as illustrated in FIG. figure 2 .

Si on applique une différence de potentiel V entre l'électrode et la membrane, les deux parties sont rapprochées en attirant la membrane vers l'électrode inférieure (la piste RF).If a potential difference V is applied between the electrode and the membrane, the two parts are brought closer together by drawing the membrane towards the lower electrode (the RF track).

A une valeur V de la tension, le déplacement de la membrane dépasse le tiers du gap initial. Ainsi la membrane s'effondre sur l'électrode inférieure comme illustré en figure 3. Le switch est dit en position basse et cette valeur de tension est dénommée tension d'activation.At a value V of the tension, the displacement of the membrane exceeds one third of the initial gap. Thus the membrane collapses on the lower electrode as illustrated in figure 3 . The switch is said to be in the low position and this voltage value is called the activation voltage.

Quand la membrane est en position haute, illustrée en figure 1, le signal RF passe dans la ligne RF sans être perturbé.When the membrane is in the up position, illustrated in figure 1 , the RF signal passes into the RF line without being disturbed.

Quand la membrane est en position basse le signal passe dans la ligne RF et est court-circuité par la membrane ce qui crée une réflexion de l'onde EM (signal hyperfréquence) sur la membrane, le signal ne traverse pas le switch MEMS RF.When the membrane is in the low position the signal passes in the RF line and is short-circuited by the membrane which creates a reflection of the EM wave (microwave signal) on the membrane, the signal does not cross the RF MEMS switch.

L'actionnement utilisé pour le switch MEMS RF de la figure 3 est un actionnement électrostatique effectué par application d'un potentiel entre la ligne (électrode basse) et la membrane (électrode haute). D'autres actionnements sont envisageables tel que les actionnements thermiques, piézoélectriques, magnétostatiques ou hybrides (utilisant deux ou plus des quatre actionnements précités).The actuation used for the RF MEMS switch of the figure 3 is an electrostatic actuation performed by applying a potential between the line (low electrode) and the membrane (high electrode). Other actuations are conceivable such as thermal, piezoelectric, magnetostatic or hybrid actuations (using two or more of the four aforementioned actuations).

Le type de contact entre la membrane et la ligne est de type capacitif sur le switch MEMS RF de la figure 3, c'est à dire que l'on a déposé une couche de diélectrique sur l'électrode basse. La ligne, la couche de diélectrique, le gap d'air et la membrane forment une capacité variable permettant de laisser passer ou de bloquer le signal hyperfréquence. Le second type de contact possible est le contact ohmique (métal-métal) entre la membrane et la ligne.The type of contact between the membrane and the line is of the capacitive type on the RF MEMS switch of the figure 3 that is, a dielectric layer was deposited on the low electrode. The line, the dielectric layer, the air gap and the membrane form a variable capacitance making it possible to let the microwave signal pass or block. The second type of possible contact is the ohmic contact (metal-metal) between the membrane and the line.

La ligne centrale est recouverte d'un diélectrique au niveau de la membrane pour éviter qu'il n'y ait un contact ohmic et donc une circulation de charge lorsque la membrane est à l'état bas. Cela donne l'avantage d'une consommation nulle, ou presque, de puissance pour maintenir la membrane à l'état bas en se servant de la ligne centrale comme d'électrode d'actionnement.The center line is covered with a dielectric at the level of the membrane to prevent there being an ohmic contact and therefore a charge circulation when the membrane is in the low state. This gives the advantage of little or no power consumption to keep the membrane low by using the center line as an actuating electrode.

Cette utilisation n'est néanmoins pas sans conséquence sur la durée de vie utile du diélectrique qui au fur et à mesure des utilisations et des actionnements se charge électriquement.This use is nevertheless not without consequences on the useful life of the dielectric which, as and when the uses and actuations are electrically charged.

En effet, lorsque la membrane atteint l'état bas, il se produit un effet de charge capacitive classique dans le diélectrique entre la ligne et la membrane, provoquant un piégeage de charge dans le diélectrique (positive si les électrons sont arrachés du diélectrique, négative si les électrons sont emprisonné dans le diélectrique).Indeed, when the membrane reaches the low state, a conventional capacitive charge effect occurs in the dielectric between the line and the membrane, causing a charge trapping in the dielectric (positive if the electrons are torn off the dielectric, negative if the electrons are trapped in the dielectric).

Au fur et à mesure que le diélectrique se charge, les performances du switch sont altérées. Cela a pour effet final et irréversible de conduire à une membrane restant collée par force électrostatique au diélectrique, bloquant le Switch MEMS RF à l'état bas de manière définitive ce qui signifie la « mort » de ce switch MEMS RF.As the dielectric loads, the performance of the switch is altered. This has the final and irreversible effect of leading to a membrane remaining electrostatically bonded to the dielectric, blocking the RF MEMS Switch to the low state permanently which means the "death" of this RF MEMS switch.

Pour résoudre ce problème la présente invention propose un nouveau type de micro-commutateur comprenant un drain de charges électriques inséré au niveau de la couche diélectrique recouvrant la ligne RF.To solve this problem, the present invention proposes a new type of micro-switch comprising a drain of electrical charges inserted at the level of the dielectric layer covering the RF line.

Plus précisément la présente invention a pour objet un micro-commutateur à actuation électrostatique de type condensateur composé de deux armatures dont la première est une membrane flexible et la seconde comporte au moins une électrode de commande, les deux armatures étant séparées par une épaisseur de vide ou de gaz et au moins une couche d'au moins un matériau isolant électrique située sur l'électrode de commande caractérisé en ce qu'il comporte en outre un drain de charges constitué de nanotubes conducteurs orientés à la surface de ladite électrode, ledit drain étant recouvert par ladite couche de matériau isolant électrique.More specifically, the subject of the present invention is a condenser-type electrostatic actuator microswitch composed of two armatures, the first of which is a flexible membrane and the second comprises at least one control electrode, the two armatures being separated by a vacuum thickness. or gas and at least one layer of at least one electrical insulating material located on the control electrode characterized in that it further comprises a charge drain consisting of conducting nanotubes oriented on the surface of said electrode, said drain being covered by said layer of electrical insulating material.

Avantageusement, l'orientation des nanotubes est perpendiculaire à la surface de ladite électrode.Advantageously, the orientation of the nanotubes is perpendicular to the surface of said electrode.

Selon une variante de l'invention, les nanotubes sont des nanotubes de carbone.According to a variant of the invention, the nanotubes are carbon nanotubes.

Selon une variante de l'invention, le matériau isolant électrique est un diélectrique.According to a variant of the invention, the electrical insulating material is a dielectric.

Selon une variante de l'invention, le matériau diélectrique est de type Si3N4 ou ZrO2 ou PZT.According to one variant of the invention, the dielectric material is of the Si 3 N 4 or ZrO 2 or PZT type.

Selon une variante de l'invention, le rapport de la hauteur des nanotubes sur l'épaisseur de la couche de matériau isolant électrique est voisin de à 0,5.According to a variant of the invention, the ratio of the height of the nanotubes to the thickness of the layer of electrical insulating material is close to 0.5.

Selon une variante de l'invention, les nanotubes sont séparés entre eux d'une distance supérieure à leur hauteur, de manière à éviter des phénomènes de claquage électrique.According to a variant of the invention, the nanotubes are separated from each other by a distance greater than their height, so as to avoid electrical breakdown phenomena.

L'invention a aussi pour objet un procédé de fabrication d'un micro-commutateur selon l'invention, caractérisé en ce qu'il comporte

  • la croissance de nanotubes orientés à la surface de l'électrode ;
  • le dépôt d'une couche de matériau isolant électrique à la surface de l'électrode recouverte du drain constitué par les nanotubes.
The invention also relates to a method of manufacturing a microswitch according to the invention, characterized in that it comprises
  • the growth of nanotubes oriented on the surface of the electrode;
  • depositing a layer of electrical insulating material on the surface of the electrode covered with the drain constituted by the nanotubes.

Selon une variante de l'invention, la croissance de nanotubes orientés à la surface de l'électrode comprend la croissance de nanotubes orientés à la surface de l'électrode par croissance ou décomposition catalytique d'hydrocarbures à partir de particules catalytiques de type méthode « CVD » pour « Chemical Vapor Deposition » ou de type « PECVD » pour « Plasma Enhanced Chemical Vapor Deposition ».According to a variant of the invention, the growth of nanotubes oriented on the surface of the electrode comprises the growth of nanotubes oriented on the surface of the electrode by growth or catalytic decomposition of hydrocarbons from catalytic particles of the " CVD "for" Chemical Vapor Deposition "or" PECVD "for" Plasma Enhanced Chemical Vapor Deposition ".

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de ma description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :

  • les figures 1, 2 et 3 illustrent le fonctionnement et la structure d'un exemple de MEMS de type micro-commutateur RF selon l'art connu ;
  • la figure 4 illustre une vue en coupe détaillée du switch MEMS RF capacitif de type shunt selon l'invention ;
  • la figure 5 illustre une vue détaillée du diélectrique sous la membrane du switch MEMS RF comportant un drain de nanotubes de carbone ;
  • la figure 6 illustre une étape d'élaboration de drain à partir de la croissance de nanotubes dans un procédé de fabrication d'un micro-commutateur selon l'invention.
The invention will be better understood and other advantages will become apparent on reading my description which will follow given by way of nonlimiting example and thanks to the appended figures among which:
  • the Figures 1, 2 and 3 illustrate the operation and structure of an exemplary MEMS RF micro-switch type according to the prior art;
  • the figure 4 illustrates a detailed sectional view of the shunt-type capacitive RF MEMS switch according to the invention;
  • the figure 5 illustrates a detailed view of the dielectric under the membrane of the RF MEMS switch comprising a carbon nanotube drain;
  • the figure 6 illustrates a step of developing a drain from the growth of nanotubes in a method of manufacturing a microswitch according to the invention.

Un exemple de micro-commutateur à actuation électrostatique de type condensateur selon l'invention est illustré en figure 4.An example of a condenser-type electrostatic actuation microswitch according to the invention is illustrated in FIG. figure 4 .

II comporte, élaborée à la surface d'un substrat 40, une ligne signal RF 42, à la surface de laquelle est élaboré le drain à base de nanotubes de carbone 43 orientés et recouvert d'une couche de matériau diélectrique 44. Une membrane métallique supérieure 45 repose à la surface de piliers 41.It comprises, developed on the surface of a substrate 40, an RF signal line 42, on the surface of which is developed the drain based on oriented carbon nanotubes 43 and covered with a layer of dielectric material 44. A metal membrane upper 45 rests on the surface of pillars 41.

Typiquement, la membrane peut être composée d'une ou deux couches métalliques pouvant être par exemple une couche d'or (Au) ou une structure bi-couche d'aluminium (AI) et d'alliage de titane et de tungstène (TiW) suspendu entre les deux lignes de masse.Typically, the membrane may be composed of one or two metal layers that may be, for example, a gold layer (Au) or a two-layer aluminum (Al) structure and a titanium-tungsten alloy (TiW) structure. suspended between the two lines of mass.

Typiquement, la couche de diélectrique peut être une couche de matériau diélectrique par exemple en matériau ferromagnétique pouvant typiquement être en PZT : Pb(ZrxTi1-x)O3.Typically, the dielectric layer may be a layer of dielectric material, for example ferromagnetic material that can typically be PZT: Pb (Zr x Ti 1-x ) O 3 .

Alors que selon l'art antérieur, la ligne signal est directement recouverte par la couche de matériau diélectrique, ce dernier est soumis à des décharges électriques lorsque la membrane atteint son état bas du fait de la forte tension nécessaire à l'actionnement et de la très petite distance qui résulte à la fin lorsque la membrane touche le diélectrique. Cela entraîne un chargement du diélectrique au fur et à mesure qui devient critique lorsque la charge accumulée est suffisante pour retenir la membrane à l'état bas de manière définitive.While according to the prior art, the signal line is directly covered by the layer of dielectric material, the latter is subjected to electrical discharges when the membrane reaches its low state due to the high voltage required for actuation and the very small distance that results in the end when the membrane touches the dielectric. This causes a loading of the dielectric as it becomes critical when the accumulated charge is sufficient to permanently retain the membrane in the low state.

Ainsi, l'invention propose une solution consistant à réaliser des switchs MEMS RF capacitifs dont la couche de diélectrique est constituée de deux éléments : une forêt de nanotubes de carbones orientés, verticaux sur laquelle on vient déposer la couche de diélectrique normalement usitée pour la réalisation de switch MEMS capacitifs.Thus, the invention proposes a solution consisting in producing capacitive RF MEMS switches whose dielectric layer consists of two elements: a vertical oriented carbon nanotube forest on which the normally used dielectric layer is deposited for the realization capacitive MEMS switch.

Ceci permet une réduction conséquente du chargement du diélectrique en créant des chemins de conduction évacuant le surplus ou bien comblant les déficiences en électrons entraînant de manière directe, une augmentation de la durée de vie du switch MEMS RF capacitif, de manière significative.This allows a consequent reduction of the loading of the dielectric by creating conduction paths discharging the surplus or filling electrons deficiencies directly resulting in an increase in the lifetime of the capacitive RF MEMS switch, significantly.

Par ailleurs, le maillage de nanotubes est transparent au fonctionnement du switch MEMS RF capacitif et donc ne constitue pas une perturbation pour les performances de ce dernier.Furthermore, the mesh of nanotubes is transparent to the operation of the capacitive RF MEMS switch and therefore does not constitute a disruption to the performance of the latter.

Plus précisément, la couche de diélectrique ainsi séparée en deux par un dépôt intermédiaire de composés nano-structurés permet d'obtenir une couche médiane conductrice permettant l'apport ou bien l'évacuation de porteurs de charge à l'intérieur du diélectrique pour éviter que ce dernier ne se charge lors du fonctionnement du switch MEMS RF.More precisely, the dielectric layer thus separated in two by an intermediate deposition of nano-structured compounds makes it possible to obtain a conductive middle layer allowing the supply or the evacuation of charge carriers inside the dielectric to avoid that the latter does not charge during the operation of the RF MEMS switch.

Cela a pour effet d'augmenter la durée de vie en nombre de cycle de ces switchs MEMS RF.This has the effect of increasing the cycle life of these RF MEMS switches.

On sait de manière détaillée que les charges de la partie supérieure du diélectrique sont rapidement emprisonnées mais très lentement libérées contrairement à celle de la partie inférieure du diélectrique en contact avec une couche métallique.It is known in detail that the charges of the upper part of the dielectric are rapidly trapped but very slowly released unlike that of the lower part of the dielectric in contact with a metal layer.

La figure 5 illustre plus en détails l'ensemble constitué par le drain de nanotubes et de diélectrique et schématise par des flèches la mobilité des charges le long des nanotubes.The figure 5 illustrates in more detail the assembly constituted by the drain of nanotubes and dielectric and schematized by arrows the mobility of the charges along the nanotubes.

L'intérêt d'intégrer des nanotubes dans le diélectrique et de pouvoir « drainer » ces charges de la partie supérieure du diélectrique vers la partie inférieur en contact avec une surface métallique. Cela permet de libérer les charges ainsi emprisonnées plus facilement et donc augmenter la durée de vie des switchs.The interest of integrating nanotubes into the dielectric and being able to "drain" these charges from the upper part of the dielectric to the lower part in contact with a metal surface. This makes it possible to release the charges thus imprisoned more easily and thus to increase the lifespan of the switches.

La conductivité induite par la présence de ces nanotubes reste négligeable et ne perturbe pas le fonctionnement des switchs MEMS RF.The conductivity induced by the presence of these nanotubes remains negligible and does not disturb the operation of RF MEMS switches.

La figure 6 illustre plus en détails, l'opération de croissance des nanotubes à la surface de la ligne RF constituée d'une ligne métallique. II peut avantageusement s'agir d'une opération classique de croissance sous champ électrique à partir d'éléments de catalyse 43c répartis les uns par rapport aux autres à la surface de l'électrode inférieure 42, et mis sous un plasma d'hydrocarbures génèrent la croissance de nanotubes orientés 43.The figure 6 illustrates in more detail, the nanotube growth operation at the surface of the RF line consisting of a metal line. It may advantageously be a conventional operation of growth in an electric field from catalytic elements 43c distributed relative to each other on the surface of the lower electrode 42, and put under a hydrocarbon plasma generate the growth of oriented nanotubes 43.

Claims (8)

  1. Electrostatic actuation micro-switch of the capacitor type comprising two armatures, the first of which is a flexible membrane (45) and the second of which comprises at least one control electrode (42), the two armatures being separated by a thickness of vacuum or gas and at least one layer of at least one electrically insulating material (44) which is located on the control electrode, characterised in that it further comprises a charge drain (43) which is constituted by conductive nanotubes which are orientated on the surface of said electrode, said drain being coated by said layer of electrically insulating material.
  2. Electrostatic actuation micro-switch according to claim 1, characterised in that the nanotubes are carbon nanotubes.
  3. Electrostatic actuation micro-switch according to claim 1 or 2, characterised in that the electrically insulating material is a dielectric material.
  4. Electrostatic actuation micro-switch according to claim 3, characterised in that the dielectric material is of the Si3N4 or ZrO2 or PZT type.
  5. Micro-switch according to claim 1 or 2, characterised in that the relationship of the height of the nanotubes to the thickness of the layer of electrically insulating material is around 0.5.
  6. Electrostatic actuation micro-switch according to any one of claims 1 to 5, characterised in that the nanotubes are separated from each other by a distance greater than the height thereof so as to prevent electrical breakdown phenomena.
  7. Method for producing a micro-switch according to any one of claims 1 to 6, characterised in that it comprises
    growing nanotubes which are orientated on the surface of the electrode;
    depositing a layer of electrically insulating material on the surface of the electrode covered with the drain constituted by the nanotubes.
  8. Method for producing a micro-switch according to claim 7, characterised in that the growth of nanotubes which are orientated on the surface of the electrode comprises the growth by catalytic decomposition of hydrocarbons from catalytic particles.
EP10189620.7A 2009-11-03 2010-11-02 Capacitive micro-switch comprising a charge drain made up of directed nanotubes on the bottom electrode and method for manufacturing same Active EP2317533B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0905260A FR2952048B1 (en) 2009-11-03 2009-11-03 CAPACITIVE MICRO-SWITCH COMPRISING A LOAD DRAIN BASED ON NANOTUBES BASED ON THE LOW ELECTRODE AND METHOD FOR MANUFACTURING THE SAME

Publications (2)

Publication Number Publication Date
EP2317533A1 EP2317533A1 (en) 2011-05-04
EP2317533B1 true EP2317533B1 (en) 2014-01-22

Family

ID=42261868

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10189620.7A Active EP2317533B1 (en) 2009-11-03 2010-11-02 Capacitive micro-switch comprising a charge drain made up of directed nanotubes on the bottom electrode and method for manufacturing same

Country Status (3)

Country Link
US (1) US8497751B2 (en)
EP (1) EP2317533B1 (en)
FR (1) FR2952048B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010144051A1 (en) * 2009-06-11 2010-12-16 Agency For Science, Technology And Research Microelectromechanical system (mems) device, method of operating the same, and method of forming the same
FR2978135A1 (en) * 2011-07-20 2013-01-25 Thales Sa MEMS-RF COMPONENT WITH ELECTROSTRICTIVE PIEZOELECTRIC MATERIAL
US10224164B2 (en) * 2011-09-02 2019-03-05 Cavendish Kinetics, Inc. Merged legs and semi-flexible anchoring having cantilevers for MEMS device
FR2986912B1 (en) * 2012-02-09 2014-03-28 Thales Sa MICROCOMMUTING MICROFREQUENCY AND METHOD OF MANUFACTURING THE SAME
EP3977605B1 (en) * 2019-05-28 2023-04-26 B&R Industrial Automation GmbH Transport device
FR3107372B1 (en) * 2020-02-14 2022-02-04 Commissariat Energie Atomique CAPACITIVE DEVICE
CN114019523B (en) * 2021-11-04 2022-05-17 中国水利水电第十二工程局有限公司 Hydraulic engineering manages and uses range unit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2841389B1 (en) 2002-06-21 2004-09-24 Thales Sa PHASE CELL FOR ANTENNA REFLECTIVE ARRAY
FR2845075B1 (en) 2002-09-27 2005-08-05 Thales Sa ELECTROSTATIC ACTUATOR MICROCONTUTERS WITH LOW RESPONSE TIME AND POWER SWITCHING AND METHOD OF MAKING SAME
KR100761476B1 (en) * 2004-07-13 2007-09-27 삼성전자주식회사 MEMS RF-Switch Using Semiconductor
KR100653083B1 (en) * 2004-12-27 2006-12-01 삼성전자주식회사 RF switch
JP4405427B2 (en) * 2005-05-10 2010-01-27 株式会社東芝 Switching element
FR2901917B1 (en) 2006-05-31 2008-12-19 Thales Sa CIRCULATOR RADIO FREQUENCY OR HYPERFREQUENCY
FR2901781B1 (en) 2006-05-31 2008-07-04 Thales Sa RADIOFREQUENCY OR HYPERFREQUENCY MICRO-SWITCH STRUCTURE AND METHOD OF MANUFACTURING SUCH STRUCTURE
FR2906062B1 (en) 2006-09-15 2010-01-15 Thales Sa ANTI-INTRUSION SYSTEM FOR THE PROTECTION OF ELECTRONIC COMPONENTS.
FR2930374B1 (en) 2008-04-18 2011-08-26 Thales Sa CIRCULATOR RADIO FREQUENCY BASED ON MEMS.
US8350160B2 (en) * 2008-08-25 2013-01-08 Kabushiki Kaisha Toshiba Structure, electronic device, and method for fabricating a structure
JPWO2010050277A1 (en) * 2008-10-31 2012-03-29 日本電気株式会社 Capacitance variable element and manufacturing method thereof
FR2940503B1 (en) 2008-12-23 2011-03-04 Thales Sa MEMS COMPACT SWITCHING CAPACITOR
EP2577759A4 (en) * 2010-06-02 2015-04-29 Indian Inst Scient ENERGY COLLECTION DEVICES USING CARBON NANOTUBE ELECTRODES

Also Published As

Publication number Publication date
EP2317533A1 (en) 2011-05-04
US8497751B2 (en) 2013-07-30
FR2952048B1 (en) 2011-11-18
FR2952048A1 (en) 2011-05-06
US20110100793A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
EP2317533B1 (en) Capacitive micro-switch comprising a charge drain made up of directed nanotubes on the bottom electrode and method for manufacturing same
EP1543535B1 (en) Method of manufacture of electrostatically actuated low response time power commutation micro-switches
EP2875549B1 (en) Passive microelectronic components, capable of allowing a radio-frequency or hyper-frequency signal to travel in a single direction
EP2267893B1 (en) Bulk acoustic wave resonator with partially filled cavities
EP3477280B1 (en) Modular infrared radiation source
FR3030115A1 (en) VARIABLE CAPACITOR CAPACITOR COMPRISING A LAYER OF STATE CHANGING MATERIAL AND A METHOD OF VARYING A CAPACITY OF A CAPACITOR
EP3465724B1 (en) Mems membrane with integrated transmission line
FR3120622A1 (en) Electrically controlled MEMS switch and method of making same
EP1438728B1 (en) Micro electro mechanical systems (mems) with variable high-ratio and low-voltage actuation micro-capacitor
EP2024986B1 (en) Radiofrequency or hyperfrequency micro switch structure and method for producing one such structure
WO2012117182A2 (en) Process for monolithic series connection of the photovoltaic cells of a solar module and a photovoltaic module implementing this process
EP2603448B1 (en) Microelectromechanical system with air gap
FR2848021A1 (en) ELECTROSTATIC MICRO-SWITCH FOR LOW ACTUATING VOLTAGE COMPONENTS
FR2964642A1 (en) THERMAL INSULATION DEVICE AND MANUFACTURING METHOD
FR2930370A1 (en) Electrostatic-actuation microswitch i.e. capacitor, for e.g. radar, has two armatures, of which one armature is constituted by flexible membrane with layer that is made of composite material i.e. polymer, in which nanotudes are dispersed
EP1698043A1 (en) Electrostatic mems components permitting a large vertical displacement
WO2009071498A1 (en) Electrostatic actuation microswitch including nanotubes for heat management and related production method
WO2024223788A1 (en) Capacitive rf microswitch for high-power applications
EP3459101A1 (en) Variable radio frequency micro-electromechanical switch
FR2972315A1 (en) ELECTROSTATIC ACTUATOR OF A MOBILE STRUCTURE WITH IMPROVED RELAXATION OF TRAPPED LOADS
EP2141779A1 (en) Device such as a quantum cascade detector with top injector
EP2209146A2 (en) Transistor mit Source and Drain Elektroden in Form von Drähten
EP3237324A1 (en) Capacitive rf mems intended for high-power applications
FR3031098A1 (en) MICROELECTROMECHANICAL OR NANOELECTROMECHANICAL DEVICE COMPRISING A MOBILE MEMBRANE IN TRANSLATION AND AN ELECTRODE FOR ACTUATING THE MEMBRANE BY A DIELECTRIC LAYER
FR2954003A1 (en) RF COMPONENT COMPRISING A SWITCH BASED ON NANOTUBES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20111012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 651120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010013253

Country of ref document: DE

Effective date: 20140306

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 651120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140522

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140522

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010013253

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20141023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010013253

Country of ref document: DE

Effective date: 20141023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141102

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101102

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231026

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 14

Ref country code: FR

Payment date: 20231024

Year of fee payment: 14

Ref country code: DE

Payment date: 20231017

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20241201