EP2311093A2 - Polychromatic electronic display device with electroluminescent screen - Google Patents
Polychromatic electronic display device with electroluminescent screenInfo
- Publication number
- EP2311093A2 EP2311093A2 EP09772659A EP09772659A EP2311093A2 EP 2311093 A2 EP2311093 A2 EP 2311093A2 EP 09772659 A EP09772659 A EP 09772659A EP 09772659 A EP09772659 A EP 09772659A EP 2311093 A2 EP2311093 A2 EP 2311093A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- sub
- pixel
- critical
- pixels
- emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/32—Stacked devices having two or more layers, each emitting at different wavelengths
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/351—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/352—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/90—Assemblies of multiple devices comprising at least one organic light-emitting element
Definitions
- the present invention relates to a polychromatic electronic display device with electroluminescent screen.
- the invention applies in particular to organic light-emitting diode (“OLED”) screens.
- the display devices using "OLEDs” comprise a transmission zone formed of a matrix of pixels, each pixel typically consisting of several subpixels of different colors (RGB: red, green and blue in color). general), and an electrical connection area arranged adjacent to this active area.
- RGB red, green and blue in color
- Each pixel of this "OLED" matrix usually incorporates a multilayer light-emitting structure comprising an organic film interposed between two lower and upper electrodes which serve as anode and cathode, and one of which is transparent or semi-transparent to light. emitted while the other is generally reflective.
- organic layers are deposited at each sub-pixel (a type of layer or stack of layers by color) by means of a stencil or "shadow mask".
- the minimum dimension of the openings of this stencil therefore defines a minimum size for these sub-pixels.
- This minimum size for each sub-pixel can also be imposed by the dimensions of the addressing circuit used for the power supply of each sub-pixel, via the aforementioned connection area. It has therefore been sought to increase the resolution of the screens by playing on one of these two parameters, i.e. the size of the openings of the stencil or, if it is the limiting factor, that of the addressing circuit.
- a major disadvantage of the stacks of "OLED" units presented in these documents is that the gain in lifetime that they provide in each pixel for the critical sub-pixel (typically blue), by maximizing the area of its structure transmitter, does not optimize the resolution of the screen, which is limited by the stencil used for the deposition of sub-pixels of smaller dimensions.
- Another disadvantage of known stacks where the critical subpixels (eg blue) are located in the internal "OLED” unit is that the photons they emit are reabsorbed by the emitting structures of the other sub-pixels in the unit " OLED "external, which results in a loss of flux for these photons on the emission side of the screen.
- An object of the present invention is to provide a polychromatic display device comprising an electroluminescent emission face and, towards the inside of the device, at least one substrate coated with a matrix of pixels, this device comprising a stack of electroluminescent units where each pixel consists of at least three sub-pixels of different colors, a device that overcomes these disadvantages.
- a device is such that, for each pixel, the sub-pixel of the lowest transmission wavelength ⁇ c , or critical sub-pixel, is exclusively located in that of the units, or external unit, which is adjacent to this transmitting face, each other sub-pixel emitting at a wavelength greater than ⁇ c being exclusively located in a unit which is internal with respect to this external unit and which is adjacent to the substrate (as opposed to the external unit which is distal to this substrate), the area of this critical sub-pixel being greater than that of each other sub-pixel.
- this arrangement of the sub-pixels within the stack of light-emitting units according to the invention makes it possible to gain both resolution and life time for the matrix of pixels obtained.
- sub-pixels of smaller dimensions are located directly on the substrate, thus allowing the use of conventional technologies of microelectronics for their manufacture and thus the realization of smaller patterns. sizes (hence the gain in resolution).
- the area A of this critical subpixel is at least equal to the sum of those of the other subpixels (ie A b ⁇ e u ⁇ A r0U ge + A ve rt). which makes it possible to gain even more resolution and longer life for the screen. Even more preferably, the critical subpixel can extend beyond (ie in excess of) the edges of all the other sub-pixels underlying.
- the location of the critical sub-pixels in the unit turned on the side of the transmission face makes it possible to avoid, within each pixel, the aforementioned phenomenon of loss of luminous flux emitted by the critical sub-pixel .
- the critical sub-pixel can be activatable independently of each other sub-pixel: it is transparent when it is not activated and, when it is activated, transmits at said wavelength ⁇ c by adding if necessary the radiation emitted by each other sub-pixel.
- each pixel advantageously comprises organic structures emitting radiation, such as organic light-emitting diodes ("OLEDs"), which respectively form the sub-pixels and which are each interposed between and in electrical contact with two electrodes respectively serving as anode and cathode for the corresponding emitting structure, one of these electrodes being transparent or semitransparent and the other electrode being reflective.
- OLEDs organic light-emitting diodes
- said stack consists of two electroluminescent units respectively external and internal, said critical sub-pixel emitting within said external unit and being stacked on the other sub-pixels that all emit within said internal unit.
- this display device comprises a single active or passive matrix type substrate, each pixel being delimited by an external electrode applied to the emitting structure of said critical sub-pixel, or critical structure. , and by several internal electrodes which are applied on this substrate and on which the emitting structures of the other sub-pixels, or non-critical structures, are deposited spaced apart, at least one intermediate electrode being applied to the non-critical structures and / or under the critical structure.
- this device may comprise a single intermediate electrode which is applied at a time, for each pixel, under said critical structure and on said non-critical structures with which this critical structure is substantially aligned.
- the device according to this first embodiment may comprise two external and internal intermediate electrodes which are superimposed by being separated by at least one electrically insulating and transparent inorganic layer, preferably deposited by the "ALD" technique for depositing an atomic layer ("atomic layer deposition "in English) and made of a material selected from the group consisting of oxides of aluminum, silicon, zinc and silicon nitrides, these intermediate electrodes being respectively applied, for each pixel, under the critical structure and on all non-critical structures.
- the internal electrodes and the external intermediate electrode may each form a (semi) transparent anode, and the inner intermediate electrode and the outer electrode may then each form a reflective cathode.
- this layer can be optimized by simulation to allow the extraction of the maximum luminous flux of the internal and external units. In this case we find for each electroluminescent unit the preferred arrangement of an emitting structure interposed between a lower anode and an upper cathode.
- the display device comprises two respectively external and internal substrates which are each active or passive matrix and which are assembled to one another at their peripheries by adhesive strings. forming a sealed encapsulation for the device, the external substrate being provided with regularly spaced critical emitting structures which each form a critical subpixel, and the inner substrate being provided with non-transmitting structures regularly spaced critics which each form at least one of the other sub-pixels and which are separated from these critical structures by an electrical insulator, the two matrices formed by these substrates being connected to independent power supply circuits.
- said insulator consists of a vacuum separating these critical and non-critical structures, so as to overcome the efficiency limitations of each critical sub-pixel by controlling the light interferences between these structures.
- said substrates are separated from each other by a distance of less than 2 ⁇ m, to minimize the emissions of a non-critical structure towards a neighboring non-critical structure and to maximize them towards the critical structure vis-à-vis .
- said sub-pixels may for example consist of three sub-pixels respectively red, green and blue, said critical sub-pixel located exclusively in said external unit being a sub-pixel emitting in the blue, and the other sub-pixels exclusively located in said internal unit being sub-pixels emitting in the red and / or in the green.
- the transmitting structure of each of the sub-pixels other than said critical sub-pixel is able to selectively transmit, depending on the voltage applied to it, at at least two distinct radiations of wavelengths both greater than that of this critical sub-pixel so as to successively form at least two-color non-critical subpixels.
- the emitting structure of each non-critical sub-pixel can then comprise two different emitting materials capable of emitting in the low-voltage red and in the green at higher voltage, for obtaining two-color sub-pixels.
- these non-critical sub-pixels which are at least two-colored, have the advantage, in this first embodiment of the invention, of simplifying the addressing of the electroluminescent units by requiring two fewer internal electrodes for the corresponding electroluminescent units and, in this second embodiment of the invention, also to simplify the structure of the internal substrate.
- they can be sealed encapsulated by various means, including:
- FIG. 1 is a diagrammatic view from above of a arrangement according to the prior art of three respectively red, green and blue subpixels of a light-emitting screen
- FIG. 2 is a schematic view from above of an arrangement according to the principle of the invention of these three sub-pixels, distributed in two superimposed units of a light-emitting screen
- FIG. 3 is a partial diagrammatic cross-sectional view of a display device according to the first embodiment of the invention using the stacking principle of FIG. 2
- FIG. 4 is a schematic view from above of the essential components of the stack of a display device. according to a variant of Figure 3
- Figure 5 is a partial schematic cross-sectional view of a display device according to the second embodiment of the invention.
- the display devices 1, 1 ', 101 according to the invention described hereinafter with reference to FIGS. 2 to 5 are of the "OLED" type, comprising in known manner at least one substrate 2, 102a, 102b, typically in silicon coated with a matrix of pixels which overcomes an integrated circuit structure for addressing each pixel and which may comprise for example for each pixel two transistors and a capacitor or more complex circuits, and which is connected to an electrical connection zone (not shown) for the establishment of a potential difference between electrodes 3 to 6 in contact with which are interlaced multilayer emitting structures organic film (monolayer or multilayer, not shown).
- OLED organic film
- these electrodes 3 to 6 each serve as anode or cathode and at least one of them is transparent to the light emitted by the pixels in order to radiate this light emitted towards the external device 1, the, 101.
- the organic film inserted between these electrodes 3 to 6 it is designed to transfer the electrons and holes that come from the electrodes 3 to 6 and which are recombined to generate excitons and therefore the light emission.
- FIG. 1 shows a known arrangement of three sub-pixels R, V, B (respectively red, green and blue) for each pixel of an "OLED" screen matrix, in which an attempt has been made to maximize the size of the shortest wavelength subpixel B at the expense of that of the subpixel R and the subpixel V, which have been reduced with the dimensional limit I imposed by the size of the openings of the stencil used to deposit these sub-pixels and / or that of the addressing circuit for the supply of each sub-pixel.
- the current density in the subpixel B which is known to be the most sensitive to aging, has been minimized, so as to increase the lifetime of this sub-pixel B of the highest transmission area. high, and we obtained a pixel of dimension L in the direction of the succession of the three sub-pixels R, V and B.
- the sub-pixels R 1 V and B ' can be solicited independently or simultaneously, the superimposed subpixel B' being transparent when it is not activated so as not to alter the emission of the sub-pixels R and V in this case. Once activated, the sub-pixel B 'emits a radiation which is added, if necessary, to those of the sub-pixels R and V.
- each sub-pixel that can be used in a screen according to the invention can vary from 400 ⁇ m 2 to approximately 90000 ⁇ m 2 .
- the display device 1 according to the first embodiment of the invention which is illustrated in FIG. 3 comprises a single substrate 2 of active or passive matrix type, each pixel being delimited by:
- electrodes 4 and 5 which are applied on this substrate 2 and on which the emitting structures ER and Ev of the sub-pixels R and V, respectively spaced apart (preferably separated by vacuum), are respectively deposited electrodes 4 and 5 forming, for example, transparent or semi-transparent anodes, and by
- this electrode 6 forming, for example, both a cathode for the internal "OLED" unit U 1 and an anode for the external OLED unit U e .
- the edges of the emitting structure EB are substantially aligned with those of the emitting structure ER and of the emitting structure Ev although, as illustrated in FIG. 4, this alignment can only be approximate for the device the. It may be noted in this regard that this precise alignment is not imperative, whether in terms of colorimetry (insofar as the luminance of the sub-pixels R, V, B 'can be adjusted by the addressing as a function of the desired color and solicited pixels) or in terms of resolution (insofar as the illuminated maximum elementary surface does not exceed the size of the pixel).
- the display device 1 or the device could comprise not one but two external and internal intermediate electrodes which are superimposed by being separated by an electrically insulating transparent inorganic layer, and which are respectively applied, for each pixel, under the emitting structure E 6 and on both structures E R and E v .
- This layer preferably deposited by the "ALD" layer deposition technique atomic, can be advantageously made of a material selected from the group consisting of oxides of aluminum, silicon, zinc and silicon nitrides.
- the two inner electrodes and the outer intermediate electrode can each form a transparent or semi-transparent anode, and the inner intermediate electrode and the outer electrode can each then form a reflective cathode, which allows to find for each electroluminescent unit Uj and U e the preferred arrangement of an emitting structure ER, EV or EB interposed between a lower anode and an upper cathode.
- the sub-pixels R and V are produced in a single two-color R / V sub-pixel which has the property of transmitting in the low-voltage red and in the higher-voltage green.
- a multilayer emitter structure composed of at least two distinct materials emitting respectively in red and green, which is for example the following: doped doped anode / HTM014 p / NPB / TMM004 Irppy / TMM004 doped TER04 / Alq3 / N-doped Bphen / cathode, where Alq3 and Bphen materials are available from Aldrich and where other materials are available from Merck Germany.
- the stack obtained makes it possible specifically to optimize the optical cavity of the blue sub-pixel to increase the optical coupling output, while compromise will be found for the other underlying red and green subpixels, if it is desired to deposit the transport layers in a common way.
- the or each intermediate electrode must be structured, which is for example achievable by depositing this electrode by means of a conventional stencil.
- the device 101 according to the second embodiment of the invention illustrated in FIG. 5 comprises two external 102a and internal 102b active or passive matrix substrates (commonly called "backplanes" in English by those skilled in the art) assembled by cords. 110 glue peripherals forming sealed encapsulation.
- the outer substrate 102a is provided, on its side facing the other substrate 102b, emitting structures E'B in the regularly spaced blue which each form in contact with a pair of electrodes (not shown) a blue sub-pixel and the inner substrate is provided with regularly spaced emitting structures E ' R and EV which each form a red and / or green subpixel in contact with a pair of electrodes (not shown) and which are separate from the structures E' B by vacuum forming electrical insulation.
- the two matrices formed by these substrates 102a and 102b are respectively connected to independent power supply circuits (not shown).
- This spatial separation between the emitting structures E ' B and the emitting structures E'R and EV advantageously makes it possible to overcome the yield limitations of each blue sub-pixel by controlling the light interferences between these structures E'B, E'R and EV
- the use of the two substrates 102a and 102b on which are deposited the emitting structures E'B, E'R and EV does not really penalize the manufacture of the device 101, because it is not necessary to to precisely align these structures E ' B , E' R and EV and that the encapsulation of the screen is obtained in a very simple manner by the only adhesive beads 110.
- This device 101 also provides a very high resolution and different modes. less destructive operations for Uj and U e units .
- the spatial separation of the emitting structures of these two units Uj and U e allows, on the one hand, to overcome performance limitations, particularly noticeable for the E'B emitting structures and, on the other hand, to operate in parallel these very sensitive E'B structures with densities lower current, so with a longer life.
- the substrates 102a and 102b are separated from one another by a distance of less than 2 ⁇ m, to avoid "parallax" errors by minimizing the emissions of a structure E'R OR EV towards a neighboring structure E'R OR EV to focus on the E'B structure vis-à-vis.
- this display device 101 of FIG. 5 requires the connection of power supply circuits (called
- two-color subpixels RA / emitting either in the red or in the green depending on the applied electrical voltage can advantageously be made, in place of the remote arrangement of red and green subpixels on the "backplane" 102b.
- Such a two-color emitting structure RA / may for example have the following configuration: "backplane" / reflective electrode / p-doped HTL / EBL /
- HTL stands for "hole transport layer”
- EBL electron blocking layer
- EL Error layer
- HBL hole blocking layer
- ETL electrostatic transport layer
- the emitting structure E'B in blue it can for example have the following configuration:
- Semi-transparent electrodes and optical cavities receiving these sub-pixels can be optimized, so as to maximize the efficiency of these OLED units and the light emission cones, via the inter-electrode space and the distances between diodes.
- the precise alignment of the transmitting structures of these two backplanes 102a and 102b is not as essential as for the screens with a single backplane, except for the purpose of optimizing the total luminance because the inter-pixel areas of the upper matrix 102a hide the flux emitted by the pixels of the lower matrix 102b.
- a misalignment does not induce a loss of resolution in the device 101.
- each blue sub-pixel a transmission area twice as large as that of each green or red pixel.
- the resolution of the screen then corresponds to the size of each blue subpixel and the addressing of the screen takes into account this difference in size between sub-pixels to compensate for the differences in resolution of the two backplanes 102a and 102b. .
- the major advantage of this device 101 is the considerable gain in definition provided by these two “backplanes” 102a and 102b, and also in the lifetime of the "OLED" units, without being penalized by a requirement of precise alignment of the sub-pixels.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
DISPOSITIF D'AFFICHAGE ELECTRONIQUE POLYCHROME A ECRAN SCREEN POLYCHROME ELECTRONIC DISPLAY DEVICE
ELECTROLUMINESCENT.ELECTROLUMINESCENT.
La présente invention concerne un dispositif d'affichage électronique polychrome à écran électroluminescent. L'invention s'applique en particulier à des écrans à diodes électroluminescentes organiques (« OLED » pour « organic light-emitting diode »).The present invention relates to a polychromatic electronic display device with electroluminescent screen. The invention applies in particular to organic light-emitting diode ("OLED") screens.
De manière connue, les dispositifs d'affichage utilisant des « OLED » comprennent une zone d'émission formée d'une matrice de pixels, chaque pixel étant typiquement constitué de plusieurs sous-pixels de couleurs différentes (RVB : rouge, vert et bleu en général), et une zone de connexion électrique agencée de manière adjacente à cette zone active. Chaque pixel de cette matrice « OLED » incorpore usuellement une structure multicouches émettrice de lumière comprenant un film organique intercalé entre deux électrodes inférieure et supérieure qui servent d'anode et de cathode, et dont l'une est transparente ou semi-transparente à la lumière émise alors que l'autre est généralement réfléchissante.In known manner, the display devices using "OLEDs" comprise a transmission zone formed of a matrix of pixels, each pixel typically consisting of several subpixels of different colors (RGB: red, green and blue in color). general), and an electrical connection area arranged adjacent to this active area. Each pixel of this "OLED" matrix usually incorporates a multilayer light-emitting structure comprising an organic film interposed between two lower and upper electrodes which serve as anode and cathode, and one of which is transparent or semi-transparent to light. emitted while the other is generally reflective.
Pour réaliser ces écrans, on dépose des couches organiques au niveau de chaque sous-pixel (un type de couche ou d'empilement de couches par couleur) au moyen d'un pochoir ou « shadow mask ». La dimension minimale des ouvertures de ce pochoir définit donc une taille minimale pour ces sous-pixels. Cette taille minimale pour chaque sous-pixel peut être également imposée par les dimensions du circuit d'adressage utilisé pour l'alimentation électrique de chaque sous-pixel, via la zone de connexion précitée. On a donc cherché à accroître la résolution des écrans en jouant sur l'un de ces deux paramètres, i.e. la taille des ouvertures du pochoir ou, s'il s'agit du facteur limitatif, celle du circuit d'adressage.To produce these screens, organic layers are deposited at each sub-pixel (a type of layer or stack of layers by color) by means of a stencil or "shadow mask". The minimum dimension of the openings of this stencil therefore defines a minimum size for these sub-pixels. This minimum size for each sub-pixel can also be imposed by the dimensions of the addressing circuit used for the power supply of each sub-pixel, via the aforementioned connection area. It has therefore been sought to increase the resolution of the screens by playing on one of these two parameters, i.e. the size of the openings of the stencil or, if it is the limiting factor, that of the addressing circuit.
D'autres voies d'amélioration de la résolution de tels écrans ont été explorées dans le passé, consistant à réaliser des empilements d'unités « OLED ». Dans ce type d'écran, certains sous-pixels et leurs structures émettrices correspondantes sont localisés dans une unité « OLED » dite externe, adjacente à la face d'émission alors que d'autres sont localisés dans une unité « OLED » dite interne, adjacente au substrat, une électrode du pixel ainsi formé pouvant être commune à deux unités superposées.Other ways of improving the resolution of such screens have been explored in the past, consisting of stacks of "OLED" units. In this type of screen, certain sub-pixels and their corresponding transmitting structures are located in an so-called external "OLED" unit, adjacent to the transmitting face, while others are located in a so-called internal "OLED" unit, adjacent to the substrate, an electrode of the pixel thus formed can be common to two superposed units.
On a par ailleurs cherché dans ces empilements à minimiser la densité de courant circulant dans le sous-pixel qui est le plus sensible au vieillissement - celui dont la longueur d'onde est la plus petite, typiquement le bleu dans le cas RVB - en privilégiant sa surface d'émission aux dépens de celle des autres sous-pixels, de sorte à accroître la durée de vie de ce sous- pixel critique et donc de l'ensemble du dispositif. On peut par exemple citer le document US-B-6 747 618, qui présente à sa figure 8 un tel empilement avec les deux sous-pixels rouge et vert localisés dans l'unité externe, et le sous-pixel bleu localisé dans l'unité interne avec une aire d'émission supérieure à la somme des aires des sous- pixels rouge et vert. On peut également citer le document US-B-7 250 722 qui décrit un empilement dans lequel les sous-pixels rouge et bleu sont localisés dans une même unité interne ou externe et le sous-pixel vert dans l'autre unité, toujours en veillant à ce que l'aire d'émission du sous-pixel bleu soit supérieure à celle des autres sous-pixels pour augmenter sa durée de vie.In addition, it has been sought in these stacks to minimize the current density flowing in the sub-pixel which is the most sensitive to aging - the one whose wavelength is the smallest, typically the blue in the RGB case - giving priority to its emission surface at the expense of that of the other sub-pixels, so as to increase the lifetime of this critical sub-pixel and therefore of the entire device. For example, document US Pat. No. 6,747,618, which has in FIG. 8 such a stack with the two red and green subpixels located in the external unit, and the blue subpixel located in the internal unit with an emission area greater than the sum of the areas of the red and green subpixels. Reference may also be made to US-B-7,250,722, which describes a stack in which the red and blue subpixels are located in the same internal or external unit and the green sub-pixel in the other unit, always ensuring the emission area of the blue subpixel is greater than that of the other subpixels to increase its lifetime.
Un inconvénient majeur des empilements d'unités « OLED » présentés dans ces documents est que le gain en durée de vie qu'ils procurent dans chaque pixel pour le sous-pixel critique (typiquement bleu), par maximisation de l'aire de sa structure émettrice, ne permet pas d'optimiser la résolution de l'écran, qui reste limitée par le pochoir utilisé pour le dépôt des sous-pixels de plus petites dimensions. Un autre inconvénient des empilements connus où les sous- pixels critiques (e.g. bleus) sont localisés dans l'unité « OLED » interne est que les photons qu'ils émettent sont réabsorbés par les structures émettrices des autres sous-pixels dans l'unité « OLED » externe, ce qui se traduit par une perte de flux pour ces photons sur la face d'émission de l'écran. Un but de la présente invention est de proposer un dispositif d'affichage polychrome comprenant une face d'émission électroluminescente et, vers l'intérieur du dispositif, au moins un substrat revêtu d'une matrice de pixels, ce dispositif comprenant un empilement d'unités électroluminescentes où chaque pixel est constitué d'au moins trois sous-pixels de couleurs différentes, dispositif qui remédie à ces inconvénients.A major disadvantage of the stacks of "OLED" units presented in these documents is that the gain in lifetime that they provide in each pixel for the critical sub-pixel (typically blue), by maximizing the area of its structure transmitter, does not optimize the resolution of the screen, which is limited by the stencil used for the deposition of sub-pixels of smaller dimensions. Another disadvantage of known stacks where the critical subpixels (eg blue) are located in the internal "OLED" unit is that the photons they emit are reabsorbed by the emitting structures of the other sub-pixels in the unit " OLED "external, which results in a loss of flux for these photons on the emission side of the screen. An object of the present invention is to provide a polychromatic display device comprising an electroluminescent emission face and, towards the inside of the device, at least one substrate coated with a matrix of pixels, this device comprising a stack of electroluminescent units where each pixel consists of at least three sub-pixels of different colors, a device that overcomes these disadvantages.
A cet effet, un dispositif selon l'invention est tel que, pour chaque pixel, le sous-pixel de longueur d'onde d'émission la plus basse λc, ou sous-pixel critique, est exclusivement localisé dans celle des unités, ou unité externe, qui est adjacente à cette face d'émission, chaque autre sous-pixel émettant à une longueur d'onde supérieure à λc étant exclusivement localisé dans une unité qui est interne par rapport à cette unité externe et qui est adjacente au substrat (par opposition à l'unité externe qui est distale par rapport à ce substrat), l'aire de ce sous-pixel critique étant supérieure à celle de chaque autre sous-pixel.For this purpose, a device according to the invention is such that, for each pixel, the sub-pixel of the lowest transmission wavelength λ c , or critical sub-pixel, is exclusively located in that of the units, or external unit, which is adjacent to this transmitting face, each other sub-pixel emitting at a wavelength greater than λ c being exclusively located in a unit which is internal with respect to this external unit and which is adjacent to the substrate (as opposed to the external unit which is distal to this substrate), the area of this critical sub-pixel being greater than that of each other sub-pixel.
On notera que cet agencement des sous-pixels au sein de l'empilement d'unités électroluminescentes selon l'invention permet de gagner à la fois en résolution et en temps de vie pour la matrice de pixels obtenue. En particulier, on peut prévoir une luminance visuelle (en cd/m2) identique pour chacun de ces sous-pixels, parmi lesquels le sous-pixel critique (de longueur d'onde la plus faible, par exemple de couleur bleue dans le cas RVB, indigo ou violette) peut présenter sans limitation dimensionnelle aucune, une aire d'émission très supérieure à celle de chaque autre sous-pixel sous-jacent, ce qui se traduit par une durée de vie pouvant être très notablement accrue pour le dispositif d'affichage.It will be noted that this arrangement of the sub-pixels within the stack of light-emitting units according to the invention makes it possible to gain both resolution and life time for the matrix of pixels obtained. In particular, it is possible to provide an identical visual luminance (in cd / m 2 ) for each of these sub-pixels, among which the critical sub-pixel (of the lowest wavelength, for example of blue color in the case RGB, indigo or violet) can have, without any dimensional limitation, a much larger emission area than that of each other sub-pixel underlying, which results in a lifetime that can be very significantly increased for the device. display.
Par ailleurs, les sous-pixels de plus petites dimensions (rouge et vert dans le cas RVB) sont situés directement sur le substrat, permettant ainsi l'utilisation de technologies classiques de la microélectronique pour leur fabrication et donc la réalisation de motifs de plus petites tailles (d'où le gain en résolution).In addition, the sub-pixels of smaller dimensions (red and green in the RGB case) are located directly on the substrate, thus allowing the use of conventional technologies of microelectronics for their manufacture and thus the realization of smaller patterns. sizes (hence the gain in resolution).
De préférence, l'aire A de ce sous-pixel critique est au moins égale à la somme de celles des autres sous-pixels (soit Abιeu ≥ Ar0Uge + Avert). ce qui permet de gagner encore en résolution et en durée de vie pour l'écran. A titre encore plus préférentiel, le sous-pixel critique peut s'étendre au-delà (i.e. en dépassement) des bords de l'ensemble des autres sous-pixels sous- jacents.Preferably, the area A of this critical subpixel is at least equal to the sum of those of the other subpixels (ie A b ι e u ≥ A r0U ge + A ve rt). which makes it possible to gain even more resolution and longer life for the screen. Even more preferably, the critical subpixel can extend beyond (ie in excess of) the edges of all the other sub-pixels underlying.
On notera également que la localisation des sous-pixels critiques dans l'unité tournée du côté de la face d'émission permet d'éviter, au sein de chaque pixel, le phénomène précité de perte de flux lumineux émis par le sous-pixel critique.It will also be noted that the location of the critical sub-pixels in the unit turned on the side of the transmission face makes it possible to avoid, within each pixel, the aforementioned phenomenon of loss of luminous flux emitted by the critical sub-pixel .
Avantageusement, le sous-pixel critique peut être activable indépendamment de chaque autre sous-pixel : il est transparent lorsqu'il n'est pas activé et, lorsqu'il est activé, émet à ladite longueur d'onde λc en s'additionnant le cas échéant au rayonnement émis par chaque autre sous- pixel.Advantageously, the critical sub-pixel can be activatable independently of each other sub-pixel: it is transparent when it is not activated and, when it is activated, transmits at said wavelength λ c by adding if necessary the radiation emitted by each other sub-pixel.
Selon une autre caractéristique de l'invention, chaque pixel comprend avantageusement des structures organiques émettrices de rayonnements, telles que des diodes électroluminescentes organiques (« OLED »), qui forment respectivement les sous-pixels et qui sont chacune intercalées entre et en contact électrique avec deux électrodes servant respectivement d'anode et de cathode pour la structure émettrice correspondante, l'une de ces électrodes étant transparente ou semi- transparente et l'autre électrode pouvant être réfléchissante. De préférence, ledit empilement est constitué de deux unités électroluminescentes respectivement externe et interne, ledit sous-pixel critique émettant au sein de ladite unité externe et étant empilé sur les autres sous-pixels qui émettent tous au sein de ladite unité interne.According to another characteristic of the invention, each pixel advantageously comprises organic structures emitting radiation, such as organic light-emitting diodes ("OLEDs"), which respectively form the sub-pixels and which are each interposed between and in electrical contact with two electrodes respectively serving as anode and cathode for the corresponding emitting structure, one of these electrodes being transparent or semitransparent and the other electrode being reflective. Preferably, said stack consists of two electroluminescent units respectively external and internal, said critical sub-pixel emitting within said external unit and being stacked on the other sub-pixels that all emit within said internal unit.
Selon un premier mode de réalisation de l'invention, ce dispositif d'affichage comporte un unique substrat de type à matrice active ou passive, chaque pixel étant délimité par une électrode externe appliquée sur la structure émettrice dudit sous-pixel critique, ou structure critique, et par plusieurs électrodes internes qui sont appliquées sur ce substrat et sur lesquelles sont déposées de manière espacée les structures émettrices des autres sous-pixels, ou structures non critiques, au moins une électrode intermédiaire étant appliquée sur les structures non critiques et/ou sous la structure critique. Conformément à ce premier mode, ce dispositif peut comporter une unique électrode intermédiaire qui est appliquée à la fois, pour chaque pixel, sous ladite structure critique et sur lesdites structures non critiques avec lesquelles cette structure critique est sensiblement alignée. En variante, le dispositif selon ce premier mode peut comporter deux électrodes intermédiaires externe et interne qui sont superposées en étant séparées par au moins une couche inorganique électriquement isolante et transparente, de préférence déposée par la technique « ALD » de dépôt de couche atomique (« atomic layer déposition » en anglais) et réalisée en un matériau choisi dans le groupe constitué par les oxydes d'aluminium, de silicium, de zinc et les nitrures de silicium, ces électrodes intermédiaires étant respectivement appliquées, pour chaque pixel, sous la structure critique et sur l'ensemble des structures non critiques. Dans cette variante, les électrodes internes et l'électrode intermédiaire externe peuvent chacune former une anode (semi)transparente, et l'électrode intermédiaire interne et l'électrode externe peuvent alors chacune former une cathode réfléchissante. L'épaisseur de cette couche pourra être optimisée par simulation pour permettre l'extraction du maximum de flux lumineux des unités internes et externes. On retrouve dans ce cas pour chaque unité électroluminescente l'agencement préférentiel d'une structure émettrice intercalée entre une anode inférieure et une cathode supérieure.According to a first embodiment of the invention, this display device comprises a single active or passive matrix type substrate, each pixel being delimited by an external electrode applied to the emitting structure of said critical sub-pixel, or critical structure. , and by several internal electrodes which are applied on this substrate and on which the emitting structures of the other sub-pixels, or non-critical structures, are deposited spaced apart, at least one intermediate electrode being applied to the non-critical structures and / or under the critical structure. According to this first mode, this device may comprise a single intermediate electrode which is applied at a time, for each pixel, under said critical structure and on said non-critical structures with which this critical structure is substantially aligned. As a variant, the device according to this first embodiment may comprise two external and internal intermediate electrodes which are superimposed by being separated by at least one electrically insulating and transparent inorganic layer, preferably deposited by the "ALD" technique for depositing an atomic layer (" atomic layer deposition "in English) and made of a material selected from the group consisting of oxides of aluminum, silicon, zinc and silicon nitrides, these intermediate electrodes being respectively applied, for each pixel, under the critical structure and on all non-critical structures. In this variant, the internal electrodes and the external intermediate electrode may each form a (semi) transparent anode, and the inner intermediate electrode and the outer electrode may then each form a reflective cathode. The thickness of this layer can be optimized by simulation to allow the extraction of the maximum luminous flux of the internal and external units. In this case we find for each electroluminescent unit the preferred arrangement of an emitting structure interposed between a lower anode and an upper cathode.
On notera que le matériau inorganique transparent précité qui forme la couche isolante utilisée dans cette variante pourrait également être utilisé pour l'encapsulation de l'écran selon l'invention.It will be noted that the aforementioned transparent inorganic material which forms the insulating layer used in this variant could also be used for the encapsulation of the screen according to the invention.
Selon un second mode de réalisation de l'invention, le dispositif d'affichage comporte deux substrats respectivement externe et interne qui sont chacun à matrice active ou passive et qui sont assemblés l'un à l'autre en leurs périphéries par des cordons de colle formant encapsulation étanche pour le dispositif, le substrat externe étant pourvu de structures émettrices critiques régulièrement espacées qui forment chacune un sous- pixel critique, et le substrat interne étant pourvu de structures émettrices non critiques régulièrement espacées qui forment chacune l'un au moins des autres sous-pixels et qui sont séparées de ces structures critiques par un isolant électrique, les deux matrices formées par ces substrats étant connectées à des circuits indépendants d'alimentation électrique. On notera que l'utilisation de ces deux substrats sur lesquels sont déposées les structures émettrices ne complique pas véritablement le procédé de fabrication du dispositif d'affichage selon l'invention, du fait qu'il n'est pas nécessaire dans ce second mode d'aligner précisément les structures émettrices critiques et non critiques déposées en regard, et surtout que l'encapsulation de l'écran est réalisée par les seuls cordons de colle précités formant une enceinte hermétique.According to a second embodiment of the invention, the display device comprises two respectively external and internal substrates which are each active or passive matrix and which are assembled to one another at their peripheries by adhesive strings. forming a sealed encapsulation for the device, the external substrate being provided with regularly spaced critical emitting structures which each form a critical subpixel, and the inner substrate being provided with non-transmitting structures regularly spaced critics which each form at least one of the other sub-pixels and which are separated from these critical structures by an electrical insulator, the two matrices formed by these substrates being connected to independent power supply circuits. It should be noted that the use of these two substrates on which the emitting structures are deposited does not really complicate the manufacturing process of the display device according to the invention, since it is not necessary in this second mode of to precisely align the critical and non-critical emitting structures deposited opposite, and especially that the encapsulation of the screen is performed by the aforementioned adhesive strands forming a hermetic enclosure.
Ce dispositif procure en outre une très haute résolution et des modes de fonctionnement moins destructeurs pour les unités électroluminescentes, comme cela sera expliqué par la suite. Conformément à ce second mode, ledit isolant jest constitué par du vide séparant ces structures critiques et non critiques, de sorte à s'affranchir des limitations de rendement de chaque sous-pixel critique en contrôlant les interférences lumineuses entre ces structures.This device also provides a very high resolution and less destructive operating modes for the electroluminescent units, as will be explained later. In accordance with this second mode, said insulator consists of a vacuum separating these critical and non-critical structures, so as to overcome the efficiency limitations of each critical sub-pixel by controlling the light interferences between these structures.
Avantageusement selon ce second mode, lesdits substrats sont séparés entre eux d'une distance inférieure à 2 μm, pour minimiser les émissions d'une structure non critique vers une structure non critique voisine et les maximiser vers la structure critique en vis-à-vis.Advantageously according to this second mode, said substrates are separated from each other by a distance of less than 2 μm, to minimize the emissions of a non-critical structure towards a neighboring non-critical structure and to maximize them towards the critical structure vis-à-vis .
Selon une autre caractéristique générale de l'invention, lesdits sous-pixels peuvent par exemple être constitués de trois sous-pixels respectivement rouge, vert et bleu, ledit sous-pixel critique exclusivement localisé dans ladite unité externe étant un sous-pixel émettant dans le bleu, et les autres sous-pixels exclusivement localisés dans ladite unité interne étant des sous-pixels émettant dans le rouge et/ou dans le vert.According to another general characteristic of the invention, said sub-pixels may for example consist of three sub-pixels respectively red, green and blue, said critical sub-pixel located exclusively in said external unit being a sub-pixel emitting in the blue, and the other sub-pixels exclusively located in said internal unit being sub-pixels emitting in the red and / or in the green.
Selon une autre caractéristique de l'invention notamment commune à ces premier et second modes, la structure émettrice de chacun des sous-pixels autres que ledit sous-pixel critique est apte à émettre sélectivement, en fonction de la tension électrique qui lui est appliquée, au moins deux rayonnements distincts de longueurs d'onde toutes deux supérieures à celle de ce sous-pixel critique de sorte à former successivement des sous-pixels non critiques au moins bicolores.According to another feature of the invention particularly common to these first and second modes, the transmitting structure of each of the sub-pixels other than said critical sub-pixel is able to selectively transmit, depending on the voltage applied to it, at at least two distinct radiations of wavelengths both greater than that of this critical sub-pixel so as to successively form at least two-color non-critical subpixels.
Dans l'exemple précité de sous-pixels émettant dans le bleu, le rouge et le vert, la structure émettrice de chaque sous-pixel non critique peut alors comprendre deux matériaux émetteurs distincts aptes à émettre dans le rouge à basse tension et dans le vert à plus haute tension, pour l'obtention de sous-pixels bicolores.In the aforementioned example of sub-pixels emitting in blue, red and green, the emitting structure of each non-critical sub-pixel can then comprise two different emitting materials capable of emitting in the low-voltage red and in the green at higher voltage, for obtaining two-color sub-pixels.
On notera que ces sous-pixels non critiques au moins bicolores présentent l'avantage, dans ce premier mode de l'invention, de simplifier l'adressage des unités électroluminescentes en requérant deux fois moins d'électrodes internes pour les unités électroluminescentes correspondantes et, dans ce second mode de l'invention, de simplifier également la structure du substrat interne. D'une manière générale pour l'ensemble des dispositifs d'affichage selon la présente invention, on notera qu'ils peuvent être encapsulés de manière étanche par divers moyens, comprenant notamment :It will be noted that these non-critical sub-pixels, which are at least two-colored, have the advantage, in this first embodiment of the invention, of simplifying the addressing of the electroluminescent units by requiring two fewer internal electrodes for the corresponding electroluminescent units and, in this second embodiment of the invention, also to simplify the structure of the internal substrate. In general, for all the display devices according to the present invention, it should be noted that they can be sealed encapsulated by various means, including:
- pour le premier mode de l'invention, le collage d'une plaque de protection transparente par exemple en verre ou en matière plastique et pourvue de filtres optiques colorés sur sa face d'assemblage avec l'écran, ou bien le recouvrement de l'écran par une ou plusieurs couches d'encapsulation pouvant être formées du matériau inorganique transparent précité, et- For the first embodiment of the invention, the bonding of a transparent protection plate for example of glass or plastic and provided with colored optical filters on its assembly face with the screen, or the recovery of the screen with one or more encapsulation layers capable of being formed of the above-mentioned transparent inorganic material, and
- pour le second mode de l'invention, par les cordons de colle déposés entre les deux substrats et formant l'enceinte hermétique précitée.- For the second embodiment of the invention, by the beads of adhesive deposited between the two substrates and forming the aforementioned hermetic enclosure.
D'autres avantages, caractéristiques et détails de l'invention ressortiront du complément de description qui va suivre en référence à des dessins annexés, donnés uniquement à titre d'exemples et dans lesquels : la figure 1 est une vue schématique de dessus d'un agencement selon l'art antérieur de trois sous-pixels respectivement rouge, vert et bleu d'un écran électroluminescent, la figure 2 est une vue schématique de dessus d'un agencement selon le principe de l'invention de ces trois sous-pixels, répartis dans deux unités superposées d'un écran électroluminescent, la figure 3 est une vue schématique partielle en coupe transversale d'un dispositif d'affichage selon le premier mode de réalisation de l'invention utilisant le principe d'empilement de la figure 2, la figure 4 est une vue schématique de dessus des composants essentiels de l'empilement d'un dispositif d'affichage selon une variante de la figure 3, et la figure 5 est une vue schématique partielle en coupe transversale d'un dispositif d'affichage selon le second mode de réalisation de l'invention.Other advantages, characteristics and details of the invention will emerge from the additional description which follows with reference to the accompanying drawings, given solely by way of example and in which: FIG. 1 is a diagrammatic view from above of a arrangement according to the prior art of three respectively red, green and blue subpixels of a light-emitting screen, FIG. 2 is a schematic view from above of an arrangement according to the principle of the invention of these three sub-pixels, distributed in two superimposed units of a light-emitting screen, FIG. 3 is a partial diagrammatic cross-sectional view of a display device according to the first embodiment of the invention using the stacking principle of FIG. 2, FIG. 4 is a schematic view from above of the essential components of the stack of a display device. according to a variant of Figure 3, and Figure 5 is a partial schematic cross-sectional view of a display device according to the second embodiment of the invention.
Les dispositifs d'affichage 1 , l', 101 selon l'invention décrits ci-après en référence aux figures 2 à 5 sont de type à « OLED », comprenant de manière connue au moins un substrat 2, 102a, 102b typiquem ent en silicium revêtu d'une matrice de pixels qui surmonte une structure de circuit intégré servant à adresser chaque pixel et pouvant comporter par exemple pour chaque pixel deux transistors et un condensateur ou des circuits plus complexes, et qui est reliée à une zone de connexion électrique (non illustrée) pour l'établissement d'une différence de potentiel entre des électrodes 3 à 6 au contact desquelles sont intercalées des structures émettrices multicouches à film organique (monocouche ou multicouches, non représenté). Comme cela sera expliqué ci-après, ces électrodes 3 à 6 servent chacune d'anode ou de cathode et l'une au moins d'entre elles est transparente à la lumière émise par les pixels afin de faire rayonner cette lumière émise vers l'extérieur du dispositif 1 , l', 101. Quant au film organique intercalé entre ces électrodes 3 à 6, il est conçu pour transférer les électrons et les trous qui proviennent des électrodes 3 à 6 et qui sont recombinés pour générer des excitons et donc l'émission de lumière.The display devices 1, 1 ', 101 according to the invention described hereinafter with reference to FIGS. 2 to 5 are of the "OLED" type, comprising in known manner at least one substrate 2, 102a, 102b, typically in silicon coated with a matrix of pixels which overcomes an integrated circuit structure for addressing each pixel and which may comprise for example for each pixel two transistors and a capacitor or more complex circuits, and which is connected to an electrical connection zone ( not shown) for the establishment of a potential difference between electrodes 3 to 6 in contact with which are interlaced multilayer emitting structures organic film (monolayer or multilayer, not shown). As will be explained below, these electrodes 3 to 6 each serve as anode or cathode and at least one of them is transparent to the light emitted by the pixels in order to radiate this light emitted towards the external device 1, the, 101. As for the organic film inserted between these electrodes 3 to 6, it is designed to transfer the electrons and holes that come from the electrodes 3 to 6 and which are recombined to generate excitons and therefore the light emission.
On a représenté à la figure 1 un agencement connu de trois sous-pixels R, V, B (respectivement rouge, vert et bleu) pour chaque pixel d'une matrice d'écran « OLED », dans lequel on a cherché à maximiser la taille du sous-pixel B de longueur d'onde la plus courte aux dépens de celle du sous-pixel R et du sous-pixel V, qui ont été réduites avec la limite dimensionnelle I imposée par la taille des ouvertures du pochoir utilisé pour déposer ces sous-pixels et/ou celle du circuit d'adressage pour l'alimentation de chaque sous-pixel. De cette manière, on a minimisé la densité de courant dans le sous-pixel B qui est de manière connue le plus sensible au vieillissement, de sorte à accroître la durée de vie de ce sous-pixel B d'aire d'émission la plus élevée, et l'on a obtenu un pixel de dimension L dans le sens de la succession des trois sous-pixels R, V et B.FIG. 1 shows a known arrangement of three sub-pixels R, V, B (respectively red, green and blue) for each pixel of an "OLED" screen matrix, in which an attempt has been made to maximize the size of the shortest wavelength subpixel B at the expense of that of the subpixel R and the subpixel V, which have been reduced with the dimensional limit I imposed by the size of the openings of the stencil used to deposit these sub-pixels and / or that of the addressing circuit for the supply of each sub-pixel. In this way, the current density in the subpixel B, which is known to be the most sensitive to aging, has been minimized, so as to increase the lifetime of this sub-pixel B of the highest transmission area. high, and we obtained a pixel of dimension L in the direction of the succession of the three sub-pixels R, V and B.
Est illustré à la figure 2 le principe général selon l'invention utilisant un empilement de deux unités « OLED » respectivement interne (i.e. opposée à la face d'émission de l'écran) et externe (i.e. adjacente à cette face d'émission) où, pour chaque pixel, le sous-pixel bleu B' est uniquement localisé dans l'unité externe et les sous-pixels rouge R et vert V sont uniquement localisés dans l'unité interne, avec une aire d'émission pour le sous-pixel B' qui est égale ou supérieure à la somme des aires d'émissions respectives des deux autres sous-pixels R et V. On voit à la figure 2 que ce sous-pixel B' dépasse avantageusement de chaque côté des bords de l'ensemble des sous-pixels R et V, en présentant une dimension L" réduite par rapport à la dimension correspondante L de la figure 1.Is illustrated in Figure 2 the general principle of the invention using a stack of two units "OLED" respectively internal (ie opposite to the transmitting face of the screen) and external (ie adjacent to this emission face) where, for each pixel, the blue sub-pixel B 'is only located in the external unit and the red sub-pixels R and green V are only located in the internal unit, with a transmission area for the sub-pixel. pixel B 'which is equal to or greater than the sum of the respective emission areas of the other two sub-pixels R and V. It can be seen in FIG. 2 that this sub-pixel B' advantageously exceeds on each side of the edges of the set of sub-pixels R and V, having a dimension L "reduced compared to the corresponding dimension L of Figure 1.
Selon la couleur désirée, les sous-pixels R1 V et B' peuvent être sollicités indépendamment ou simultanément, le sous-pixel B' superposé étant transparent lorsqu'il n'est pas activé pour ne pas altérer l'émission des sous-pixels R et V dans ce cas. Une fois activé, le sous-pixel B' émet un rayonnement qui s'additionne, le cas échéant, à ceux des sous-pixels R et V.Depending on the desired color, the sub-pixels R 1 V and B 'can be solicited independently or simultaneously, the superimposed subpixel B' being transparent when it is not activated so as not to alter the emission of the sub-pixels R and V in this case. Once activated, the sub-pixel B 'emits a radiation which is added, if necessary, to those of the sub-pixels R and V.
Cet agencement particulier des sous-pixels R, V et B' dans cet empilement, combiné au choix d'une aire maximale pour le sous-pixel B' permet à la fois d'optimiser la durée de vie de ce sous-pixel bleu et de gagner en résolution. En particulier, cette localisation du sous-pixel B' du côté de la face d'émission de l'écran permet de conserver intact le flux de photons bleus, en évitant la réabsorption de ces derniers par les sous-pixels R et V. A titre indicatif, l'aire de chaque sous-pixel utilisable dans un écran selon l'invention peut varier de 400 μm2 à 90000 μm2 environ.This particular arrangement of the sub-pixels R, V and B 'in this stack, combined with the choice of a maximum area for the sub-pixel B' allows both to optimize the life of this blue sub-pixel and to win in resolution. In particular, this location of the sub-pixel B 'on the side of the emission face of the screen makes it possible to keep intact the stream of blue photons, avoiding reabsorption of these latter by the sub-pixels R and V. As an indication, the area of each sub-pixel that can be used in a screen according to the invention can vary from 400 μm 2 to approximately 90000 μm 2 .
Le dispositif d'affichage 1 selon le premier mode de l'invention qui est illustré à la figure 3 comporte un unique substrat 2 de type à matrice active ou passive, chaque pixel étant délimité par :The display device 1 according to the first embodiment of the invention which is illustrated in FIG. 3 comprises a single substrate 2 of active or passive matrix type, each pixel being delimited by:
- une électrode externe 3 appliquée sur la structure émettrice EB du sous-pixel B' et formant par exemple une cathode réfléchissante,an external electrode 3 applied to the emitting structure EB of the sub-pixel B 'and forming for example a reflective cathode,
- par deux électrodes internes ou de fond 4 et 5 qui sont appliquées sur ce substrat 2 et sur lesquelles sont respectivement déposées de manière espacée (séparées de préférence par du vide) les structures émettrices ER et Ev des sous-pixels R et V, ces électrodes 4 et 5 formant par exemple des anodes transparentes ou semi-transparentes, et parby two internal or bottom electrodes 4 and 5 which are applied on this substrate 2 and on which the emitting structures ER and Ev of the sub-pixels R and V, respectively spaced apart (preferably separated by vacuum), are respectively deposited electrodes 4 and 5 forming, for example, transparent or semi-transparent anodes, and by
- une électrode intermédiaire 6 qui surmonte ces structures émettrices ER et Ev et sur laquelle est appliquée la structure émettrice EB, cette électrode 6 formant par exemple à la fois une cathode pour l'unité « OLED » interne U1 et une anode pour l'unité « OLED » externe Ue.an intermediate electrode 6 which overcomes these emitting structures E R and Ev and on which the emitting structure EB is applied, this electrode 6 forming, for example, both a cathode for the internal "OLED" unit U 1 and an anode for the external OLED unit U e .
Comme visible à la figure 3, les bords de la structure émettrice EB sont sensiblement alignés avec ceux de la structure émettrice ER et de la structure émettrice Ev bien que, comme illustré à la figure 4, cet alignement puisse n'être qu'approximatif pour le dispositif l'. On peut noter à ce sujet que cet alignement précis n'est pas impératif, que ce soit en termes de colorimétrie (dans la mesure ou la luminance des sous-pixels R, V, B' peut être ajustée par l'adressage en fonction de la couleur recherchée et des pixels sollicités) ou en termes de résolution (dans la mesure ou la surface élémentaire maximale éclairée n'excède pas la taille du pixel).As can be seen in FIG. 3, the edges of the emitting structure EB are substantially aligned with those of the emitting structure ER and of the emitting structure Ev although, as illustrated in FIG. 4, this alignment can only be approximate for the device the. It may be noted in this regard that this precise alignment is not imperative, whether in terms of colorimetry (insofar as the luminance of the sub-pixels R, V, B 'can be adjusted by the addressing as a function of the desired color and solicited pixels) or in terms of resolution (insofar as the illuminated maximum elementary surface does not exceed the size of the pixel).
En variante, le dispositif d'affichage 1 ou l' pourrait comporter non pas une mais deux électrodes intermédiaires externe et interne qui sont superposées en étant séparées par une couche inorganique transparente électriquement isolante, et qui sont respectivement appliquées, pour chaque pixel, sous la structure émettrice E6 et sur les deux structures ER et Ev. Cette couche, de préférence déposée par la technique « ALD » de dépôt de couche atomique, peut être avantageusement réalisée en un matériau choisi dans le groupe constitué par les oxydes d'aluminium, de silicium, de zinc et les nitrures de silicium.In a variant, the display device 1 or the device could comprise not one but two external and internal intermediate electrodes which are superimposed by being separated by an electrically insulating transparent inorganic layer, and which are respectively applied, for each pixel, under the emitting structure E 6 and on both structures E R and E v . This layer, preferably deposited by the "ALD" layer deposition technique atomic, can be advantageously made of a material selected from the group consisting of oxides of aluminum, silicon, zinc and silicon nitrides.
Dans cette configuration d'empilement, les deux électrodes internes et l'électrode intermédiaire externe peuvent chacune former une anode transparente ou semi-transparente, et l'électrode intermédiaire interne et l'électrode externe peuvent alors chacune former une cathode réfléchissante, ce qui permet de retrouver pour chaque unité électroluminescente Uj et Ue l'agencement préférentiel d'une structure émettrice ER, EV OU EB intercalée entre une anode inférieure et une cathode supérieure.In this stacking configuration, the two inner electrodes and the outer intermediate electrode can each form a transparent or semi-transparent anode, and the inner intermediate electrode and the outer electrode can each then form a reflective cathode, which allows to find for each electroluminescent unit Uj and U e the preferred arrangement of an emitting structure ER, EV or EB interposed between a lower anode and an upper cathode.
Selon une autre variante de ce premier mode, on réalise les sous-pixels R et V en un seul sous-pixel bicolore R/V qui présente la propriété d'émettre dans le rouge à basse tension et dans le vert à plus haute tension. A cet effet, on utilise pour chaque sous-pixel bicolore une structure émettrice multicouches composée d'au moins deux matériaux distincts émettant respectivement dans le rouge et le vert, qui est par exemple la suivante : anode / HTM014 dopé p /NPB / TMM004 dopé Irppy / TMM004 dopé TER04 / Alq3 / Bphen dopé N / cathode, où les matériaux Alq3 et Bphen sont disponibles chez Aldrich et où les autres matériaux sont disponibles chez Merck Germany.According to another variant of this first mode, the sub-pixels R and V are produced in a single two-color R / V sub-pixel which has the property of transmitting in the low-voltage red and in the higher-voltage green. For this purpose, for each two-color sub-pixel, a multilayer emitter structure composed of at least two distinct materials emitting respectively in red and green, which is for example the following: doped doped anode / HTM014 p / NPB / TMM004 Irppy / TMM004 doped TER04 / Alq3 / N-doped Bphen / cathode, where Alq3 and Bphen materials are available from Aldrich and where other materials are available from Merck Germany.
Qn notera que cette variante à sous-pixels bicolores R/V permet de simplifier l'adressage de chacune des unités « OLED », en comparaison des unités des figures 3 et 4 nécessitant quatre électrodes indépendantes.Note that this variant with two-color sub-pixels R / V simplifies the addressing of each unit "OLED" in comparison with the units of Figures 3 and 4 requiring four independent electrodes.
D'une manière générale en référence à ce premier mode de l'invention, il convient de noter que l'empilement obtenu permet de pouvoir spécifiquement optimiser la cavité optique du sous-pixel bleu pour accroître le couplage optique de sortie, alors qu'un compromis sera trouvé pour les autres sous-pixels rouge et vert sous-jacents, si l'on souhaite déposer les couches de transport de façon commune. Egalement pour ce premier mode de l'invention, il convient de noter que la ou chaque électrode intermédiaire doit être structurée, ce qui est par exemple réalisable par dépôt de cette électrode au moyen d'un pochoir conventionnel.In general with reference to this first embodiment of the invention, it should be noted that the stack obtained makes it possible specifically to optimize the optical cavity of the blue sub-pixel to increase the optical coupling output, while compromise will be found for the other underlying red and green subpixels, if it is desired to deposit the transport layers in a common way. Also for this first mode of the invention, it should be noted that the or each intermediate electrode must be structured, which is for example achievable by depositing this electrode by means of a conventional stencil.
Le dispositif 101 selon le second mode de réalisation de l'invention illustré à la figure 5 comporte deux substrats externe 102a et interne 102b à matrice active ou passive (communément appelés « backplanes » en anglais par l'homme du métier) assemblés par des cordons périphériques de colle 110 formant encapsulation étanche. Le substrat externe 102a est pourvu, sur sa face tournée vers l'autre substrat 102b, de structures émettrices E'B dans le bleu régulièrement espacées qui forment chacune au contact d'une paire d'électrodes (non illustrées) un sous-pixel bleu, et le substrat interne est pourvu de structures émettrices E'R et EV régulièrement espacées qui forment chacune un sous-pixel rouge et/ou vert au contact d'une paire d'électrodes (non illustrées) et qui sont séparées des structures E'B par du vide formant isolant électrique. Les deux matrices formées par ces substrats 102a et 102b sont respectivement connectées à des circuits indépendants d'alimentation électrique (non illustrés). Cette séparation spatiale entre les structures émettrices E'B et les structures émettrices E'R et EV permet avantageusement de s'affranchir des limitations de rendement de chaque sous-pixel bleu en contrôlant les interférences lumineuses entre ces structures E'B, E'R et EVThe device 101 according to the second embodiment of the invention illustrated in FIG. 5 comprises two external 102a and internal 102b active or passive matrix substrates (commonly called "backplanes" in English by those skilled in the art) assembled by cords. 110 glue peripherals forming sealed encapsulation. The outer substrate 102a is provided, on its side facing the other substrate 102b, emitting structures E'B in the regularly spaced blue which each form in contact with a pair of electrodes (not shown) a blue sub-pixel and the inner substrate is provided with regularly spaced emitting structures E ' R and EV which each form a red and / or green subpixel in contact with a pair of electrodes (not shown) and which are separate from the structures E' B by vacuum forming electrical insulation. The two matrices formed by these substrates 102a and 102b are respectively connected to independent power supply circuits (not shown). This spatial separation between the emitting structures E ' B and the emitting structures E'R and EV advantageously makes it possible to overcome the yield limitations of each blue sub-pixel by controlling the light interferences between these structures E'B, E'R and EV
Comme indiqué précédemment, l'utilisation des deux substrats 102a et 102b sur lesquels sont déposées les structures émettrices E'B, E'R et EV ne pénalise pas vraiment la fabrication du dispositif 101 , du fait qu'il n'est pas nécessaire d'aligner précisément ces structures E'B, E'R et EV et que l'encapsulation de l'écran est obtenue de manière très simple par les seuls cordons de colle 110. Ce dispositif 101 procure en outre une très haute résolution et des modes de fonctionnements moins destructeurs pour les unités Uj et Ue. En effet, la séparation spatiale des structures émettrices de ces deux unités Uj et Ue permet, d'une part, de s'affranchir des limitations de rendement, notamment perceptibles pour les structures émettrices E'B et, d'autre part, de faire fonctionner en parallèle ces structures E'B très sensibles avec des densités de courant plus faibles, donc avec une durée de vie plus élevée. Avantageusement, les substrats 102a et 102b sont séparés entre eux d'une distance inférieure à 2 μm, pour éviter les erreurs de « parallaxe » en minimisant les émissions d'une structure E'R OU EV vers une structure E'R OU EV voisine pour les focaliser sur la structure E'B en vis-à-vis.As indicated above, the use of the two substrates 102a and 102b on which are deposited the emitting structures E'B, E'R and EV does not really penalize the manufacture of the device 101, because it is not necessary to to precisely align these structures E ' B , E' R and EV and that the encapsulation of the screen is obtained in a very simple manner by the only adhesive beads 110. This device 101 also provides a very high resolution and different modes. less destructive operations for Uj and U e units . Indeed, the spatial separation of the emitting structures of these two units Uj and U e allows, on the one hand, to overcome performance limitations, particularly noticeable for the E'B emitting structures and, on the other hand, to operate in parallel these very sensitive E'B structures with densities lower current, so with a longer life. Advantageously, the substrates 102a and 102b are separated from one another by a distance of less than 2 μm, to avoid "parallax" errors by minimizing the emissions of a structure E'R OR EV towards a neighboring structure E'R OR EV to focus on the E'B structure vis-à-vis.
Bien entendu, ce dispositif d'affichage 101 de la- figure 5 nécessite la connexion de circuits d'alimentation électrique (appelésOf course, this display device 101 of FIG. 5 requires the connection of power supply circuits (called
« drivers » an anglais) spécifiques aux deux matrices déposées sur les substrats 102a et 102b, i.e. avec un nombre de flexibles multiplié par deux en comparaison des dispositifs 1 , l' à une seule matrice."Drivers" in English) specific to the two matrices deposited on the substrates 102a and 102b, i.e. with a number of hoses multiplied by two in comparison with the devices 1, l 'to a single matrix.
En variante et comme indiqué ci-dessus pour le premier mode de l'invention, on peut avantageusement réaliser des sous-pixels bicolores RA/ émettant soit dans le rouge soit dans le vert en fonction de la tension électrique appliquée, en lieu et place de l'agencement à distance de sous- pixels rouge et vert sur le « backplane » 102b. Une telle structure émettrice bicolore RA/ peut par exemple présenter la configuration suivante : « backplane » / électrode réfléchissante / HTL dopé p / EBL /As a variant and as indicated above for the first embodiment of the invention, two-color subpixels RA / emitting either in the red or in the green depending on the applied electrical voltage can advantageously be made, in place of the remote arrangement of red and green subpixels on the "backplane" 102b. Such a two-color emitting structure RA / may for example have the following configuration: "backplane" / reflective electrode / p-doped HTL / EBL /
EL vert / EL rouge / HBL / ETL dopé n / électrode (semi)transparente, où HTL signifie « hole transport layer » (couche de transfert de trous), EBL signifie « électron blocking layer » (couche bloquant les électrons), EL signifie « emissive layer » (couche d'émission), HBL signifie « hole blocking layer » (couche bloquant les trous) et ETL signifie « électron transport layer » (couche de transfert des électrons).EL green / EL red / HBL / ETL doped n / electrode (semi) transparent, where HTL stands for "hole transport layer", EBL stands for "electron blocking layer", EL stands for "Emissive layer", HBL stands for "hole blocking layer" and ETL stands for "electron transport layer".
Quant à la structure émettrice E'B dans le bleu, elle peut par exemple présenter la configuration suivante :As for the emitting structure E'B in blue, it can for example have the following configuration:
« backplane » / électrode (semi)transparente / HTL dopé p / EBL / EL Bleu / HBL / ETL dopé n / électrode (semi)transparente. Dans les exemples précités, on notera que les couches de transfert (HTL et ETL) des deux structures émettrices (la structure externe bleue et la structure interne rouge/vert) sont dopées, mais que cela n'est pas nécessaire. Ainsi, par exemple au moins l'une des deux structures émettrice (avantageusement la structure bleue) pourrait être non dopée."Backplane" / (semi) transparent electrode / HTL doped p / EBL / EL blue / HBL / ETL doped n / electrode (semi) transparent. In the examples mentioned above, it will be noted that the transfer layers (HTL and ETL) of the two emitting structures (the blue outer structure and the red / green internal structure) are doped, but that this is not necessary. Thus, for example at least one of the two emitting structures (preferably the blue structure) could be undoped.
Les électrodes semi-transparentes et les cavités optiques recevant ces sous-pixels peuvent être optimisées, de façon à maximiser l'efficacité de ces unités « OLED » et les cônes d'émission lumineuse, via l'espace inter-électrodes et les distances entre diodes. On notera que l'alignement précis des structures émettrices de ces deux « backplanes » 102a et 102b n'est pas aussi essentiel que pour les écrans à un unique « backplane », hormis dans le but d'optimiser la luminance totale du fait que les zones inter-pixels de la matrice supérieure 102a cachent le flux émis par les pixels de la matrice inférieure 102b. Cependant, un désalignement n'induit pas de perte de résolution dans le dispositif 101.Semi-transparent electrodes and optical cavities receiving these sub-pixels can be optimized, so as to maximize the efficiency of these OLED units and the light emission cones, via the inter-electrode space and the distances between diodes. It should be noted that the precise alignment of the transmitting structures of these two backplanes 102a and 102b is not as essential as for the screens with a single backplane, except for the purpose of optimizing the total luminance because the inter-pixel areas of the upper matrix 102a hide the flux emitted by the pixels of the lower matrix 102b. However, a misalignment does not induce a loss of resolution in the device 101.
De plus, on choisit avantageusement pour chaque sous-pixel bleu une aire d'émission deux fois supérieure à celle de chaque pixel vert ou rouge. La résolution de l'écran correspond alors à la taille de chaque sous- pixel bleu et l'adressage de l'écran prend en compte cette différence de taille entre sous-pixels pour compenser les différences de résolution des deux « backplanes » 102a et 102b.In addition, one advantageously chooses for each blue sub-pixel a transmission area twice as large as that of each green or red pixel. The resolution of the screen then corresponds to the size of each blue subpixel and the addressing of the screen takes into account this difference in size between sub-pixels to compensate for the differences in resolution of the two backplanes 102a and 102b. .
En résumé, l'avantage majeur de ce dispositif 101 est le gain considérable en définition procuré par ces deux « backplanes » 102a et 102b, et également en durée de vie des unités « OLED », sans pour autant être pénalisé par un impératif d'alignement précis des sous-pixels. In summary, the major advantage of this device 101 is the considerable gain in definition provided by these two "backplanes" 102a and 102b, and also in the lifetime of the "OLED" units, without being penalized by a requirement of precise alignment of the sub-pixels.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0803790A FR2933536B1 (en) | 2008-07-03 | 2008-07-03 | POLYCHROME ELECTRONIC DISPLAY DEVICE WITH LIGHT EMITTING SCREEN |
PCT/FR2009/000714 WO2010000976A2 (en) | 2008-07-03 | 2009-06-16 | Polychromatic electronic display device with electroluminescent screen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2311093A2 true EP2311093A2 (en) | 2011-04-20 |
Family
ID=40262104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09772659A Withdrawn EP2311093A2 (en) | 2008-07-03 | 2009-06-16 | Polychromatic electronic display device with electroluminescent screen |
Country Status (6)
Country | Link |
---|---|
US (1) | US8674598B2 (en) |
EP (1) | EP2311093A2 (en) |
JP (1) | JP5743888B2 (en) |
KR (1) | KR101591743B1 (en) |
FR (1) | FR2933536B1 (en) |
WO (1) | WO2010000976A2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9385167B2 (en) | 2008-10-01 | 2016-07-05 | Universal Display Corporation | OLED display architecture |
US20100225252A1 (en) | 2008-10-01 | 2010-09-09 | Universal Display Corporation | Novel amoled display architecture |
US8827488B2 (en) | 2008-10-01 | 2014-09-09 | Universal Display Corporation | OLED display architecture |
DE102011084639A1 (en) | 2011-10-17 | 2013-04-18 | Osram Opto Semiconductors Gmbh | ORGANIC ELECTRONIC COMPONENT WITH DUTY, USE OF A DOPING AGENT AND METHOD FOR PRODUCING THE DUTY |
US9231227B2 (en) * | 2011-10-28 | 2016-01-05 | Universal Display Corporation | OLED display architecture |
US8957579B2 (en) | 2012-09-14 | 2015-02-17 | Universal Display Corporation | Low image sticking OLED display |
CN104269431B (en) * | 2014-09-29 | 2017-03-01 | 京东方科技集团股份有限公司 | A kind of organic elctroluminescent device, its driving method and display device |
US20220231095A1 (en) * | 2019-05-13 | 2022-07-21 | 3M Innovative Properties Company | Organic light emitting diode display |
KR102213343B1 (en) * | 2019-07-01 | 2021-02-08 | 한국과학기술원 | Micro led display having multicolor pixel array and method for fabricating the same by integrating with driving circuit |
CN110428733A (en) * | 2019-07-22 | 2019-11-08 | 深圳市华星光电半导体显示技术有限公司 | Collapsible display panel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1012378A (en) * | 1996-06-19 | 1998-01-16 | Idemitsu Kosan Co Ltd | Multicolor light emitting device and method of manufacturing the same |
JP2005203352A (en) * | 2004-01-15 | 2005-07-28 | Chi Mei Optoelectronics Corp | EL display device and manufacturing method thereof |
EP1758170A2 (en) * | 2005-08-26 | 2007-02-28 | Samsung SDI Co., Ltd. | Organic light emitting display and method for fabricating the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3557227B2 (en) * | 1993-04-27 | 2004-08-25 | 住友化学工業株式会社 | Organic electroluminescence device |
US5707745A (en) | 1994-12-13 | 1998-01-13 | The Trustees Of Princeton University | Multicolor organic light emitting devices |
US5703436A (en) * | 1994-12-13 | 1997-12-30 | The Trustees Of Princeton University | Transparent contacts for organic devices |
US5917280A (en) * | 1997-02-03 | 1999-06-29 | The Trustees Of Princeton University | Stacked organic light emitting devices |
US6747618B2 (en) | 2002-08-20 | 2004-06-08 | Eastman Kodak Company | Color organic light emitting diode display with improved lifetime |
US7250728B2 (en) | 2004-04-21 | 2007-07-31 | Au Optronics | Bottom and top emission OLED pixel structure |
US20060181203A1 (en) * | 2005-02-16 | 2006-08-17 | Hsin-Fei Meng | Voltage-tuning multi-layer full-color conjugated polymer LED |
JP4619186B2 (en) * | 2005-04-19 | 2011-01-26 | 株式会社半導体エネルギー研究所 | Light emitting device |
-
2008
- 2008-07-03 FR FR0803790A patent/FR2933536B1/en not_active Expired - Fee Related
-
2009
- 2009-06-16 WO PCT/FR2009/000714 patent/WO2010000976A2/en active Application Filing
- 2009-06-16 US US13/001,864 patent/US8674598B2/en not_active Expired - Fee Related
- 2009-06-16 EP EP09772659A patent/EP2311093A2/en not_active Withdrawn
- 2009-06-16 KR KR1020117001993A patent/KR101591743B1/en not_active Expired - Fee Related
- 2009-06-16 JP JP2011515519A patent/JP5743888B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1012378A (en) * | 1996-06-19 | 1998-01-16 | Idemitsu Kosan Co Ltd | Multicolor light emitting device and method of manufacturing the same |
JP2005203352A (en) * | 2004-01-15 | 2005-07-28 | Chi Mei Optoelectronics Corp | EL display device and manufacturing method thereof |
EP1758170A2 (en) * | 2005-08-26 | 2007-02-28 | Samsung SDI Co., Ltd. | Organic light emitting display and method for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
US8674598B2 (en) | 2014-03-18 |
FR2933536A1 (en) | 2010-01-08 |
US20110181178A1 (en) | 2011-07-28 |
WO2010000976A3 (en) | 2010-06-03 |
WO2010000976A2 (en) | 2010-01-07 |
FR2933536B1 (en) | 2013-05-10 |
JP5743888B2 (en) | 2015-07-01 |
JP2011526723A (en) | 2011-10-13 |
KR20110031960A (en) | 2011-03-29 |
KR101591743B1 (en) | 2016-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010000976A2 (en) | Polychromatic electronic display device with electroluminescent screen | |
JP6479738B2 (en) | Non-common capping layer on organic devices | |
US7829907B2 (en) | Organic light emitting element and method of manufacturing the same | |
CN100595931C (en) | Electroluminescent display device and heat transfer donor film for electroluminescent display device | |
US6936856B2 (en) | Multi substrate organic light emitting devices | |
US6091195A (en) | Displays having mesa pixel configuration | |
EP2017907A2 (en) | Display apparatus | |
EP2367216A2 (en) | Hybrid electroluminescent diode with high efficiency | |
WO2019193290A1 (en) | Electroluminescent device with improved resolution and reliability | |
JP6718955B2 (en) | Organic EL display device | |
CN112186124A (en) | Organic light emitting diode and display panel | |
KR20120064667A (en) | Light emitting device based on oleds | |
US7327081B2 (en) | Stacked organic electroluminescent device and method for manufacturing thereof | |
CN113299710B (en) | High-resolution, low-power OLED displays with extended lifetime | |
EP4176468B1 (en) | Optoelectronic device and method for manufacturing an optoelectronic device | |
CN110896096A (en) | A display panel and its manufacturing method | |
FR2953068A1 (en) | ELECTRONIC DISPLAY DEVICE WITH ELECTROLUMINESCENT SCREEN, AND METHOD FOR MANUFACTURING THE SAME | |
EP3921871B1 (en) | Electroluminescent display device | |
US20240341157A1 (en) | Multiple distributed bragg reflector pixel array | |
WO2023042244A1 (en) | Display device | |
WO2023032109A1 (en) | Display device and method for manufacturing display device | |
CN117641965A (en) | Organic electroluminescent device, preparation method and display device | |
JP2008060038A (en) | Organic light-emitting device | |
JP2007172948A (en) | Organic el element and manufacturing method of same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110201 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171201 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200103 |