EP2302383A2 - Docetaxel conjugates and immunogens for use in an immunoassay - Google Patents
Docetaxel conjugates and immunogens for use in an immunoassay Download PDFInfo
- Publication number
- EP2302383A2 EP2302383A2 EP10016182A EP10016182A EP2302383A2 EP 2302383 A2 EP2302383 A2 EP 2302383A2 EP 10016182 A EP10016182 A EP 10016182A EP 10016182 A EP10016182 A EP 10016182A EP 2302383 A2 EP2302383 A2 EP 2302383A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- docetaxel
- antibody
- conjugate
- formula
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229960003668 docetaxel Drugs 0.000 title abstract description 152
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 title abstract description 144
- 238000003018 immunoassay Methods 0.000 title abstract description 41
- 150000001875 compounds Chemical class 0.000 claims description 110
- 230000002163 immunogen Effects 0.000 claims description 73
- 229920000642 polymer Polymers 0.000 claims description 41
- 230000027455 binding Effects 0.000 claims description 34
- 229920000768 polyamine Polymers 0.000 claims description 34
- 125000000524 functional group Chemical group 0.000 claims description 27
- 239000003446 ligand Substances 0.000 claims description 25
- 150000002148 esters Chemical class 0.000 claims description 21
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000011593 sulfur Chemical group 0.000 claims description 14
- 229910052717 sulfur Chemical group 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 125000005647 linker group Chemical group 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 150000002463 imidates Chemical class 0.000 claims description 5
- 125000005907 alkyl ester group Chemical group 0.000 claims description 4
- 239000005864 Sulphur Chemical group 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 239000013060 biological fluid Substances 0.000 abstract description 2
- 238000011002 quantification Methods 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 54
- 238000000034 method Methods 0.000 description 43
- 239000003153 chemical reaction reagent Substances 0.000 description 40
- 239000000203 mixture Substances 0.000 description 27
- 239000000523 sample Substances 0.000 description 26
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 23
- 150000004625 docetaxel anhydrous derivatives Chemical class 0.000 description 23
- 241000699670 Mus sp. Species 0.000 description 22
- 239000002253 acid Substances 0.000 description 22
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 21
- 229930012538 Paclitaxel Natural products 0.000 description 19
- 229960001592 paclitaxel Drugs 0.000 description 19
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 18
- 238000011534 incubation Methods 0.000 description 18
- 238000002835 absorbance Methods 0.000 description 17
- 238000002965 ELISA Methods 0.000 description 16
- 239000012491 analyte Substances 0.000 description 16
- 229940098773 bovine serum albumin Drugs 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- 239000000126 substance Substances 0.000 description 16
- 108090000790 Enzymes Proteins 0.000 description 15
- 102000004190 Enzymes Human genes 0.000 description 15
- 238000003556 assay Methods 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 14
- -1 poly(amino acid) Polymers 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 241000700159 Rattus Species 0.000 description 13
- 230000009260 cross reactivity Effects 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 108090000765 processed proteins & peptides Proteins 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 241000283973 Oryctolagus cuniculus Species 0.000 description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 12
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 12
- 229940033663 thimerosal Drugs 0.000 description 12
- 241000283707 Capra Species 0.000 description 11
- 206010028980 Neoplasm Diseases 0.000 description 11
- 125000003277 amino group Chemical group 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 235000019439 ethyl acetate Nutrition 0.000 description 10
- 229920001184 polypeptide Polymers 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- 238000012216 screening Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 101000800130 Bos taurus Thyroglobulin Proteins 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229920001282 polysaccharide Polymers 0.000 description 7
- 239000005017 polysaccharide Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 108060003951 Immunoglobulin Proteins 0.000 description 6
- 241001529936 Murinae Species 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 230000002860 competitive effect Effects 0.000 description 6
- 238000000502 dialysis Methods 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 102000018358 immunoglobulin Human genes 0.000 description 6
- 238000007912 intraperitoneal administration Methods 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 229920001308 poly(aminoacid) Polymers 0.000 description 6
- 125000006239 protecting group Chemical group 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 239000000741 silica gel Substances 0.000 description 6
- 229910002027 silica gel Inorganic materials 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 210000004408 hybridoma Anatomy 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000008363 phosphate buffer Substances 0.000 description 5
- 229940126585 therapeutic drug Drugs 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- 0 *C=CC(N)=C* Chemical compound *C=CC(N)=C* 0.000 description 4
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 239000013058 crude material Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 210000002381 plasma Anatomy 0.000 description 4
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 4
- 229920000053 polysorbate 80 Polymers 0.000 description 4
- 235000013024 sodium fluoride Nutrition 0.000 description 4
- 239000011775 sodium fluoride Substances 0.000 description 4
- 239000012089 stop solution Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- YWLXLRUDGLRYDR-ZHPRIASZSA-N 5beta,20-epoxy-1,7beta,10beta,13alpha-tetrahydroxy-9-oxotax-11-ene-2alpha,4alpha-diyl 4-acetate 2-benzoate Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](O)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 YWLXLRUDGLRYDR-ZHPRIASZSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 230000003053 immunization Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 239000013610 patient sample Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 2
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 102000011632 Caseins Human genes 0.000 description 2
- 108010076119 Caseins Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 125000006242 amine protecting group Chemical group 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 208000034158 bleeding Diseases 0.000 description 2
- 231100000319 bleeding Toxicity 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- FZFAMSAMCHXGEF-UHFFFAOYSA-N chloro formate Chemical compound ClOC=O FZFAMSAMCHXGEF-UHFFFAOYSA-N 0.000 description 2
- AOGYCOYQMAVAFD-UHFFFAOYSA-N chlorocarbonic acid Chemical group OC(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001647 drug administration Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 150000002605 large molecules Chemical class 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- CAEWJEXPFKNBQL-UHFFFAOYSA-N prop-2-enyl carbonochloridate Chemical compound ClC(=O)OCC=C CAEWJEXPFKNBQL-UHFFFAOYSA-N 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000006268 reductive amination reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 229940080237 sodium caseinate Drugs 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 229940063683 taxotere Drugs 0.000 description 2
- NXLNNXIXOYSCMB-UHFFFAOYSA-N (4-nitrophenyl) carbonochloridate Chemical compound [O-][N+](=O)C1=CC=C(OC(Cl)=O)C=C1 NXLNNXIXOYSCMB-UHFFFAOYSA-N 0.000 description 1
- QACMXJJLQXUOPQ-UHFFFAOYSA-N 1,2-dichloroethane;3-(ethyliminomethylideneamino)-n,n-dimethylpropan-1-amine Chemical compound ClCCCl.CCN=C=NCCCN(C)C QACMXJJLQXUOPQ-UHFFFAOYSA-N 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical compound NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 description 1
- MLONYBFKXHEPCD-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(N)(CO)CO.OCC(N)(CO)CO MLONYBFKXHEPCD-UHFFFAOYSA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 1
- FWEOQOXTVHGIFQ-UHFFFAOYSA-N 8-anilinonaphthalene-1-sulfonic acid Chemical compound C=12C(S(=O)(=O)O)=CC=CC2=CC=CC=1NC1=CC=CC=C1 FWEOQOXTVHGIFQ-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 240000001414 Eucalyptus viminalis Species 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- HRNLUBSXIHFDHP-UHFFFAOYSA-N N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC1=NC=CC(C=2C=NC=CC=2)=N1 HRNLUBSXIHFDHP-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- ULMXFNLXNSLMKT-UHFFFAOYSA-M [O-]S(C(CC(N1O)=O)C1=O)(=O)=O.ON(C(CC1S(O)(=O)=O)=O)C1=O.ON(C(CC1S(O)(=O)=O)=O)C1=O.ON(C(CC1S(O)(=O)=O)=O)C1=O.N.[Na+] Chemical compound [O-]S(C(CC(N1O)=O)C1=O)(=O)=O.ON(C(CC1S(O)(=O)=O)=O)C1=O.ON(C(CC1S(O)(=O)=O)=O)C1=O.ON(C(CC1S(O)(=O)=O)=O)C1=O.N.[Na+] ULMXFNLXNSLMKT-UHFFFAOYSA-M 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 208000030961 allergic reaction Diseases 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- YJBCQYLLQVXSFQ-UHFFFAOYSA-N benzyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC1=CC=CC=C1 YJBCQYLLQVXSFQ-UHFFFAOYSA-N 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 230000008406 drug-drug interaction Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- LHWWETDBWVTKJO-UHFFFAOYSA-N et3n triethylamine Chemical compound CCN(CC)CC.CCN(CC)CC LHWWETDBWVTKJO-UHFFFAOYSA-N 0.000 description 1
- OJCSPXHYDFONPU-UHFFFAOYSA-N etoac etoac Chemical compound CCOC(C)=O.CCOC(C)=O OJCSPXHYDFONPU-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N formamide Substances NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004034 genetic regulation Effects 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 150000002632 lipids Chemical group 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- HOGDNTQCSIKEEV-UHFFFAOYSA-N n'-hydroxybutanediamide Chemical compound NC(=O)CCC(=O)NO HOGDNTQCSIKEEV-UHFFFAOYSA-N 0.000 description 1
- LLYKPZOWCPVRPD-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine;n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC=C1.CN(C)C1=CC=CC=N1 LLYKPZOWCPVRPD-UHFFFAOYSA-N 0.000 description 1
- 208000004235 neutropenia Diseases 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229940093430 polyethylene glycol 1500 Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- NCEZJZWNVMQDOX-UHFFFAOYSA-N prop-2-enyl 6-aminohexanoate Chemical compound NCCCCCC(=O)OCC=C NCEZJZWNVMQDOX-UHFFFAOYSA-N 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- BEOOHQFXGBMRKU-UHFFFAOYSA-N sodium cyanoborohydride Chemical compound [Na+].[B-]C#N BEOOHQFXGBMRKU-UHFFFAOYSA-N 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000005222 synovial tissue Anatomy 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000002456 taxol group Chemical group 0.000 description 1
- UQUYNGRHPOJDLJ-UHFFFAOYSA-N tert-butyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OC(C)(C)C UQUYNGRHPOJDLJ-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D305/00—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
- C07D305/14—Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/44—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/531—Production of immunochemical test materials
- G01N33/532—Production of labelled immunochemicals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/94—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2407/00—Assays, e.g. immunoassays or enzyme assays, involving terpenes
- G01N2407/02—Taxol; Taxanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S436/00—Chemistry: analytical and immunological testing
- Y10S436/815—Test for named compound or class of compounds
Definitions
- This invention relates to the field of immunological assays for determining the presence and/or quantifying the amount of docetaxel in human biological fluids in order to rapidly determine optimal drug concentrations during chemotherapy.
- Cancer is a term used to describe a group of malignancies that all share the common trait of developing when cells in a part of the body begin to grow out of control. Most cancers form as tumors, but can also manifest in the blood and circulate through other tissues where they grow. Cancer malignancies are most commonly treated with a combination of surgery, chemotherapy, and/or radiation therapy. The type of treatment used to treat a specific cancer depends upon several factors including the type of cancer malignancy and the stage during which it was diagnosed.
- Taxotere whose chemical name is docetaxel, is a common cytotoxic agents used for the treatment of breast, androgen independent prostate and non-small cell lung cancer.
- Docetaxel which is also known as Taxotere, has the formula:
- This compound has been associated with debilitating side effects such as bone marrow density loss, allergic reaction, neutropenia, nausea and vomiting.
- side effects such as bone marrow density loss, allergic reaction, neutropenia, nausea and vomiting.
- docetaxel there is often highly variable relationship between the dose of docetaxel and the resulting serum drug concentration that affects therapeutic effect.
- the degree of intra- and inter-individual pharmacokinetic variability of docetaxel can be as high as 4-fold and is impacted by many factors, including:
- therapeutic drug management of docetaxel would serve as an excellent tool to ensure compliance in administering chemotherapy with the actual prescribed dosage and achievement of the effective serum concentration levels. It has been found that variability in serum concentration is not only due to physiological factors, but can also result from variation in administration technique.
- a new class of antibodies have been produced which are substantially reactive with docetaxel so as to bind to docetaxel.
- immunogens which are conjugates of an immunogenic carrier with a ligand selected from the group consisting of a 10-hydroxydocetaxel derivatives of the formula: 7-hydroxydocetaxel derivatives of the formula: and 7,10-dihydroxy docetaxel derivatives of the formula: wherein B is Y is an organic spacing group; X is a functional group capable of binding to a carrier; p is an integer from o to 1; and or mixtures thereof, produce antibodies which are reactive with docetaxel.
- B is Y is an organic spacing group
- X is a functional group capable of binding to a carrier
- p is an integer from o to 1; and or mixtures thereof.
- a new class of antibodies which reacts with docetaxel. It has been discovered that through the use of these docetaxel derivatives of formula II-A, II-B or II-C or mixtures thereof; as immunogens, this new class of antibodies of this invention are provided. It is through the use of these antibodies that an immunoassay, including reagents and kits for such immunoassay for detecting and/or quantifying docetaxel in blood, plasma or other body fluid samples has been developed. By use of this immunoassay, the presence and amount of docetaxel in body fluid samples, preferably a blood or plasma sample, can be detected and/or quantified.
- a patient being treated with docetaxel can be monitored during therapy and treatment adjusted in accordance with said monitoring.
- the preferred antibodies are those which are reactive with docetaxel and not substantially cross-reactive with taxol and pharmaceutically inactive docataxel related compounds sent us 10-0-deacetylbaccatin III.
- the reagents utilized in the assay of this invention are conjugates of a carrier, preferably containing polyamine functional groups, with the compounds of formula II-A, II-B and II-C or mixtures thereof. These conjugates are competitive binding partners with the docetaxel present in the sample for the binding with the antibodies of this invention. Therefore, the amount of conjugate reagent which binds to the antibody will be inversely proportional to the amount of docetaxel in the sample.
- the assay utilizes any conventional measuring means for detecting and measuring the amount of said conjugate which is bound or unbound to the antibody. Through the use of said means, the amount of the bound or unbound conjugate can be determined.
- the amount of docetaxel in a sample is determined by correlating the measured amount of the bound or unbound conjugate produced by the docetaxel in the sample with values of the bound or unbound conjugate determined from standard or calibration curve samples containing known amounts of docetaxel, which known amounts are in the range expected for the sample to be tested.
- the conjugates, as well as the immunogens, are prepared from compounds of the formula II-A, II-B and II-C or mixtures thereof.
- the carrier and the polyamine polymer are linked to ligand portions of the compounds of formula II-A, II-B and II-C.
- the ligand portions have the formula: wherein Y, B and p are as above; and X is -CH 2 - or a functional linking group; compounds of the formula: and compounds of the formula:
- ligand portions may be linked to one or more active sites on the carrier of the conjugate or the immunogen.
- these carriers contain polymers, most preferably polyamine polymers having a reactive amino group.
- X is preferably a functional group which can react with an amino group.
- X in the compound of formula II-A, II-B and II-C is preferably any functional group capable of binding or linking to a polyamine polymer.
- conjugate refers to any substance formed from the joining together of two parts.
- Representative conjugates in accordance with the present invention include those formed by the joining together of a small molecule, such as the compound of formula II-A, II-B and II-C and a large molecule, such as a carrier, preferably carriers which comprise a polyamine polymer, particularly a protein.
- a carrier preferably carriers which comprise a polyamine polymer, particularly a protein.
- the small molecule maybe joined or linked at one or more active sites on the large molecule.
- conjugate includes the term immunogen.
- the carrier can be any carrier and X can be any functional group which can be linked to a carrier .
- the carrier is a polyamine polymer and X is any functional group capable of linling to a polyamine polymer.
- Haptens are partial or incomplete antigens. They are protein-free substances, mostly low molecular weight substances, which are not capable of stimulating antibody formation, but which do react with antibodies. The latter are formed by coupling a hapten to a high molecular weight immunogenic carrier and then injecting this coupled product, i.e., immunogen, into a human or animal subject.
- the hapten of this invention is docetaxel.
- a spacing group refers to a portion of a chemical structure which connects two or more substructures such as haptens, carriers, immunogens, labels, or tracer through a CH 2 or functional linking group. These spacer groups will be enumerated hereinafter in this application.
- the atoms of a spacing group and the atoms of a chain within the spacing group are themselves connected by chemical bonds. Among the preferred spacers are straight or branched, saturated or unsaturated, carbon chains. Theses carbon chains may also include one or more heteroatoms within the chain or at termini of the chains.
- heteroatoms is meant atoms other than carbon which are chosen from the group consisting of oxygen, nitrogen and sulfur. Spacing groups may also include cyclic or aromatic groups as part of the chain or as a substitution on one of the atoms in the chain.
- the number of atoms in the spacing group is determined by counting the atoms other than hydrogen.
- the number of atoms in a chain within a spacing group is determined by counting the number of atoms other than hydrogen along the shortest route between the substructures being connected.
- a functional linking group may be used to activate, e.g., provide an available functional site on, a hapten or spacing group for synthesizing a conjugate of a hapten with a label or carrier or polyamine polymer.
- an "immunogenic carrier,” as the terms are used herein, is an immunogenic substance, commonly a protein, that can join with a hapten, in this case docetaxel or the docetaxel derivatives hereinbefore described, thereby enabling these hapten derivatives to induce an immune response and elicit the production of antibodies that can bind specifically with these haptens.
- the immunogenic carriers and the linking groups will be enumerated hereinafter in this application.
- the immunogenic carrier substances are included proteins, glycoproteins, complex polyamino- polysaccharides, particles, and nucleic acids that are recognized as foreign and thereby elicit an immunologic response from the host.
- the polyamino-polysaccharides may be prepared from polysaccharides using any of the conventional means known for this preparation.
- poly(amino acid) immunogenic carrier examples include albumins, serum proteins, lipoproteins, etc.
- Illustrative proteins include bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), egg ovalbumin, bovine thyroglobulin (BTG) etc.
- BSA bovine serum albumin
- KLH keyhole limpet hemocyanin
- BGT bovine thyroglobulin
- synthetic poly(amino acids) may be utilized.
- Immunogenic carriers can also include poly amino-polysaccharides, which are high molecular weight polymers built up by repeated condensations of monosaccharides.
- polysaccharides are starches, glycogen, cellulose, carbohydrate gums such as gum arabic, agar, and so forth.
- the polysaccharide also contains polyamino acid residues and/or lipid residues.
- the immunogenic carrier can also be a poly(nucleic acid) either alone or conjugated to one of the above mentioned poly(amino acids) or polysaccharides.
- the immunogenic carrier can also include solid particles.
- the particles are generally at least about 0.02 microns ( ⁇ m) and not more than about 100 ⁇ m, and usually about 0.05 ⁇ m to 10 ⁇ m in diameter.
- the particle can be organic or inorganic, swellable or non-swellable, porous or non-porous, optimally of a density approximating water, generally from about 0.7 to 1.5 g/mL, and composed of material that can be transparent, partially transparent, or opaque.
- the particles can be biological materials such as cells and microorganisms, including non-limiting examples such as erythrocytes, leukocytes, lymphocytes, hybridomas, Streptococcus, Staphylococcus aureus, E. coli, and viruses.
- the particles can also be comprised of organic and inorganic polymers, liposomes, latex, phospholipid vesicles, or lipoproteins.
- Poly(amino acid) or “polypeptide” is a polyamide formed from amino acids.
- Poly(amino acids) will generally range from about 2,000 molecular weight, having no upper molecular weight limit, normally being less than 10,000,000 and usually not more than about 600,000 daltons. There will usually be different ranges, depending on whether an immunogenic carrier or an enzyme is involved.
- a “peptide” is any compound formed by the linkage of two or more amino acids by amide (peptide) bonds, usually a polymer of a-amino acids in which the ⁇ -amino group of each amino acid residue (except the NH 2 terminus) is linked to the ⁇ -carboxyl group of the next residue in a linear chain.
- the terms peptide, polypeptide and poly(amino acid) are used synonymously herein to refer to this class of compounds without restriction as to size. The largest members of this class are referred to as proteins.
- a “label,” “detector molecule,” or “tracer” is any molecule which produces, or can be induced to produce, a detectable signal.
- the label can be conjugated to an analyte, immunogen, antibody, or to another molecule such as a receptor or a molecule that can bind to a receptor such as a ligand, particularly a hapten.
- Non-limiting examples of labels include radioactive isotopes, enzymes, enzyme fragments, enzyme substrates, enzyme inhibitors, coenzymes, catalysts, fluorophores, dyes, chemiluminescers, luminescers, or sensitizers; a non-magnetic or magnetic particle, a solid support, a liposome, a ligand, or a receptor.
- antibody refers to a specific protein binding partner for an antigen and is any substance, or group of substances, which has a specific binding affinity for an antigen to the exclusion of other substances.
- the generic term antibody subsumes polyclonal antibodies, monoclonal antibodies and antibody fragments.
- derivative refers to a chemical compound or molecule made from a parent compound by one or more chemical reactions.
- carrier refers to solid particles and/or polymeric polymers such as immunogenic polymers such as those mentioned above. Where the carrier is a solid particle, the solid particle may be bound, coated with or otherwise attached to the polymeric material which preferably is a polyamine polymer to provide one or more reactive sites for bonding to the terminal functional group X in the compounds of the formula II-A, II-B and II-C.
- reagent kit refers to an assembly of materials that are used in performing an assay.
- the reagents can be provided in packaged combination in the same or in separate containers, depending on their cross-reactivities and stabilities, and in liquid or in lyophilized form.
- the amounts and proportions of reagents provided in the kit can be selected so as to provide optimum results for a particular application.
- a reagent kit embodying features of the present invention comprises antibodies specific for docetaxel.
- the kit may further comprise ligands of the analyte and calibration and control materials.
- the reagents may remain in liquid form or may be lyophilized.
- calibration and control materials refers to any standard or reference material containing a known amount of a drug to be measured.
- concentration of drug is calculated by comparing the results obtained for the unknown specimen with the results obtained for the standard. This is commonly done by constructing a calibration curve.
- biological sample includes, but is not limited to, any quantity of a substance from a living thing or formerly living thing.
- living things include, but are not limited to, humans, mice, monkeys, rats, rabbits, horses, and other animals.
- substances include, but are not limited to, blood, serum, plasma, urine, cells, organs, tissues, bone, bone marrow, lymph, lymph nodes, synovial tissue, chondrocytes, synovial macrophages, endothelial cells, and skin.
- a conjugate of docetaxel is constructed to compete with the docetaxel in the sample for binding sites on the antibodies.
- the reagents are conjugates of a carrier with a) the 10-substituted docetaxel derivatives of the compounds of formula II-A; b) the 7-docetaxel derivatives of formula II-B and c) the 7,10-disubstituted derivatives of docetaxel of formula II-C or mixtures thereof.
- the linker spacer constitutes the "-B-(Y)p-X'-" portion of this molecule .
- the linker X' and the spacer "-B-(Y)p-" - are conventional in preparing conjugates and immunogens. Any of the conventional spacer-linking groups utilized to prepare conjugates and immunogens for immunoassays can be utilized in the compounds of formula III-A, III-B and III-C. Such conventional linkers and spacers are disclosed in U.S. Patent 5,501,987 and U.S. Patent 5,101,015 .
- Particularly preferred spacing groups are groups such as alkylene containing from 1 to 10 carbon atoms, or wherein n and o are integers from o to 6, and m is an integer from 1 to 6 with alkylene being the especially preferred spacing group .
- X' is -CH 2 - or a functional group linking the spacer to the carrier, preferably to an amine group on the polymeric carrier.
- the group X' is the result of the terminal functional group X in the compounds of Formula II-A, II-B and II-C which is capable of binding to a carrier, preferably to an amino group in the polyamine polymer present in the carrier or used as the immunogen.
- Any terminal functional group capable of binding to a carrier, preferably capable of reacting with an amine can be utilized as the functional group X in the compounds of formula II-A , II-B, and II-C.
- terminal functional groups preferably included within X are: wherein R 3 is hydrogen or taken together with its attached oxygen atom forms a reactive ester and R 4 is oxygen or sulfur.
- the active esters formed by OR 3 include imidoester, such as N-hydroxysuccinamide, 1-hydroxy benzotriazole and p-nitrophenyl ester. However any active ester which can react with an amine group can be used.
- the carboxylic group and the active esters are coupled to the carrier or immunogenic polymer by conventional means.
- the amine group on the polyamine polymer such as a protein, produces an amide group which connects the spacer to the polymer, immunogens or carrier and/or conjugates of this invention.
- carriers can be coated with a polyamine polymer to supply the amino group for linking to the ligand portion.
- the chemical bonds between the carboxyl group-containing docetaxel haptens and the amino groups on the polyamine polymer on the carrier or immunogen can be established using a variety of methods known to one skilled in the art. It is frequently preferable to form amide bonds.
- Amide bonds are formed by first activating the carboxylic acid moiety of the docetaxel hapten in the compounds of formula II-A, II-B and II-C by reacting the carboxy group with a leaving group reagent (e.g., N-hydroxysuccinimide, 1-hydroxybenzotriazole, p-nitrophenol and the like).
- An activating reagent such as dicyclohexylcarbodiimide, diisopropylcarbodiimide and the like can be used.
- the activated form of the carboxyl group in the docetaxel hapten of formula II-A, II-B and II-C is then reacted with a buffered solution containing the protein carrier.
- the docetaxel derivative of formula II-A, II-B and II-C contains a primary or secondary amino group as well as the carboxyl group
- an amine protecting group during the activation and coupling reactions to prevent the conjugates from reacting with themselves.
- the amines on the conjugate are protected by forming the corresponding N-trifluoroacetamide, N-tertbutyloxycarbonyl urethane (N-t-BOC urethane), N-carbobenzyloxy urethane or similar structure.
- the amine protecting group can be removed using reagents that do not otherwise alter the structure of the immunogen or conjugate.
- Such reagents and methods are known to one skilled in the art and include weak or strong aqueous or anhydrous acids, weak or strong aqueous or anhydrous bases, hydride-containing reagents such as sodium borohydride or sodium cyanoborohydride and catalytic hydrogenation.
- hydride-containing reagents such as sodium borohydride or sodium cyanoborohydride and catalytic hydrogenation.
- Various methods of conjugating haptens and carriers are also disclosed in U.S. Patent 3,996,344 and U.S. Patent 4,016,146 , which are herein incorporated by reference.
- X is a terminal isocyanate or isothiocyanate radical in the compound of formula II-A, II-B and II-C
- these radicals when reacted with the free amine of a polyamine polymer produce the conjugate or the immunogen
- X' is, in the ligand portions of formula III-A, III-B and III-C, functionally connects with the amino group on the polyamine containing carrier or the immunogenic polypeptide.
- X in the compounds of formula II-A, II-B and II-C, is an aldehyde group these compounds may be connected to the amine group of the polyamine polypeptide or carrier through an amine linkage by reductive amination. Any conventional method of condensing an aldehyde with an amine such as through reductive amination can be used to form this linkage.
- X' in the ligand portions of formula III-A, III-B and III-C is -CH 2 -.
- the 2'-hydroxy group of docetaxel is first protected. This 2'-hydroxy group is on the side chain extending from the 13- position on the docetaxel ring structure. This is the most reactive of the hydroxy groups in docetaxel. Any conventional method of protecting a hydroxy group such as by an esterification can be utilized to protect this hydroxy group at the 2' position, while leaving the hydroxy groups at the 7 and 10 positions free for reaction. Any of the conventional hydroxy protecting groups can be utilized to accomplish this purpose.
- a preferred hydroxy protecting group is the allylorthoformate ester group which is formed by reacting the compound of formula I with allylchloroformate by conventional means well known in the art. This is an easily produced protecting group which can be easily removed at a later stage in the process.
- this protected docetaxel of formula I can be converted into the 10-docetaxel derivative of formula II-A, the 7-docetaxel derivative of formula II-B or the 7,10-docetaxel derivative of formula II-C depending upon the molar quantity of reagents utilized to react with the 2' protected docetaxel of formula I.
- the resulting final product will be a mixture of the 7-0 and 10-O substituted derivatives, as well as the 7,10-0 disubstituted derivatives.
- the 7 hydroxy group in the 2' hydroxy protected docetaxel will react first with the reagent such as the compound of formula V-A. Therefore, by limiting the ratio of the reagent such as the compound of formula V-A or VI which is reacted with the compound of formula I to about o.9 to 1.5 moles per mole, the final product will substantially consist of the compounds of formula II-B. Increasing the mole ratio of the reagents reacted with the 2' protected hydroxy docetaxel of formula I will produce more of the compounds of formula II-A and II-C in the product. These derivatives can be separated from the product as described above.
- the 10 and 7-substituted derivatives of formula II-A and II-B where B is -CH 2 -, as well as the 7,10-disubstituted derivatives of formula II-C are formed by reacting the 7 and 10-hydroxy group of docetaxel with a halide of the formula: halo-CH 2 -(Y)p-X V-A wherein p, Y and X are as above.
- any conventional means of reacting an alcohol to form an ether can be utilized in condensing the compound of formula V-A with the 7-hydroxy position on the docetaxel.
- the use of a halide in the compound of formula V-A provides an efficient means for forming an ether by condensing with the alcohol.
- these functional groups can be protected by means of suitable protecting groups which can be removed after this reaction as described hereinabove.
- any conventional means of converting a hydroxy group to a chloroformate group can be used.
- the halo group of the chloroformate is condensed with the amine group in the compound of formula VI.
- the reactive group on docetaxel and/or on the compound of formula VI are protected as described hereinabove with a conventional protecting group. These protecting groups can be removed after this halide condensation by conventional means such as described hereinbefore.
- the compounds of formula II-A, II-B and II-C can be converted into the immunogens and/or the conjugate reagents of this invention by reacting these compounds with a carrier, preferably a polyamine polypeptide or a carrier coated with a polyamine polypeptide.
- a carrier preferably a polyamine polypeptide or a carrier coated with a polyamine polypeptide.
- the same polypeptide can be utilized as the carrier and as the immunogenic polymer in the immunogen of this invention provided that polyamines or polypeptides are immunologically active.
- these polymers need not produce an immunological response as needed for the immunogens.
- the various functional group represented by X in the compounds of formula II-A, II-B and II-C can be conjugated to the carrier by conventional means of attaching a functional group to a carrier.
- X is a carboxylic acid group.
- the present invention also relates to novel antibodies including monoclonal antibodies to docetaxel produced by utilizing the aforementioned immunogens.
- these antibodies produced in accordance with this invention are reactive with docetaxel and do not substantially react with metabolites of docetaxel derivatives which would interfere with immunoassays for docetaxel.
- the antibodies of this invention do not substantially react with taxol, whose chemical name is paclitaxel and docetaxel like compounds such as 10-O-Deacetylbaccatin III which contain the docetaxel or taxol ring structure.
- the compound 10-O-Deacetylbaccatin III has the formula:
- the present invention relates to novel antibodies and monoclonal antibodies to docetaxel.
- the antisera of the invention can be conveniently produced by immunizing host animals with the immunogens of this invention. Suitable host animals include rodents, such as, for example, mice, rats, rabbits, guinea pigs and the like, or higher mammals such as goats, sheep, horses and the like. Initial doses, bleedings and booster shots can be given according to accepted protocols for eliciting immune responses in animals. Through periodic bleeding, the blood samples of the immunized mice were observed to develop an immune response against docetaxel binding utilizing conventional immunoassays. These methods provide a convenient way to screen for hosts and antibodies which are producing antisera having the desired activity. The antibodies were also screened against taxol and antibodies were produced which showed no substantial binding to taxol.
- Monoclonal antibodies are produced conveniently by immunizing Balb/c mice according to the schedule followed by injecting the mice with additional immunogen i.p. or i.v. on three successive days starting three days prior to the cell fusion.
- additional immunogen i.p. or i.v.
- Other protocols well known in the antibody art may of course be utilized as well.
- the complete immunization protocol detailed herein provided an optimum protocol for serum antibody response for the antibody to docetaxel.
- B lymphocytes obtained from the spleen, peripheral blood, lymph nodes or other tissue of the host may be used as the monoclonal antibody producing cell. Most preferred are B lymphocytes obtained from the spleen.
- Hybridomas capable of generating the desired monoclonal antibodies of the invention are obtained by fusing such B lymphocytes with an immortal cell line, which is a cell line that which imparts long term tissue culture stability on the hybrid cell.
- the immortal cell may be a lymphoblastoid cell or a plasmacytoma cell such as a myeloma cell.
- Murine hybridomas which produce docetaxel monoclonal antibodies are formed by the fusion of mouse myeloma cells and spleen cells from mice immunized with the aforementioned immunogenic conjugates.
- Chimeric and humanized monoclonal antibodies can be produced by cloning the antibody expressing genes from the hybridoma cells and employing recombinant DNA methods now well known in the art to either join the subsequence of the mouse variable region to human constant regions or to combine human framework regions with complementary determining regions (CDR's) from a donor mouse or rat immunoglobulin.
- CDR's complementary determining regions
- Polypeptide fragments comprising only a portion of the primary antibody structure may be produced, which fragments possess one or more immunoglobulin activities. These polypeptide fragments may be produced by proteolytic cleavage of intact antibodies by methods well known in the art, or by inserting stop codons at the desired locations in expression vectors containing the antibody genes using site-directed mutageneses to produce Fab fragments or (Fab') 2 fragments. Single chain antibodies may be produced by joining VL and VH regions with a DNA linker (see Huston et al., Proc. Natl. Acad. Sci. U.S.A., 85:5879-5883 (1988 ) and Bird et al., Science, 242:423-426 (1988 ))
- the antibodies of this invention are reactive with docetaxel.
- the preferred antibodies do not have any substantial cross-reactivity with taxol or 10-0-deacetylbaccatin III.
- substantial cross-reactivity it is meant that the antibodies of this invention have a cross reactivity relative to docetaxel with taxol or 10-O-deacetylbaccatin III of 20% or less.
- the conjugates and the antibodies generated from the immunogens of the compounds of formula II-A, II-B and II-C or mixtures thereof can be utilized as reagents for the determination of docetaxel in patient samples. This determination is performed by means of an immunoassay. Any immunoassay in which the reagent conjugates formed from the compounds of formula II-A, II-B and II-C compete with the docetaxel in the sample for binding sites on the antibodies generated in accordance with this invention can be utilized to determine the presence of docetaxel in a patient sample.
- the manner for conducting such an assay for docetaxel in a sample suspected of containing docetaxel comprises combining an (a) aqueous medium sample, (b) an antibody to docetaxel generated in accordance with this invention and (c) the conjugates formed from the compounds of formula II-A, II-B and II-C or mixtures thereof.
- the amount of docetaxel in the sample can be determined by measuring the inhibition of the binding to the specific antibody of a known amount of the conjugate added to the mixture of the sample and antibody. The result of the inhibition of such binding of the known amount of conjugates by the unknown sample is compared to the results obtained in the same assay by utilizing known standard solutions of docetaxel.
- the sample, the conjugates formed from the compounds of formula II-A, II-B and II-C and the antibody may be added in any order.
- Various means can be utilized to measure the amount of conjugate formed from the compounds of formula II-A, II-B and II-C bound to the antibody.
- One method is where binding of the conjugates to the antibody causes a decrease in the rate of rotation of a fluorophore conjugate.
- the amount of decrease in the rate of rotation of a fluorophore conjugate in the liquid mixture can be detected by the fluorescent polarization technique such as disclosed in U.S. Patent 4,269,511 and U.S. Patent 4,420,568 .
- the antibody can be coated or absorbed on nanoparticles so that when these particles react with the docetaxel conjugates formed from the compounds of formula II-A, II-B and II-C, these nanoparticles form an aggregate.
- the antibody coated or absorbed nanoparticles react with the docetaxel in the sample, the docetaxel from the sample bound to these nanoparticles does not cause aggregation of the antibody nanoparticles.
- the amount of aggregation or agglutination can be measured in the assay mixture by absorbance.
- these assays can be carried out by having either the antibody or the docetaxel conjugates attached to a solid support such as a microtiter plate or any other conventional solid support including solid particles. Attaching antibodies and proteins to such solid particles is well known in the art. Any conventional method can be utilized for carrying out such attachments.
- labels may be placed upon the antibodies, conjugates or solid particles , such as radioactive labels or enzyme labels, as aids in detecting the amount of the conjugates formed from the compounds of formula II-A, II-B and II-C which is bound or unbound with the antibody.
- suitable labels include chromophores, fluorophores, etc.
- assay components of the present invention can be provided in a kit, a packaged combination with predetermined amounts of new reagents employed in assaying for docetaxel.
- reagents include the antibody of this invention, as well as, the conjugates formed from the compounds of formula II-A, II-B and II-C or mixtures thereof. It is generally preferred that in a given immunoassay, if a conjugate formed from a compound of formula II-B is utilized, that the antibody be generated by an immunogen formed from a compound of formula II-B. In a like manner, if a conjugate formed from a compound of formula II-B or II-C is utilized, the antibody be generated by the immunogen formed from the same compound is used for the conjugate.
- radicals p, X, Y and B in the reagent and the immunogen which forms the antibody used in a given immunoassay can be the same or be a different substituent within the groups defined for each of theses radicals. Therefore while the definitions of the radicals p, X, Y, and B are the same for the conjugate reagent and the immunogen, the particular substituent which these radicals represent for the immunogen and the conjugate reagent in a given assay may be different.
- additives such as ancillary reagents may be included, for example, stabilizers, buffers and the like.
- ancillary reagents may be included, for example, stabilizers, buffers and the like.
- the relative amounts of the various reagents may vary widely to provide for concentrations in solution of the reagents which substantially optimize the sensitivity of the assay.
- Reagents can be provided in solution or as a dry powder, usually lyophilized, including excipients which on dissolution will provide for a reagent solution having the appropriate concentrations for performing the assay.
- EA Ethyl alcohol MeOH Methanol EtOAc Ethyl acetate DCM Dichloromethane DMAP Dimethylaminopyridine Et 3 N Triethyl amine NHS N-hydroxy-succinimide EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride TLC Thin Layer Chromatrography KLH Keyhole Limpet Hemocyanin ANS 8-Anilino-1-naphthalenesulfonic acid i.p.
- Docetaxel [1] (500 mg) was added to a three-neck flask in 20 mL of freshly distilled dichloromethane, under a continuous flow of argon. The temperature was maintained at -15 o C, at which time diisopropylethylamine (2 eq.) and allyl chloroformate (1.1 eq.) were added. The reaction mixture temperature was brought to room temperature and allowed to stir for 5 hours. 20 mL of dichloromethane was added and the mixture was washed with 0.1N HCl (60 mL), dried on Na 2 S0 4 , and concentrated on a rotary evaporator. Crude material was purified on a silica gel column with EtOAc/DCM as the gradient (30% EtOAc:71% DCM) to yield [2] (468 mg, 84-78%) as an off-white solid.
- Derivative [3] (0.173 mmol) was dissolved in 6 mL of dichloromethane under argon and then PhSiH 3 (1.04 mmol) was added along with Pd (PPh 3 ) 4 (0.008 mmol). After 4 hours, 1.5 mL of MeOH was added and the mixture was stirred for an additional 10 minutes. The reaction mixture was evaporated to dryness to yield the deprotected docetaxel derivative [4] .
- Derivative [4] was purified on a silica gel column (60 % EtOAc:40% DCM as solvent system) to separate this derivative from the presence of the other derivatives such as the 7-mono docetaxel derivate and the 10 - mono docetaxel derivative.
- the derivative [4] was isolated as an off white gum (145.1 mg, 80.86%), 24 . 25 % calculated from starting material and its structure was confirmed by NMR.
- the diglutaric acid derivative [4] (125.1 mg, 0.121 mmol) was dissolved in 10 mL of dry DMSO. With stirring under nitrogen N-hydroxysulfosuccinimide sodium salt (114.7 g, 0.528 mmol, 4.4 eq) was added followed by EDC (102.4 mg, 0.534 mmol, 4.4 eq). The reaction was stirred overnight at room temperature when additional EDC was added (96 mg, 0.501 mmol, 4.15 eq). After 7 hours of continued stirring at room temperature the reaction was complete by TLC. The TLC condition was ethyl acetate : dichloromethane (3 : 2) with 2 drops of acetic acid.
- Derivative [6] (39.6 mg, 0.042 mmol) was dissolved in 5 mL of dry DCM. With stirring under nitrogen NHS (14.5 mg, 0.126 mmol, 3.0 eq) was added followed by EDC (24.0 mg, 0.126 mmol, 3.0 eq). The reaction was stirred for 29 hours at room temperature and was then quenched by the addition of HCl (3 mL, 0.3 N) and 15 mL of DCM. The mixture was stirred for 10 minutes and the organic layer was separated, dried (Na 2 SO 4 ), filtered and the DCM was removed in vacuo to yield an off white amorphous solid.
- the activated ester produced in Example 6 was dissolved in 700 ⁇ L of DMSO and 50 ⁇ L of this solution was added drop wise to 8 mL of a BSA solution (4 mL DMSO/4 mL 50 mM phosphate, pH 7.5). The solution was stirred for 24 hours at room temperature to produce the conjugate of BSA and the docetaxel derivative [6].
- This conjugate was purified by dialysis according to procedures previously described ( Wu et. al., Bioconj. Chem., 8: pp 385-390, 1997 , Li et.al., Bioconj. Chem., 8 : pp 896-905 1997 , Salamone et.al., J. Forensic Sci. pp 821-826, 998 ).
- mice Ten Female BALB/c mice were immunized i.p. with 100 ⁇ g/mouse of docetaxel-immunogen: either docetaxel-BTG as prepared in Example 4 or docetaxel-KLH as prepared in Example 5, emulsified in Complete Freund's Adjuvant. After the initial injection mice were boosted four weeks after the preceding injection with 100 ⁇ g/mouse of the same immunogens emulsified in Incomplete Freund's Adjuvant. Six to ten days after the boosts test bleeds from each mouse were obtained by orbital bleed.
- the anti-serum from the last test bleeds containing docetaxel antibodies from each of the mice were evaluated by the procedures in Examples 14a and 15 to determine their reactivity to docetaxel and their cross reactivity to 10-0-Deacytlbaccatin III and, paclitaxel [Taxol]. Only the antiserum having antibodies which were selective for docetaxel and had a cross reactivity relative to docetaxel with 10-O-Deacytlbaccatin III and paclitaxel of 6% or less as determined by these screening procedures were selected.
- mice Ten Female BALB/c mice were immunized i.p. with 100 ⁇ g/mouse of docetaxel-immunogen: either docetaxel-BTG as prepared in Example 9a or docetaxel-KLH immunogen as prepared in Example 9b emulsified in Complete Freund's Adjuvant. After the initial injection mice were boosted once after four weeks with 100 ⁇ g /mouse of the same immunogen emulsified in Incomplete Freund's Adjuvant. Ten days after the boosts test bleeds from each mouse were obtained by orbital bleed.
- the anti-serum from the last test bleeds containing docetaxel antibodies from each of the mice were evaluated by the procedures in Examples 14a and 16 to determine their reactivity to docetaxel and their cross reactivity to 10-O-Deacytlbaccatin III and, paclitaxel [Taxol]. Only the antiserum having antibodies which were selective for docetaxel and had a cross reactivity relative to docetaxel with 10-O-Deacytlbaccatin III and paclitaxel of 6% or less as determined by these screening procedures were selected.
- mice were injected i.p. with 400 99 (3 days before fusion), 200 ⁇ g (2 days before fusion), and 200 ⁇ g (1 day before fusion) on three successive days with either docetaxel-BTG or docetaxel-KLH (depending on the original immunogen) in PBS.
- docetaxel-BTG docetaxel-KLH (depending on the original immunogen) in PBS.
- spleen cells were isolated from the selected mice and fused with 2 x 10 7 cells of the myeloma fusion partner cell line (SP2/o) using 50% polyethylene glycol 1500 [ Coligan, J.E.
- the fused cells were plated on 10 96-well plates in a conventional HAT (hypoxanthine, aminopterin and thymidine) selective growth medium such as DMEM/F 12 (Dulbecco's Modified Eagle's Medium 1:1 with L-glutamine and HEPES) supplemented with 20% fetal bovine serum alternative, and containing 2% L-glutamine C100 mM) and 2% 50X HAT.
- HAT hypoxanthine, aminopterin and thymidine
- DMEM/F 12 Dulbecco's Modified Eagle's Medium 1:1 with L-glutamine and HEPES
- Example 14b Two weeks later, the hybridoma supernatant was assayed for the presence of anti-docetaxel antibodies by ELISA as described in Example 14b. Positive wells were expanded and again screened by the same ELISA method. The positive clones were subcloned directly or confirmed for docetaxel binding by a competitive ELISA as described in Example 16. Clones positive by ELISA as described in Example 14b were subcloned once or twice by limiting dilution according to the method disclosed in Coligan, J.E. et al., eds., Current Protocols in Immunology, 2.5.8 - 2.5.17, (1992), Wiley & Sons, NY .
- ELISA Enzyme-Linked Immunosorbent Assay
- ELISA Enzyme-Linked Immunosorbent Assay
- Antibodies were screened by Enzyme-Linked Immunosorbent Assay (ELISA) method.
- ELISA Enzyme-Linked Immunosorbent Assay
- This method for screening docetaxel antibodies was performed with the microtiter plates that were sensitized with docetaxel-BSA as described in Examples 12 and 13.
- the antibody screening assay was performed by diluting the antisera containing docetaxel antibodies to 1:100, 1:1,000, 1:10,000 and 1:100,000 in phosphate buffered saline containing 0.1% BSA and 0.01% thimerosal.
- To each well of docetaxel-BSA sensitized wells prepared in Examples 12 and 13) 100 ⁇ L of diluted antibody was added and incubated for 10 minutes at room temperature with shaking.
- Antibodies were screened by Enzyme-Linked Immunosorbent Assay (ELISA) method.
- This method for screening docetaxel monoclonal antibodies was performed with the microtiter plates that were sensitized with docetaxel C 7 substituted-BSA (Example 8) as described in Example 13.
- To each well of docetaxel C 7 substituted-BSA sensitized wells prepared in Example 13) 50 ⁇ L phosphate buffered saline containing 0.1% BSA and 0.01% thimerosal and then 5 0 ⁇ L of monoclonal culture supernatant were added and incubated for 10 minutes at room temperature with shaking.
- Docetaxel concentrations were measured by an indirect competitive Enzyme-Linked Immunosorbent Assay (ELISA) method. This method for measuring docetaxel concentrations was performed with the microtiter plates that were sensitized with docetaxel-BSA described in Example 13. Docetaxel, paclitaxel, and 10-O-deactylbaccatin III were diluted 10 fold in PBS with o.1% BSA and 0.01% Thimerosal over a concentration range of 0.01 to 10,000 ng/mL. The assay was performed by incubating 50 ⁇ L of the analytes to be measured with 50 ⁇ L of antibody (produced in Example 10 with immunogen of Example 5) diluted to a titer determined in Example 14a.
- ELISA Enzyme-Linked Immunosorbent Assay
- the amount of antibody in a well was proportional to the absorbance measured and inversely proportional to the amount of docetaxel in the sample.
- the absorbance of the color in the wells containing analyte was compared to that with no analyte and a standard curve was generated.
- the IC50 value for a given analyte was defined as the concentration of analyte that is required to inhibit 50% of the absorbance from the wells containing no analyte.
- Docetaxel concentrations were measured by an indirect competitive Enzyme-Linked Immunosorbent Assay (ELISA) method. This method for measuring docetaxel concentrations was performed with the microtiter plates that were sensitized with docetaxel-BSA described in Example 13 for monoclonal antibodies and in Examples 12 and 13 for polyclonal antibodies.
- Docetaxel, paclitaxel, and 10-O-deactylbaccatin III were diluted 10 fold in PBS with 0.1% BSA and 0.01% Thimerosal over a concentration range of 0.01 to 10,000 ng/mL.
- the assay was performed by incubating 50 ⁇ L of the analytes to be measured with 50 ⁇ L of antibody (produced in Example 11) diluted to a titer determined in Example 14a. During the 10 minute incubation (R.T., with shaking) there is a competition of antibody binding for the docetaxel conjugate in the well and the analyte in solution. Following this incubation the wells of the plate were washed three times with 0.02 M TRIS, 0.9% NaCl, 0.5% Tween-80 and 0.001% Thimerosal, pH 7 .8 to remove any material that was not bound.
- the amount of antibody in a well was proportional to the absorbance measured and inversely proportional to the amount of docetaxel in the sample.
- the absorbance of the color in the wells containing analyte was compared to that with no analyte and a standard curve was generated.
- the IC 50 value for a given analyte was defined as the concentration of analyte that is required to inhibit 50% of the absorbance for the wells containing no analyte.
- the cross-reactivity of a given analyte was calculated as the ratio of the IC 50 for docetaxel to the IC 50 for Paclitaxel, and 10-O-Deactylbaccatin III expressed as a percent.
- Example 12 When measured with an antibody as produced in Example 11 with immunogen of Example 9a, on a microtiter plate prepared as in Example 12 the percent cross-reactivates relative to docetaxel for Paclitaxel was less than 2 %, and for 10-O-Deacytlbaccatin III less than 0.02%. When measured with an antibody as produced in Example 11. with immunogen of Example 9a, on a microtiter plate prepared as in Example 13 the percent cross-reactivates relative to docetaxel for Paclitaxel was less than 1 %, and for 10-O-Deacytlbaccatin III less than 0.01.% were obtained.
- Example 13 When measured with a monoclonal antibody as produced in Example 11 with immunogen of Examples 9a & 9b, on a microtiter plate prepared as in Example 13 the percent cross-reactivates relative to docetaxel for paclitaxel was less than 12 %, and for 10-O-Deacytlbaccatin III less than 1.0%.
- the invention also includes the following aspects.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Epoxy Compounds (AREA)
- Saccharide Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
- This invention relates to the field of immunological assays for determining the presence and/or quantifying the amount of docetaxel in human biological fluids in order to rapidly determine optimal drug concentrations during chemotherapy.
- Cancer is a term used to describe a group of malignancies that all share the common trait of developing when cells in a part of the body begin to grow out of control. Most cancers form as tumors, but can also manifest in the blood and circulate through other tissues where they grow. Cancer malignancies are most commonly treated with a combination of surgery, chemotherapy, and/or radiation therapy. The type of treatment used to treat a specific cancer depends upon several factors including the type of cancer malignancy and the stage during which it was diagnosed.
-
- This compound has been associated with debilitating side effects such as bone marrow density loss, allergic reaction, neutropenia, nausea and vomiting. By monitoring the levels of docetaxel in the body and adjusting the dose these side effects can be better controlled and limited in patients.
- At the same time, there is often highly variable relationship between the dose of docetaxel and the resulting serum drug concentration that affects therapeutic effect. The degree of intra- and inter-individual pharmacokinetic variability of docetaxel can be as high as 4-fold and is impacted by many factors, including:
- o Organ function
- o Genetic regulation
- o Disease state
- o Age
- o Drug-drug interaction
- o Time of drug ingestion,
- o Mode of drug administration
- o Technique-related administration
- As a result of this variability, equal doses of the same drug in different individuals can result in dramatically different clinical outcomes (Hon et. al. Clinical Chemistry 44, pp 388-400,1998). The effectiveness of the same docetaxel dosage varies significantly based upon individual drug clearance and the ultimate serum drug concentration in the patient. Therapeutic drug management would provide the clinician with insight on patient variation in intravenous drug administration. With therapeutic drug management, drug dosages could be individualized to the patient, and the chances of effectively treating the cancer, without the unwanted side effects, would be much higher.
- In addition, therapeutic drug management of docetaxel would serve as an excellent tool to ensure compliance in administering chemotherapy with the actual prescribed dosage and achievement of the effective serum concentration levels. It has been found that variability in serum concentration is not only due to physiological factors, but can also result from variation in administration technique.
- Routine therapeutic drug management of docetaxel would require the availability of simple automated tests adaptable to general laboratory equipment. Tests that best fit these criteria are immunoassays. In order to be an effective immunoassay antibodies will have to be developed which are reactive with the active form of the drug. Currently there are no immunoassays available for determining levels of docetaxel in plasma or blood.
- In accordance with this invention, a new class of antibodies have been produced which are substantially reactive with docetaxel so as to bind to docetaxel.
- It has been found that by using immunogens which are conjugates of an immunogenic carrier with a ligand selected from the group consisting of a 10-hydroxydocetaxel derivatives of the formula:
X is a functional group capable of binding to a carrier;
p is an integer from o to 1; and
or mixtures thereof, produce antibodies which are reactive with docetaxel. The provision of these antibodies which react with docetaxel, allows one to produce an immunoassay which can specifically detect and monitor docetaxel in the fluid samples of patients being treated with docetaxel. Also included within this invention are reagents and kits for said immunoassay. - In accordance with this invention, a new class of antibodies is provided which reacts with docetaxel. It has been discovered that through the use of these docetaxel derivatives of formula II-A, II-B or II-C or mixtures thereof; as immunogens, this new class of antibodies of this invention are provided. It is through the use of these antibodies that an immunoassay, including reagents and kits for such immunoassay for detecting and/or quantifying docetaxel in blood, plasma or other body fluid samples has been developed. By use of this immunoassay, the presence and amount of docetaxel in body fluid samples, preferably a blood or plasma sample, can be detected and/or quantified. In this manner, a patient being treated with docetaxel, can be monitored during therapy and treatment adjusted in accordance with said monitoring. By means of this invention one achieves the therapeutic drug management of docetaxel in cancer patients being treated with docetaxel as a chemotherapeutic agent. The preferred antibodies are those which are reactive with docetaxel and not substantially cross-reactive with taxol and pharmaceutically inactive docataxel related compounds sent us 10-0-deacetylbaccatin III.
- The reagents utilized in the assay of this invention are conjugates of a carrier, preferably containing polyamine functional groups, with the compounds of formula II-A, II-B and II-C or mixtures thereof. These conjugates are competitive binding partners with the docetaxel present in the sample for the binding with the antibodies of this invention. Therefore, the amount of conjugate reagent which binds to the antibody will be inversely proportional to the amount of docetaxel in the sample. In accordance with this invention, the assay utilizes any conventional measuring means for detecting and measuring the amount of said conjugate which is bound or unbound to the antibody. Through the use of said means, the amount of the bound or unbound conjugate can be determined. Generally, the amount of docetaxel in a sample is determined by correlating the measured amount of the bound or unbound conjugate produced by the docetaxel in the sample with values of the bound or unbound conjugate determined from standard or calibration curve samples containing known amounts of docetaxel, which known amounts are in the range expected for the sample to be tested. These studies for producing calibration curves are determined using the same immunoassay procedure as used for the sample.
- The conjugates, as well as the immunogens, are prepared from compounds of the formula II-A, II-B and II-C or mixtures thereof. In the conjugates or immunogens, the carrier and the polyamine polymer are linked to ligand portions of the compounds of formula II-A, II-B and II-C. The ligand portions have the formula:
X is -CH2- or a functional linking group;
compounds of the formula: - These ligand portions may be linked to one or more active sites on the carrier of the conjugate or the immunogen. Generally these carriers contain polymers, most preferably polyamine polymers having a reactive amino group. In forming the conjugates, X is preferably a functional group which can react with an amino group. When the compounds of formula II-A, II-B or II-C are used to make immunogens, X in the compound of formula II-A, II-B and II-C is preferably any functional group capable of binding or linking to a polyamine polymer.
- Throughout this description the following definitions are to be understood:
- The term "alkylene" designates a divalent saturated straight or branch chain hydrocarbon substituent containing from one to ten carbon atoms The terms "immunogen" and "immunogenic" refer to substances capable of eliciting, producing, or generating an immune response in an organism.
- The term "conjugate" refers to any substance formed from the joining together of two parts. Representative conjugates in accordance with the present invention include those formed by the joining together of a small molecule, such as the compound of formula II-A, II-B and II-C and a large molecule, such as a carrier, preferably carriers which comprise a polyamine polymer, particularly a protein. In the conjugate the small molecule maybe joined or linked at one or more active sites on the large molecule. The term conjugate includes the term immunogen. In the conjugates used as reagents the carrier can be any carrier and X can be any functional group which can be linked to a carrier . In the immunogen the carrier is a polyamine polymer and X is any functional group capable of linling to a polyamine polymer.
- "Haptens" are partial or incomplete antigens. They are protein-free substances, mostly low molecular weight substances, which are not capable of stimulating antibody formation, but which do react with antibodies. The latter are formed by coupling a hapten to a high molecular weight immunogenic carrier and then injecting this coupled product, i.e., immunogen, into a human or animal subject. The hapten of this invention is docetaxel.
- As used herein, a "spacing group" or "spacer" refers to a portion of a chemical structure which connects two or more substructures such as haptens, carriers, immunogens, labels, or tracer through a CH2 or functional linking group. These spacer groups will be enumerated hereinafter in this application. The atoms of a spacing group and the atoms of a chain within the spacing group are themselves connected by chemical bonds. Among the preferred spacers are straight or branched, saturated or unsaturated, carbon chains. Theses carbon chains may also include one or more heteroatoms within the chain or at termini of the chains. By "heteroatoms" is meant atoms other than carbon which are chosen from the group consisting of oxygen, nitrogen and sulfur. Spacing groups may also include cyclic or aromatic groups as part of the chain or as a substitution on one of the atoms in the chain.
- The number of atoms in the spacing group is determined by counting the atoms other than hydrogen. The number of atoms in a chain within a spacing group is determined by counting the number of atoms other than hydrogen along the shortest route between the substructures being connected. A functional linking group may be used to activate, e.g., provide an available functional site on, a hapten or spacing group for synthesizing a conjugate of a hapten with a label or carrier or polyamine polymer.
- An "immunogenic carrier," as the terms are used herein, is an immunogenic substance, commonly a protein, that can join with a hapten, in this case docetaxel or the docetaxel derivatives hereinbefore described, thereby enabling these hapten derivatives to induce an immune response and elicit the production of antibodies that can bind specifically with these haptens. The immunogenic carriers and the linking groups will be enumerated hereinafter in this application. Among the immunogenic carrier substances are included proteins, glycoproteins, complex polyamino- polysaccharides, particles, and nucleic acids that are recognized as foreign and thereby elicit an immunologic response from the host. The polyamino-polysaccharides may be prepared from polysaccharides using any of the conventional means known for this preparation.
- Also various protein types may be employed as a poly(amino acid) immunogenic carrier. These types include albumins, serum proteins, lipoproteins, etc. Illustrative proteins include bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), egg ovalbumin, bovine thyroglobulin (BTG) etc. Alternatively, synthetic poly(amino acids) may be utilized.
- Immunogenic carriers can also include poly amino-polysaccharides, which are high molecular weight polymers built up by repeated condensations of monosaccharides. Examples of polysaccharides are starches, glycogen, cellulose, carbohydrate gums such as gum arabic, agar, and so forth. The polysaccharide also contains polyamino acid residues and/or lipid residues.
- The immunogenic carrier can also be a poly(nucleic acid) either alone or conjugated to one of the above mentioned poly(amino acids) or polysaccharides.
- The immunogenic carrier can also include solid particles. The particles are generally at least about 0.02 microns (µm) and not more than about 100 µm, and usually about 0.05 µm to 10 µm in diameter. The particle can be organic or inorganic, swellable or non-swellable, porous or non-porous, optimally of a density approximating water, generally from about 0.7 to 1.5 g/mL, and composed of material that can be transparent, partially transparent, or opaque. The particles can be biological materials such as cells and microorganisms, including non-limiting examples such as erythrocytes, leukocytes, lymphocytes, hybridomas, Streptococcus, Staphylococcus aureus, E. coli, and viruses. The particles can also be comprised of organic and inorganic polymers, liposomes, latex, phospholipid vesicles, or lipoproteins.
- "Poly(amino acid)" or "polypeptide" is a polyamide formed from amino acids. Poly(amino acids) will generally range from about 2,000 molecular weight, having no upper molecular weight limit, normally being less than 10,000,000 and usually not more than about 600,000 daltons. There will usually be different ranges, depending on whether an immunogenic carrier or an enzyme is involved.
- A "peptide" is any compound formed by the linkage of two or more amino acids by amide (peptide) bonds, usually a polymer of a-amino acids in which the α-amino group of each amino acid residue (except the NH2 terminus) is linked to the α-carboxyl group of the next residue in a linear chain. The terms peptide, polypeptide and poly(amino acid) are used synonymously herein to refer to this class of compounds without restriction as to size. The largest members of this class are referred to as proteins.
- A "label," "detector molecule," or "tracer" is any molecule which produces, or can be induced to produce, a detectable signal. The label can be conjugated to an analyte, immunogen, antibody, or to another molecule such as a receptor or a molecule that can bind to a receptor such as a ligand, particularly a hapten. Non-limiting examples of labels include radioactive isotopes, enzymes, enzyme fragments, enzyme substrates, enzyme inhibitors, coenzymes, catalysts, fluorophores, dyes, chemiluminescers, luminescers, or sensitizers; a non-magnetic or magnetic particle, a solid support, a liposome, a ligand, or a receptor.
- The term "antibody" refers to a specific protein binding partner for an antigen and is any substance, or group of substances, which has a specific binding affinity for an antigen to the exclusion of other substances. The generic term antibody subsumes polyclonal antibodies, monoclonal antibodies and antibody fragments.
- The term "derivative" refers to a chemical compound or molecule made from a parent compound by one or more chemical reactions.
- The term "carrier" refers to solid particles and/or polymeric polymers such as immunogenic polymers such as those mentioned above. Where the carrier is a solid particle, the solid particle may be bound, coated with or otherwise attached to the polymeric material which preferably is a polyamine polymer to provide one or more reactive sites for bonding to the terminal functional group X in the compounds of the formula II-A, II-B and II-C.
- The term "reagent kit," or "test kit," refers to an assembly of materials that are used in performing an assay. The reagents can be provided in packaged combination in the same or in separate containers, depending on their cross-reactivities and stabilities, and in liquid or in lyophilized form. The amounts and proportions of reagents provided in the kit can be selected so as to provide optimum results for a particular application. A reagent kit embodying features of the present invention comprises antibodies specific for docetaxel. The kit may further comprise ligands of the analyte and calibration and control materials. The reagents may remain in liquid form or may be lyophilized.
- The phrase "calibration and control materials" refers to any standard or reference material containing a known amount of a drug to be measured. The concentration of drug is calculated by comparing the results obtained for the unknown specimen with the results obtained for the standard. This is commonly done by constructing a calibration curve.
- The term "biological sample" includes, but is not limited to, any quantity of a substance from a living thing or formerly living thing. Such living things include, but are not limited to, humans, mice, monkeys, rats, rabbits, horses, and other animals. Such substances include, but are not limited to, blood, serum, plasma, urine, cells, organs, tissues, bone, bone marrow, lymph, lymph nodes, synovial tissue, chondrocytes, synovial macrophages, endothelial cells, and skin.
- In constructing an immunoassay, a conjugate of docetaxel is constructed to compete with the docetaxel in the sample for binding sites on the antibodies. In the immunoassay of this invention, the reagents are conjugates of a carrier with a) the 10-substituted docetaxel derivatives of the compounds of formula II-A; b) the 7-docetaxel derivatives of formula II-B and c) the 7,10-disubstituted derivatives of docetaxel of formula II-C or mixtures thereof. In the compounds of formula III-A, III-B and III-C, the linker spacer constitutes the "-B-(Y)p-X'-" portion of this molecule . The linker X' and the spacer "-B-(Y)p-" - are conventional in preparing conjugates and immunogens. Any of the conventional spacer-linking groups utilized to prepare conjugates and immunogens for immunoassays can be utilized in the compounds of formula III-A, III-B and III-C. Such conventional linkers and spacers are disclosed in
U.S. Patent 5,501,987 andU.S. Patent 5,101,015 . - Among the preferred spacer groups are included the spacer groups hereinbefore mentioned. Particularly preferred spacing groups are groups such as alkylene containing from 1 to 10 carbon atoms,
- In the compounds of formula III-A, III-B and III-C, X' is -CH2- or a functional group linking the spacer to the carrier, preferably to an amine group on the polymeric carrier. The group X' is the result of the terminal functional group X in the compounds of Formula II-A, II-B and II-C which is capable of binding to a carrier, preferably to an amino group in the polyamine polymer present in the carrier or used as the immunogen. Any terminal functional group capable of binding to a carrier, preferably capable of reacting with an amine can be utilized as the functional group X in the compounds of formula II-A , II-B, and II-C. These terminal functional groups preferably included within X are:
- The carboxylic group and the active esters are coupled to the carrier or immunogenic polymer by conventional means. The amine group on the polyamine polymer, such as a protein, produces an amide group which connects the spacer to the polymer, immunogens or carrier and/or conjugates of this invention. On the other hand, carriers can be coated with a polyamine polymer to supply the amino group for linking to the ligand portion.
- In the immunogens and conjugates of the present invention, the chemical bonds between the carboxyl group-containing docetaxel haptens and the amino groups on the polyamine polymer on the carrier or immunogen can be established using a variety of methods known to one skilled in the art. It is frequently preferable to form amide bonds. Amide bonds are formed by first activating the carboxylic acid moiety of the docetaxel hapten in the compounds of formula II-A, II-B and II-C by reacting the carboxy group with a leaving group reagent (e.g., N-hydroxysuccinimide, 1-hydroxybenzotriazole, p-nitrophenol and the like). An activating reagent such as dicyclohexylcarbodiimide, diisopropylcarbodiimide and the like can be used. The activated form of the carboxyl group in the docetaxel hapten of formula II-A, II-B and II-C is then reacted with a buffered solution containing the protein carrier.
- In cases where the docetaxel derivative of formula II-A, II-B and II-C contains a primary or secondary amino group as well as the carboxyl group, it is necessary to use an amine protecting group during the activation and coupling reactions to prevent the conjugates from reacting with themselves. Typically, the amines on the conjugate are protected by forming the corresponding N-trifluoroacetamide, N-tertbutyloxycarbonyl urethane (N-t-BOC urethane), N-carbobenzyloxy urethane or similar structure. Once the coupling reaction to the immunogenic polymer or carrier has been accomplished, as described above, the amine protecting group can be removed using reagents that do not otherwise alter the structure of the immunogen or conjugate. Such reagents and methods are known to one skilled in the art and include weak or strong aqueous or anhydrous acids, weak or strong aqueous or anhydrous bases, hydride-containing reagents such as sodium borohydride or sodium cyanoborohydride and catalytic hydrogenation. Various methods of conjugating haptens and carriers are also disclosed in
U.S. Patent 3,996,344 andU.S. Patent 4,016,146 , which are herein incorporated by reference. - On the other hand where X is a terminal isocyanate or isothiocyanate radical in the compound of formula II-A, II-B and II-C, these radicals when reacted with the free amine of a polyamine polymer produce the conjugate or the immunogen where X' is,
- Where X, in the compounds of formula II-A, II-B and II-C, is an aldehyde group these compounds may be connected to the amine group of the polyamine polypeptide or carrier through an amine linkage by reductive amination. Any conventional method of condensing an aldehyde with an amine such as through reductive amination can be used to form this linkage. In this case, X' in the ligand portions of formula III-A, III-B and III-C is -CH2-.
- In preparing the 7- and -10-monoderivatives of formula II-A and II-B and the 7,10-di substituted derivatives of docetaxel, the 2'-hydroxy group of docetaxel is first protected. This 2'-hydroxy group is on the side chain extending from the 13- position on the docetaxel ring structure. This is the most reactive of the hydroxy groups in docetaxel. Any conventional method of protecting a hydroxy group such as by an esterification can be utilized to protect this hydroxy group at the 2' position, while leaving the hydroxy groups at the 7 and 10 positions free for reaction. Any of the conventional hydroxy protecting groups can be utilized to accomplish this purpose. A preferred hydroxy protecting group is the allylorthoformate ester group which is formed by reacting the compound of formula I with allylchloroformate by conventional means well known in the art. This is an easily produced protecting group which can be easily removed at a later stage in the process.
- After protecting the 2' hydroxy group, this protected docetaxel of formula I can be converted into the 10-docetaxel derivative of formula II-A, the 7-docetaxel derivative of formula II-B or the 7,10-docetaxel derivative of formula II-C depending upon the molar quantity of reagents utilized to react with the 2' protected docetaxel of formula I. In general, where a molar excess of the reagent is reacted with the 2' protected docetaxel of formula I, the resulting final product will be a mixture of the 7-0 and 10-O substituted derivatives, as well as the 7,10-0 disubstituted derivatives. These derivatives can be separated using a silica gel column and a gradient comprising dichloromethane and ethyl acetate, generally 100% dichloromethane at the start while gradually adding ethyl acetate to the column. The individual ingredients can be collected and their structure confirmed by NMR.
- In carrying out this reaction the 7 hydroxy group in the 2' hydroxy protected docetaxel will react first with the reagent such as the compound of formula V-A. Therefore, by limiting the ratio of the reagent such as the compound of formula V-A or VI which is reacted with the compound of formula I to about o.9 to 1.5 moles per mole, the final product will substantially consist of the compounds of formula II-B. Increasing the mole ratio of the reagents reacted with the 2' protected hydroxy docetaxel of formula I will produce more of the compounds of formula II-A and II-C in the product. These derivatives can be separated from the product as described above.
- The 10 and 7-substituted derivatives of formula II-A and II-B where B is -CH2-, as well as the 7,10-disubstituted derivatives of formula II-C are formed by reacting the 7 and 10-hydroxy group of docetaxel with a halide of the formula:
halo-CH2-(Y)p-X V-A
wherein p, Y and X are as above. - In forming these derivatives, any conventional means of reacting an alcohol to form an ether can be utilized in condensing the compound of formula V-A with the 7-hydroxy position on the docetaxel. The use of a halide in the compound of formula V-A provides an efficient means for forming an ether by condensing with the alcohol. On the other hand, where the compound of formula V-A contains functional groups, which may interfere with this reaction to form these derivatives, these functional groups can be protected by means of suitable protecting groups which can be removed after this reaction as described hereinabove.
- The above derivatives of formula II-A, II-B or II-C where B is
NH-CH2-(Y)p-X VI
wherein X, Y and p are as above,
after first converting the one or more hydroxy groups on the 2' protected docetaxel to the chloroformate group - Any conventional means of converting a hydroxy group to a chloroformate group can be used. After the formulation of a chloroformate, the halo group of the chloroformate is condensed with the amine group in the compound of formula VI. Prior to this reaction, the reactive group on docetaxel and/or on the compound of formula VI are protected as described hereinabove with a conventional protecting group. These protecting groups can be removed after this halide condensation by conventional means such as described hereinbefore.
- The compounds of formula II-A, II-B and II-C can be converted into the immunogens and/or the conjugate reagents of this invention by reacting these compounds with a carrier, preferably a polyamine polypeptide or a carrier coated with a polyamine polypeptide. The same polypeptide can be utilized as the carrier and as the immunogenic polymer in the immunogen of this invention provided that polyamines or polypeptides are immunologically active. However, to form the conjugates used as reagents in the immunoassay, these polymers need not produce an immunological response as needed for the immunogens. In accordance with this invention, the various functional group represented by X in the compounds of formula II-A, II-B and II-C can be conjugated to the carrier by conventional means of attaching a functional group to a carrier. In accordance with a preferred embodiment, in the compounds of formula II-A, II-B and II-C, X is a carboxylic acid group.
- The present invention also relates to novel antibodies including monoclonal antibodies to docetaxel produced by utilizing the aforementioned immunogens. In accordance with this invention it has been found that these antibodies produced in accordance with this invention are reactive with docetaxel and do not substantially react with metabolites of docetaxel derivatives which would interfere with immunoassays for docetaxel. In addition the antibodies of this invention do not substantially react with taxol, whose chemical name is paclitaxel and docetaxel like compounds such as 10-O-Deacetylbaccatin III which contain the docetaxel or taxol ring structure. The compound 10-O-Deacetylbaccatin III has the formula:
- The present invention relates to novel antibodies and monoclonal antibodies to docetaxel. The antisera of the invention can be conveniently produced by immunizing host animals with the immunogens of this invention. Suitable host animals include rodents, such as, for example, mice, rats, rabbits, guinea pigs and the like, or higher mammals such as goats, sheep, horses and the like. Initial doses, bleedings and booster shots can be given according to accepted protocols for eliciting immune responses in animals. Through periodic bleeding, the blood samples of the immunized mice were observed to develop an immune response against docetaxel binding utilizing conventional immunoassays. These methods provide a convenient way to screen for hosts and antibodies which are producing antisera having the desired activity. The antibodies were also screened against taxol and antibodies were produced which showed no substantial binding to taxol.
- Monoclonal antibodies are produced conveniently by immunizing Balb/c mice according to the schedule followed by injecting the mice with additional immunogen i.p. or i.v. on three successive days starting three days prior to the cell fusion. Other protocols well known in the antibody art may of course be utilized as well. The complete immunization protocol detailed herein provided an optimum protocol for serum antibody response for the antibody to docetaxel.
- B lymphocytes obtained from the spleen, peripheral blood, lymph nodes or other tissue of the host may be used as the monoclonal antibody producing cell. Most preferred are B lymphocytes obtained from the spleen. Hybridomas capable of generating the desired monoclonal antibodies of the invention are obtained by fusing such B lymphocytes with an immortal cell line, which is a cell line that which imparts long term tissue culture stability on the hybrid cell. In the preferred embodiment of the invention the immortal cell may be a lymphoblastoid cell or a plasmacytoma cell such as a myeloma cell. Murine hybridomas which produce docetaxel monoclonal antibodies are formed by the fusion of mouse myeloma cells and spleen cells from mice immunized with the aforementioned immunogenic conjugates. Chimeric and humanized monoclonal antibodies can be produced by cloning the antibody expressing genes from the hybridoma cells and employing recombinant DNA methods now well known in the art to either join the subsequence of the mouse variable region to human constant regions or to combine human framework regions with complementary determining regions (CDR's) from a donor mouse or rat immunoglobulin. An improved method for carrying out humanization of murine monoclonal antibodies which provides antibodies of enhanced affinities is set forth in International Patent Application
WO 92/11018 - Polypeptide fragments comprising only a portion of the primary antibody structure may be produced, which fragments possess one or more immunoglobulin activities. These polypeptide fragments may be produced by proteolytic cleavage of intact antibodies by methods well known in the art, or by inserting stop codons at the desired locations in expression vectors containing the antibody genes using site-directed mutageneses to produce Fab fragments or (Fab')2 fragments. Single chain antibodies may be produced by joining VL and VH regions with a DNA linker (see Huston et al., Proc. Natl. Acad. Sci. U.S.A., 85:5879-5883 (1988) and Bird et al., Science, 242:423-426 (1988))
- The antibodies of this invention are reactive with docetaxel. In addition, the preferred antibodies do not have any substantial cross-reactivity with taxol or 10-0-deacetylbaccatin III. By substantial cross-reactivity it is meant that the antibodies of this invention have a cross reactivity relative to docetaxel with taxol or 10-O-deacetylbaccatin III of 20% or less.
- In accordance with this invention, the conjugates and the antibodies generated from the immunogens of the compounds of formula II-A, II-B and II-C or mixtures thereof can be utilized as reagents for the determination of docetaxel in patient samples. This determination is performed by means of an immunoassay. Any immunoassay in which the reagent conjugates formed from the compounds of formula II-A, II-B and II-C compete with the docetaxel in the sample for binding sites on the antibodies generated in accordance with this invention can be utilized to determine the presence of docetaxel in a patient sample. The manner for conducting such an assay for docetaxel in a sample suspected of containing docetaxel, comprises combining an (a) aqueous medium sample, (b) an antibody to docetaxel generated in accordance with this invention and (c) the conjugates formed from the compounds of formula II-A, II-B and II-C or mixtures thereof. The amount of docetaxel in the sample can be determined by measuring the inhibition of the binding to the specific antibody of a known amount of the conjugate added to the mixture of the sample and antibody. The result of the inhibition of such binding of the known amount of conjugates by the unknown sample is compared to the results obtained in the same assay by utilizing known standard solutions of docetaxel. In determining the amount of docetaxel in an unknown sample, the sample, the conjugates formed from the compounds of formula II-A, II-B and II-C and the antibody may be added in any order.
- Various means can be utilized to measure the amount of conjugate formed from the compounds of formula II-A, II-B and II-C bound to the antibody. One method is where binding of the conjugates to the antibody causes a decrease in the rate of rotation of a fluorophore conjugate. The amount of decrease in the rate of rotation of a fluorophore conjugate in the liquid mixture can be detected by the fluorescent polarization technique such as disclosed in
U.S. Patent 4,269,511 andU.S. Patent 4,420,568 . - On the other hand, the antibody can be coated or absorbed on nanoparticles so that when these particles react with the docetaxel conjugates formed from the compounds of formula II-A, II-B and II-C, these nanoparticles form an aggregate. However, when the antibody coated or absorbed nanoparticles react with the docetaxel in the sample, the docetaxel from the sample bound to these nanoparticles does not cause aggregation of the antibody nanoparticles. The amount of aggregation or agglutination can be measured in the assay mixture by absorbance.
- On the other hand, these assays can be carried out by having either the antibody or the docetaxel conjugates attached to a solid support such as a microtiter plate or any other conventional solid support including solid particles. Attaching antibodies and proteins to such solid particles is well known in the art. Any conventional method can be utilized for carrying out such attachments. In many cases, in order to aid measurement, labels may be placed upon the antibodies, conjugates or solid particles , such as radioactive labels or enzyme labels, as aids in detecting the amount of the conjugates formed from the compounds of formula II-A, II-B and II-C which is bound or unbound with the antibody. Other suitable labels include chromophores, fluorophores, etc.
- As a matter of convenience, assay components of the present invention can be provided in a kit, a packaged combination with predetermined amounts of new reagents employed in assaying for docetaxel. These reagents include the antibody of this invention, as well as, the conjugates formed from the compounds of formula II-A, II-B and II-C or mixtures thereof. It is generally preferred that in a given immunoassay, if a conjugate formed from a compound of formula II-B is utilized, that the antibody be generated by an immunogen formed from a compound of formula II-B. In a like manner, if a conjugate formed from a compound of formula II-B or II-C is utilized, the antibody be generated by the immunogen formed from the same compound is used for the conjugate. However, this need not be the case and antibodies and conjugates in a given assay can be derived from any one or of these conjugates and immunogens. In carrying out an immunoassay in accordance with this invention the radicals p, X, Y and B in the reagent and the immunogen which forms the antibody used in a given immunoassay can be the same or be a different substituent within the groups defined for each of theses radicals. Therefore while the definitions of the radicals p, X, Y, and B are the same for the conjugate reagent and the immunogen, the particular substituent which these radicals represent for the immunogen and the conjugate reagent in a given assay may be different.
- In addition to these necessary reagents, additives such as ancillary reagents may be included, for example, stabilizers, buffers and the like. The relative amounts of the various reagents may vary widely to provide for concentrations in solution of the reagents which substantially optimize the sensitivity of the assay. Reagents can be provided in solution or as a dry powder, usually lyophilized, including excipients which on dissolution will provide for a reagent solution having the appropriate concentrations for performing the assay.
- In the Examples, the following abbreviations are used for designating the following:
EA Ethyl alcohol MeOH Methanol EtOAc Ethyl acetate DCM Dichloromethane DMAP Dimethylaminopyridine Et3N Triethyl amine NHS N-hydroxy-succinimide EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride TLC Thin Layer Chromatrography KLH Keyhole Limpet Hemocyanin ANS 8-Anilino-1-naphthalenesulfonic acid i.p. Intraperitoneal HRP Horse radish-peroxidase TMB 3,3',5,5'-Tetramethylbenzidine TRIS Tris(hydroxymethyl)aminomethane hydrochloride BSA Bovine serum albumin BTG Bovine thyroglobulin PBS Phosphate buffered saline HEPES 4-(2-Hydroxyethyl)piperazine-i-ethanesulfonic acid di deionized water -
- Docetaxel [1] (500 mg) was added to a three-neck flask in 20 mL of freshly distilled dichloromethane, under a continuous flow of argon. The temperature was maintained at -15oC, at which time diisopropylethylamine (2 eq.) and allyl chloroformate (1.1 eq.) were added. The reaction mixture temperature was brought to room temperature and allowed to stir for 5 hours. 20 mL of dichloromethane was added and the mixture was washed with 0.1N HCl (60 mL), dried on Na2S04, and concentrated on a rotary evaporator. Crude material was purified on a silica gel column with EtOAc/DCM as the gradient (30% EtOAc:71% DCM) to yield [2] (468 mg, 84-78%) as an off-white solid.
- To a solution of the alloc-protected docetaxel, [2], (511 mg, 0.57 mmol) and DMAP (0.22 mmol) in DCM (50 mL) under nitrogen, Et3N (0.22 mmol) was added followed by addition of glutaric anhydride (2 eq). The resulting mixture was allowed to stir overnight at room temperature. DCM was removed under vacuum and the crude material was purified on a silica gel column with EtOAc/DCM gradient (40% EtOAc:6o% DCM) to yield [3] (194 mg, 30.23%) as an off-white solid.
- Derivative [3] (0.173 mmol) was dissolved in 6 mL of dichloromethane under argon and then PhSiH3 (1.04 mmol) was added along with Pd (PPh3)4 (0.008 mmol). After 4 hours, 1.5 mL of MeOH was added and the mixture was stirred for an additional 10 minutes. The reaction mixture was evaporated to dryness to yield the deprotected docetaxel derivative [4] .
- Derivative [4] was purified on a silica gel column (60 % EtOAc:40% DCM as solvent system) to separate this derivative from the presence of the other derivatives such as the 7-mono docetaxel derivate and the 10 - mono docetaxel derivative. The derivative [4] was isolated as an off white gum (145.1 mg, 80.86%), 24.25% calculated from starting material and its structure was confirmed by NMR.
- The diglutaric acid derivative [4] (125.1 mg, 0.121 mmol) was dissolved in 10 mL of dry DMSO. With stirring under nitrogen N-hydroxysulfosuccinimide sodium salt (114.7 g, 0.528 mmol, 4.4 eq) was added followed by EDC (102.4 mg, 0.534 mmol, 4.4 eq). The reaction was stirred overnight at room temperature when additional EDC was added (96 mg, 0.501 mmol, 4.15 eq). After 7 hours of continued stirring at room temperature the reaction was complete by TLC. The TLC condition was ethyl acetate : dichloromethane (3 : 2) with 2 drops of acetic acid.
- To a 20 mL solution of BSA (50 mg/mL) in 50 mM phosphate buffer (50 mM, pH 7.5) with stirring on ice, was added drop wise 1.34 mL (0.016 mmol) of the activated N-hydroxysulfosuccinimide ester docetaxel derivative prepared in Example 2. The reaction mixture was allowed to stir overnight at room temperature to produce the di-acid conjugate to BSA. This conjugate was then purified by dialysis and characterized according to procedures described previously (Wu et. al., Bioconj. Chem., 8: pp 385-390, 1997, Li et al., Bioconj. Chem., 8 : pp 896-905, 1997, Salamone et al., J. Forensic Sci. pp 821-826,1998).
- To a 6.1 mL solution of BTG (32.9 mg/mL) in phosphate buffer (50 mM, pH 7.5) with stirring on ice, was added drop wise 5.1 mL (0.0617 mmol) of the of the activated N-hydroxysulfosuccinimide ester docetaxel derivative prepared in Example 2. The reaction mixture was allowed to stir overnight at room temperature to produce the di-acid conjugate to BTG. The immunogenic conjugate was then purified by dialysis and characterized according to procedures described previously (Wu et. al., Bioconj. Chem., 8: pp 385-3900 19970, Li et al., Bioconj. Chem., 8 : pp 896-905 1997, Salamone et al., J. Forensic Sci. pp 821-826, 998).
- To a 5.4 mL solution of KLH (8.9 mg/mL) in phosphate buffer (50 mM, pH 7.5) with stirring on ice, was added drop wise 5.1 mL (0.0145 mmol) of the activated N-hydroxysulfosuccinimide ester docetaxel derivative prepared in Example 2. The reaction mixture was allowed to stir overnight at room temperature to produce the di-acid conjugate to KLH. The immunogenic conjugate was then purified by dialysis and characterized according to procedures described previously (Wu et. al., Bioconj. Chem., 8: pp 385-390, 1997, Li et al., Bioconj. Chem., 8 : pp 896-905, 1997, Salamone et al., J. Forensic Sci. pp 821-826,1998).
- To a solution of alloc-protected docetaxel, [2], (201 mg, 0.23 mmol) and DMAP (110 mg, 0.9 mmol) in DCM (6 mL) under nitrogen, Et3N (0.9 mmol, 0.13 mL) was added followed by p-nitrophenyl chloroformate (54.6 mg, 0.27 mmol). The reaction mixture was stirred at room temperature for 3.5 hours and then a solution of 6-aminohexanoic acid allyl ester (52.6 mg, 0.29 mmol) in DCM (2 mL) was added. The resulting mixture was stirred overnight at room temperature. DCM was removed in vacuo and the crude material was purified on silica gel column with EtOAc/hexanes as the gradient (Rf =0.39, 50% EtOAc/hexanes) to yield [5] (81.4 mg, 35 %) as an off-white gum.
- To a solution of [5] (100 mg, 0.094 mmol) and Pd(PPh3)4 (15.3 mg, 0.013 mmol) in DCM (6 mL) under nitrogen was added a solution of PhSiH3 (40.8 mg, 0.38 mmol) in DCM (1 mL). The resulting mixture was stirred overnight at room temperature. DCM was removed and the crude material was purified on a silica gel column with MeOH/DCM as the gradient (Rf =0.2,10% MeOH/DCM) to give [6] (39.6 mg, 41 %) as a tan gum and its structure was confirmed by NMR.
- Derivative [6] (39.6 mg, 0.042 mmol) was dissolved in 5 mL of dry DCM. With stirring under nitrogen NHS (14.5 mg, 0.126 mmol, 3.0 eq) was added followed by EDC (24.0 mg, 0.126 mmol, 3.0 eq). The reaction was stirred for 29 hours at room temperature and was then quenched by the addition of HCl (3 mL, 0.3 N) and 15 mL of DCM. The mixture was stirred for 10 minutes and the organic layer was separated, dried (Na2SO4), filtered and the DCM was removed in vacuo to yield an off white amorphous solid.
- The activated ester produced in Example 6 was dissolved in 700 µL of DMSO and 50 µL of this solution was added drop wise to 8 mL of a BSA solution (4 mL DMSO/4 mL 50 mM phosphate, pH 7.5). The solution was stirred for 24 hours at room temperature to produce the conjugate of BSA and the docetaxel derivative [6]. This conjugate was purified by dialysis according to procedures previously described (Wu et. al., Bioconj. Chem., 8: pp 385-390, 1997, Li et.al., Bioconj. Chem., 8 : pp 896-905 1997, Salamone et.al., J. Forensic Sci. pp 821-826, 998).
- To 6.3 mL of BTG (21.1 mg/mL) in 50 mM phosphate buffer (50 mM, pH 7.5) stirring on ice 12.6 mL DMSO was slowly added drop wise. To this solution, the activated NHS ester of the C7 substituted docetaxel (derivative [6]) prepared in Example 7 (650 µL, 62 mg/mL in DMSO) was added drop wise. The resulting mixture was allowed to stir overnight at room temperature to conjugate the BTG to the C7 docetaxel derivative. This immunogenic conjugate was then purified by dialysis and characterized according to procedures described previously (Wu et. al., Bioconj. Chem., 8: pp 385-390, 1997, Li et.al., Bioconj. Chem., 8 : pp 896-905, 997, Salamone et.al., J. Forensic Sci. pp 821-826, 998).
- To 27.02 mL of KLH (4.92 mg/mL) in 66.6% DMSO/43.4% 50 mM phosphate buffer (50 mM, pH 7.5) was added the activated NHS ester (of the C7 substituted docetaxel (derivative [6]) prepared in Example 7 (1,000 µL, 62 mg/mL in DMSO) was added drop wise. The resulting mixture was allowed to stir overnight at room temperature to conjugate the KLH to the C7 docetaxel derivative. This immunogenic conjugate was then purified by dialysis and characterized according to procedures described previously (Wu et. al., Bioconj. Chem., 8: pp 385-390, 1997, Li et.al., Bioconj. Chem., 8 : pp 896-905, 1997, Salamone et.al., J. Forensic Sci. pp 821-826, 998).
- Ten Female BALB/c mice were immunized i.p. with 100 µg/mouse of docetaxel-immunogen: either docetaxel-BTG as prepared in Example 4 or docetaxel-KLH as prepared in Example 5, emulsified in Complete Freund's Adjuvant. After the initial injection mice were boosted four weeks after the preceding injection with 100 µg/mouse of the same immunogens emulsified in Incomplete Freund's Adjuvant. Six to ten days after the boosts test bleeds from each mouse were obtained by orbital bleed. The anti-serum from the last test bleeds containing docetaxel antibodies from each of the mice were evaluated by the procedures in Examples 14a and 15 to determine their reactivity to docetaxel and their cross reactivity to 10-0-Deacytlbaccatin III and, paclitaxel [Taxol]. Only the antiserum having antibodies which were selective for docetaxel and had a cross reactivity relative to docetaxel with 10-O-Deacytlbaccatin III and paclitaxel of 6% or less as determined by these screening procedures were selected.
- Ten Female BALB/c mice were immunized i.p. with 100 µg/mouse of docetaxel-immunogen: either docetaxel-BTG as prepared in Example 9a or docetaxel-KLH immunogen as prepared in Example 9b emulsified in Complete Freund's Adjuvant. After the initial injection mice were boosted once after four weeks with 100 µg /mouse of the same immunogen emulsified in Incomplete Freund's Adjuvant. Ten days after the boosts test bleeds from each mouse were obtained by orbital bleed. The anti-serum from the last test bleeds containing docetaxel antibodies from each of the mice were evaluated by the procedures in Examples 14a and 16 to determine their reactivity to docetaxel and their cross reactivity to 10-O-Deacytlbaccatin III and, paclitaxel [Taxol]. Only the antiserum having antibodies which were selective for docetaxel and had a cross reactivity relative to docetaxel with 10-O-Deacytlbaccatin III and paclitaxel of 6% or less as determined by these screening procedures were selected.
- For monoclonal antibodies starting four days before the fusion, the mice were injected i.p. with 400 99 (3 days before fusion), 200 µg (2 days before fusion), and 200 µg (1 day before fusion) on three successive days with either docetaxel-BTG or docetaxel-KLH (depending on the original immunogen) in PBS. According to the protocol of Coligan et al. spleen cells were isolated from the selected mice and fused with 2 x 107 cells of the myeloma fusion partner cell line (SP2/o) using 50% polyethylene glycol 1500 [Coligan, J.E. et al., eds., Current Protocols in Immunology, 2.5.1- 2.5.8, (1992), Wiley & Sons, NY.] To grow the fused cells into antibody producing colonies according to the method of Coligan et al. the fused cells were plated on 10 96-well plates in a conventional HAT (hypoxanthine, aminopterin and thymidine) selective growth medium such as DMEM/F12 (Dulbecco's Modified Eagle's Medium 1:1 with L-glutamine and HEPES) supplemented with 20% fetal bovine serum alternative, and containing 2% L-glutamine C100 mM) and 2% 50X HAT. Two weeks later, the hybridoma supernatant was assayed for the presence of anti-docetaxel antibodies by ELISA as described in Example 14b. Positive wells were expanded and again screened by the same ELISA method. The positive clones were subcloned directly or confirmed for docetaxel binding by a competitive ELISA as described in Example 16. Clones positive by ELISA as described in Example 14b were subcloned once or twice by limiting dilution according to the method disclosed in Coligan, J.E. et al., eds., Current Protocols in Immunology, 2.5.8 - 2.5.17, (1992), Wiley & Sons, NY.
- Only the monoclonal antibodies which were selective for docetaxel and had a cross reactivity relative to docetaxel with 10-O-Deacytlbaccatin III and paclitaxel of 15% or less as determined by these screening procedures were selected.
- For the purpose of screening antibodies and measuring docetaxel concentration by Enzyme-Linked Immunosorbent Assay (ELISA) method polystyrene microtiter plates optimized for protein binding and containing 96 wells per plate were used. Each well was coated with docetaxel-BSA conjugate (prepared as in Example 3) by adding 300 µL of docetaxel-BSA conjugate at 10 µg/mL in 0.05M sodium bicarbonate, pH=9.6, and incubating for three hours at room temperature. The wells were washed with 0.05M sodium bicarbonate, pH 9.6 and then were blocked with 400 µL of 5% sucrose, 0.2% sodium caseinate solution for 30 minutes at room temperature. After removal of the post-coat solution the plates were dried at 37°C overnight.
- For the purpose of screening antibodies and measuring docetaxel concentration by Enzyme-Linked Immunosorbent Assay (ELISA) method polystyrene microtiter plates optimized for protein binding and containing 96 wells per plate were used. Each well was coated with docetaxel-BSA conjugate (prepared as in Example 8) by adding 300 µL of docetaxel-BSA conjugate at 10 µg/mL in 0.05M sodium bicarbonate, pH=9.6, and incubating for three hours at room temperature. The wells were washed with 0.05M sodium bicarbonate, pH 9.6 and then were blocked with 400 µL of 5% sucrose, 0.2% sodium caseinate solution for 30 minutes at room temperature. After removal of the post-coat solution the plates were dried at 37°C overnight.
- Antibodies were screened by Enzyme-Linked Immunosorbent Assay (ELISA) method. This method for screening docetaxel antibodies (produced in Examples 10 and 11) was performed with the microtiter plates that were sensitized with docetaxel-BSA as described in Examples 12 and 13. The antibody screening assay was performed by diluting the antisera containing docetaxel antibodies to 1:100, 1:1,000, 1:10,000 and 1:100,000 in phosphate buffered saline containing 0.1% BSA and 0.01% thimerosal. To each well of docetaxel-BSA sensitized wells (prepared in Examples 12 and 13) 100 µL of diluted antibody was added and incubated for 10 minutes at room temperature with shaking. During this incubation antibody binds to the docetaxel-conjugate in the well. The wells of the plates were washed three times with 0.02 M TRIS, 0.9% NaCI, 0.5% Tween-80 and 0.001% Thimerosal, pH 7.8 to remove any unbound antibody. To detect the amount of docetaxel antibody bound to the docetaxel-BSA conjugate in the wells, 100 µL of a goat anti-mouse antibody - HRP enzyme conjugate (Jackson Immunoresearch) diluted to a predetermined specific activity (approximately 1/2400) in PBS with 0.1% BSA, 0.05% ANS, 0.01.% thimerosal, capable of binding specifically with murine immunoglobulins and producing a colored product when incubated with a substrate, were added to each well. After an incubation of 10 minutes at room temperature with shaking, during which the goat anti-mouse antibody - HRP enzyme conjugate binds to docetaxel antibodies in the wells, the plates were again washed three times to remove unbound goat anti-mouse antibody - HRP enzyme conjugate. To develop a measurable color in the wells washing was followed by the addition of 100 µL of TMB (TMB Liquid Substrate), a substrate for HRP, to develop color during a 10 minute incubation with shaking at room temperature. Following the incubation for color development, 5o µL of stop solution (1.5% sodium fluoride in di H2O) was added to each well to stop the color development and after 10 seconds of shaking the absorbance was determined at 650 nm with a 96-well plate reader. The amount of antibody in a well was proportional to the absorbance measured and was expressed as the dilution (titer) resulting in an absorbance of 1.5. Titers were determined by graphing log antibody dilution of the antibody measured (x-axis) vs. absorbance 650 nm (y-axis) and extrapolating the titer at an absorbance of 1.5. The titer determined the concentration (dilution) of antibody used in the indirect competitive Microtiter plate assay described in Examples 15 and 16.
- Antibodies were screened by Enzyme-Linked Immunosorbent Assay (ELISA) method. This method for screening docetaxel monoclonal antibodies (produced in Example 11) was performed with the microtiter plates that were sensitized with docetaxel C7 substituted-BSA (Example 8) as described in Example 13. To each well of docetaxel C7 substituted-BSA sensitized wells (prepared in Example 13) 50 µL phosphate buffered saline containing 0.1% BSA and 0.01% thimerosal and then 50 µL of monoclonal culture supernatant were added and incubated for 10 minutes at room temperature with shaking. During this incubation antibody binds to the docetaxel C7 substituted-conjugate in the well. The wells of the plates were washed three times with 0.02 M TRIS, 0.9% NaCl, 0.5% Tween-80 and 0.001% Thimerosal, pH 7.8 to remove any unbound antibody. To detect the amount of docetaxel antibody bound to the docetaxel C7 substituted-BSA conjugate in the wells, 100 µL of a goat anti-mouse antibody - HRP enzyme conjugate (Jackson Immunoresearch) diluted to a predetermined specific activity (approximately 1/2400) in PBS with 0.1% BSA, 0.05% ANS, 0.01% thimerosal, capable of binding specifically with murine immunoglobulins and producing a colored product when incubated with a substrate, were added to each well. After an incubation of 10 minutes at room temperature with shaking, during which the goat anti-mouse antibody - HRP enzyme conjugate binds to doxorubicin antibodies in the wells, the plates were again washed three times to remove unbound goat anti-mouse antibody - HRP enzyme conjugate. To develop a measurable color in the wells washing was followed by the addition of 100 µL of TMB (TMB Liquid Substrate), a substrate for HRP, to develop color during a 10 minute incubation with shaking at room temperature. Following the incubation for color development, 50 µL of stop solution (1.5% sodium fluoride in di H2O) was added to each well to stop the color development and after 10 seconds of shaking the absorbance was determined at 650 nm on a 96-well plate reader. The amount of antibody in a well was proportional to the absorbance measured. Samples with an absorbance of three times background or greater were designated as positive.
- Docetaxel concentrations were measured by an indirect competitive Enzyme-Linked Immunosorbent Assay (ELISA) method. This method for measuring docetaxel concentrations was performed with the microtiter plates that were sensitized with docetaxel-BSA described in Example 13. Docetaxel, paclitaxel, and 10-O-deactylbaccatin III were diluted 10 fold in PBS with o.1% BSA and 0.01% Thimerosal over a concentration range of 0.01 to 10,000 ng/mL. The assay was performed by incubating 50 µL of the analytes to be measured with 50 µL of antibody (produced in Example 10 with immunogen of Example 5) diluted to a titer determined in Example 14a. During the 10 minute incubation (R.T., with shaking) there is a competition of antibody binding for the docetaxel conjugate in the well and the analyte in solution. Following this incubation the wells of the plate were washed three times with 0.02 M TRIS, 0.9% NaCI, 0.5% Tween-80 and 0.001% Thimerosal, pH 7.8 to remove any material that was not bound. To detect the amount of docetaxel antibody bound to the docetaxel-BSA conjugate in the wells, 100 µL of a goat anti-mouse antibody - HRP enzyme conjugate (Jackson Immunoresearch) diluted to a predetermined specific activity (approximately 1/2400) in PBS with 0.1% BSA, 0.05% ANS, 0.01% thimerosal, capable of binding specifically with murine immunoglobulins and producing a colored product when incubated with a substrate, were added to each well. After an incubation of 10 minutes at room temperature with shaking, during which the goat anti-mouse antibody - HRP enzyme conjugate binds to docetaxel antibodies in the wells, the plates were again washed three times to remove unbound secondary conjugate. To develop a measurable color in the wells washing was followed by the addition of 100 µL of TMB (TMB Liquid Substrate) a substrate for HRP, to develop color in a 10 minute incubation with shaking at room temperature. Following the incubation for color development, 50 µL of stop solution (1.5% sodium fluoride in di H2O) was added to each well to stop the color development and after 10 seconds of shaking the absorbance was determined at 650 nm with a 96-well plate reader. The amount of antibody in a well was proportional to the absorbance measured and inversely proportional to the amount of docetaxel in the sample. The absorbance of the color in the wells containing analyte was compared to that with no analyte and a standard curve was generated. The IC50 value for a given analyte was defined as the concentration of analyte that is required to inhibit 50% of the absorbance from the wells containing no analyte. The cross-reactivity of a given analyte was calculated as the ratio of the IC50 for docetaxel to the IC50 for Paclitaxel and 10-O-Deactylbaccatin III expressed as a percent. When measured with an antibody as produced in Example 10 with immunogen of Example 4 and 5 the antibodies with percent cross-reactivates relative to docetaxel for Paclitaxel and 10-O-Deactylbaccatin III </=6% were obtained.
- Docetaxel concentrations were measured by an indirect competitive Enzyme-Linked Immunosorbent Assay (ELISA) method. This method for measuring docetaxel concentrations was performed with the microtiter plates that were sensitized with docetaxel-BSA described in Example 13 for monoclonal antibodies and in Examples 12 and 13 for polyclonal antibodies. Docetaxel, paclitaxel, and 10-O-deactylbaccatin III were diluted 10 fold in PBS with 0.1% BSA and 0.01% Thimerosal over a concentration range of 0.01 to 10,000 ng/mL. The assay was performed by incubating 50 µL of the analytes to be measured with 50 µL of antibody (produced in Example 11) diluted to a titer determined in Example 14a. During the 10 minute incubation (R.T., with shaking) there is a competition of antibody binding for the docetaxel conjugate in the well and the analyte in solution. Following this incubation the wells of the plate were washed three times with 0.02 M TRIS, 0.9% NaCl, 0.5% Tween-80 and 0.001% Thimerosal, pH 7.8 to remove any material that was not bound. To detect the amount of docetaxel antibody bound to the docetaxel-BSA conjugate in the wells, 100 µL of a goat anti-mouse antibody - HRP enzyme conjugate (Jackson Immunoresearch) diluted to a predetermined specific activity (approximately 1/2400) in PBS with 0.1% BSA, 0.05% ANS, 0.01% thimerosal, capable of binding specifically with murine immunoglobulins and producing a colored product when incubated with a substrate, were added to each well. After an incubation of 10 minutes at room temperature with shaking, during which the goat anti-mouse antibody - HRP enzyme conjugate binds to docetaxel antibodies in the wells, the plates were again washed three times to remove unbound secondary conjugate. To develop a measurable color in the wells washing was followed by the addition of 100 µL of TMB (TMB Liquid Substrate), a substrate for HRP, to develop color in a 10 minute incubation with shaking at room temperature. Following the incubation for color development, 50 µL of stop solution (1.5% sodium fluoride in di H2O) was added to each well to stop the color development and after 10 seconds of shaking the absorbance was determined at 650 nm on a 96 well plate reader. The amount of antibody in a well was proportional to the absorbance measured and inversely proportional to the amount of docetaxel in the sample. The absorbance of the color in the wells containing analyte was compared to that with no analyte and a standard curve was generated. The IC50 value for a given analyte was defined as the concentration of analyte that is required to inhibit 50% of the absorbance for the wells containing no analyte. The cross-reactivity of a given analyte was calculated as the ratio of the IC50 for docetaxel to the IC50 for Paclitaxel, and 10-O-Deactylbaccatin III expressed as a percent. When measured with an antibody as produced in Example 11 with immunogen of Example 9a, on a microtiter plate prepared as in Example 12 the percent cross-reactivates relative to docetaxel for Paclitaxel was less than 2 %, and for 10-O-Deacytlbaccatin III less than 0.02%. When measured with an antibody as produced in Example 11. with immunogen of Example 9a, on a microtiter plate prepared as in Example 13 the percent cross-reactivates relative to docetaxel for Paclitaxel was less than 1 %, and for 10-O-Deacytlbaccatin III less than 0.01.% were obtained. When measured with a monoclonal antibody as produced in Example 11 with immunogen of Examples 9a & 9b, on a microtiter plate prepared as in Example 13 the percent cross-reactivates relative to docetaxel for paclitaxel was less than 12 %, and for 10-O-Deacytlbaccatin III less than 1.0%.
- The invention also includes the following aspects.
- 1. An immunoassay for detecting docetaxel in a sample comprising providing a mixture containing a sample, an antibody reactive with docetaxel and a conjugate of a carrier with a ligand selected from a compound of the formula:
X is a functional group capable of binding to a carrier; and p is an integer from 0 to 1;
a compound of the formula:
a compound of the formula
and mixtures thereof, causing the docetaxel in the sample and said conjugate to bind with said antibody and thereafter measuring the amount of said conjugate in said mixture which is bound or unbound to said antibody whereby the presence of docetaxel in the sample can be determined. - 2. The process of aspect 1, wherein the sample is a human sample.
- 3. The immunoassay of aspect 2, wherein said antibody is generated from an immunogen comprising an immunogenic carrier linked to a ligand selected from the group consisting of a compound of the formula:
X is a functional group capable of binding to a carrier;
a compound of the formula:
a compound of the formula
and mixtures thereof. - 4. The immunoassay of aspect 2, wherein the antibody is attached to a solid support.
- 5. The immunoassay of aspect 4, wherein the solid support is microtitor plates.
- 6. The immunoassay of aspect 4, wherein the solid support is nanoparticles.
- 7. The immunoassay of aspect 6, wherein said antibody is derived from mice, rabbits or rats.
- 8. The immunoassay of aspect 7, wherein said antibody is a monoclonal antibody.
- 9. The immunoassay of aspect 3, wherein said antibody is derived from an immunogen of an immunogenic carrier with a ligand of the formula:
X is a functional group capable of binding to a carrier; and
p is an integer from 0 to 1. - 10. The immunoassay of aspect 9, wherein said antibody is derived from mice, rabbits or rats.
- 11. The immunoassay of aspect 9, wherein said antibody is a monoclonal antibody.
- 12. The immunoassay of aspect 3, wherein said antibody is derived from an immunogen of an immunogenic carrier with a ligand of the formula:
- 13. The immunoassay of aspect 12, wherein said antibody is derived from mice, rabbits or rats.
- 14. The immunoassay of aspect 13, wherein said antibody is a monoclonal antibody.
- 15. An immunoassay of aspect 3, wherein said antibody is derived from an immunogen of an immunogenic polyamine polymer and a ligand of the formula:
- 16. The immunoassay of aspect 15, wherein said antibody is derived from mice, rabbits or rats.
- 17. The immunoassay of aspect 15, wherein said antibody is a monoclonal antibody.
- 18. An antibody which reacts with docetaxel and does not substantially react with taxol.
- 19. The antibody of aspect 18, wherein said antibody is generated from an immunogen comprising an immunogenic carrier linked to a ligand selected from the group consisting of a compound of the formula:
X is a functional group capable of binding to a carrier; and
p is an integer from 0 to 1;
a compound of the formula: - 20. The antibody of aspect 19, wherein said antibody is derived from mice, rabbits or rats.
- 21. The antibody of aspect 20, wherein said antibody is a monoclonal antibody.
- 22. The antibody of aspect 19, wherein said antibody is derived from an immunogen of an immunogenic carrier with a ligand of the formula:
- 23. The antibody of aspect 22, wherein said antibody is derived from mice, rabbits or rats.
- 24. The antibody of aspect 23, wherein said antibody is a monoclonal antibody.
- 25. The antibody of aspect 19, wherein said antibody is derived from an immunogen of a polyamine polymer with a ligand of the formula:
- 26. The antibody of aspect 25, wherein said antibody is derived from mice, rabbits or rats.
- 27. The antibody of aspect 25, wherein said antibody is a monoclonal antibody.
- 28. The antibody of aspect 27, wherein said antibody is derived from mice, rabbits or rats.
- 29. The antibody of aspect 19, wherein said antibody is derived from an immunogen of a carrier with a ligand of the formula:
- 30. The antibody of aspect 29, wherein said antibody is derived from mice, rabbits or rats.
- 31. The antibody of aspect 30, wherein said antibody is a monoclonal antibody.
- 32. The antibody of aspect 31, wherein said antibody is derived from mice, rabbits or rats.
- 33. A compound of the formula:
X is a functional group capable of binding to a carrier; and p is an integer from 0 to 1. - 34. The compound of aspect 33, wherein said carrier contains a polyamine polymer.
- 35. The compound of aspect 34, wherein p is o.
- 36. The compound of aspect 35, wherein X is
- 37. The compound of aspect 36, wherein
- 38. The compound of aspect 36, wherein X is ester.
- 39. The compound of aspect 38, wherein the ester formed is a lower alkyl ester, imidoester or amidoester.
- 40. The compound of aspect 34, wherein p is 1.
- 41. The compound of aspect 40, wherein X is
- 42. The compound of aspect 41, wherein Y is alkylene containing from 1 to 10 carbon atoms,
- 43. A conjugate comprising a carrier linked to a ligand moiety of the formula:
X' is -CH2- or a functional linking group capable of linking to a carrier; and
p is an integer from 0 to 1. - 44. The conjugate of aspect 43, wherein the carrier comprises a polyamine polymer.
- 45. The conjugate of aspect 44, wherein p is 1.
- 46. The conjugate of aspect 45, wherein X' is
- 47. The conjugate of aspect 44, wherein p is 1.
- 48. The conjugate of aspect 45, wherein Y is alkylene containing from 1 to 10 carbon atoms,
- 49. The conjugate of aspect 48, wherein X' is-
- 50. The conjugate of aspect 44, wherein said polyamine polymer is an immunogenic polymer.
- 51. A compound of the formula:
X is a functional group capable of binding to a carrier; and
p is an integer from 0 to 1. - 52. The compound of aspect 51, wherein X is a functional group capable of binding to a polyamine polymer.
- 53. The compound of aspect 52, wherein p is o.
- 54. The compound of aspect 52, wherein X is
- 55. The compound of aspect 54, wherein X is
- 56. The compound of aspect 54, wherein X is ester.
- 57. The compound of aspect 56, wherein the ester formed is a lower alkyl ester, imidoester or amidoester.
- 58. The compound of aspect 51, wherein p is 1.
- 59. The compound of aspect 58, wherein Y is alkylene containing from 1 to 10 carbon atoms,
- 60. A compound of the formula:
X is a functional group capable of binding to a carrier; and
p is an integer from 0 to 1. - 61. The compound of aspect 60, wherein X is capable of binding to a polyamine polymer.
- 62. The compound of aspect 61, wherein p is o.
- 63. The compound of aspect 62, wherein X is
- 64. The compound of aspect 63, wherein X is
- 65. The compound of aspect 63, wherein X is ester.
- 66. The compound of aspect 65, wherein the ester formed is a lower alkyl ester, imidoester or amidoester.
- 67. The compound of aspect 61, wherein p is 1.
- 68. The compound of aspect 67, wherein X is
- 69. The compound of aspect 68, wherein Y is alkylene containing from 1 to 10 carbon atoms,
- 70. A conjugate comprising a carrier linked to a ligand moiety of the formula:
X' is -CH2- or a functional linking group capable of linking to a carrier; and
p is an integer from 0 to 1. - 71. The conjugate of aspect 70, wherein the carrier comprises a polyamine polymer.
- 72. The conjugate of aspect 71, wherein p is o.
- 73. The conjugate of aspect 72, wherein X' is
- 74. The conjugate of aspect 71, wherein p is 1.
- 75. The conjugate of aspect 74, wherein Y is alkylene containing from 1 to 10 carbon atoms,
- 76. The conjugate of aspect 75, wherein X' is
- 77. The conjugate of aspect 71, wherein said polyamine polymer is an immunogenic polymer.
- 78. A conjugate comprising a carrier linked to a ligand moiety of the formula:
X' is -CH2- or a functional linking group capable of linking to said carrier; and
p is an integer from 0 to 1. - 79. The conjugate of aspect 78, wherein the carrier comprises a polyamine polymer.
- 80. The compound of aspect 79, wherein p is o.
- 81. The compound of aspect 80, wherein X' is
- 82. The conjugate of aspect 79, wherein p is 1.
- 83. The conjugate of aspect 82, wherein Y is alkylene containing from 1 to 10 carbon atoms,
- 84. The conjugate of aspect 83, wherein X' is
- 85. The conjugate of aspect 79, wherein said polyamine polymer is an immunogenic polymer.
- 86. A kit for determining the presence of docetaxel in a patient sample comprising reagents packed in separate containers, one of the reagents being an antibody reactive with docetaxel and the other reagent being a conjugate of the carrier with a ligand selected from a compound of the formula:
X is a functional group capable of binding to a carrier; and
p is an integer from 0 to 1;
a compound of the formula:
a compound of the formula
Claims (15)
- A compound according to claim 1, wherein p is 0.
- A compound according to claim 1, wherein p is 1.
- A compound according to any one of the preceding claims, wherein X is a functional group capable of binding to a polyamine polymer.
- A compound according to claim 8, wherein the ester formed is a lower alkyl ester, imidoester or amidoester.
- A conjugate according to claim 10, wherein the carrier comprises a polyamine polymer.
- A conjugate according to any one of claims 10 to 12, wherein said polyamine polymer is an immunogenic polymer.
- An immunogen according to claim 14, wherein the immunogenic carrier comprises a polyamine polymer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/087,008 US20060216767A1 (en) | 2005-03-22 | 2005-03-22 | Docetaxel immunoassay |
EP06738937A EP1875237B1 (en) | 2005-03-22 | 2006-03-20 | Docetaxel immunoassay |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06738937.9 Division | 2006-03-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2302383A2 true EP2302383A2 (en) | 2011-03-30 |
EP2302383A3 EP2302383A3 (en) | 2011-10-05 |
Family
ID=37024467
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10016181A Withdrawn EP2302382A3 (en) | 2005-03-22 | 2006-03-20 | Docetaxel conjugates and immunogens for use in an immunoassay |
EP10016182A Withdrawn EP2302383A3 (en) | 2005-03-22 | 2006-03-20 | Docetaxel conjugates and immunogens for use in an immunoassay |
EP06738937A Active EP1875237B1 (en) | 2005-03-22 | 2006-03-20 | Docetaxel immunoassay |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10016181A Withdrawn EP2302382A3 (en) | 2005-03-22 | 2006-03-20 | Docetaxel conjugates and immunogens for use in an immunoassay |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06738937A Active EP1875237B1 (en) | 2005-03-22 | 2006-03-20 | Docetaxel immunoassay |
Country Status (10)
Country | Link |
---|---|
US (3) | US20060216767A1 (en) |
EP (3) | EP2302382A3 (en) |
JP (1) | JP4889054B2 (en) |
AT (1) | ATE494552T1 (en) |
CA (1) | CA2602790C (en) |
DE (1) | DE602006019404D1 (en) |
DK (1) | DK1875237T3 (en) |
ES (1) | ES2357249T3 (en) |
HK (1) | HK1116250A1 (en) |
WO (1) | WO2006102200A2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060216767A1 (en) * | 2005-03-22 | 2006-09-28 | Saladax Biomedical Inc. | Docetaxel immunoassay |
JP4777315B2 (en) * | 2007-08-29 | 2011-09-21 | 富士フイルム株式会社 | Biosensor chip, manufacturing method thereof, and sensor for surface plasmon resonance analysis |
US20110165699A1 (en) * | 2009-12-08 | 2011-07-07 | Salamone Salvatore J | Irinotecan immunoassay |
US20110136253A1 (en) * | 2009-12-08 | 2011-06-09 | Salamone Salvatore J | Irinotecan Immunoassay |
US8114621B2 (en) * | 2010-03-12 | 2012-02-14 | Saladax Biomedical Inc. | Lenalidomide and thalidomide immunoassays |
US8088594B2 (en) * | 2010-03-16 | 2012-01-03 | Saladax Biomedical Inc. | Risperidone immunoassay |
CN103183724B (en) | 2010-05-27 | 2015-01-14 | 深圳信立泰药业股份有限公司 | Preparation method of docetaxel conjugate |
US20120088312A1 (en) * | 2010-10-08 | 2012-04-12 | Salamone Salvatore J | Vincristine immunoassay |
WO2012067670A1 (en) * | 2010-11-18 | 2012-05-24 | Saladax Biomedical Inc. | Irinotecan immunoassay |
US8771972B2 (en) * | 2011-05-24 | 2014-07-08 | Saladax Biomedical Inc. | Clozapine immunoassay |
CN102621325B (en) * | 2012-04-06 | 2014-11-12 | 上海蓝怡科技有限公司 | Kit for detecting concentration of docetaxel in blood |
EP3660505A1 (en) | 2012-07-16 | 2020-06-03 | Centers for Disease Control and Prevention | Direct reading detection kits for surface contamination by antineoplastic drugs |
US20170290929A1 (en) * | 2014-06-09 | 2017-10-12 | University Of Iowa Research Foundation | Grp78 targeted conjugates |
CN209624606U (en) | 2017-09-21 | 2019-11-12 | 贝克顿·迪金森公司 | Dangerous contamination detection system |
USD859683S1 (en) | 2017-09-21 | 2019-09-10 | Becton, Dickinson And Company | Collection device |
EP3918300A4 (en) | 2019-01-28 | 2022-11-16 | Becton, Dickinson and Company | Hazardous contaminant collection device with integrated swab and test device |
WO2020252053A1 (en) | 2019-06-13 | 2020-12-17 | Becton, Dickinson And Company | Multiplexed turbidimetric immunoassays to monitor environmental contamination |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996344A (en) | 1972-05-15 | 1976-12-07 | Biological Developments, Inc. | Phenethylamine antigenic conjugates, their preparation, antibodies and use |
US4016146A (en) | 1974-12-10 | 1977-04-05 | Biological Developments, Inc. | Phenethylamine antigenic conjugates, their preparation, antibodies, and use |
US4269511A (en) | 1979-02-15 | 1981-05-26 | Abbott Laboratories | Apparatus and method for measuring the magnitude of polarization of light |
US4420568A (en) | 1980-07-30 | 1983-12-13 | Abbott Laboratories | Fluorescent polarization immunoassay utilizing substituted triazinylaminofluoresceins |
US5101015A (en) | 1989-04-10 | 1992-03-31 | Abbott Laboratories | Reagents for an amphetamine-class fluorescence polarization immunoassay |
WO1992011018A1 (en) | 1990-12-19 | 1992-07-09 | Protein Design Labs, Inc. | Improved humanized immunoglobulins |
US5501987A (en) | 1992-06-16 | 1996-03-26 | Hoffmann-La Roche Inc. | Dual analyte immunoassay for methamphetamine and amphetamine |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1271682B (en) | 1994-07-19 | 1997-06-04 | Indena Spa | DETERMINATION AND INSULATION OF TAXOLO AND 10-DESACETYL-BACATINA III AND ANALOGUES THROUGH ANTIBODIES |
US5801191A (en) * | 1995-06-01 | 1998-09-01 | Biophysica Foundation | Taxoids |
US5767297A (en) * | 1997-02-05 | 1998-06-16 | Ensuiko Sugar Refining Co., Ltd. | Taxoid derivative and method of producing thereof |
JP3816621B2 (en) * | 1996-02-20 | 2006-08-30 | 塩水港精糖株式会社 | Taxoid derivatives and process for producing the same |
US5795909A (en) * | 1996-05-22 | 1998-08-18 | Neuromedica, Inc. | DHA-pharmaceutical agent conjugates of taxanes |
CA2255615C (en) * | 1996-05-22 | 2006-08-29 | Neuromedica, Inc. | Compositions comprising conjugates of cis-docosahexaenoic acid and docetaxel |
DE19636889A1 (en) * | 1996-09-11 | 1998-03-12 | Felix Dr Kratz | Antineoplastic transferrin and albumin conjugates of cytostatic compounds from the group of the anthracyclines, alkylating agents, antimetabolites and cisplatin analogues and medicaments containing them |
US5981777A (en) * | 1997-11-18 | 1999-11-09 | The Regents Of The University Of California | Recovery of taxanes from plant material |
WO2000050059A1 (en) * | 1999-02-24 | 2000-08-31 | The Uab Research Foundation | Taxane derivatives for targeted therapy of cancer |
AR030188A1 (en) * | 2000-02-02 | 2003-08-13 | Univ Florida State Res Found | TAXANO COMPOUNDS REPLACED WITH ESTERS IN C7; PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND PROCESS TO TREAT A MAMMER SUBJECT THAT SUFFERS FROM A CONDITION THAT RESPONDS TO TAXANS |
US20060024768A1 (en) * | 2004-07-29 | 2006-02-02 | Saladax Biomedical, Inc. | Taxol immunoassay |
US20060024769A1 (en) * | 2004-07-29 | 2006-02-02 | Saladax Biomedical Inc. | Taxol immunoassay |
AU2006210056A1 (en) * | 2005-02-07 | 2006-08-10 | F. Hoffmann-La Roche Ag | Inhibitors of diacylglycerol acyltransferase (DGAT) |
US20060216767A1 (en) * | 2005-03-22 | 2006-09-28 | Saladax Biomedical Inc. | Docetaxel immunoassay |
-
2005
- 2005-03-22 US US11/087,008 patent/US20060216767A1/en not_active Abandoned
-
2006
- 2006-03-20 EP EP10016181A patent/EP2302382A3/en not_active Withdrawn
- 2006-03-20 CA CA2602790A patent/CA2602790C/en active Active
- 2006-03-20 ES ES06738937T patent/ES2357249T3/en active Active
- 2006-03-20 JP JP2008503065A patent/JP4889054B2/en not_active Expired - Fee Related
- 2006-03-20 AT AT06738937T patent/ATE494552T1/en not_active IP Right Cessation
- 2006-03-20 DK DK06738937.9T patent/DK1875237T3/en active
- 2006-03-20 WO PCT/US2006/009957 patent/WO2006102200A2/en active Application Filing
- 2006-03-20 DE DE602006019404T patent/DE602006019404D1/en active Active
- 2006-03-20 EP EP10016182A patent/EP2302383A3/en not_active Withdrawn
- 2006-03-20 US US11/384,848 patent/US7459281B2/en active Active
- 2006-03-20 EP EP06738937A patent/EP1875237B1/en active Active
-
2008
- 2008-05-21 HK HK08105647.8A patent/HK1116250A1/en not_active IP Right Cessation
- 2008-07-14 US US12/172,556 patent/US20080287658A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996344A (en) | 1972-05-15 | 1976-12-07 | Biological Developments, Inc. | Phenethylamine antigenic conjugates, their preparation, antibodies and use |
US4016146A (en) | 1974-12-10 | 1977-04-05 | Biological Developments, Inc. | Phenethylamine antigenic conjugates, their preparation, antibodies, and use |
US4269511A (en) | 1979-02-15 | 1981-05-26 | Abbott Laboratories | Apparatus and method for measuring the magnitude of polarization of light |
US4420568A (en) | 1980-07-30 | 1983-12-13 | Abbott Laboratories | Fluorescent polarization immunoassay utilizing substituted triazinylaminofluoresceins |
US4420568B1 (en) | 1980-07-30 | 1985-12-17 | ||
US5101015A (en) | 1989-04-10 | 1992-03-31 | Abbott Laboratories | Reagents for an amphetamine-class fluorescence polarization immunoassay |
WO1992011018A1 (en) | 1990-12-19 | 1992-07-09 | Protein Design Labs, Inc. | Improved humanized immunoglobulins |
US5501987A (en) | 1992-06-16 | 1996-03-26 | Hoffmann-La Roche Inc. | Dual analyte immunoassay for methamphetamine and amphetamine |
Non-Patent Citations (10)
Title |
---|
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426 |
COLIGAN, J.E. ET AL.: "Current Protocols in Immunology", 1992, WILEY & SONS, pages: 2.5.1 - 2.5.8 |
COLIGAN, J.E. ET AL.: "Current Protocols in Immunology", 1992, WILEY & SONS, pages: 2.5.8 - 2.5.17 |
HON, CLINICAL CHEMISTRY, vol. 44, 1998, pages 388 - 400 |
HUSTON ET AL., PROC. NATL. ACAD. SCI. U.SA., vol. 85, 1988, pages 5879 - 5883 |
LI ET AL., BIOCONJ. CHEM., vol. 8, 1997, pages 896 - 905 |
LI, BIOCONJ. CHEM., vol. 8, 1997, pages 896 - 905 |
SALAMONE ET AL., J. FORENSIC SCI., 1998, pages 821 - 826 |
SALAMONE, J. FORENSIC SCI., 1998, pages 821 - 826 |
WU, BIOCONJ. CHEM., vol. 8, 1997, pages 385 - 390 |
Also Published As
Publication number | Publication date |
---|---|
WO2006102200A2 (en) | 2006-09-28 |
EP2302382A3 (en) | 2011-10-05 |
US20080287658A1 (en) | 2008-11-20 |
ATE494552T1 (en) | 2011-01-15 |
HK1116250A1 (en) | 2008-12-19 |
CA2602790A1 (en) | 2006-09-28 |
EP2302383A3 (en) | 2011-10-05 |
EP1875237B1 (en) | 2011-01-05 |
EP1875237A2 (en) | 2008-01-09 |
EP2302382A2 (en) | 2011-03-30 |
US20060216767A1 (en) | 2006-09-28 |
US20060216769A1 (en) | 2006-09-28 |
JP4889054B2 (en) | 2012-02-29 |
WO2006102200A3 (en) | 2007-05-31 |
CA2602790C (en) | 2014-08-05 |
DK1875237T3 (en) | 2011-05-02 |
EP1875237A4 (en) | 2008-09-24 |
US7459281B2 (en) | 2008-12-02 |
JP2008534927A (en) | 2008-08-28 |
DE602006019404D1 (en) | 2011-02-17 |
ES2357249T3 (en) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1875237B1 (en) | Docetaxel immunoassay | |
EP2280281B1 (en) | 5-fluoro-uracil immunoassay | |
EP1864129B1 (en) | Doxorubicin immunoassay | |
JP2010159263A (en) | Compound for taxol immunoassay | |
US20090221786A1 (en) | Taxol immunoassay | |
EP1774331B1 (en) | Cytoxan antibodies and immunoassay | |
CA2836539A1 (en) | Gemcitabine immunoassay | |
US20110136253A1 (en) | Irinotecan Immunoassay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110128 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1875237 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STOCKER, DENNIS Inventor name: GUL, WASEEM Inventor name: SALAMONE, SALVATORE Inventor name: EISOHLY, MAHMOUD AHMED Inventor name: COURTNEY, JODI BLAKE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 33/53 20060101AFI20110829BHEP Ipc: C07K 1/04 20060101ALI20110829BHEP Ipc: G01N 33/532 20060101ALI20110829BHEP Ipc: G01N 33/551 20060101ALI20110829BHEP Ipc: C07K 16/00 20060101ALI20110829BHEP Ipc: C07K 1/13 20060101ALI20110829BHEP Ipc: C07D 305/14 20060101ALI20110829BHEP |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1156108 Country of ref document: HK |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120406 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1156108 Country of ref document: HK |