EP2294684B1 - A plant for transmiitting electric power - Google Patents
A plant for transmiitting electric power Download PDFInfo
- Publication number
- EP2294684B1 EP2294684B1 EP08760720.6A EP08760720A EP2294684B1 EP 2294684 B1 EP2294684 B1 EP 2294684B1 EP 08760720 A EP08760720 A EP 08760720A EP 2294684 B1 EP2294684 B1 EP 2294684B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- converter
- conductor
- pole
- switching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/36—Arrangements for transfer of electric power between AC networks via a high-tension DC link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Definitions
- the present invention relates to a plant for transmitting electric power through High Voltage Direct Current (HVDC) comprising two converter stations interconnected by a bipolar direct voltage network and each connected to an alternating voltage network for feeding electric power from one of said alternating voltage networks to the other, each converter station having a Voltage Source Converter having at least one phase leg connecting to opposite poles of the direct voltage side of the converter and comprising a series connection of switching cells, each said switching cell having on one hand at least two semiconductor assemblies connected in series and having each a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith and on the other at least one energy storing capacitor, a phase output of the converter being configured to be connected to an alternating voltage side of the converter being formed between two switching cells along said series connection of switching cells, each said switching cell being configured to obtain two switching states by control of said semiconductor devices of each switching cell, namely a first switching state and a second switching state, in which the voltage across said at least one energy storing capacitor and a zero voltage, respectively, is applied
- one of the converter stations always functions as rectifier, i.e. electric power is fed from the alternating voltage network connected to this station and to the other converter station operating as inverter and through this to the alternating voltage network connected to the converter station last mentioned.
- the alternating voltage network connected to the converter station first mentioned is a part of a plant for generating electric power, such as a wind power park.
- the feeding of electric power between the two converter stations may change, so that the converter stations may change from an operation as rectifier to inverter and conversely.
- the converters in said stations may have any number of said phase legs, but they have normally three such phase legs for having a three phase alternating voltage on the alternating voltage side thereof.
- a Voltage Source Converter of this type may be used in all kinds of situations, in which direct voltage is to be converted into alternating voltage and conversely, in which examples of such uses are in stations of HVDC-plants (High Voltage Direct Current), in which direct voltage is normally converted into a threephase alternating voltage or conversely, or in so-called back-toback stations in which alternating voltage is firstly converted into direct voltage and this is then converted into alternating voltage, as well as in SVCs (Static Var Compensator), in which the direct voltage side consists of capacitors hanging freely.
- HVDC-plants High Voltage Direct Current
- SVCs Static Var Compensator
- a Voltage Source Converter of this type is known through for example DE 101 03 031 A1 and WO 2007/023064 A1 and is as disclosed there normally called a multi-cell converter or M2LC.
- Said switching cells of the converter may have other appearances than those shown in said publications, and it is for instance possible that each switching cell has more than one said energy storing capacitor, as long as it is possible to control the switching cell to be switched between the two states mentioned in the introduction.
- WO2007/028349 discloses an HVDC transmission system with M2LC converters which can be used for bipolar as well as monopolar operation for instance with ground or sea water return.
- EP0938102A2 discloses a high voltage DC power cable with integrated and isolated return conductor for HVDC power transmission.
- the return conductor is grounded in the middle of a 540km line operated at 500 kV and resulting in voltage magnitudes of 5 kV on the return conductor ends at each converter station when transferring 800 MW.
- the present invention is directed to such Voltage Source Converters configured to transmit high powers.
- a Voltage Source Converter When such a Voltage Source Converter is used to transmit high powers this also means that high voltages are handled, and the voltage of the direct voltage side of the converter is determined by the voltages across said energy storing capacitors of the switching cells.
- a high number of such switching cells connected in series means that it will be possible to control these switching cells to change between said first and second switching state and by that already at said phase output obtain an alternating voltage being very close to a sinusoidal voltage.
- This may be obtained already by means of substantially lower switching frequencies than typically used in known Voltage Source Converters of the type shown in Fig 1 in DE 101 03 031 A1 having switching cells with at least one semiconductor device of turn-off type and at least one free- wheeling diode connected in anti-parallel therewith. This makes it possible to obtain substantially lower losses and also considerably reduces problems of filtering and harmonic currents and radio interferences, so that equipment therefor may be less costly.
- a plant for transmitting electric power through HVDC having converter stations with such Voltage Source Converters of M2LC-type has a number of advantages.
- the object of the present invention is to provide a plant of the type defined in the introduction being improved in at least some aspect with respect to such plants already known.
- the present invention resides in a combination of low loss converters of the M2LC type and cheap transmission lines in a plant for transmitting electric power through HVDC. This constitutes a remarkable improvement with respect to such plants already known.
- said converters are configured to utilize said direct voltage of a magnitude being 5 to 10 times, higher for said first pole than said voltage magnitude of said second pole. It allows a considerable saving of costs for the transmission line constituting said direct voltage network of the plant. Such an asymmetric operation of the Voltage Source Converters opens up for a considerable saving of costs for the transmission line in different ways constituting further embodiments of the present invention discussed below.
- said bipolar direct voltage network comprises one high voltage pole conductor configured to form said first pole interconnecting the two converter stations and one low voltage pole conductor configured to form said second pole interconnecting said converter stations. Costs may be saved by utilizing a low voltage pole conductor for forming said second pole of the transmission line.
- said direct voltage network comprises a line forming said two poles interconnecting said two converter stations, and said line has an inner central high voltage conductor forming said first pole and an outer low voltage conductor forming said second pole surrounding said high voltage conductor and being separated therefrom by an insulating layer.
- Said line may be an overhead line or a cable buried in the ground or in the sea, and in the latter case the outer low voltage conductor has to be surrounded by an insulating layer. Accordingly, costs are saved by having only one line for said bipolar direct voltage network, in which current is flowing in said inner central high voltage conductor from one station to the other and then a return current is flowing in the opposite direction in the outer low voltage conductor.
- the cross-section area of the low voltage conductor is 1 to 2 times, preferably 1 to 1.5 times, the cross-section area of the central high voltage conductor. This is necessary, since the low voltage conductor may be manufactured of a less costly material than the high voltage conductor and has to take a current of the same level as the high voltage conductor.
- the number of the switching cells of said phase leg of the Voltage Source Converters is ⁇ 4, ⁇ 12, ⁇ 30 or ⁇ 50.
- a converter of the type used in a plant according to the invention is particularly interesting when the number of switching cells of a said phase leg is rather high resulting in a high number of possible levels of the voltage pulses delivered on said phase output.
- said semiconductor device of the switching cell assemblies are IGBTs (Insulated Gate Bipolar Transistor), IGCTs (Integrated Gate Commutated Thyristor) or GTOs (Gate Turn-Off Thyristor). These are suitable semiconductor devices for such converters, although other semiconductor devices of turn-off type are also conceivable.
- said Voltage Source Converters of the plant are configured to have a direct voltage across said two poles being between 1 kV and 1200 kV or between 10 kV and 1200 kV or between 100 kV and 1200 kV.
- the invention is the more interesting the higher said direct voltage is.
- the plant is configured to conduct a direct current of 200 A to 10 kA, or 1 kA to 7 kA, through said direct voltage network from one converter station to the other.
- a direct current 200 A to 10 kA, or 1 kA to 7 kA
- Fig 1 illustrates very schematically the general construction of a Voltage Source Converter 1 of the type used in a HVDC plant according to the present invention.
- This converter has three phase legs 2-4 connected to opposite poles 5, 6 of a direct voltage side of the converter, i.e. a direct voltage network for transmitting high voltage direct current.
- Each phase leg comprises a series connection of switching cells 7 indicated by boxes, in the present case 16 to the number, and this series connection is divided into two equal parts, an upper valve branch 8 and a lower valve branch 9, separated by a point 10-12 forming a phase output being configured to be connected to an alternating voltage side of the converter.
- the phase outputs 10-12 may possibly through a transformer connect to a three phase alternating voltage network, load, etc.
- Filtering equipment is also arranged on said alternating voltage side for improving the shape of the alternating voltage on said alternating voltage side.
- a control arrangement 13 is arranged for controlling the switching cells 7 and by that the converter to convert direct voltage into alternating voltage and conversely.
- the Voltage Source Converter has switching cells 7 of the type having on one hand at least two semiconductor assemblies with each a semiconductor device of turn-off type, and a free-wheeling diode connected in parallel therewith and on the other at least one energy storing capacitor, and two examples 7, 7' of such switching cells are shown in Fig 2 and Fig 3 .
- the terminals 14, 15 of the switching cells are adapted to be connected to adjacent switching cells in the series connection of switching cells forming a phase leg.
- the semiconductor devices 16, 17 are in this case IGBTs connected in parallel with diodes 18, 19. Although only one semiconductor device and one diode is shown per assembly these may stand for a number of semiconductor devices and diodes, respectively, connected in parallel for sharing the current flowing through the assembly.
- An energy storing capacitor 20 is connected in parallel with the respective series connection of the diodes and the semiconductor devices.
- One terminal 14 is connected to the mid point between the two semiconductor devices as well as the mid point between the two diodes.
- the other terminal 15 is connected to the energy storing capacitor 20, in the embodiment of Fig 2 to one side thereof and in the embodiment according to Fig 3 to the other side thereof. It is pointed out that each semiconductor device and each diode as shown in Fig 2 and Fig 3 may be more than one connected in series for being able to handle the voltages to be handled, and the semiconductor devices so connected in series may then be controlled simultaneously so as to act as one single semiconductor device.
- the switching cells shown in Fig 2 and Fig 3 may be controlled to obtain one of a) a first switching state and b) a second switching state, in which for a) the voltage across the capacitor 20 and for b) a zero voltage is applied across the terminals 14, 15.
- a first switching state the semiconductor device 16 is turned on and the semiconductor device 17 turned off and in the embodiment according to Fig 3 the semiconductor device 17 is turned on and the semiconductor 16 is turned off.
- the switching cells are switched to the second state by changing the state of the semiconductor devices, so that in the embodiment according to Fig 2 the semiconductor device 16 is turned off and 17 turned on and in Fig 3 the semiconductor device 17 is turned off and 16 turned on.
- Fig 4 shows a little more in detail how the phase leg 2 of the converter according to Fig 1 is formed by switching cells of the type shown in Fig 3 , in which totally ten switching cells have been left out for simplifying the drawing.
- the control arrangement 13 is adapted to control the switching cells by controlling the semiconductor devices thereof, so that they will either deliver a zero voltage or the voltage across the capacitor to be added to the voltages of the other switching cells in said series connection.
- a transformer 21 and filtering equipment 22 are here also indicated. It is shown how each valve branch is through a phase reactor 50, 51 connected to the phase output 10, and such phase reactors should also be there in Fig 1 for the phase outputs 10, 11 and 12, but have there been left out for simplifying the illustration.
- the Voltage Source Converters of the type shown in Fig 4 are configured to utilize a direct voltage having a higher magnitude for a first 5 of the poles then for a second 6 thereof with respect to ground and by that being asymmetric with respect to ground for creating said alternating voltage on said phase output of the respective converter.
- a direct voltage having a higher magnitude for a first 5 of the poles then for a second 6 thereof with respect to ground and by that being asymmetric with respect to ground for creating said alternating voltage on said phase output of the respective converter.
- Such an asymmetry of the converter with respect to the difference of the potentials of said poles with respect to ground may be achieved in different ways.
- the two capacitors 52, 53 on both sides of the ground connection in the converter shown in Fig 4 indicates that the potential of the two poles 5, 6 will be symmetrical with respect to ground or earth, but that is not the case here.
- Fig 5 very schematically illustrates a plant 100 for transmitting electric power through High Voltage Direct Current comprising two converter stations 101, 102 interconnected by a bipolar direct voltage network 103 and each connected to an alternating voltage network 104, 105 for feeding electric power from one of said alternating voltage networks to the other.
- Each converter station has a Voltage Source Converter 106, 107 of the type described above.
- the direct voltage network 103 of this plant comprises a single line 108, such as an overhead line or a cable, forming the two poles 5, 6 interconnecting the two converter stations 101, 102.
- the voltage source converters are configured to utilize a direct voltage having a higher amplitude for the first pole 5 than for the second pole 6 with respect to ground and by that being asymmetric with respect to ground for creating the alternating voltage on the phase output of the respective converter. Reference is now also made to Fig 6 .
- the first pole is in the present case formed by an inner central high voltage conductor 109, which may have a voltage of 50 kV - 1000 kV with respect to ground, whereas the second pole is formed by a low voltage conductor 110 surrounding the high voltage conductor and being separated therefrom by an insulating layer 111.
- the low voltage conductor has a much lower voltage with respect to ground than the first voltage conductor.
- the insulating layer 111 has to be thick enough for withstanding the voltage thereacross.
- the cross-section area of the low voltage conductor 110 is 1-2 times, preferably 1-1.5 times, the cross-section area of the central high voltage conductor 109.
- the low voltage conductor may by this be made of a less costly material than the high voltage conductor.
- a transmission line of the type illustrated in Figs 5 and 6 may be manufactured to a lower cost than bipolar symmetric transmission lines.
- a plant according to a second embodiment of the present invention is schematically illustrated in Fig 7 .
- This plant differs from the plant shown in Fig 5 by the fact that the bipolar direct voltage network comprises one high voltage pole conductor 109' configured to form the first pole interconnecting the two converter stations 101, 102 and a low voltage pole conductor 110' configured to form the second pole interconnecting the converter stations.
- the respective converter is configured to utilize a voltage of a magnitude being 5-10 times higher for the pole conductor 109' with respect to ground than the pole conductor 110'.
- the potential may for instance be +125 kV for the high voltage pole conductor 109' and -25 kV for the low voltage pole conductor 110'.
- the low voltage conductor may by this be made to a considerably lower cost than the high voltage conductor.
- the conductors 109' and 110' may be surrounded by an insulation and belong to a cable, such as a PEX-cable, or they may constitute overhead lines.
- the Voltage Source Converters in a plant according to the present invention may have other appearances than shown in the Figures.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Description
- The present invention relates to a plant for transmitting electric power through High Voltage Direct Current (HVDC) comprising two converter stations interconnected by a bipolar direct voltage network and each connected to an alternating voltage network for feeding electric power from one of said alternating voltage networks to the other, each converter station having a Voltage Source Converter having at least one phase leg connecting to opposite poles of the direct voltage side of the converter and comprising a series connection of switching cells, each said switching cell having on one hand at least two semiconductor assemblies connected in series and having each a semiconductor device of turn-off type and a free-wheeling diode connected in parallel therewith and on the other at least one energy storing capacitor, a phase output of the converter being configured to be connected to an alternating voltage side of the converter being formed between two switching cells along said series connection of switching cells, each said switching cell being configured to obtain two switching states by control of said semiconductor devices of each switching cell, namely a first switching state and a second switching state, in which the voltage across said at least one energy storing capacitor and a zero voltage, respectively, is applied across the terminals of the switching cell, for obtaining a determined alternating voltage on said phase output.
- It is possible that one of the converter stations always functions as rectifier, i.e. electric power is fed from the alternating voltage network connected to this station and to the other converter station operating as inverter and through this to the alternating voltage network connected to the converter station last mentioned. This would be the case if the alternating voltage network connected to the converter station first mentioned is a part of a plant for generating electric power, such as a wind power park. However, it is also conceivable that the feeding of electric power between the two converter stations may change, so that the converter stations may change from an operation as rectifier to inverter and conversely.
- The converters in said stations may have any number of said phase legs, but they have normally three such phase legs for having a three phase alternating voltage on the alternating voltage side thereof.
- A Voltage Source Converter of this type may be used in all kinds of situations, in which direct voltage is to be converted into alternating voltage and conversely, in which examples of such uses are in stations of HVDC-plants (High Voltage Direct Current), in which direct voltage is normally converted into a threephase alternating voltage or conversely, or in so-called back-toback stations in which alternating voltage is firstly converted into direct voltage and this is then converted into alternating voltage, as well as in SVCs (Static Var Compensator), in which the direct voltage side consists of capacitors hanging freely.
- A Voltage Source Converter of this type is known through for example
DE 101 03 031 A1 andWO 2007/023064 A1 and is as disclosed there normally called a multi-cell converter or M2LC. Reference is made to these publications for the functioning of a converter of this type. Said switching cells of the converter may have other appearances than those shown in said publications, and it is for instance possible that each switching cell has more than one said energy storing capacitor, as long as it is possible to control the switching cell to be switched between the two states mentioned in the introduction. -
WO2007/028349 discloses an HVDC transmission system with M2LC converters which can be used for bipolar as well as monopolar operation for instance with ground or sea water return. - The publication "VALHALL RE-DEVELOPMENT PROJECT, POWER FROM SHORE" by Gilje and Carlsson in the conference proceedings of the 11th International Energy Conference & exhibition ENERGEX 2006, June 12th in Stavanger, Norway, discloses an asymmetric bipolar HVDC transmission using voltage source converters connected with-150kV, 0kV conductors by means of a coaxial HVDC cable with the center conductor at high voltage and the return conductor close to the ground screen.
-
EP0938102A2 discloses a high voltage DC power cable with integrated and isolated return conductor for HVDC power transmission. In an example the return conductor is grounded in the middle of a 540km line operated at 500 kV and resulting in voltage magnitudes of 5 kV on the return conductor ends at each converter station when transferring 800 MW. - The present invention is directed to such Voltage Source Converters configured to transmit high powers. When such a Voltage Source Converter is used to transmit high powers this also means that high voltages are handled, and the voltage of the direct voltage side of the converter is determined by the voltages across said energy storing capacitors of the switching cells. This means that a comparatively high number of such switching cells are to be connected in series for a high number of semiconductor devices, i.e. said semiconductor assemblies are to be connected in series in each said switching cell, and a Voltage Source Converter of this type is particularly interesting when the number of the switching cells in said phase leg is comparatively high. A high number of such switching cells connected in series means that it will be possible to control these switching cells to change between said first and second switching state and by that already at said phase output obtain an alternating voltage being very close to a sinusoidal voltage. This may be obtained already by means of substantially lower switching frequencies than typically used in known Voltage Source Converters of the type shown in
Fig 1 inDE 101 03 031 A1 - Accordingly, a plant for transmitting electric power through HVDC having converter stations with such Voltage Source Converters of M2LC-type has a number of advantages.
- The object of the present invention is to provide a plant of the type defined in the introduction being improved in at least some aspect with respect to such plants already known.
- This object is according to the invention obtained by the features of claim 1. Provided is such a plant, in which said voltage source converters are configured to utilize a direct voltage having a higher magnitude for a first of the poles than for a second thereof with respect to ground and by that being asymmetric with respect to ground for creating said alternating voltage on said phase output of the respective converter.
- By utilizing such an asymmetry on the direct voltage side of the converters cheaper cables or overhead lines may be used for said direct voltage network of the plant. Thus, the present invention resides in a combination of low loss converters of the M2LC type and cheap transmission lines in a plant for transmitting electric power through HVDC. This constitutes a remarkable improvement with respect to such plants already known.
- It is possible to utilize a less costly conductor for said second pole than for the first pole and by that to save costs.
- According to an embodiment of the invention said converters are configured to utilize said direct voltage of a magnitude being 5 to 10 times, higher for said first pole than said voltage magnitude of said second pole. It allows a considerable saving of costs for the transmission line constituting said direct voltage network of the plant. Such an asymmetric operation of the Voltage Source Converters opens up for a considerable saving of costs for the transmission line in different ways constituting further embodiments of the present invention discussed below.
- According to another embodiment of the invention said bipolar direct voltage network comprises one high voltage pole conductor configured to form said first pole interconnecting the two converter stations and one low voltage pole conductor configured to form said second pole interconnecting said converter stations. Costs may be saved by utilizing a low voltage pole conductor for forming said second pole of the transmission line.
- According to another embodiment of the invention said direct voltage network comprises a line forming said two poles interconnecting said two converter stations, and said line has an inner central high voltage conductor forming said first pole and an outer low voltage conductor forming said second pole surrounding said high voltage conductor and being separated therefrom by an insulating layer. Said line may be an overhead line or a cable buried in the ground or in the sea, and in the latter case the outer low voltage conductor has to be surrounded by an insulating layer. Accordingly, costs are saved by having only one line for said bipolar direct voltage network, in which current is flowing in said inner central high voltage conductor from one station to the other and then a return current is flowing in the opposite direction in the outer low voltage conductor.
- According to another embodiment of the invention the cross-section area of the low voltage conductor is 1 to 2 times, preferably 1 to 1.5 times, the cross-section area of the central high voltage conductor. This is necessary, since the low voltage conductor may be manufactured of a less costly material than the high voltage conductor and has to take a current of the same level as the high voltage conductor.
- According to another embodiment of the invention the number of the switching cells of said phase leg of the Voltage Source Converters is ≥4, ≥12, ≥30 or ≥50. A converter of the type used in a plant according to the invention is particularly interesting when the number of switching cells of a said phase leg is rather high resulting in a high number of possible levels of the voltage pulses delivered on said phase output.
- According to another embodiment of the invention said semiconductor device of the switching cell assemblies are IGBTs (Insulated Gate Bipolar Transistor), IGCTs (Integrated Gate Commutated Thyristor) or GTOs (Gate Turn-Off Thyristor). These are suitable semiconductor devices for such converters, although other semiconductor devices of turn-off type are also conceivable.
- According to another embodiment of the invention said Voltage Source Converters of the plant are configured to have a direct voltage across said two poles being between 1 kV and 1200 kV or between 10 kV and 1200 kV or between 100 kV and 1200 kV. The invention is the more interesting the higher said direct voltage is.
- According to another embodiment of the invention the plant is configured to conduct a direct current of 200 A to 10 kA, or 1 kA to 7 kA, through said direct voltage network from one converter station to the other. These are currents suitable and possible to be handled by a plant according to the present invention.
- Further advantages as well as advantageous features of the invention will appear from the following description.
- With reference to the appended drawings, below follows a description of embodiments of the invention cited as examples.
- In the drawings:
- Fig 1
- is a very simplified view of a Voltage Source Converter of the type used in a plant according to the present invention,
- Figs 2 and 3
- illustrate two different known switching cells, which may be a part of a Voltage Source Converter in a plant according to the present invention,
- Fig 4
- is a simplified view very schematically illustrating a Voltage Source Converter in a plant according to the present invention,
- Fig 5
- is a very schematic view illustrating a plant according to a first embodiment of the invention,
- Fig 6
- is a simplified cross-section view of a cable used as direct voltage network in a plant according to
Fig 5 , and - Fig 7
- is a view similar to
Fig 5 of a plant according to a second embodiment of the invention. -
Fig 1 illustrates very schematically the general construction of a Voltage Source Converter 1 of the type used in a HVDC plant according to the present invention. This converter has three phase legs 2-4 connected toopposite poles 5, 6 of a direct voltage side of the converter, i.e. a direct voltage network for transmitting high voltage direct current. Each phase leg comprises a series connection of switchingcells 7 indicated by boxes, in thepresent case 16 to the number, and this series connection is divided into two equal parts, anupper valve branch 8 and a lower valve branch 9, separated by a point 10-12 forming a phase output being configured to be connected to an alternating voltage side of the converter. The phase outputs 10-12 may possibly through a transformer connect to a three phase alternating voltage network, load, etc. Filtering equipment is also arranged on said alternating voltage side for improving the shape of the alternating voltage on said alternating voltage side. - A
control arrangement 13 is arranged for controlling theswitching cells 7 and by that the converter to convert direct voltage into alternating voltage and conversely. - The Voltage Source Converter has switching
cells 7 of the type having on one hand at least two semiconductor assemblies with each a semiconductor device of turn-off type, and a free-wheeling diode connected in parallel therewith and on the other at least one energy storing capacitor, and two examples 7, 7' of such switching cells are shown inFig 2 and Fig 3 . Theterminals semiconductor devices diodes energy storing capacitor 20 is connected in parallel with the respective series connection of the diodes and the semiconductor devices. Oneterminal 14 is connected to the mid point between the two semiconductor devices as well as the mid point between the two diodes. Theother terminal 15 is connected to theenergy storing capacitor 20, in the embodiment ofFig 2 to one side thereof and in the embodiment according toFig 3 to the other side thereof. It is pointed out that each semiconductor device and each diode as shown inFig 2 and Fig 3 may be more than one connected in series for being able to handle the voltages to be handled, and the semiconductor devices so connected in series may then be controlled simultaneously so as to act as one single semiconductor device. - The switching cells shown in
Fig 2 and Fig 3 may be controlled to obtain one of a) a first switching state and b) a second switching state, in which for a) the voltage across thecapacitor 20 and for b) a zero voltage is applied across theterminals Fig 2 thesemiconductor device 16 is turned on and thesemiconductor device 17 turned off and in the embodiment according toFig 3 thesemiconductor device 17 is turned on and thesemiconductor 16 is turned off. The switching cells are switched to the second state by changing the state of the semiconductor devices, so that in the embodiment according toFig 2 thesemiconductor device 16 is turned off and 17 turned on and inFig 3 thesemiconductor device 17 is turned off and 16 turned on. -
Fig 4 shows a little more in detail how thephase leg 2 of the converter according toFig 1 is formed by switching cells of the type shown inFig 3 , in which totally ten switching cells have been left out for simplifying the drawing. Thecontrol arrangement 13 is adapted to control the switching cells by controlling the semiconductor devices thereof, so that they will either deliver a zero voltage or the voltage across the capacitor to be added to the voltages of the other switching cells in said series connection. Atransformer 21 andfiltering equipment 22 are here also indicated. It is shown how each valve branch is through aphase reactor phase output 10, and such phase reactors should also be there inFig 1 for the phase outputs 10, 11 and 12, but have there been left out for simplifying the illustration. - In a plant for transmitting electric power through High Voltage Direct Current (HVDC) according to the present invention the Voltage Source Converters of the type shown in
Fig 4 are configured to utilize a direct voltage having a higher magnitude for a first 5 of the poles then for a second 6 thereof with respect to ground and by that being asymmetric with respect to ground for creating said alternating voltage on said phase output of the respective converter. Such an asymmetry of the converter with respect to the difference of the potentials of said poles with respect to ground may be achieved in different ways. The twocapacitors 52, 53 on both sides of the ground connection in the converter shown inFig 4 indicates that the potential of the twopoles 5, 6 will be symmetrical with respect to ground or earth, but that is not the case here. -
Fig 5 very schematically illustrates aplant 100 for transmitting electric power through High Voltage Direct Current comprising twoconverter stations direct voltage network 103 and each connected to an alternatingvoltage network Voltage Source Converter - The
direct voltage network 103 of this plant comprises asingle line 108, such as an overhead line or a cable, forming the twopoles 5, 6 interconnecting the twoconverter stations second pole 6 with respect to ground and by that being asymmetric with respect to ground for creating the alternating voltage on the phase output of the respective converter. Reference is now also made toFig 6 . The first pole is in the present case formed by an inner centralhigh voltage conductor 109, which may have a voltage of 50 kV - 1000 kV with respect to ground, whereas the second pole is formed by alow voltage conductor 110 surrounding the high voltage conductor and being separated therefrom by an insulatinglayer 111. The low voltage conductor has a much lower voltage with respect to ground than the first voltage conductor. The insulatinglayer 111 has to be thick enough for withstanding the voltage thereacross. - The cross-section area of the
low voltage conductor 110 is 1-2 times, preferably 1-1.5 times, the cross-section area of the centralhigh voltage conductor 109. The low voltage conductor may by this be made of a less costly material than the high voltage conductor. - It is shown in
Fig 6 how a thin further insulatinglayer 112 is applied around the low voltage conductor when this is a cable to be buried in the ground or in the sea. - A transmission line of the type illustrated in
Figs 5 and 6 may be manufactured to a lower cost than bipolar symmetric transmission lines. - A plant according to a second embodiment of the present invention is schematically illustrated in
Fig 7 . This plant differs from the plant shown inFig 5 by the fact that the bipolar direct voltage network comprises one high voltage pole conductor 109' configured to form the first pole interconnecting the twoconverter stations - The invention is of course not in any way restricted to the embodiments described above, but many possibilities to modifications thereof will be apparent to a person with ordinary skill in the art without departing from the scope of the invention as defined in the appended claims.
- As already stated, the Voltage Source Converters in a plant according to the present invention may have other appearances than shown in the Figures.
Claims (9)
- A plant for transmitting electric power through High Voltage Direct Current (HVDC) comprising two converter stations (101, 102) interconnected by a bipolar direct voltage network (103) and each connected to an alternating voltage network (104, 105) for feeding electric power from one of said alternating voltage networks to the other, each converter station having an M2LC Voltage Source Converter (106, 107) having at least one phase leg (2-4) connecting to opposite poles (5, 6) of the direct voltage side of the converter and comprising a series connection of switching cells (7, 7'), each said switching cell having, a phase output (10-12) of the converter being configured to be connected to an alternating voltage side of the converter being formed between two switching cells along said series connection of switching cells, each said switching cell being configured to obtain two switching states, namely a first switching state and a second switching state, in which the voltage across said at least one energy storing capacitor and a zero voltage, respectively, is applied across the terminals of the switching cell, for obtaining a determined alternating voltage on said phase output, characterized in that said Voltage Source Converters are configured to utilize a direct voltage having a higher magnitude for a first (5) of the poles than for a second (6) thereof with respect to ground, where the magnitude is 5 to 10, times higher for said first pole (5) than said voltage magnitude of said second pole (6) and by that being asymmetric with respect to ground for creating said alternating voltage on said phase output of the respective converter.
- A plant according to claim 1, characterized in that said bipolar direct voltage network (103) comprises one high voltage pole conductor (109, 109') configured to form said first pole (5) interconnecting the two converter stations (101, 102) and one low voltage pole conductor (110, 110') configured to form said second pole (6) interconnecting said converter stations.
- A plant according to claim 1, characterized in that said direct voltage network comprises a line (108) forming said two poles (5, 6) interconnecting said two converter stations (101, 102), and that said line has an inner central high voltage conductor (109) forming said first pole and an outer low voltage conductor (110) forming said second pole surrounding said high voltage conductor and being separated therefrom by an insulating layer (111).
- A plant according to claim 3, characterized in that the cross-section area of said low voltage conductor (110) is 1 to 2 times, preferably 1 to 1.5 times, the cross-section area of the central high voltage conductor (109).
- A plant according to claim 3, characterized in that said outer low voltage conductor (110) is surrounded by an insulating layer (111).
- A plant according to claim 1, characterized in that the number of the switching cells (7, 7') of said phase leg of the Voltage Source Converters (106, 107) is ≥4, ≥12, ≥30 or ≥50.
- A plant according to claim 1, characterized in that said semiconductor devices (16, 17) of the switching cell assemblies are IGBTs (Insulated Gate Bipolar Transistor), IGCTs (Integrated Gate Commutated Thyristor) or GTOs (Gate Turn-Off Thyristor).
- A plant according to claim 1, characterized in that said Voltage Source Converters (106, 107) thereof are configured to have a direct voltage across said two poles being between 1 kV and 1200 kV or between 10 kV and 1200 kV or between 100 kV and 1200 kV.
- A plant according to claim 1, characterized in that it is configured to conduct a direct current of 200 A to 10 kA, or 1 kA to 7 kA, through said direct voltage network from one converter station to the other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08760720T PL2294684T3 (en) | 2008-06-09 | 2008-06-09 | A plant for transmiitting electric power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2008/057153 WO2009149742A1 (en) | 2008-06-09 | 2008-06-09 | A plant for transmiitting electric power |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2294684A1 EP2294684A1 (en) | 2011-03-16 |
EP2294684B1 true EP2294684B1 (en) | 2013-09-04 |
Family
ID=40291183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08760720.6A Active EP2294684B1 (en) | 2008-06-09 | 2008-06-09 | A plant for transmiitting electric power |
Country Status (9)
Country | Link |
---|---|
US (1) | US8717786B2 (en) |
EP (1) | EP2294684B1 (en) |
CN (1) | CN102057563B (en) |
AR (1) | AR072081A1 (en) |
CA (1) | CA2727192C (en) |
DK (1) | DK2294684T3 (en) |
ES (1) | ES2436423T3 (en) |
PL (1) | PL2294684T3 (en) |
WO (1) | WO2009149742A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013149633A1 (en) | 2012-03-20 | 2013-10-10 | Abb Technology Ltd | A power converter |
WO2014032701A1 (en) * | 2012-08-28 | 2014-03-06 | Abb Technology Ltd | A converter device and corresponding method |
US20150288287A1 (en) * | 2012-09-21 | 2015-10-08 | Aukland Uniservices Limited | Modular multi-level converters |
US9431918B2 (en) | 2012-09-28 | 2016-08-30 | General Electric Company | Grounding scheme for modular embedded multilevel converter |
US9559611B2 (en) | 2012-09-28 | 2017-01-31 | General Electric Company | Multilevel power converter system and method |
US9997918B1 (en) * | 2013-06-28 | 2018-06-12 | Atlantic Grid Holdings Llc | Systems and method for HVDC transmission |
US9479075B2 (en) | 2013-07-31 | 2016-10-25 | General Electric Company | Multilevel converter system |
US9325273B2 (en) | 2013-09-30 | 2016-04-26 | General Electric Company | Method and system for driving electric machines |
DE102014225725A1 (en) * | 2014-12-12 | 2016-06-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | MULTIPLE CELL FOR CELL-BASED INVERTERS |
ES2935353T3 (en) * | 2018-06-19 | 2023-03-06 | Siemens Energy Global Gmbh & Co Kg | Potential balancing system for a modular multilevel converter |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4308363C1 (en) * | 1993-03-16 | 1994-11-03 | Siemens Ag | Method and control arrangement for direct current transmission as well as a control device therefor |
SE9602079D0 (en) | 1996-05-29 | 1996-05-29 | Asea Brown Boveri | Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same |
SE520826C2 (en) * | 1997-06-12 | 2003-09-02 | Abb Ab | A system for transmitting electrical power by means of bi-directional controlled thyristors, and a method for changing the power supply direction of such a system |
NO310388B1 (en) | 1998-02-19 | 2001-06-25 | Cit Alcatel | High voltage cable and undersea cable installation |
DE20122923U1 (en) | 2001-01-24 | 2010-02-25 | Siemens Aktiengesellschaft | Converter circuits with distributed energy storage |
DE102005040543A1 (en) | 2005-08-26 | 2007-03-01 | Siemens Ag | Converter circuit with distributed energy storage |
CN101258670A (en) | 2005-09-09 | 2008-09-03 | 西门子公司 | equipment for power transmission |
EP3270501B1 (en) * | 2005-09-09 | 2020-10-28 | Siemens Aktiengesellschaft | Device for transferring electrical energy via hvdc |
US7546165B2 (en) * | 2005-12-19 | 2009-06-09 | Cardiac Pacemakers, Inc. | Interconnections of implantable lead conductors and electrodes and reinforcement therefor |
WO2007084041A1 (en) | 2006-01-18 | 2007-07-26 | Abb Technology Ltd. | A transmission system and a method for control thereof |
-
2008
- 2008-06-09 PL PL08760720T patent/PL2294684T3/en unknown
- 2008-06-09 WO PCT/EP2008/057153 patent/WO2009149742A1/en active Application Filing
- 2008-06-09 EP EP08760720.6A patent/EP2294684B1/en active Active
- 2008-06-09 CA CA2727192A patent/CA2727192C/en active Active
- 2008-06-09 US US12/997,187 patent/US8717786B2/en active Active
- 2008-06-09 DK DK08760720.6T patent/DK2294684T3/en active
- 2008-06-09 ES ES08760720.6T patent/ES2436423T3/en active Active
- 2008-06-09 CN CN200880129692.2A patent/CN102057563B/en active Active
-
2009
- 2009-06-09 AR ARP090102066A patent/AR072081A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
WO2009149742A1 (en) | 2009-12-17 |
EP2294684A1 (en) | 2011-03-16 |
PL2294684T3 (en) | 2014-02-28 |
CN102057563B (en) | 2014-07-16 |
CA2727192C (en) | 2014-09-30 |
US8717786B2 (en) | 2014-05-06 |
CN102057563A (en) | 2011-05-11 |
ES2436423T3 (en) | 2014-01-02 |
US20110096575A1 (en) | 2011-04-28 |
DK2294684T3 (en) | 2013-12-02 |
CA2727192A1 (en) | 2009-12-17 |
AR072081A1 (en) | 2010-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2294684B1 (en) | A plant for transmiitting electric power | |
EP2289163B1 (en) | A voltage source converter | |
US8867241B2 (en) | Method of upgrading a plant for transmitting electric power and such a plant | |
EP2443468B1 (en) | An arrangement for testing a switching cell | |
EP2290799A1 (en) | Bi-directional multilevel AC-DC converter arrangements | |
EP2277258B1 (en) | A voltage source converter | |
CN104115391A (en) | Modular multilevel converter using asymmetry | |
CN105191091A (en) | Voltage source converter | |
EP1974433A1 (en) | A converter | |
KR101437717B1 (en) | An arrangement for voltage conversion | |
Velasco et al. | Power transmission in direct current. Future expectations for Colombia | |
Cornélusse | Analysis of electric power and energy systems | |
SE1400167A1 (en) | Converter arrangement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110110 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: JACOBSON, BJOERN Inventor name: ASPLUND, GUNNAR |
|
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02M 7/49 20070101AFI20130301BHEP Ipc: H02J 3/36 20060101ALI20130301BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130417 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 630959 Country of ref document: AT Kind code of ref document: T Effective date: 20130915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008027317 Country of ref document: DE Effective date: 20131031 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20131126 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2436423 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140102 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 630959 Country of ref document: AT Kind code of ref document: T Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130710 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20130402573 Country of ref document: GR Effective date: 20140124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008027317 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140106 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140605 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008027317 Country of ref document: DE Effective date: 20140605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140609 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080609 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: ABB SCHWEIZ AG, CH Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: ABB SCHWEIZ AG Effective date: 20171218 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: ABB SCHWEIZ AG, CH Free format text: FORMER OWNER: ABB TECHNOLOGY AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: ABB SCHWEIZ AG; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: ABB TECHNOLOGY AG Effective date: 20180115 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CHAD Owner name: ABB SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180426 AND 20180502 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20180605 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ABB SCHWEIZ AG, CH Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IS Payment date: 20200610 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: PCE Owner name: ABB POWER GRIDS SWITZERLAND AG |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CHAD Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Ref country code: NO Ref legal event code: CREP Representative=s name: PLOUGMANN VINGTOFT, POSTBOKS 1003 SENTRUM, 0104 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: HITACHI ENERGY LTD, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: ABB POWER GRIDS SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: ABB POWER GRIDS SWITZERLAND AG Effective date: 20210520 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: ABB POWER GRIDS SWITZERLAND AG; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: ABB TECHNOLOGY AG Effective date: 20210517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210625 Year of fee payment: 14 Ref country code: GR Payment date: 20210623 Year of fee payment: 14 Ref country code: FI Payment date: 20210621 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20210618 Year of fee payment: 14 Ref country code: IE Payment date: 20210625 Year of fee payment: 14 Ref country code: SE Payment date: 20210618 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20211104 AND 20211110 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CHAD Owner name: HITACHI ENERGY SWITZERLAND AG, CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: HITACHI ENERGY SWITZERLAND AG Effective date: 20220526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: HITACHI ENERGY SWITZERLAND AG, CH Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: HITACHI ENERGY LTD, CH Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220609 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: HITACHI ENERGY SWITZERLAND AG; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: ABB POWER GRIDS SWITZERLAND AG Effective date: 20230209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220610 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220609 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230109 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220609 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20210527 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CHAD Owner name: HITACHI ENERGY LTD, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008027317 Country of ref document: DE Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE Ref country code: DE Ref legal event code: R081 Ref document number: 602008027317 Country of ref document: DE Owner name: HITACHI ENERGY LTD, CH Free format text: FORMER OWNER: HITACHI ENERGY SWITZERLAND AG, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: PD Owner name: HITACHI ENERGY LTD; CH Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: HITACHI ENERGY SWITZERLAND AG Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220609 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240621 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240619 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20240621 Year of fee payment: 17 Ref country code: FR Payment date: 20240628 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20240718 AND 20240724 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: HITACHI ENERGY LTD Effective date: 20240925 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240731 Year of fee payment: 17 |