EP2278558B1 - Apparatus and method for examining value documents - Google Patents
Apparatus and method for examining value documents Download PDFInfo
- Publication number
- EP2278558B1 EP2278558B1 EP10011627.6A EP10011627A EP2278558B1 EP 2278558 B1 EP2278558 B1 EP 2278558B1 EP 10011627 A EP10011627 A EP 10011627A EP 2278558 B1 EP2278558 B1 EP 2278558B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- luminescence
- previous
- luminescence sensor
- radiation
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
- G07D7/121—Apparatus characterised by sensor details
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/12—Visible light, infrared or ultraviolet radiation
- G07D7/1205—Testing spectral properties
Definitions
- the invention relates to a device and a method for checking, in particular, luminescent documents of value, the document of value being irradiated with light and the luminescent radiation emanating from the document of value being detected in a spectrally resolved manner.
- Such luminescent documents of value can be, for example, banknotes, cheques, coupons or chip cards.
- the present invention is primarily concerned with the validation of banknotes. These typically contain a feature substance or a mixture of several feature substances in the paper or in the printing ink that exhibit luminescent behavior, such as fluorescence or phosphorescence.
- a system is, for example, from the DE 23 66 274 C2 known.
- the bank note is irradiated obliquely and the vertically reflected fluorescence radiation is detected spectrally resolved using an interference filter.
- the evaluation is carried out by comparing the signals from different photocells of the spectrometer.
- EP 1158 459 A1 describes a method and a device for detecting the authenticity of a feature.
- a luminescence feature is excited with at least one excitation pulse of at least one excitation source, and emission intensity values of the emission radiation emitted by it as a response to the excitation pulse are measured at time intervals.
- An intensity-time emission function of the emission intensity values is then formed. This function is compared to at least one reference intensity-time emission function, with the two emission functions being normalized before they are compared.
- an object of the present invention is a device and a method for checking luminescent documents of value provide, which allow a safe test with a compact luminescence sensor.
- the devices according to the invention can be used in all types of devices in which optical radiation, in particular luminescence radiation, is tested.
- optical radiation in particular luminescence radiation
- the checking of banknotes in banknote processing devices which can be used, for example, for counting and/or sorting and/or depositing and/or paying out banknotes, is described below as a preferred variant.
- banknote sorting device 1 In the 1 such a bank note sorting device 1 is shown in an exemplary manner.
- the banknote sorting device 1 has an input compartment 3 for banknotes BN in a housing 2, into which banknotes BN to be processed can either be input manually from the outside or bundles of banknotes can be fed automatically, optionally after a previous debanding.
- the banknotes BN fed into the input pocket 3 are individually withdrawn from the stack by a singler 4 and transported through a sensor device 6 by means of a transport device 5 .
- the sensor device 6 can have one or more sensor modules integrated in a common housing or mounted in separate housings. The sensor modules can be used, for example, to check the authenticity and/or the condition and/or the denomination of the checked banknotes BN.
- the checked banknotes BN are then output sorted, depending on the test results of the sensor device 6 and predetermined sorting criteria, via switches 7 and associated spiral compartment stackers 8 into output compartments 9, from which they are either removed manually, if necessary after prior banding or packaging or can be transported away automatically. It can also be a shredder 10 may be provided in order to destroy banknotes BN classified as genuine and no longer fit for circulation.
- the banknote sorting device 1 is controlled by means of an EDP-supported control unit 11.
- the sensor device 6 can have different sensor modules.
- the sensor device 6 is characterized in particular by a sensor module 12 for checking luminescence radiation, which is referred to below for short as a luminescence sensor 12 .
- FIG. 12 illustrates, in a schematic cross-sectional view, the internal structure and the arrangement of the optical components of a particularly compact luminescence sensor 12 according to an exemplary embodiment of the present invention. 3 12 also shows a part of these components located inside the luminescence sensor 12 in plan view from above.
- This luminescence sensor 12 is designed to be particularly compact and optimized with regard to high signal-to-noise ratios
- the luminescence sensor 12 has, in a common housing 13, both one or more light sources 14 for exciting luminescence radiation and a detector 30, preferably a spectrometer 30 for spectrally split detection of the luminescence light.
- the housing 13 is closed in such a way that unauthorized access to the components contained therein is not possible without damaging the housing 13.
- the light source 14 can, for. B. an LED, but preferably a laser light source such as a laser diode 14 be.
- the laser diode 14 can emit one or more different wavelengths or wavelength ranges. If several different wavelengths or wavelength ranges are used, provision can also be made for several light sources 14 for different wavelengths to be used in the same light source housing or in separate light source housings, ie separate light source modules or wavelength ranges, which are arranged next to each other, for example, and preferably emit parallel light that can be projected onto the same point or adjacent points on the bank note BN.
- the light sources 14 can emit light of several different wavelengths or wavelength ranges, it can be provided that the individual wavelengths or wavelength ranges can be activated selectively.
- the light emanating from the laser diode 14 is radiated onto a banknote to be checked by means of imaging optics 15,16,17 the collimator lens 15 deflects the laser beam formed by 90°, as well as a condenser lens 17 with a large opening angle, which images the deflected laser beam through a front glass 18, preferably perpendicularly, onto the bank note BN to be checked, which is transported past by means of the transport system 5 in direction T, and thus the bank note BN for emission stimulated by luminescent radiation.
- the luminescence radiation emanating from the illuminated banknote BN is then preferably also detected in the perpendicular direction, ie coaxially to the excitation light. This leads to a lower sensitivity to interference due to positional tolerances of the banknotes BN transported past on the measurements than with the oblique illumination, for example after DE 23 66 274 C2 .
- the optics for imaging the luminescence radiation on a photosensitive detector unit 21 also includes the front glass 18, the condenser lens 17 and the mirror 16, which is at least partially transparent for the luminescence radiation to be measured.
- the optics have a further condenser lens 19 with a large opening, a subsequent filter 20, which is designed to block the illumination wavelength of the light source 14 and other wavelengths not to be measured, and a deflection mirror 23.
- the deflection mirror 23 serves to fold the beam path and deflect the luminescence radiation to be measured onto an imaging grating 24 or another device for spectral decomposition 24.
- the deflection mirror is advantageously mounted parallel or almost parallel to the image plane of the spectrometer (angle ⁇ 15 degrees).
- the imaging grating 24 has a wavelength-dispersing element with a concave mirror 26 which preferably images the first-order or minus-first-order luminescence radiation onto the detector unit 21 .
- the detector unit 21 preferably has a detector line 22 composed of a plurality of photosensitive pixels, ie picture elements, arranged in a row, as is the case, for. B. in relation to the Figures 6 or 7 are described below as an example.
- the entrance slit of the spectrometer 30 is in the 2 denoted by the reference AS.
- the entrance slit AS can be present in the housing 13 in the form of an aperture AS in the beam path.
- there is no aperture at this point but only a "virtual" entrance gap AS, which is given by the illumination track of the light source 14 on the bank note BN.
- the latter variant leads to higher light intensities, but can also lead to an undesirable greater sensitivity to ambient light or scattered light.
- the deflection mirror 23 is positioned in relation to the imaging grating 24 in such a way that the entrance slit AS falls on the area of the deflection mirror 23 . Since this means that the beam cross section of the radiation to be deflected on the deflection mirror 23 is particularly small, the deflection mirror 23 itself can also have particularly small dimensions. If the deflection mirror 23 is part of the detector unit 21, the deflection mirror 23 can thereby not only according to figure 2 above but also next to the photosensitive areas of the detector unit 21.
- a special embodiment of the present invention is that the light source 14 for the excitation of luminescence radiation generates an elongated illumination surface 35 extending in the transport direction T on the bank note BN to be checked.
- This variant has the advantage that the luminescent, in particular phosphorescent, feature substances present in the banknotes BN, usually only in very low concentrations, are pumped up longer by the illumination surface extending in the transport direction when the luminescence sensor 12 is transported past, and the radiation intensity of the afterglow, phosphorescent feature substances in particular is thereby increased .
- FIG 5 illustrates a related snapshot.
- An elongate illumination surface 35 extending in the transport direction T can be understood to mean that the illumination radiation irradiates an arbitrarily shaped surface, in particular a rectangular track, on the banknote at a given point in time, which is significantly larger in the transport direction T than perpendicular to the transport direction T.
- the expansion of the illumination area 35 in the transport direction T at least twice, in particular preferably at least three, four or five times as long as the extension perpendicular to the transport direction T.
- the image area 36, ie the entrance hatch 36 of the spectrometer 30, is also illustrated with a different hatching, ie that area of the banknote BN which is imaged on the spectrometer 30 at the given point in time according to the dimensions of the entrance slit AS. It can be seen that the length and width of the entrance port 36 of the spectrometer 30 are preferably smaller than the corresponding dimensions of the illumination area 35 of the laser diode 14 . This allows greater adjustment tolerances for the individual sensor components.
- the illumination surface 35 extends significantly further in the transport direction T than against the transport direction T in comparison to the image surface 36 .
- This is particularly advantageous for exploiting the increased inflation effect.
- it can also be provided that the illumination surface 35 and the image surface 36 only partially overlap in the transport direction T.
- the luminescence sensor 6 can be used both in devices 1 in which the banknotes BN are transported in the transport direction T shown, and in devices 1 in which the banknotes BN are transported in the opposite direction -T.
- different detector units 21, 27 are used to detect the luminescence radiation, in particular the luminescence radiation emanating from the device for spectral decomposition 24, ie the imaging grating 24.
- a filter can be provided to only in one or more given wavelengths or ranges to measure, the measurable spectral ranges of the different detector units 21, 27 preferably differ and, for example, only partially or not overlap.
- the several other detector units 27 can be spatially spaced from each other or in a sandwich structure, as shown in FIG DE 1 0127 837 A1 is described as an example.
- the at least one further detector unit 27 can thus also be used to measure the broadband, non-spectrally resolved zeroth order of the spectrometer 30 and, if appropriate, the decay behavior of the luminescence radiation.
- the further detector unit 27 can also be designed to check a different optical property of the at least one feature substance of the bank note BN. This can be done, for example, by the measurements mentioned at other wavelengths or wavelength ranges.
- the further detector unit 27 can preferably also be designed to check another feature substance of the bank note BN. So e.g. B. the detector line 22 for measuring the optical properties of a first feature substance of the banknote BN and the further detector unit 27 for measuring another feature substance of the banknote BN, in particular in a different spectral range than the detector line 22, be designed.
- the detectors 22, 27 will preferably have filters in order to suppress undesired scattered light or higher-order light during the measurement.
- this further detector unit 27 can be arranged tilted in relation to the imaging grating 24 and the detector line 22, in particular when it is designed for measuring the zeroth order of the spectrometer 30, in order to avoid a disruptive reflection back onto the concave mirror 26 .
- a radiation-absorbing light trap such as a black-colored surface, can also be present at the end of the beam path of the radiation emanating from the further detector unit 27 .
- a reference sample 32 with one or more luminescent feature substances can also be provided for calibrating and functional testing of the luminescence sensor 12, which can have an identical or different chemical composition to the luminescent feature substances to be tested in the banknotes BN.
- this reference sample 32 can be integrated in the housing 13 itself and applied, for example, as a film 32 to another light source (LED 31), which is arranged opposite the laser diode 14 with respect to the beam splitter 16.
- the reference sample 32 can instead, for example, also be a be a separate component between LED 31 and corner mirror 16.
- For calibration e.g.
- the reference sample 32 can then be excited by irradiation using the LED 31 to form a defined luminescence radiation, which is imaged on the detector line 22 and evaluated by parasitic reflection at the dichroic beam splitter 16.
- the luminescent feature substances of the reference sample 32 can preferably emit broadband, for example over the entire spectral range that can be detected by the spectrometer 30.
- the luminescent feature substances of the reference sample 32 can alternatively or additionally also have a specific characteristic emit a spectral signature with narrow-band peaks to perform wavelength calibration.
- the reference sample 32 can therefore also be attached outside the housing 13, in particular on the opposite side in relation to the bank note BN to be measured, and e.g. integrated in a counter-element such as a plate 28.
- An additional detector unit 33 can also be present outside of the housing 13 as a separate component or integrated in the plate 28 .
- the additional detector unit 33 can be, for example, one or more photocells for measuring the radiation from the laser diode 14 that has passed through the front glass 18 and possibly through the bank note BN and/or the luminescence radiation from the bank note BN.
- the plate 28 can be slidably mounted in a guide in the direction P, so that either the reference sample 32 or the photocell 33 can be brought into alignment with the illumination radiation of the laser diode 14.
- the plate 28 is preferably connected to the housing 13 via a connecting element 55, shown in dotted lines, which lies outside the plane of transport of the banknotes BN. in a Fig.2
- the housing 13, connecting surface 55 and plate 28 are then approximately U-shaped in the horizontal cross-sectional plane.
- This attachment of plate 28, also in an alternative variant without reference sample 32 and photocell 33, has the advantage that light protection is provided against unwanted escape of the laser radiation from laser diode 14 if plate 28 is detachably attached to housing 13 for maintenance purposes or to clear jams is fixed, it can be provided that when the plate 28 is loosened or removed, the laser diode 14 is deactivated.
- FIG 4 shows a schematic cross-sectional view of an alternative and very compact luminescence sensor 6, which is used in the banknote sorting device according to FIG 1 can be used.
- the same components have the same reference numbers as in 2 marked.
- the arrangement of the optical components in the luminescence sensor 6 4 differs from the luminescence sensor 6 according to 2 in particular in that the deflection mirror 23 can be dispensed with. It should be noted that the luminescence sensor 6 after 4 also has no further detector units 31, 33, although this would also be possible.
- the dichroic beam splitter 16 does not deflect the illumination radiation, but rather the luminescence radiation in a mirrored manner
- the light source 14 has two laser diodes 51, 52 arranged perpendicularly to one another, which emit at different wavelengths, the radiation of the individual laser diodes 51, 52 being able to be coupled in, e.g. by a further dichroic beam splitter 53, so that the same illumination area 35 or overlapping or spaced illumination areas 35 can be irradiated on the bank note BN.
- a further dichroic beam splitter 53 Preferably, depending on the bank note to be checked, either one or the other laser diode 51, 52 or both laser diodes 51, 52 can be activated simultaneously or alternately to emit radiation.
- the luminescence sensor 6 preferably has a control unit 50 in the housing 13 itself, which is used for signal processing of the measured values of the spectrometer 30 and/or for power control of the individual components of the luminescence sensor 6
- FIG. 6 shows a section of a conventional detector line 22, which usually has more than 100 photosensitive picture elements, called pixels 40 for short, arranged next to one another (of which 6 only the first seven left pixels 40 are shown), which are of the same size and are mounted at a distance from one another on or in a substrate 41 which corresponds approximately to the width of the pixels 40
- a modified detector line 22 is preferably used with a significantly lower number of pixels 40, with a larger pixel area and a reduced proportion of non-photosensitive areas, as is the case in FIG 7 is illustrated.
- Such a modified detector line 22 has the advantage of a significantly greater signal-to-noise ratio than the conventional detector line 22 of 6 to exhibit.
- the modified detector rows 22 are preferably constructed in such a way that they have only between 10 and 32, particularly preferably between 10 and 20, individual pixels 40 in or on a substrate 41.
- the individual pixels 40 can have dimensions of at least 0.5 mm ⁇ 0.5 mm, preferably 0.5 mm ⁇ 1 mm, particularly preferably 1 mm ⁇ 1 mm.
- the detector line 22 has twelve pixels 40 with a height of 2 mm and a width of 1 mm, with the non-photosensitive area 41 between adjacent pixels 40 having an extent of approximately 50 ⁇ m.
- individual pixels 40 have different dimensions, in particular in the direction of dispersion of the luminescence radiation to be measured, as is shown in FIG 7 is shown Since not all wavelengths of the spectrum are usually evaluated, but rather only individual wavelengths or wavelength ranges, the pixels 40 can be designed to be adapted to the wavelengths (ranges) to be evaluated.
- the detector line 22 can consist of a different material in the cases mentioned.
- detectors made of silicon which are sensitive below about 1100 nm
- detector line 22 made of InGaAs which are sensitive above 900 nm
- Such an InGaAs detector line 22 is preferably applied directly to a silicon substrate 42, which particularly preferably has an amplifier stage produced using silicon technology for amplifying the analog signals of the pixels 40 of the InGaAs detector line 22. This also results in a particularly compact structure with short signal paths and increased given signal/noise ratio.
- the detector line 22 with a few pixels 40 preferably only a relatively small spectral range of less than 500 nm, particularly preferably less than or of about 300 nm is detected. Provision can also be made for the detector line 22 to have at least one pixel 40 which is outside the luminescence spectrum of the banknotes to be measured BN is photosensitive in order to carry out normalizations such as finding a baseline when evaluating the measured luminescence spectrum.
- the imaging grating 24 will preferably have more than about 300, particularly preferably more than about 500 lines/mm, i.e. have diffraction elements, in order to still allow sufficient dispersion of the luminescence radiation on the detector element 21 despite the compact design of the luminescence sensors 6 according to the invention.
- the distance between the imaging grating 24 and the detector element 21 can preferably be less than approximately 70 mm, particularly preferably less than approximately 50 mm.
- a readout of the individual pixels 40 of the detector line 22 can, for. B. done serially using a shift register. However, individual pixels 40 and/or pixel groups of detector line 22 are preferably read out in parallel. Following the example of 9 the three left pixels 40 are each read out individually by the measurement signals of these pixels 40 each with the aid of an amplifier stage 45 which, for example, is part of the silicon substrate 42 7 can be, amplified and fed to an analog/digital converter 46 each. The two right pixels in the schematic representation of the 9 are again amplified first by means of separate amplifier stages 45, then to a common multiplex unit 47, which can optionally also include a sample and hold circuit, and then to a common analog/digital converter 46, which is connected to the multiplex unit 47.
- the parallel reading out of a plurality of pixels 40 or pixel groups made possible in this way enables short integration times and a synchronized measurement of the bank note BN. This measure also contributes to an increase in the signal-to-noise ratio.
- components of the imaging optics for the luminescence radiation are integrated with components of the detector 30.
- the Deflection mirror 23 for deflecting the luminescence radiation to be detected onto the spectrometer 30 can be connected directly to the detector unit 21, as is the case, for example, in 2 is shown.
- the deflection mirror 23 is applied directly to a common carrier with the detector line 22, ie specifically to the silicon substrate 42.
- the deflection mirror 23 can also be applied, for example, to a cover glass of the detector unit 21 .
- a photodetector such as a photocell 56 .
- a photocell 56 This preferred variant is an example in the figure 8 pictured, showing a cross-section along line II of figure 7 indicates.
- the deflection mirror 23 mounted on the photocell 56 is at least partially transparent for the wavelengths to be measured by the photocell 56.
- the photocell 56 can in turn be used for calibration purposes and/or for evaluating other properties of the luminescence radiation.
- the detector line 22 preferably asymmetrically on the carrier, ie the silicon substrate 42 may be applied.
- the luminescence sensor 12 needs to be calibrated during ongoing operation, ie specifically, for example, in the pauses between two banknote measurement cycles of the luminescence sensor 12.
- One The possible measure already described is the use of reference samples 32.
- this can also be done by an active mechanical adjustment of the optical components of the luminescence sensor 12, with the adjustment depending on measured values of the luminescence sensor 12 being controlled, for example, by an external control unit 11 or preferably by an internal control unit 50.
- the component of the imaging grating 24 can be mounted displaceably in direction S by means of an actuating element 25 .
- a mechanical adjustment of other optical components, such as e.g. B. the detector 21 can be achieved, the z. B. in the direction of arrow D in 2 can be moved when actively driven.
- the optical components can also be adjusted in more than one direction.
- the measured values of the luminescence sensor 12 can be evaluated and if there are deviations in the measured values (e.g. of the detector line 22, the further detector unit 27 or the photocell 33) or of variables derived therefrom from certain Reference values or ranges, an active mechanical adjustment of one or more of the optical components of the luminescence sensor 12 can be carried out in order to achieve an increased signal yield and compensation for undesirable changes, for example due to temperature fluctuations or signs of aging caused by the lighting or electronics of optical components. This is particularly important for a detector unit 21 with few pixels 40.
- the laser diode 14 is only driven with high power when a bank note BN is just in the region of the measuring window, i. H. of the front glass 18 is located.
- FIG figure 10 The construction of such a luminescence sensor 12 not according to the invention is shown in FIG figure 10 illustrated.
- the radiation emitted by the bank note BN to be checked and detected through an entrance window 18 falls through a collimation lens 17 onto a beam splitter 16, from which the light is deflected by 90°, via a lens 19 and a filter 20 for suppressing illumination falls on a first spherical collimator mirror 70.
- the radiation is deflected onto a plane grating 71 by this mirror 70 .
- the light spectrally broken down by this is then directed onto a detector array 21 via a second spherical collimator mirror 72 and a cylindrical lens 73 .
- the luminescence sensor 12 of figure 10 is further distinguished by the fact that the illumination light is coupled in by means of a light guide coupling.
- the light generated by a laser light source 68 is radiated onto the banknote to be checked via a light guide 69, beam shaping optics 66, the beam splitter 16, the collimation lens 17 and the entry window 18. Since light guides 69 are flexible and deformable and thus the illumination beam path can (largely) run arbitrarily, it is only possible, for example, to place the light source in a particularly space-saving location Housing 13 to attach.
- the light source can even be fitted outside the housing 13 of the luminescence sensor 12 .
- This spatial separation has the advantage that the heat generated by the light source 68 significantly less disrupts the operation and the adjustment of the other optical components located in the housing 13 and in particular also the highly sensitive detectors 21
- figure 11 shows an associated schematic example, in which a light source 68 radiates into a light guide 69, which leads into the housing 13 of a luminescence sensor 12.
- the housing 13 can be constructed as an example like that of figure 10 with the only difference that the light source 68 is thus located outside of the housing 13 and the light guide 69 thus also runs outside of the housing 13
- the light source 69 and the housing 13 connecting the light guide 69 in one in the figure 11 Central region 70 shown schematically in a cross-sectional view is spirally wound.
- the light source 68 shines into the light guide 69, a series of total reflections occurs in the light guide 69.
- the beam cross-section of the coupled laser radiation from the light source 68 is spatially homogenized.
- the light guide does not necessarily have to be spirally wound up in one plane. Rather, it is only important that the light guide has a certain length.
- the light guide 69 will preferably have a length of 1 m to 20 m.
- the bank note to be checked is irradiated exclusively via optical devices outside the housing 13 Components takes place and the luminescence sensor 12 inside the housing 13 contains only the optical components which are used for measuring the radiation emitted by the illuminated bank note.
- a so-called DFB laser in which an additional grating is installed in the laser resonator, or a so-called DFR laser, in which an additional grating is installed outside the laser resonator, can also be used to stabilize the illumination beam.
- a grating spectrometer i.e. a spectrometer 30 with an imaging grating 24
- this can also be used for a multi-track or a highly sensitive measurement.
- FIG figure 12 An example of a luminescence sensor 1 not according to the invention without a grating spectrometer is shown in FIG figure 12 illustrated.
- figure 12 shows only the detection part of a luminescence sensor in a schematic manner. All other components such as the housing, the lighting and the imaging optics have been omitted for the sake of clarity.
- the beam emanating from the banknote BN to be checked is selectively deflected via a deflection mirror 57, which can be pivoted about an axis of rotation 58, onto individual detectors 59 which are sensitive to different wavelengths or wavelength ranges.
- this can be done by choosing photosensitive in different wavelength ranges Detector surfaces of the detectors 59 take place.
- filters 60 for different wavelength ranges can be arranged in front of the detectors 59 and preferably also attached to them themselves.
- a detector 61 according to yet another example is shown in a very schematic way.
- the detector has a row or an array of photosensitive pixels 63 of the same type on a substrate 62 .
- a filter 64 is mounted on the detector 61 above the pixels 63 and has a filter wavelength gradient indicated in the direction of the arrow. This means that, viewed in the direction of the arrow, different wavelengths are filtered out at different points of the filter 64 .
- the use of such a filter 64 with filter wavelength gradients has the advantage that the light to be tested is radiated directly onto the detector 61 and wavelength-dispersing elements such as the grating 24 or the deflection mirrors 23, 57 can be dispensed with.
- the structure of the luminescence sensor 1 can be designed in a particularly simple manner and with fewer components.
- the active optical adjustment of individual components can also be used advantageously not only in the particularly preferred example of a luminescence sensor, but also in other, in particular other, optical sensors.
- the special design of the spectrometer is also advantageous when the luminescence sensor itself has no light source for exciting luminescent radiation.
- the system according to the invention can also be designed in such a way that the measured values of the luminescence sensor 12 of a bank note BN are still evaluated, while at the same time measured values of a subsequent bank note BN are already being recorded.
- the evaluation of the measured values of the preceding bank note BN must be carried out so quickly that the individual diverters 7 of the transport path 5 can still be switched sufficiently quickly to divert the preceding bank note BN into the respectively allocated storage compartment 9 .
- the devices and methods according to the invention consequently enable simple and reliable checking and differentiation of luminescent documents of value.
- the check can be carried out, for example, by using the light source 14 to generate a light with a first wavelength and a predetermined intensity for a specific period of time 0-t P for the excitation of the feature substance.
- the feature substance of the bank note BN to be checked and transported past the front glass 18 in the direction T is excited by the light from the light source 14, whereupon the feature substance emits luminescent light of a second wavelength.
- the intensity of the emitted luminescence light increases according to a specific law during the period 0-tp of the excitation.
- the manner in which the intensity of the emitted luminescence light increases and decreases depends on the feature substance used and on the exciting light source 14, ie its intensity and wavelength or wavelength distribution. After the end of the excitation at time t P , the intensity of the emitted luminescence light decreases according to a specific law.
- the luminescence light emanating from the bank notes BN perpendicularly, ie parallel to the excitation light, is now detected and evaluated.
- the signal from detector unit 21 By evaluating the signal from detector unit 21 at one or more specific points in time t 2 , t 3 , it is possible to check with particular certainty whether a genuine bank note BN is present, since only the feature substance used for bank note BN or the combination of feature substances used has such a decay behavior .
- the decay behavior can be checked by means of the above-described comparison of the intensity of the luminescence light at one or more specific points in time with specified intensities for genuine banknotes BN. Provision can also be made for the course of the intensity of the luminescence light to be compared with predetermined courses for known banknotes BN.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Prüfung insbesondere von lumineszierenden Wertdokumenten, wobei das Wertdokument mit Licht bestrahlt und die vom Wertdokument ausgehende Lumineszenzstrahlung spektral aufgelöst erfaßt wird.The invention relates to a device and a method for checking, in particular, luminescent documents of value, the document of value being irradiated with light and the luminescent radiation emanating from the document of value being detected in a spectrally resolved manner.
Solche lumineszierende Wertdokumente können z.B. Banknoten, Schecks, Coupons oder Chipkarten sein. Obwohl nicht darauf beschränkt, beschäftigt sich die vorliegende Erfindung vor allem mit der Prüfung von Banknoten. Diese enthalten typischerweise im Papier oder in der Druckfarbe einen Merkmalsstoff oder eine Mischung von mehreren Merkmalsstoffen, die ein Lumineszenzverhalten zeigen, wie z.B. fluoreszieren oder phosphoreszieren.Such luminescent documents of value can be, for example, banknotes, cheques, coupons or chip cards. Although not limited thereto, the present invention is primarily concerned with the validation of banknotes. These typically contain a feature substance or a mixture of several feature substances in the paper or in the printing ink that exhibit luminescent behavior, such as fluorescence or phosphorescence.
Es gibt eine Reihe von bekannten Systemen zur Echtheitsprüfung solcher Wertdokumente. Ein System ist beispielsweise aus der
Dieses System arbeitet in den meisten Fällen sehr zuverlässig. Allerdings besteht Bedarf nach einem Lumineszenzsensor, der noch kompakter konstruiert und auch bei sehr geringen Intensitäten der zu erfassenden Lumineszenzstrahlung noch ausreichend zuverlässig prüfen kann.This system works very reliably in most cases. However, there is a need for a luminescence sensor that has an even more compact design and can still test sufficiently reliably even at very low intensities of the luminescence radiation to be detected.
In
Davon ausgehend ist eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren zur Prüfung von lumineszierenden Wertdokumenten bereitzustellen, welche eine sichere Prüfung mit einem kompakten Lumineszenzsensor ermöglichen.Proceeding from this, an object of the present invention is a device and a method for checking luminescent documents of value provide, which allow a safe test with a compact luminescence sensor.
Diese Aufgabe wird durch die unabhängigen Ansprüche gelöst Die abhängigen Ansprüche und die nachfolgende Beschreibung erläutern bevorzugte Ausgestaltungen.This object is achieved by the independent claims. The dependent claims and the following description explain preferred configurations.
Indem das in eine Transportrichtung am Lumineszenzsensor vorbeitransportierte zu prüfende Wertdokument mit einer Beleuchtungsfläche beleuchtet wird, die sich in die Transportrichtung erstreckt, ist eine effektive Messung auch von Wertdokumenten möglich, die nur sehr wenig Lumineszenzstrahlung emittieren. Dadurch wird insbesondere die Messung von Phosphoreszenzstrahlung wesentlich verbessertSince the document of value to be checked that is transported past the luminescence sensor in a transport direction is illuminated with an illumination surface that extends in the transport direction, it is also possible to effectively measure documents of value that emit only very little luminescence radiation. This significantly improves the measurement of phosphorescence radiation in particular
Es sei besonders betont, daß die Merkmale der abhängigen Ansprüche und der in der nachstehenden Beschreibung genannten Ausführungsbeispiele in Kombination oder auch unabhängig voneinander und vom Gegenstand der Hauptansprüche, d.h. z.B. auch bei Vorrichtungen, die keine in Transportrichtung sich erstreckende Beleuchtungsfläche erzeugen oder eine Messung von anderer Strahlung als Lumineszenzstrahlung durchführen, vorteilhaft verwendet werden können.It should be particularly emphasized that the features of the dependent claims and the exemplary embodiments mentioned in the following description in combination or independently of one another and of the subject matter of the main claims, i.e. e.g. also in devices that do not generate an illumination surface extending in the transport direction or a measurement of other radiation perform as luminescent radiation, can be used advantageously.
Weitere Vorteile der vorliegenden Erfindung werden nachfolgend anhand der beigefügten Zeichnungen exemplarisch näher erläutert Dabei zeigt
- Fig. 1
- eine schematische Ansicht einer Banknotensortiervorrichtung;
- Fig. 2
- eine schematische Ansicht von der Seite auf das Innere eines erfindungsgemäßen Lumineszenzsensors, der in der Banknotensortiervorrichtung nach
Fig. 1 eingesetzt werden kann; - Fig. 3
- Bauteile des Lumineszenzsensors der
Fig. 2 in Aufsicht; - Fig. 4
- eine schematische Ansicht von der Seite auf das Innere eines alternativen erfindungsgemäßen Lumineszenzsensors, der in der Banknotensortiervorrichtung nach
Fig. 1 eingesetzt werden kann; - Fig. 5
- eine schematische Ansicht einer Banknote zur Erläuterung der Verwendung des Lumineszenzsensors der
Fig. 2 und3 ; - Fig. 6
- eine Ansicht von oben auf ein Beispiel einer Detektorzeile zur Verwendung im Lumineszenzsensor der
Fig. 2 ; - Fig. 7
- eine Ansicht von oben auf ein weiteres Beispiel einer Detektorzeile zur Verwendung im Lumineszenzsensor der
Fig. 2 ; - Fig. 8
- eine Querschnittsansicht entlang der Linie I-I in
Fig. 7 ; - Fig. 9
- eine schematische Darstellung zur Auslesung der Daten aus einer Detektorzeile des Lumineszenzsensors der
Fig. 2 oderFig. 4 ; - Fig. 10
- eine schematische Ansicht von der Seite auf das Innere eines nicht erfindungsgemäßen Lumineszenzsensors;
- Fig. 11
- eine schematische Ansicht auf einen nicht erfindungsgemäßen Lumineszenzsensor mit externer Lichtquelle;
- Fig. 12
- eine schematische Ansicht auf einen Teil eines weiteren nicht erfindungsgemäßen Lumineszenzsensors und
- Fig. 13
- eine schematische Ansicht auf einen Detektorteil noch eines weiteren nicht erfindungsgemäßen Lumineszenzsensors.
- 1
- a schematic view of a bank note sorting device;
- 2
- a schematic view from the side of the interior of a luminescence sensor according to the invention in the bank note sorting device
1 can be used; - 3
-
Luminescence sensor components 2 in supervision; - 4
- a schematic view from the side of the interior of an alternative luminescence sensor according to the invention, which is used in the bank note sorting device
1 can be used; - figure 5
- a schematic view of a banknote to explain the use of the
luminescence sensor 2 and3 ; - 6
- a view from above of an example of a detector array for use in the luminescence sensor of FIG
2 ; - 7
- a top view of another example of a detector array for use in the luminescence sensor of FIG
2 ; - 8
- a cross-sectional view along the line II in
7 ; - 9
- a schematic representation for reading out the data from a detector line of the
luminescence sensor 2 or4 ; - 10
- a schematic view from the side of the interior of a luminescence sensor not according to the invention;
- 11
- a schematic view of a non-inventive luminescence sensor with an external light source;
- 12
- a schematic view of part of a further luminescence sensor not according to the invention and
- 13
- a schematic view of a detector part of yet another luminescence sensor not according to the invention.
Die erfindungsgemäßen Vorrichtungen können in allen Arten von Vorrichtungen verwendet werden, in denen optische Strahlung, insbesondere Lumineszenzstrahlung geprüft wird. Obwohl nicht darauf beschränkt, wird im folgenden als bevorzugte Variante die Prüfung von Banknoten in Banknotenbearbeitungsvorrichtungen beschrieben, die beispielsweise zum Zählen und/oder Sortieren und/oder Einzahlen und/oder Auszahlen von Banknoten dienen können.The devices according to the invention can be used in all types of devices in which optical radiation, in particular luminescence radiation, is tested. Although not limited to this, the checking of banknotes in banknote processing devices, which can be used, for example, for counting and/or sorting and/or depositing and/or paying out banknotes, is described below as a preferred variant.
In der
Wie bereits erwähnt wurde, kann die Sensoreinrichtung 6 unterschiedliche Sensormodule aufweisen. Ausgezeichnet ist die Sensoreinrichtung 6 dabei insbesondere durch ein Sensormodul 12 zur Prüfung von Lumineszenzstrahlung, das nachfolgend kurz Lumineszenzsensor 12 genannt wird.
Der Lumineszenzsensor 12 weist im speziellen in einem gemeinsamen Gehäuse 13 sowohl eine oder mehrere Lichtquellen 14 zur Anregung von Lumineszenzstrahlung, als auch einen Detektor 30, bevorzugt ein Spektrometer 30 zur spektral zerlegten Erfassung des Lumineszenzlichts auf. Das Gehäuse 13 ist so verschlossen, daß ein unerlaubter Zugriff auf die darin enthaltenen Komponenten nicht ohne Beschädigung des Gehäuses 13 möglich ist.In particular, the
Die Lichtquelle 14 kann z. B. eine LED, vorzugsweise aber eine Laserlichtquelle wie eine Laserdiode 14 sein. Die Laserdiode 14 kann eine oder mehrere unterschiedliche Wellenlängen oder Wellenlängenbereiche emittieren. Wird mit mehreren unterschiedlichen Wellenlängen bzw. Wellenlängenbereichen gearbeitet, kann auch vorgesehen sein, daß es im selben Lichtquellengehäuse oder in separaten Lichtquellengehäusen, d.h. separaten Lichtquellenmodulen, mehrere Lichtquellen 14 für unterschiedliche Wellenlängen bzw. Wellenlängenbereiche gibt, die z.B. nebeneinander angeordnet sind und vorzugsweise paralleles Licht ausstrahlen, das auf die gleiche Stelle oder benachbarte Stellen der Banknote BN projiziert werden kann.The
Sofern die Lichtquellen 14 Licht mehrere unterschiedliche Wellenlängen oder Wellenlängenbereiche emittieren können, kann vorgesehen sein, daß die einzelnen Wellenlängen bzw. Wellenlängenbereiche selektiv aktivierbar sind.If the
Eine weitere Variante wird nachfolgend anhand von
Das von der Laserdiode 14 ausgehende Licht wird mittels einer Abbildungsoptik 15,16,17 auf eine zu prüfende Banknote gestrahlt Die Abbildungsoptik umfaßt eine Kollimatorlinse 15, einen Umlenkspiegel als Strahlteiler 16, insbesondere einen dichroitischen Strahlteiler 16, der den von der Laserdiode 14 ausgehenden und durch die Kollimatorlinse 15 geformten Laserstrahl um 90° umlenkt, sowie eine Kondensorlinse 17 mit großem Öffnungswinkel, welche den umgelenkten Laserstrahl durch ein Frontglas 18 vorzugsweise senkrecht auf die mittels des Transportsystems 5 in Richtung T vorbeitransportierte zu prüfende Banknote BN abbildet und damit die Banknote BN zur Emission von Lumineszenzstrahlung anregt.The light emanating from the
Mit Hilfe des Spektrometers 30 wird dann die von der beleuchteten Banknote BN ausgehende Lumineszenzstrahlung vorzugsweise ebenfalls in senkrechter Richtung, d.h. koaxial zum Anregungslicht erfaßt. Dies führt zu einer geringeren Störempfindlichkeit durch Lagetoleranzen der vorbeitransportierten Banknoten BN auf die Messungen als bei der schrägen Beleuchtung z.B. nach
Die Optik zur Abbildung der Lumineszenzstrahlung auf eine photosensitive Detektoreinheit 21 umfaßt dabei ebenfalls das Frontglas 18, die Kondensorlinse 17 und den für die zu messende Lumineszenzstrahlung zumindest teilweise transparenten Spiegel 16. Zudem weist die Optik nachfolgend eine weitere Kondensorlinse 19 mit großer Öffnung, ein anschließendes Filter 20, das zur Blockierung der Beleuchtungswellenlänge der Lichtquelle 14 und anderer nicht zu messender Wellenlängen ausgelegt ist, und einen Umlenkspiegel 23 auf. Der Umlenkspiegel 23 dient einer Faltung des Strahlengangs und einer Umlenkung der zu messenden Lumineszenzstrahlung hin auf ein abbildendes Gitter 24 oder eine andere Einrichtung zur Spektralzerlegung 24. Der Umlenkspiegel wird für einen möglichst kompakten Aufbau vorteilhaft parallel oder nahezu parallel zur Bildebene des Spektrometers angebracht (Winkel < 15 Grad). Das abbildende Gitter 24 weist dabei ein wellenlängendispergierendes Element mit Hohlspiegel 26 auf, das vorzugsweise die Lumineszenzstrahlung erster Ordnung oder minus erster Ordnung auf die Detektoreinheit 21 hin abbildet. Es können allerdings auch höhere Ordnungen abgebildet werden. Die Detektoreinheit 21 weist bevorzugt eine Detektorzeile 22 aus mehreren in Reihe angeordneten photosensitiven Pixeln, d.h. Bildpunkten, auf, wie sie z. B. in Bezug auf die
Der Eintrittsspalt des Spektrometers 30 ist dabei in der
In einer weiteren Ausgestaltung wird der Umlenkspiegel 23 in Bezug auf das abbildende Gitter 24 so positioniert, daß der Eintrittsspalt AS auf den Bereich des Umlenkspiegels 23 fällt. Da hierdurch der Strahlquerschnitt der umzulenkenden Strahlung auf dem Umlenkspiegel 23 besonders klein ausfällt, kann auch der Umlenkspiegel 23 selbst besonders kleine Abmessungen haben. Ist der Umlenkspiegel 23 ein Bestandteil der Detektoreinheit 21, kann der Umlenkspiegel 23 hierdurch nicht nur gemäß
Eine besondere Ausführungsform der vorliegenden Erfindung ist es, daß die Lichtquelle 14 zur Anregung von Lumineszenzstrahlung eine längliche sich in Transportrichtung T erstreckende Beleuchtungsfläche 35 auf der zu prüfenden Banknote BN erzeugt.A special embodiment of the present invention is that the
Diese Variante hat den Vorteil, daß die in den Banknoten BN meist nur in sehr geringen Konzentrationen vorhandenen lumineszierenden, insbesondere phosphoreszierenden Merkmalsstoffe durch die sich in Transportrichtung erstreckende Beleuchtungsfläche beim Vorbeitransport am Lumineszenzsensor 12 länger aufgepumpt werden und dadurch insbesondere die Strahlungsintensität der nachleuchtenden phosphoreszierenden Merkmalsstoffe erhöht wird.This variant has the advantage that the luminescent, in particular phosphorescent, feature substances present in the banknotes BN, usually only in very low concentrations, are pumped up longer by the illumination surface extending in the transport direction when the
In
Ferner ist in der Momentaufnahme der
Gemäß einer weiteren besonderen Idee der vorliegenden Erfindung werden unterschiedliche Detektoreinheiten 21, 27 zur Erfassung der Lumineszenzstrahlung, insbesondere der von der Einrichtung zur Spektralzerlegung 24, d. h. dem abbildenden Gitter 24 ausgehenden Lumineszenzstrahlung eingesetzt. So kann auf oder vor der weiteren Detektoreinheit 27 z. B. ein Filter vorgesehen sein, um nur in einem oder mehreren gegebenen Wellenlängen bzw. -bereichen zu messen, wobei die meßbaren Spektralbereiche der unterschiedlichen Detektoreinheiten 21, 27 sich bevorzugt unterscheiden und z.B. nur teilweise oder nicht überlappen. Es sei betont, daß auch mehrere weitere Detektoreinheiten 27 vorhanden sein können, die in unterschiedlichen Wellenlängen bzw. -bereichen messen. Die mehreren weiteren Detektoreinheiten 27 können räumlich voneinander beabstandet oder auch in einer Sandwich-Struktur vorliegen, wie es in der
Während die eine Detektoreinheit 21, d. h. im speziellen die Detektorzeile 22 zur spektralaufgelösten Messung der Lumineszenzstrahlung der Banknote BN ausgelegt ist, kann mittels der zumindest einen weiteren Detektoreinheit 27 somit zusätzlich auch eine Messung der breitbandigen nicht spektral aufgelösten nullten Ordnung des Spektrometers 30 und gegebenenfalls des Abklingverhaltens der Lumineszenzstrahlung durchgeführt werden.While one
Weiterhin kann die weitere Detektoreinheit 27 auch ausgelegt sein, um eine andere optische Eigenschaft des zumindest einen Merkmalsstoffs der Banknote BN zu prüfen. Dies kann z.B. durch die genannten Messungen bei anderen Wellenlängen bzw. Wellenlängenbereichen erfolgen. Vorzugsweise kann die weitere Detektoreinheit 27 auch ausgelegt sein, um einen anderen Merkmalsstoff der Banknote BN zu prüfen. So kann z. B. die Detektorzeile 22 zur Messung der optischen Eigenschaften eines ersten Merkmalsstoffs der Banknote BN und die weitere Detektoreinheit 27 zur Messung eines anderen Merkmalsstoffs der Banknote BN, insbesondere auch in einem anderen Spektralbereich als die Detektorzeile 22, ausgelegt sein. Die Detektoren 22, 27 werden bevorzugt Filter aufweisen, um unerwünschtes Streulicht oder Licht höherer Ordnung bei der Messung zu unterdrücken.Furthermore, the
Wie in der Aufsicht der
Zur Kalibrierung und Funktionsprüfung des Lumineszenzsensors 12 kann ferner eine Referenzprobe 32 mit einem oder mehreren lumineszierenden Merkmalsstoffen vorgesehen sein, die eine identisch oder abweichende chemische Zusammensetzung wie die zu prüfenden lumineszierenden Merkmalsstoffe in den Banknoten BN haben können. Wie in der
Zur Intensitätseichung des Spektrometers 30 können die lumineszierenden Merkmalsstoffe der Referenzprobe 32 dabei vorzugsweise breitbandig, z.B. über den gesamten vom Spektrometer 30 erfaßbaren Spektralbereich emittieren. Allerdings können die lumineszierenden Merkmalsstoffe der Referenzprobe 32 alternativ oder zusätzlich auch eine bestimmte charakteristische spektrale Signatur mit schmalbandigen Peaks emittieren, um eine Wellenlängeneichung durchzuführen. Es ist allerdings auch möglich, daß zur Justage des Spektrometers 30 nur die weitere Lichtquelle 31 ohne Referenzprobe 32 eingesetzt wird.In order to calibrate the intensity of the
Alternativ oder zusätzlich kann die Referenzprobe 32 deshalb auch außerhalb des Gehäuses 13, insbesondere auf der in Bezug zu der zu messenden Banknote BN gegenüberliegenden Seite angebracht und z.B. in einem Gegenelement, wie einer Platte 28 integriert sein.As an alternative or in addition, the
Außerhalb des Gehäuses 13 kann auch eine zusätzliche Detektoreinheit 33 als separates Bauteil oder in der Platte 28 integriert vorhanden sein. Die zusätzliche Detektoreinheit 33 kann z.B. eine oder mehrere Photozellen zur Messung der durch das Frontglas 18 und gegebenenfalls durch die Banknote BN hindurchgetretenen Strahlung der Laserdiode 14 und/oder der Lumineszenzstrahlung der Banknote BN sein. In diesem Fall kann die Platte 28 in einer Führung in Richtung P verschiebbar gelagert sein, so daß wahlweise entweder die Referenzprobe 32 oder die Photozelle 33 in Ausrichtung mit der Beleuchtungsstrahlung der Laserdiode 14 gebracht werden kann.An
Die Platte 28 wird vorzugsweise über ein punktiert gezeichnetes Verbindungselement 55, das außerhalb der Transportebene der Banknoten BN liegt, mit dem Gehäuse 13 verbunden sein. In einer in
Die Anordnung der optischen Komponenten im Lumineszenzsensor 6 nach
Weiterhin weist die Lichtquelle 14 zwei senkrecht zueinander angeordnete Laserdioden 51, 52 auf, die bei unterschiedlichen Wellenlängen emittieren, wobei die Strahlung der einzelnen Laserdioden 51, 52 z.B. durch einen weiteren dichroitischen Strahlteiler 53 eingekoppelt werden kann, so daß die gleiche Beleuchtungsfläche 35 oder überlappende oder beabstandete Beleuchtungsflächen 35 auf der Banknote BN bestrahlt werden können. Vorzugsweise kann je nach zu prüfender Banknote wahlweise entweder die eine oder die andere Laserdiode 51, 52 oder beide Laserdioden 51, 52 zugleich oder alternierend zur Strahlungsemission aktiviert werden.Furthermore, the
Die in einem Aufriß erkennbaren photosensitiven Detektorelemente, d.h. die Detektorzeile 22 ist asymmetrisch auf dem Träger angebracht, wie es in Bezug auf
Überdies weist der Lumineszenzsensor 6 vorzugsweise im Gehäuse 13 selbst eine Steuerungseinheit 50 auf, die zur Signalverarbeitung der Meßwerte des Spektrometers 30 und/oder zur Leistungssteuerung der einzelnen Komponenten des Lumineszenzsensors 6 dientIn addition, the
Anhand der
Im Unterschied dazu wird vorzugsweise allerdings eine modifizierte Detektorzeile 22 verwendet mit einer deutlich geringeren Anzahl von Pixeln 40, mit größerer Pixelfläche und verkleinertem Anteil von nicht-photosensitiven Bereichen, wie es exemplarisch in der
Weiterhin kann auch vorgesehen sein, daß einzelne Pixel 40 unterschiedliche Abmessungen, insbesondere in Dispersionsrichtung der zu messenden Lumineszenzstrahlung haben, wie es in der
Je nach spektral zu erfassendem Wellenlängenbereich kann die Detektorzeile 22 in den genannten Fällen aus einem unterschiedlichen Material bestehen. Für Lumineszenzmessungen im ultravioletten oder sichtbaren Spektralbereich sind Detektoren aus Silizium, die unterhalb von etwa 1100 nm empfindlich sind und zur Messung im infraroten Spektralbereich Detektorzeile 22 aus InGaAs besonders geeignet, die oberhalb von 900 nm empfindlich sind. Vorzugsweise wird eine derartige InGaAs-Detektorzeile 22 direkt auf einem Siliziumsubstrat 42 aufgebracht sein, das besonders bevorzugt eine in Siliziumtechnik hergestellte Verstärkerstufe zur Verstärkung der analogen Signale der Pixel 40 der InGaAs-Detektorzeile 22 aufweist Hierdurch ist ebenfalls ein besonders kompakter Aufbau mit kurzen Signalwegen und erhöhtem Signal/Rausch-Verhältnis gegeben.Depending on the wavelength range to be spectrally recorded, the
Durch die Detektorzeile 22 mit wenigen Pixeln 40 (z.B. nach
Das abbildende Gitter 24 wird bevorzugt mehr als etwa 300, besonders bevorzugt mehr als etwa 500 Linien / mm, d.h. Beugungselemente aufweisen, um trotz des kompakten Aufbaus der erfindungsgemäßen Lumineszenzsensoren 6 noch eine ausreichende Dispersion der Lumineszenzstrahlung auf das Detektorelement 21 zu ermöglichen. Hierbei kann der Abstand zwischen abbildendem Gitter 24 und dem Detektorelement 21 vorzugsweise weniger als etwa 70 mm, besonders bevorzugt weniger als etwa 50 mm betragen.The imaging grating 24 will preferably have more than about 300, particularly preferably more than about 500 lines/mm, i.e. have diffraction elements, in order to still allow sufficient dispersion of the luminescence radiation on the
Eine Auslesung der einzelnen Pixel 40 der Detektorzeile 22 kann dabei z. B. mit Hilfe eines Schieberegisters seriell erfolgen. Vorzugsweise wird allerdings eine parallele Auslesung einzelner Pixel 40 und/oder Pixelgruppen der Detektorzeile 22 erfolgen. Nach dem Beispiel der
Das hierdurch ermöglichte parallele Auslesen von mehreren Pixeln 40 bzw. Pixelgruppen ermöglicht kurze Integrationszeiten und eine synchronisierte Messung der Banknote BN. Diese Maßnahme trägt ebenfalls zu einer Erhöhung des Signal-/Rausch-Verhältnisses bei.The parallel reading out of a plurality of
Nach einer weiteren Ausführungsform der vorliegenden Erfindung erfolgt eine Integration von Komponenten der Abbildungsoptik für die Lumineszenzstrahlung mit Komponenten des Detektor 30. Im speziellen kann der Umlenkspiegel 23 zur Umlenkung der zu erfassenden Lumineszenzstrahlung auf das Spektrometer 30 direkt mit der Detektoreinheit 21 verbunden sein, wie es z.B. in
Weiterhin kann unterhalb des Umlenkspiegels 23 noch ein Photodetektor, wie eine Photozelle 56 vorhanden sein. Diese bevorzugte Variante ist exemplarisch in der
Wie in
Wie erwähnt wurde wird aufgrund der üblicherweise bei der Prüfung von Banknoten BN zu erwartenden nur sehr geringen Signalintensitäten der Lumineszenzstrahlung eine Kalibrierung des Lumineszenzsensors 12 während des laufenden Betriebes, d.h. im speziellen z.B. in den Pausen zwischen zwei Banknoten-Meßzyklen des Lumineszenzsensors 12 erforderlich sein. Eine bereits beschriebene mögliche Maßnahme ist das Verwenden der Referenzproben 32.As mentioned, due to the very low signal intensities of the luminescence radiation usually to be expected when checking banknotes BN, the
Nach einer weiteren Idee kann dies auch durch eine aktive mechanische Verstellung der optischen Komponenten des Lumineszenzsensors 12 erfolgen, wobei die Verstellung in Abhängigkeit von Meßwerten des Lumineszenzsensors 12 z.B. durch eine externe Steuerungseinheit 11 oder vorzugsweise durch eine interne Steuerungseinheit 50 gesteuert werden kann.According to a further idea, this can also be done by an active mechanical adjustment of the optical components of the
So kann beispielsweise durch ein Stellelement 25 das Bauteil des abbildenden Gitters 24 in Richtung S verschiebbar gelagert sein. Ebenfalls kann durch andere nicht dargestellte Komponenten eine mechanische Verstellung anderer optischer Komponenten, wie z. B. des Detektors 21 erreicht werden, der z. B. in Richtung des Pfeils D in
Somit kann z.B. während des laufenden Betriebs des Lumineszenzsensors 12 eine Auswertung der Meßwerte des Lumineszenzsensors 12 durchgeführt und beim Vorliegen von Abweichungen der Meßwerte (z. B. der Detektorzeile 22, der weiteren Detektoreinheit 27 oder der Photozelle 33) oder von daraus abgeleiteten Größen von bestimmten Referenzwerten bzw. - bereichen eine aktive mechanische Verstellung von einzelnen oder mehrerer der optischen Komponenten des Lumineszenzsensors 12 durchgeführt werden, um eine erhöhte Signalausbeute und eine Kompensation von unerwünschten Änderungen z.B. aufgrund von durch die Beleuchtung oder Elektronik ausgelöste Temperaturschwankungen oder Alterungserscheinungen von optischen Komponenten zu erreichen. Dies ist besonders für eine Detektoreinheit 21 mit wenigen Pixeln 40 wichtig.Thus, for example, while the
Zur Erhöhung der Lebensdauer der Lichtquellen des Lumineszenzsensors 12 kann auch vorgesehen sein, daß beispielsweise die Laserdiode 14 nur dann mit hoher Leistung angesteuert wird, wenn sich eine Banknote BN gerade im Bereich des Meßfensters, d. h. des Frontglases 18 befindet.In order to increase the service life of the light sources of the
Zu den bereits vorstehend beschriebenen Varianten sind natürlich noch weitere Alternativen oder Ergänzungen denkbar.Of course, further alternatives or additions to the variants already described above are also conceivable.
Während in Bezug auf die
Der Lumineszenzsensor 12 der
Insbesondere bei der Verwendung solcher Lichtleiter kann die Lichtquelle sogar außerhalb des Gehäuses 13 des Lumineszenzsensors 12 angebracht sein. Diese räumliche Trennung hat den Vorteil, daß die von der Lichtquelle 68 erzeugte Wärme deutlich weniger den Betrieb und die Justage der sonstigen im Gehäuse 13 befindlichen optischen Komponenten und insbesondere auch der hochempfindlichen Detektoren 21 stört
Eine weitere Besonderheit der Lichteinkopplung z.B. nach
Ebenfalls ist alternativ denkbar, daß die Bestrahlung der zu prüfenden Banknote ausschließlich über außerhalb des Gehäuses 13 vorhandene optische Komponenten erfolgt und der Lumineszenzsensor 12 im Innern des Gehäuses 13 nur die optischen Komponenten beinhaltet, welche für die Messung der von der beleuchteten Banknote ausgehenden Strahlung verwendet werden.It is also alternatively conceivable that the bank note to be checked is irradiated exclusively via optical devices outside the
Zur Stabilisierung des Beleuchtungsstrahls kann z.B. auch ein so genannter DFB-Laser, bei dem ein zusätzliches Gitter in den Resonator des Lasers eingebaut ist, oder ein so genannter DFR-Laser verwendet werden, bei dem ein zusätzliches Gitter außerhalb des Resonators des Lasers eingebaut ist.A so-called DFB laser, in which an additional grating is installed in the laser resonator, or a so-called DFR laser, in which an additional grating is installed outside the laser resonator, can also be used to stabilize the illumination beam.
Obwohl vorstehend beispielsweise bevorzugte Varianten der Prüfung mit Hilfe eines Gitterspektrometers, d.h. eines Spektrometers 30 mit abbildendem Gitter 24, beschrieben wurde, so kann an sich auch ohne Gitterspektrometer gearbeitet und z.B. ein Spektrometer 30 mit Prisma zur Spektraldispersion eingesetzt werden oder eine Messung mit Hilfe von unterschiedlichen Filtern zum Herausfiltern unterschiedlicher zu erfassender Wellenlängen bzw. Wellenlängenbereichen der Lumineszenzstrahlung durchgeführt werden. Dies kann insbesondere auch für eine mehrspurige oder eine hochempfindliche Messung eingesetzt werden.Although preferred variants of the test using a grating spectrometer, i.e. a
Ein Beispiel für einen nicht erfindungsgemäßen Lumineszenzsensor 1 ohne Gitterspektrometer ist in der
Ebenfalls ist es möglich, ein sogenanntes Filterrad mit unterschiedlichen Filtern zu verwenden. Durch Drehen des Filterrad kreuzen dann nacheinander die einzelnen unterschiedlichen Filter den nachfolgend auf den Detektor einfallenden Lichtstrahl der zu prüfenden Banknote BN.It is also possible to use a so-called filter wheel with different filters. By turning the filter wheel, the individual different filters then successively cross the light beam of the bank note BN to be checked, which subsequently impinges on the detector.
In der
Zudem kann beispielsweise auch die aktive optische Verstellung von einzelnen Komponenten nicht nur beim besonders bevorzugten Beispiel eines Lumineszenzsensor, sondern auch bei anderen, insbesondere anderen optischen Sensoren mit Vorteil eingesetzt werden. Außerdem ist z.B. die spezielle Ausgestaltung des Spektrometers auch dann von Vorteil, wenn der Lumineszenzsensor selbst keine Lichtquelle zur Anregung von Lumineszenzstrahlung aufweist.In addition, for example, the active optical adjustment of individual components can also be used advantageously not only in the particularly preferred example of a luminescence sensor, but also in other, in particular other, optical sensors. In addition, for example, the special design of the spectrometer is also advantageous when the luminescence sensor itself has no light source for exciting luminescent radiation.
Weiterhin kann das erfindungsgemäße System auch so ausgelegt sein, daß die Meßwerte des Lumineszenzsensors 12 einer Banknote BN noch ausgewertet werden, während gleichzeitig schon Meßwerte einer nachfolgenden Banknote BN aufgenommen werden. Die Auswertung der Meßwerte der vorhergehenden Banknote BN muß allerdings so schnell erfolgen, daß die einzelnen Weichen 7 der Transportstrecke 5 noch ausreichend schnell geschaltet werden können, um die vorhergehende Banknote BN in das jeweils zugeordnete Ablagefach 9 umzulenken.Furthermore, the system according to the invention can also be designed in such a way that the measured values of the
Die erfindungsgemäßen Vorrichtungen und Verfahren ermöglicht folglich eine einfache und sichere Prüfung und Unterscheidung von lumineszierenden Wertdokumenten. Die Prüfung kann dabei z.B. erfolgen, indem mittels der Lichtquelle 14 während einer bestimmten Zeitdauer 0-tP für die Anregung des Merkmalsstoffs ein Licht mit einer ersten Wellenlänge mit einer vorgegebenen Intensität erzeugt wird. Durch das Licht der Lichtquelle 14 wird der Merkmalsstoff der zu überprüfenden und am Frontglas 18 in Richtung T vorbeitransportierten Banknote BN angeregt, woraufhin der Merkmalsstoff Lumineszenzlicht einer zweiten Wellenlänge emittiert. Die Intensität des emittierten Lumineszenzlichts steigt während der Zeitdauer 0-tp der Anregung nach einer bestimmten Gesetzmäßigkeit an. Die Art und Weise des Anstiegs und der Abnahme der Intensität des emittierten Lumineszenzlichts ist abhängig vom verwendeten Merkmalsstoff und von der anregenden Lichtquelle 14, d. h. deren Intensität und Wellenlänge bzw. Wellenlängenverteilung. Nach Beendigung der Anregung zum Zeitpunkt tP nimmt die Intensität des emittierten Lumineszenzlichts nach einer bestimmten Gesetzmäßigkeit ab.The devices and methods according to the invention consequently enable simple and reliable checking and differentiation of luminescent documents of value. The check can be carried out, for example, by using the
Mit Hilfe des Spektrometers 30 wird nun das senkrecht, d.h. parallel zum Anregungslicht, von der Banknoten BN ausgehende Lumineszenzlicht erfaßt und ausgewertet. Durch Auswertung des Signals der Detektoreinheit 21 zu einem oder mehreren bestimmten Zeitpunkten t2, t3 kann besonders sicher überprüft werden, ob eine echte Banknote BN vorliegt, da nur der für die Banknote BN verwendete Merkmalsstoff oder die Kombination von verwendeten Merkmalsstoffen ein derartiges Abklingverhalten aufweist. Die Überprüfung des Abklingverhaltens kann mittels des oben beschriebenen Vergleichs der Intensität des Lumineszenzlichts zu einem oder mehreren bestimmten Zeitpunkten mit vorgegebenen Intensitäten für echte Banknoten BN erfolgen. Es kann auch vorgesehen sein, daß der Verlauf der Intensität des Lumineszenzlichts mit vorgegebenen Verläufen für bekannte Banknoten BN verglichen wird.With the aid of the
Claims (21)
- An apparatus (1) for checking luminescent value documents (BN), having a light source (14, 51, 52, 68) for exciting luminescence radiation and a luminescence sensor (12) for detecting with spectral resolution the luminescence radiation emanating from the value document (BN), wherein the luminescence sensor (12) has an imaging grating (24) with a concave mirror (26) for spectral decomposition of the luminescence radiation and a detector unit (21) for measurement with spectral resolution of an order other than zero of the excited luminescence radiation spectrally decomposed by the imaging grating (24),
characterized in that
another detector unit (27) is designed for measurement with non-spectral resolution of the excited luminescence radiation and measurement of the zeroth order of the luminescence radiation coming from the imaging grating (24). - The apparatus (1) according to claim 1, characterized in that the light source (14, 51, 52, 68) produces on the value document (BN) transported in a transport direction (T) past the luminescence sensor (12) an illumination area (35) extending in the transport direction (T), and that preferably the extension of the illumination area (35) in the transport direction (T) is at least twice, preferably at least three times, four times or particularly preferably at least five times, as long as the extension perpendicular to the transport direction (T).
- The apparatus (1) according to at least one of the previous claims, characterized in that an image area (36) of the luminescence sensor (12) extends in the transport direction (T) of the value document (BN) transported past the luminescence sensor (12).
- The apparatus (1) according to at least one of the previous claims, characterized in that the length and/ or width of the image area (36) is smaller than the corresponding dimensions of the illumination area (35) of the light source (14, 51, 52, 68), and/or that the image area (36) and the illumination area (35) on the value document (BN) are at least partly or completely overlapping at a given time.
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has one or more light sources (14, 51, 52, 68) which emit at different wavelengths, wherein preferably single wavelengths are selectively activatable.
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has at least one detector row (22) with a small number of pixels (40), preferably from 10 to 32 pixels (40), particularly preferably from 10 to 20 pixels (40).
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has at least one detector element (40) for measuring radiation outside the luminescence spectrum of the value documents (BN).
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has at least one detector row (22) with pixels (40) of different dimensions, in particular in the dispersion direction of the luminescence radiation of different dimensions that is to be measured.
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has an InGaAs detector row (22) on a silicon substrate (42), the silicon substrate (42) preferably having one or more amplifier stages (45) for amplifying the analog measuring signals of pixels (40) of the InGaAs detector row (22).
- The apparatus (1) according to at least one of the previous claims, characterized in that the detector unit (21) of the luminescence sensor (6) detects a spectral range of less than 500 nm, preferably of less than or of about 300 nm, and/ or the imaging grating (24) of the luminescence sensor (6) has more than about 300 lines/mm, preferably more than about 500 lines/mm, and/or the distance between imaging grating (24) and detector unit (21) is less than about 70 mm, preferably less than about 50 mm.
- The apparatus (1) according to at least one of the previous claims, characterized in that the light source (14) and/ or the luminescence sensor (12) and/or a control unit (50) for signal processing of the measuring values of the luminescence sensor (6) and/or for power control of components of the luminescence sensor (6) are integrated in a common housing (13) and or in separate housings (13, 68).
- The apparatus (1) according to at least one of the previous claims, characterized in that the light source (14) irradiates perpendicularly the value document (BN) to be checked, and the luminescence sensor (12) detects luminescence radiation emanating from the irradiated value document (BN) perpendicularly, and/or that the luminescence sensor (12) has a deflection mirror (23) for folding the beam path of the luminescence radiation to be measured and/ or for deflecting the luminescence radiation to be measured onto another optical unit, such as onto the imaging grating (24).
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has a photodetector (56) with a deflection mirror (23) located on or above the surface thereof, which is at least partly transparent to the wavelengths to be measured by the photodetector (56).
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has a structural part (21) having both a photosensitive detector unit (22) for luminescence radiation and components (23) for imaging the luminescence radiation onto the photosensitive detector unit (22).
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has a detector row (22) which is applied to a substrate (42) asymmetrically.
- The apparatus (1) according to at least one of the previous claims, characterized in that the one detector unit (21) is designed for time-integrated measurement of the luminescence radiation and the other detector unit (27) for time-resolved measurement of the luminescence radiation.
- The apparatus (1) according to at least one of the previous claims, characterized in that the other detector unit (27) is disposed on a tilt with respect to the imaging grating (24) for spectral decomposition to avoid a re-reflection onto the imaging grating (24).
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has a reference sample (32) with a luminescent feature substance and preferably a further light source (31) for irradiating the reference sample (32).
- The apparatus (1) according to at least one of the previous claims, characterized in that the luminescence sensor (12) has means (25) for active mechanical displacement of optical components (21, 24) of the luminescence sensor (12) and that preferably an active mechanical displacement of optical components (21, 24) of the luminescence sensor (12) is controllable by a control unit (11, 50) in dependence on measuring values of the luminescence sensor (12).
- The apparatus (1) according to at least one of the previous claims, characterized in that the measuring values of the luminescence sensor (12) are still being evaluated for one value document (BN) while measuring values of a subsequent value document (BN) are already being sensed at the same time.
- The apparatus (1) according to at least one of the previous claims, characterized in that single pixels (40) and/ or pixel groups of the detector row (22) are readable in parallel and/or single pixels (40) and/ or pixel groups of the detector row (22) are each connected to a separate amplifier stage (45) and a subsequent analog-to-digital converter (46).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004035494A DE102004035494A1 (en) | 2004-07-22 | 2004-07-22 | Device and method for checking value documents |
EP05770995A EP1784795A1 (en) | 2004-07-22 | 2005-07-19 | Device and method for verifying value documents |
PCT/EP2005/007872 WO2006010537A1 (en) | 2004-07-22 | 2005-07-19 | Device and method for verifying value documents |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05770995A Division EP1784795A1 (en) | 2004-07-22 | 2005-07-19 | Device and method for verifying value documents |
EP05770995.8 Division | 2005-07-19 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2278558A2 EP2278558A2 (en) | 2011-01-26 |
EP2278558A3 EP2278558A3 (en) | 2012-01-25 |
EP2278558B1 true EP2278558B1 (en) | 2022-06-15 |
Family
ID=35094077
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10011629.2A Expired - Lifetime EP2275998B1 (en) | 2004-07-22 | 2005-07-19 | Apparatus for checking value documents |
EP10011625A Ceased EP2278556A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP10011628A Ceased EP2282298A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP10011627.6A Expired - Lifetime EP2278558B1 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP10011626A Ceased EP2278557A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP05770995A Ceased EP1784795A1 (en) | 2004-07-22 | 2005-07-19 | Device and method for verifying value documents |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10011629.2A Expired - Lifetime EP2275998B1 (en) | 2004-07-22 | 2005-07-19 | Apparatus for checking value documents |
EP10011625A Ceased EP2278556A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP10011628A Ceased EP2282298A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10011626A Ceased EP2278557A3 (en) | 2004-07-22 | 2005-07-19 | Apparatus and method for examining value documents |
EP05770995A Ceased EP1784795A1 (en) | 2004-07-22 | 2005-07-19 | Device and method for verifying value documents |
Country Status (11)
Country | Link |
---|---|
US (1) | US7737417B2 (en) |
EP (6) | EP2275998B1 (en) |
JP (1) | JP4919355B2 (en) |
KR (4) | KR101277985B1 (en) |
CN (2) | CN1989528B (en) |
AU (2) | AU2005266522B2 (en) |
DE (1) | DE102004035494A1 (en) |
ES (2) | ES2923700T3 (en) |
IL (1) | IL180847A (en) |
RU (4) | RU2375751C2 (en) |
WO (1) | WO2006010537A1 (en) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10346636A1 (en) * | 2003-10-08 | 2005-05-12 | Giesecke & Devrient Gmbh | Device and method for checking value documents |
DE102006017256A1 (en) * | 2006-04-12 | 2007-10-18 | Giesecke & Devrient Gmbh | Optical examination device for value documents, has coverage area, spectrographic equipment, detection device terminating in spatial direction for detecting spectral components |
KR101353752B1 (en) * | 2006-04-12 | 2014-01-21 | 기제케 운트 데브리엔트 게엠베하 | Apparatus and method for optically examining security documents |
DE102006045626A1 (en) * | 2006-09-27 | 2008-04-03 | Giesecke & Devrient Gmbh | Device and method for the optical examination of value documents |
RU2358882C1 (en) | 2008-04-18 | 2009-06-20 | Общество С Ограниченной Ответственностью "Новые Энергетические Технологии" | Device for documents authentication |
DE102008028690A1 (en) * | 2008-06-17 | 2009-12-24 | Giesecke & Devrient Gmbh | Sensor device for the spectrally resolved detection of value documents and a method relating to them |
DE102008028689A1 (en) * | 2008-06-17 | 2009-12-24 | Giesecke & Devrient Gmbh | Sensor device for the spectrally resolved detection of value documents and a method relating to them |
KR100882396B1 (en) * | 2008-10-01 | 2009-02-05 | 한국조폐공사 | Authenticity identifier |
US8265346B2 (en) | 2008-11-25 | 2012-09-11 | De La Rue North America Inc. | Determining document fitness using sequenced illumination |
US8780206B2 (en) | 2008-11-25 | 2014-07-15 | De La Rue North America Inc. | Sequenced illumination |
US8749767B2 (en) | 2009-09-02 | 2014-06-10 | De La Rue North America Inc. | Systems and methods for detecting tape on a document |
US8400509B2 (en) * | 2009-09-22 | 2013-03-19 | Honeywell International Inc. | Authentication apparatus for value documents |
US8194237B2 (en) | 2009-10-15 | 2012-06-05 | Authentix, Inc. | Document sensor |
US8433124B2 (en) * | 2010-01-07 | 2013-04-30 | De La Rue North America Inc. | Systems and methods for detecting an optically variable material |
US8509492B2 (en) * | 2010-01-07 | 2013-08-13 | De La Rue North America Inc. | Detection of color shifting elements using sequenced illumination |
KR101104522B1 (en) * | 2010-03-10 | 2012-01-12 | 엘지엔시스(주) | Media winding type determination device and method |
EP2549445A4 (en) * | 2010-03-17 | 2013-12-04 | Glory Kogyo Kk | Genuine/counterfeit distinguishing unit, genuine/counterfeit distinguishing method, and fluorescent sensor |
DE102010047061A1 (en) * | 2010-09-30 | 2012-04-05 | Carl Zeiss Microlmaging Gmbh | Optical spectrometer has several optoelectronic detection elements arranged in detector in series along incident direction of diffracted light, which have optoelectronic transducers to detect different spectral detection ranges |
DE102011016509A1 (en) * | 2011-04-08 | 2012-10-11 | Giesecke & Devrient Gmbh | Method for checking value documents |
US20120313747A1 (en) * | 2011-06-09 | 2012-12-13 | Pawlik Thomas D | Method for authenticating security markers |
US20120313748A1 (en) * | 2011-06-09 | 2012-12-13 | Pawlik Thomas D | Authentication of a security marker |
US20120313749A1 (en) * | 2011-06-09 | 2012-12-13 | Pawlik Thomas D | Authentication of a security marker |
DE102011106523A1 (en) | 2011-07-04 | 2013-01-10 | Giesecke & Devrient Gmbh | Test apparatus and method for calibrating a tester |
CN102865999B (en) * | 2011-07-08 | 2015-03-04 | 中国科学院微电子研究所 | LED optical characteristic detection method and detection device |
FR2978937B1 (en) * | 2011-08-08 | 2018-12-07 | Banque De France | LUMINESCENT ANIME SECURITY DEVICE FOR A DOCUMENT, DETECTION METHOD AND CORRESPONDING DETECTION DEVICE. |
DE102011110895A1 (en) | 2011-08-17 | 2013-02-21 | Giesecke & Devrient Gmbh | Sensor and method for operating the sensor |
DE102011110894A1 (en) * | 2011-08-17 | 2013-02-21 | Giesecke & Devrient Gmbh | Sensor and method for operating the sensor |
JP5727614B2 (en) * | 2011-08-25 | 2015-06-03 | グローリー株式会社 | Paper sheet identification device and light guide case |
DE102011082174A1 (en) * | 2011-09-06 | 2013-03-07 | Bundesdruckerei Gmbh | Device for mobile recognition of a document |
WO2013134420A2 (en) | 2012-03-06 | 2013-09-12 | Hydrapak, Inc. | Flexible container |
US20150018642A1 (en) * | 2013-07-12 | 2015-01-15 | Sandeep Gulati | Tissue pathlength resolved noninvasive analyzer apparatus and method of use thereof |
US9053596B2 (en) | 2012-07-31 | 2015-06-09 | De La Rue North America Inc. | Systems and methods for spectral authentication of a feature of a document |
CN103414838B (en) * | 2013-06-20 | 2015-12-23 | 威海华菱光电股份有限公司 | Image-scanning device and control method thereof |
US9913653B2 (en) | 2013-07-11 | 2018-03-13 | Covidien Lp | Devices, systems, and methods for tissue morcellation |
CN104183054B (en) * | 2014-07-29 | 2016-04-06 | 苏州佳世达光电有限公司 | Image identification device |
EP3216012B1 (en) * | 2014-11-03 | 2023-08-02 | American University Of Beirut | Smart anti-counterfeiting optical system (sacos) for the detection of fraud using advanced spectroscopy-based technique |
DE102014018726A1 (en) | 2014-12-16 | 2016-06-16 | Giesecke & Devrient Gmbh | Apparatus and method for testing feature substances |
JP2016151893A (en) * | 2015-02-17 | 2016-08-22 | 株式会社東芝 | Image processing apparatus, article processing apparatus, and image processing method |
DE102016000012A1 (en) | 2016-01-05 | 2017-07-06 | Giesecke & Devrient Gmbh | Authenticity check of value documents |
US10918409B2 (en) | 2017-12-05 | 2021-02-16 | Covidien Lp | Morcellator with auger tissue feeder |
US10952787B2 (en) | 2017-12-07 | 2021-03-23 | Covidien Lp | Energy-based surgical device and system facilitating tissue removal |
CN112567216A (en) * | 2018-06-14 | 2021-03-26 | ams国际有限公司 | Integrated sensor module for detecting chemical substances |
DE102018004884A1 (en) * | 2018-06-20 | 2019-12-24 | Giesecke+Devrient Currency Technology Gmbh | Method and sensor for checking documents |
RU2703795C1 (en) * | 2019-03-13 | 2019-10-22 | Акционерное общество "ГОЗНАК" | Protective element based on luminescent material |
DE102020000968A1 (en) * | 2020-02-14 | 2021-08-19 | Giesecke+Devrient Currency Technology Gmbh | Optical sensor for checking documents of value |
DE102023120038A1 (en) * | 2023-07-27 | 2025-01-30 | Giesecke+Devrient Currency Technology Gmbh | Sensor device for testing a data carrier with luminescence feature, test device and test method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3315377A1 (en) * | 1983-02-19 | 1984-08-23 | Dr. Bruno Lange Gmbh, 1000 Berlin | Colorimeter |
US4936684A (en) * | 1989-03-24 | 1990-06-26 | Pacific Scientific Company | Spectrometer with photodetector array detecting uniform bandwidth intervals |
US20040061855A1 (en) * | 2000-12-21 | 2004-04-01 | Hansjorg Klock | Optical sensor device and method for spectral analysis |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT335205B (en) * | 1972-05-03 | 1977-02-25 | Int Security Systems Sa | DEVICE FOR VERIFICATION OF SECURITIES |
AT330574B (en) | 1972-05-03 | 1976-07-12 | Int Security Systems Sa | COUNTERFEIT SECURITY SECURITIES |
US3922090A (en) * | 1974-06-28 | 1975-11-25 | Teknekron Inc | Method and apparatus for authenticating documents |
DE3303779A1 (en) * | 1983-02-04 | 1984-08-16 | Hoechst Ag, 6230 Frankfurt | METHOD FOR PRODUCING A CATALYTICALLY EFFECTIVE ELECTRODE MATERIAL FOR OXYGEN CONSUMPTION ELECTRODES |
GB8311795D0 (en) * | 1983-04-29 | 1983-06-02 | De La Rue Syst | Detecting luminescent security features |
US4807006A (en) * | 1987-06-19 | 1989-02-21 | International Business Machines Corporation | Heterojunction interdigitated schottky barrier photodetector |
GB2240947A (en) * | 1990-02-20 | 1991-08-21 | Aco Electronics Limited | Authentification of documents with luminescent security features |
US5050990A (en) * | 1990-08-24 | 1991-09-24 | Xerox Corporation | Variable detector geometry for resolving and sensing apparatus for filtering and other applications |
JPH04137232A (en) * | 1990-09-27 | 1992-05-12 | Sharp Corp | Optical pickup device |
US5825402A (en) * | 1993-03-26 | 1998-10-20 | Symbol Technologies, Inc. | Method and appratus for reading and writing indicia such as bar codes using a scanned laser beam |
DE69528153T2 (en) * | 1994-01-04 | 2003-06-05 | Mars, Inc. | TESTING COUNTERFEIT, FOR EXAMPLE OF COUNTERFEIT BILLS |
DE19517194A1 (en) * | 1995-05-11 | 1996-11-14 | Giesecke & Devrient Gmbh | Device and method for checking sheet material, e.g. Banknotes or securities |
US6721104B2 (en) * | 1995-05-12 | 2004-04-13 | Pc Lens Corp | System and method for focusing an elastically deformable lens |
DE69525535T2 (en) * | 1995-11-21 | 2002-11-28 | Stmicroelectronics S.R.L., Agrate Brianza | Adaptive optical sensor |
GB9607788D0 (en) * | 1996-04-15 | 1996-06-19 | De La Rue Thomas & Co Ltd | Document of value |
DE19651101A1 (en) * | 1996-12-09 | 1998-06-10 | Giesecke & Devrient Gmbh | Device and method for the detection of fluorescent and phosphorescent light |
DE19710621A1 (en) * | 1997-03-14 | 1998-09-17 | Giesecke & Devrient Gmbh | Device for the optical detection of sheet material |
DE19804012A1 (en) * | 1998-02-02 | 1999-08-05 | Giesecke & Devrient Gmbh | Value document |
DE19803997B4 (en) * | 1998-02-02 | 2018-01-25 | Giesecke+Devrient Currency Technology Gmbh | value document |
RU2225030C2 (en) * | 1998-02-12 | 2004-02-27 | Хкр Сенсорсистем Гмбх | Method and device for verifying genuineness of marking |
US6621916B1 (en) * | 1999-09-02 | 2003-09-16 | West Virginia University | Method and apparatus for determining document authenticity |
JP2001102676A (en) * | 1999-09-27 | 2001-04-13 | Toshiba Electronic Engineering Corp | Optical integrated unit, optical pickup and optical recording medium driver |
US6473165B1 (en) * | 2000-01-21 | 2002-10-29 | Flex Products, Inc. | Automated verification systems and methods for use with optical interference devices |
PT1158459E (en) * | 2000-05-16 | 2009-02-02 | Sicpa Holding Sa | Method, device and security system, all for authenticating a marking |
RU2172982C1 (en) * | 2000-08-14 | 2001-08-27 | Общество с ограниченной ответственностью Фирма "Дата-Центр" | Securities image reader |
GB0025096D0 (en) * | 2000-10-13 | 2000-11-29 | Bank Of England | Detection of printing and coating media |
US6416183B1 (en) | 2000-12-04 | 2002-07-09 | Barco N.V. | Apparatus and method for three-dimensional movement of a projected modulated beam |
RU2206919C2 (en) * | 2001-05-14 | 2003-06-20 | Подгорнов Владимир Аминович | Method for authentication of paper documents |
JP4096521B2 (en) * | 2001-05-18 | 2008-06-04 | 富士ゼロックス株式会社 | Recording / reading method and recording / reading apparatus |
DE10127837A1 (en) * | 2001-06-08 | 2003-01-23 | Giesecke & Devrient Gmbh | Device and method for examining documents |
JP4580602B2 (en) * | 2001-09-21 | 2010-11-17 | 株式会社東芝 | Paper sheet processing equipment |
US20030160182A1 (en) * | 2002-02-25 | 2003-08-28 | Emerge Interactive, Inc. | Apparatus and method for detecting fecal and ingesta contamination using a hand held illumination and imaging device |
WO2003073384A1 (en) * | 2002-02-28 | 2003-09-04 | Nidec Copal Corporation | Sheets fluorescence detecting sensor |
US6695270B1 (en) * | 2002-08-15 | 2004-02-24 | Ole Falk Smed | Flat panel display system |
JP3736523B2 (en) * | 2002-12-20 | 2006-01-18 | セイコーエプソン株式会社 | ELECTRO-OPTICAL DEVICE WITH MOUNTING CASE, PROJECTION TYPE DISPLAY DEVICE, AND MOUNTING CASE |
CN100444204C (en) * | 2003-02-28 | 2008-12-17 | 日本电产科宝株式会社 | Check device and check method |
JP4188111B2 (en) * | 2003-03-13 | 2008-11-26 | 日立オムロンターミナルソリューションズ株式会社 | Paper sheet authenticity discrimination device |
US20040183004A1 (en) * | 2003-03-20 | 2004-09-23 | Accu-Sort Systems, Inc. | Method and device for identification and authentication of an object |
RU35455U1 (en) * | 2003-08-01 | 2004-01-10 | Закрытое акционерное общество "ГИЗЕКЕ & ДЕВРИЕНТ- ЛОМО, ЗАО" | Banknote authentication device |
JP3992005B2 (en) * | 2004-03-23 | 2007-10-17 | セイコーエプソン株式会社 | Optical device and projector |
-
2004
- 2004-07-22 DE DE102004035494A patent/DE102004035494A1/en not_active Ceased
-
2005
- 2005-07-19 EP EP10011629.2A patent/EP2275998B1/en not_active Expired - Lifetime
- 2005-07-19 US US11/658,005 patent/US7737417B2/en active Active
- 2005-07-19 KR KR1020117030775A patent/KR101277985B1/en not_active Expired - Lifetime
- 2005-07-19 EP EP10011625A patent/EP2278556A3/en not_active Ceased
- 2005-07-19 CN CN2005800246265A patent/CN1989528B/en not_active Expired - Lifetime
- 2005-07-19 EP EP10011628A patent/EP2282298A3/en not_active Ceased
- 2005-07-19 KR KR1020117030777A patent/KR101277932B1/en not_active Expired - Lifetime
- 2005-07-19 RU RU2007106554/09A patent/RU2375751C2/en active
- 2005-07-19 KR KR1020077003654A patent/KR101224255B1/en not_active Expired - Lifetime
- 2005-07-19 CN CN2011100236010A patent/CN102169607B/en not_active Expired - Lifetime
- 2005-07-19 EP EP10011627.6A patent/EP2278558B1/en not_active Expired - Lifetime
- 2005-07-19 JP JP2007521891A patent/JP4919355B2/en not_active Expired - Lifetime
- 2005-07-19 AU AU2005266522A patent/AU2005266522B2/en not_active Expired
- 2005-07-19 WO PCT/EP2005/007872 patent/WO2006010537A1/en active Application Filing
- 2005-07-19 EP EP10011626A patent/EP2278557A3/en not_active Ceased
- 2005-07-19 KR KR1020117030776A patent/KR101277935B1/en not_active Expired - Lifetime
- 2005-07-19 ES ES10011627T patent/ES2923700T3/en not_active Expired - Lifetime
- 2005-07-19 EP EP05770995A patent/EP1784795A1/en not_active Ceased
- 2005-07-19 ES ES10011629.2T patent/ES2598357T3/en not_active Expired - Lifetime
-
2007
- 2007-01-21 IL IL180847A patent/IL180847A/en active IP Right Grant
-
2009
- 2009-07-29 RU RU2009129195/08A patent/RU2428742C2/en active
-
2011
- 2011-03-15 AU AU2011201132A patent/AU2011201132B2/en not_active Expired
- 2011-05-11 RU RU2011118715/08A patent/RU2451339C1/en active
-
2012
- 2012-02-08 RU RU2012104338/08A patent/RU2491641C1/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3315377A1 (en) * | 1983-02-19 | 1984-08-23 | Dr. Bruno Lange Gmbh, 1000 Berlin | Colorimeter |
US4936684A (en) * | 1989-03-24 | 1990-06-26 | Pacific Scientific Company | Spectrometer with photodetector array detecting uniform bandwidth intervals |
US20040061855A1 (en) * | 2000-12-21 | 2004-04-01 | Hansjorg Klock | Optical sensor device and method for spectral analysis |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2278558B1 (en) | Apparatus and method for examining value documents | |
EP2011092B1 (en) | Apparatus and method for optically examining security documents | |
EP2304696B1 (en) | Sensor device for the spectrally resolved capture of valuable documents and a corresponding method | |
EP2304697B1 (en) | Sensor device for the spectrally resolved capture of valuable documents and a corresponding method | |
EP2176641B1 (en) | Device and method for calibrating a sensor system | |
WO2016096133A1 (en) | Device and method for verifying feature substances | |
EP1244073A2 (en) | Method and sensor for validation of documents | |
EP1160719B1 (en) | Sensor for authentication of bookmarks on documents | |
EP4014210B1 (en) | Method and device for examining value documents | |
EP2490185A2 (en) | Device and method for optical examination of valuable documents | |
WO2001061654A2 (en) | Methods and devices for verifying the authenticity of printed objects | |
DE102006045624A1 (en) | Device for optically examining security documents, has detection region, in which a security document is located during the examination, and spectrographic device, and device has spatially dispersing optical device | |
DE102006017256A1 (en) | Optical examination device for value documents, has coverage area, spectrographic equipment, detection device terminating in spatial direction for detecting spectral components | |
DE102011117678A1 (en) | Sensor for checking value documents | |
DE102004039049A1 (en) | Method and device for measuring sheet material | |
AU2012203003B2 (en) | Device and method for verifying value documents | |
AT14049U1 (en) | Imaging camera and device for classifying objects | |
DE102017202636A1 (en) | Microspectrometer, method and controller for operating a microspectrometer | |
DE102008028250A1 (en) | Camera system for use in banknote processing device, has two partial camera systems with light sources, respectively, where sources are arranged on side of object plane for transmission measurement in dark field or bright field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1784795 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G07D 7/12 20060101AFI20111220BHEP |
|
17P | Request for examination filed |
Effective date: 20120725 |
|
17Q | First examination report despatched |
Effective date: 20130529 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220113 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: EHRL, HANS-PETER Inventor name: CLARA, MARTIN, DR. Inventor name: BLOSS, MICHAEL Inventor name: GIERING, THOMAS, DR. Inventor name: DECKENBACH, WOLFGANG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1784795 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005016196 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1498841 Country of ref document: AT Kind code of ref document: T Effective date: 20220715 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2923700 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220929 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220916 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221017 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221015 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005016196 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220719 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
26N | No opposition filed |
Effective date: 20230316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240731 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240723 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240724 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240801 Year of fee payment: 20 Ref country code: ES Payment date: 20240816 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240718 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502005016196 Country of ref document: DE |