EP2252470B1 - Couche d'impression comprenant des pixels principaux et des pixels satellites sur un composite polymère stratifié pour un document de sécurité et/ou de valeur - Google Patents
Couche d'impression comprenant des pixels principaux et des pixels satellites sur un composite polymère stratifié pour un document de sécurité et/ou de valeur Download PDFInfo
- Publication number
- EP2252470B1 EP2252470B1 EP08872939.7A EP08872939A EP2252470B1 EP 2252470 B1 EP2252470 B1 EP 2252470B1 EP 08872939 A EP08872939 A EP 08872939A EP 2252470 B1 EP2252470 B1 EP 2252470B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pixels
- satellite
- security
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 title claims description 78
- 239000002131 composite material Substances 0.000 title claims description 53
- 238000007639 printing Methods 0.000 claims description 96
- 238000000034 method Methods 0.000 claims description 60
- 239000007788 liquid Substances 0.000 claims description 25
- 238000007641 inkjet printing Methods 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 239000010410 layer Substances 0.000 description 99
- 239000000976 ink Substances 0.000 description 62
- 239000004417 polycarbonate Substances 0.000 description 51
- 229920000515 polycarbonate Polymers 0.000 description 47
- 239000003086 colorant Substances 0.000 description 25
- 239000000203 mixture Substances 0.000 description 25
- 230000008569 process Effects 0.000 description 25
- 239000000463 material Substances 0.000 description 22
- 238000000926 separation method Methods 0.000 description 18
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 14
- 239000000975 dye Substances 0.000 description 14
- -1 polyethylene Polymers 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 13
- 239000000049 pigment Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 11
- GWHJZXXIDMPWGX-UHFFFAOYSA-N 1,2,4-trimethylbenzene Chemical compound CC1=CC=C(C)C(C)=C1 GWHJZXXIDMPWGX-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 8
- 238000003475 lamination Methods 0.000 description 8
- 229920006289 polycarbonate film Polymers 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- 239000000969 carrier Substances 0.000 description 7
- 238000012216 screening Methods 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 229920005601 base polymer Polymers 0.000 description 5
- 239000006085 branching agent Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000032798 delamination Effects 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- XKZQKPRCPNGNFR-UHFFFAOYSA-N 2-(3-hydroxyphenyl)phenol Chemical compound OC1=CC=CC(C=2C(=CC=CC=2)O)=C1 XKZQKPRCPNGNFR-UHFFFAOYSA-N 0.000 description 4
- UMPGNGRIGSEMTC-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl]phenol Chemical compound C1C(C)CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 UMPGNGRIGSEMTC-UHFFFAOYSA-N 0.000 description 4
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 4
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000003791 organic solvent mixture Substances 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000011877 solvent mixture Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000003139 biocide Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000008204 material by function Substances 0.000 description 3
- 238000000813 microcontact printing Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000012070 reactive reagent Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000009823 thermal lamination Methods 0.000 description 3
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- UIAFKZKHHVMJGS-UHFFFAOYSA-N 2,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 description 2
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 2
- CCTFMNIEFHGTDU-UHFFFAOYSA-N 3-methoxypropyl acetate Chemical compound COCCCOC(C)=O CCTFMNIEFHGTDU-UHFFFAOYSA-N 0.000 description 2
- NRTJOSFDLNGXOS-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-2,4,4-trimethylcyclopentyl]phenol Chemical compound CC1CC(C)(C)CC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 NRTJOSFDLNGXOS-UHFFFAOYSA-N 0.000 description 2
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 2
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- YCUVUDODLRLVIC-UHFFFAOYSA-N Sudan black B Chemical compound C1=CC(=C23)NC(C)(C)NC2=CC=CC3=C1N=NC(C1=CC=CC=C11)=CC=C1N=NC1=CC=CC=C1 YCUVUDODLRLVIC-UHFFFAOYSA-N 0.000 description 2
- KYPYTERUKNKOLP-UHFFFAOYSA-N Tetrachlorobisphenol A Chemical compound C=1C(Cl)=C(O)C(Cl)=CC=1C(C)(C)C1=CC(Cl)=C(O)C(Cl)=C1 KYPYTERUKNKOLP-UHFFFAOYSA-N 0.000 description 2
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 2
- RFQSMLBZXQOMKK-UHFFFAOYSA-N [3-[(4,8-diamino-6-bromo-1,5-dioxonaphthalen-2-yl)amino]phenyl]-trimethylazanium;chloride Chemical compound [Cl-].C[N+](C)(C)C1=CC=CC(NC=2C(C3=C(N)C=C(Br)C(=O)C3=C(N)C=2)=O)=C1 RFQSMLBZXQOMKK-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- AOGYCOYQMAVAFD-UHFFFAOYSA-N chlorocarbonic acid Chemical class OC(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000010147 laser engraving Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 239000010981 turquoise Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- WZEYZMKZKQPXSX-UHFFFAOYSA-N 1,3,5-trimethylbenzene Chemical compound CC1=CC(C)=CC(C)=C1.CC1=CC(C)=CC(C)=C1 WZEYZMKZKQPXSX-UHFFFAOYSA-N 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- VPVTXVHUJHGOCM-UHFFFAOYSA-N 2,4-bis[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(C(C)(C)C=2C=CC(O)=CC=2)=CC=1C(C)(C)C1=CC=C(O)C=C1 VPVTXVHUJHGOCM-UHFFFAOYSA-N 0.000 description 1
- VXHYVVAUHMGCEX-UHFFFAOYSA-N 2-(2-hydroxyphenoxy)phenol Chemical compound OC1=CC=CC=C1OC1=CC=CC=C1O VXHYVVAUHMGCEX-UHFFFAOYSA-N 0.000 description 1
- BLDLRWQLBOJPEB-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfanylphenol Chemical class OC1=CC=CC=C1SC1=CC=CC=C1O BLDLRWQLBOJPEB-UHFFFAOYSA-N 0.000 description 1
- XSVZEASGNTZBRQ-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfinylphenol Chemical class OC1=CC=CC=C1S(=O)C1=CC=CC=C1O XSVZEASGNTZBRQ-UHFFFAOYSA-N 0.000 description 1
- QUWAJPZDCZDTJS-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfonylphenol Chemical class OC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1O QUWAJPZDCZDTJS-UHFFFAOYSA-N 0.000 description 1
- KYGLCUAXJICESS-UHFFFAOYSA-N 2-[2,3-di(propan-2-yl)phenyl]phenol Chemical class CC(C)C1=CC=CC(C=2C(=CC=CC=2)O)=C1C(C)C KYGLCUAXJICESS-UHFFFAOYSA-N 0.000 description 1
- XBQRPFBBTWXIFI-UHFFFAOYSA-N 2-chloro-4-[2-(3-chloro-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound C=1C=C(O)C(Cl)=CC=1C(C)(C)C1=CC=C(O)C(Cl)=C1 XBQRPFBBTWXIFI-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical class CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- YMTYZTXUZLQUSF-UHFFFAOYSA-N 3,3'-Dimethylbisphenol A Chemical compound C1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=CC=2)=C1 YMTYZTXUZLQUSF-UHFFFAOYSA-N 0.000 description 1
- ZEKCYPANSOJWDH-UHFFFAOYSA-N 3,3-bis(4-hydroxy-3-methylphenyl)-1H-indol-2-one Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3NC2=O)C=2C=C(C)C(O)=CC=2)=C1 ZEKCYPANSOJWDH-UHFFFAOYSA-N 0.000 description 1
- NECRQCBKTGZNMH-UHFFFAOYSA-N 3,5-dimethylhex-1-yn-3-ol Chemical compound CC(C)CC(C)(O)C#C NECRQCBKTGZNMH-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- SUCTVKDVODFXFX-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)sulfonyl-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(S(=O)(=O)C=2C=C(C)C(O)=C(C)C=2)=C1 SUCTVKDVODFXFX-UHFFFAOYSA-N 0.000 description 1
- AZZWZMUXHALBCQ-UHFFFAOYSA-N 4-[(4-hydroxy-3,5-dimethylphenyl)methyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CC=2C=C(C)C(O)=C(C)C=2)=C1 AZZWZMUXHALBCQ-UHFFFAOYSA-N 0.000 description 1
- BRPSWMCDEYMRPE-UHFFFAOYSA-N 4-[1,1-bis(4-hydroxyphenyl)ethyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=C(O)C=C1 BRPSWMCDEYMRPE-UHFFFAOYSA-N 0.000 description 1
- BWCAVNWKMVHLFW-UHFFFAOYSA-N 4-[1-(4-hydroxy-3,5-dimethylphenyl)cyclohexyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C2(CCCCC2)C=2C=C(C)C(O)=C(C)C=2)=C1 BWCAVNWKMVHLFW-UHFFFAOYSA-N 0.000 description 1
- IIQVXZZBIGSGIL-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-3,3-dimethylcyclohexyl]phenol Chemical compound C1C(C)(C)CCCC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 IIQVXZZBIGSGIL-UHFFFAOYSA-N 0.000 description 1
- XJGTVJRTDRARGO-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)propan-2-yl]benzene-1,3-diol Chemical compound C=1C=C(O)C=C(O)C=1C(C)(C)C1=CC=C(O)C=C1 XJGTVJRTDRARGO-UHFFFAOYSA-N 0.000 description 1
- RQTDWDATSAVLOR-UHFFFAOYSA-N 4-[3,5-bis(4-hydroxyphenyl)phenyl]phenol Chemical compound C1=CC(O)=CC=C1C1=CC(C=2C=CC(O)=CC=2)=CC(C=2C=CC(O)=CC=2)=C1 RQTDWDATSAVLOR-UHFFFAOYSA-N 0.000 description 1
- OBZFGWBLZXIBII-UHFFFAOYSA-N 4-[3-(4-hydroxy-3,5-dimethylphenyl)-3-methylbutyl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(CCC(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 OBZFGWBLZXIBII-UHFFFAOYSA-N 0.000 description 1
- NIRYBKWMEWFDPM-UHFFFAOYSA-N 4-[3-(4-hydroxyphenyl)-3-methylbutyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)CCC1=CC=C(O)C=C1 NIRYBKWMEWFDPM-UHFFFAOYSA-N 0.000 description 1
- CIEGINNQDIULCT-UHFFFAOYSA-N 4-[4,6-bis(4-hydroxyphenyl)-4,6-dimethylheptan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)CC(C)(C=1C=CC(O)=CC=1)CC(C)(C)C1=CC=C(O)C=C1 CIEGINNQDIULCT-UHFFFAOYSA-N 0.000 description 1
- IQNDEQHJTOJHAK-UHFFFAOYSA-N 4-[4-[2-[4,4-bis(4-hydroxyphenyl)cyclohexyl]propan-2-yl]-1-(4-hydroxyphenyl)cyclohexyl]phenol Chemical compound C1CC(C=2C=CC(O)=CC=2)(C=2C=CC(O)=CC=2)CCC1C(C)(C)C(CC1)CCC1(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 IQNDEQHJTOJHAK-UHFFFAOYSA-N 0.000 description 1
- LIDWAYDGZUAJEG-UHFFFAOYSA-N 4-[bis(4-hydroxyphenyl)-phenylmethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC(O)=CC=1)C1=CC=CC=C1 LIDWAYDGZUAJEG-UHFFFAOYSA-N 0.000 description 1
- BOCLKUCIZOXUEY-UHFFFAOYSA-N 4-[tris(4-hydroxyphenyl)methyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 BOCLKUCIZOXUEY-UHFFFAOYSA-N 0.000 description 1
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 238000012696 Interfacial polycondensation Methods 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N benzene-dicarboxylic acid Natural products OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 1
- 229940114055 beta-resorcylic acid Drugs 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 description 1
- 235000012709 brilliant black BN Nutrition 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- XRPLBRIHZGVJIC-UHFFFAOYSA-L chembl3182776 Chemical compound [Na+].[Na+].NC1=CC(N)=CC=C1N=NC1=CC=C(C=2C=CC(=CC=2)N=NC=2C(=CC3=CC(=C(N=NC=4C=CC=CC=4)C(O)=C3C=2N)S([O-])(=O)=O)S([O-])(=O)=O)C=C1 XRPLBRIHZGVJIC-UHFFFAOYSA-L 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 235000020544 functional carbonate Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000012434 nucleophilic reagent Substances 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical compound C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- 229960001553 phloroglucinol Drugs 0.000 description 1
- 125000002444 phloroglucinyl group Chemical group [H]OC1=C([H])C(O[H])=C(*)C(O[H])=C1[H] 0.000 description 1
- 125000005543 phthalimide group Chemical group 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 235000019633 pungent taste Nutrition 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000013545 self-assembled monolayer Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 150000003510 tertiary aliphatic amines Chemical class 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- GMMAPXRGRVJYJY-UHFFFAOYSA-J tetrasodium 4-acetamido-5-hydroxy-6-[[7-sulfonato-4-[(4-sulfonatophenyl)diazenyl]naphthalen-1-yl]diazenyl]naphthalene-1,7-disulfonate Chemical compound [Na+].[Na+].[Na+].[Na+].OC1=C2C(NC(=O)C)=CC=C(S([O-])(=O)=O)C2=CC(S([O-])(=O)=O)=C1N=NC(C1=CC(=CC=C11)S([O-])(=O)=O)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 GMMAPXRGRVJYJY-UHFFFAOYSA-J 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/40—Manufacture
- B42D25/45—Associating two or more layers
- B42D25/46—Associating two or more layers using pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M3/00—Printing processes to produce particular kinds of printed work, e.g. patterns
- B41M3/14—Security printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/20—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
- B42D25/21—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose for multiple purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44F—SPECIAL DESIGNS OR PICTURES
- B44F1/00—Designs or pictures characterised by special or unusual light effects
- B44F1/08—Designs or pictures characterised by special or unusual light effects characterised by colour effects
-
- B42D2035/14—
-
- B42D2035/50—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/40—Manufacture
- B42D25/45—Associating two or more layers
- B42D25/455—Associating two or more layers using heat
Definitions
- the present invention relates to a polymer layer composite for a security and / or value document and to a method for its production. Furthermore, the invention relates to a security and / or value document which can be produced from the polymer layer composite according to the invention, for example by welding the composite into transparent protective films. Moreover, the invention relates to the use of the security and / or value document as identity card, passport, credit card, bank card, cash card, customer card, Visa card, ID card or driver's license.
- Card-shaped data carriers are used, for example, for the identification of persons and / or objects and / or for cashless payment transactions. You have u.a. visually identifiable features that they clearly assign to a person and / or an item and / or a money or securities account and only allow the owner to identify himself or to dispose of the item or account and arrange for money transfers. For this reason, these data carriers must have security features that make it virtually impossible for unauthorized persons to falsify or falsify the cards, so that abuse can be prevented as much as possible. In addition, a fake should therefore be easily recognizable.
- Essential security features in the card-shaped data carriers are personalized and / or individualized features that are stored in the data carrier.
- Personalized features are, for example, passport photos and data of the person to whom the card is associated, such as date of birth, address or identification number in a company, as well as biometric data such as a digitized record of fingerprints or the size, or the person's eye color or affiliation health insurance.
- Individualized features are data associated with a particular device such as a motor vehicle, a bank account, or a security.
- Such personalized and / or individualized features are applied individually to the card-shaped data carriers for the person using them. Therefore, the process for their generation must be flexible.
- methods and apparatus for applying such data to card-shaped data carriers are known in the art US 6,022,429 A . US 6,264,296 B1 . US 6,685,312 B2 . US 6,932,527 B2 . US Pat. No. 6,979,141 B1 and US 7,037,013 B2 , wherein the personalized and / or individualized features can be applied to the cards, inter alia, by means of inkjet printing technology.
- EP 0 384 274 A2 a method for producing a multi-layer ID card is described in which security-specific data are introduced with an ink-jet printing process.
- the point overlap compensated error diffusion method is used.
- the compensation of the point overlap depends on the point size and the dot shape.
- satellite pixels may be generated in addition to the main printing pixels produced in printing. Such satellite pixels are avoided at a pressure to produce a perfect print image.
- droplet formation not only forms a uniform droplet, but occurs depending on the ink properties and the conditions under which the droplets are formed (for example, the flank shape of the droplet ejection from the pressure nozzle determining electrical signal to drive the nozzle; or bubble jet actuator), more or less long "drop tails" whose velocity is smaller than that of the leading drops and from which therefore further successive satellite drops can form ( H.Wijshoff in: "Drop formation mechanisms in piezo-acoustic inkjet", available at http://www.flow3d.com/pdfs/tp/micro_tp/FloSci-Bib01-07.pdf on 8.2.2008 ).
- a method for encoding a primary image with a secondary image in which the primary image and the secondary image are rasterized.
- the secondary image is hidden in the primary image by being compensated for with its own inverse representation.
- a coding method is used in which the points of the rasterized primary image can be modified or changed so that the balanced secondary image in the primary image is invisible.
- the points in the primary image are grouped and the information of the secondary image is fed into these point groups.
- Such variations may be in the density, shape and shape, angle, position, size, or frequency of the individual points in the point groups.
- variable graphic elements in particular alphanumeric characters, images, barcodes, specified in value and security documents
- at least the surfaces of the variable graphic elements are provided with microscopic fine structures and in which between spectral and / or geometric properties of the structures in terms of color and pattern and the variable graphic elements to be protected a defined context in the form of a code is made.
- a color information of the graphic structure is proposed as a security feature.
- color codes can be defined for alphanumeric characters, which recur in the structures of the individual elements.
- the letter "c" is changed on the letter surface by picking up a c-shaped strip, which is a protective structure.
- the letter is assigned a color identical to the color of the protective structure in the "c".
- High-quality card-shaped data carriers today consist in particular of polycarbonate.
- Personalization and / or customization of polycarbonate-based cards typically takes place by laser engraving.
- a laser beam is focused into the material and guided over the material.
- the laser beam produces pungencies in the interior through pyrolysis, which vary in intensity depending on the laser intensity and duration at the respective points.
- an image or other graphics or even a lettering or a number and / or letter combination can be generated.
- the present invention is based initially on the problem that a layer composite with personalized and / or individualized features that have been produced by printing, may be delaminated or split by unauthorized manipulation, so that it is desirable to find a method with this is certainly prevented.
- print reproduction which is structured in some way and a print reproduction over the entire surface.
- Structured print reproduction can be, for example, an image, such as a passport photograph, or a graphic print reproduction, for example guilloches or a background screening, or alphanumeric Characters or a one-dimensional or two-dimensional barcode or emblem, coats of arms, national emblems or any other print reproduction.
- Pixel means the smallest possible element in printing a rasterized image. Pixels usually have simple geometric shapes, such as circles or squares. In ink-jet printing, usually circular or circular shapes are generated which are defined by the ink spot spreading in the printing medium. The entirety of all pixels of an image forms a representation in their relative arrangement to one another.
- the term "satellite pixel” is to be understood as an ink stain on the print medium which, in a drop-dot based printing process, under certain conditions, in addition to the actual main ink spot, the main pixel.
- a satellite pixel is associated with a main pixel and therefore has a close spatial relationship with it.
- the satellite pixel is typically very close to the main pixel and may ideally merge with it or be separated therefrom if additional satellite pixels are to be generated and the satellite pixels are formed at a greater distance from the main pixel.
- Satellite pixels are characterized, inter alia, by being in a fixed geometric relationship relative to the main pixels to which they are associated, for example by always being on the connecting line between adjacent main pixels or appearing at a certain angle to that connecting line, if not spattering of printing ink, which statistically produce ink stains. If the printing direction (relative direction of movement between the printing head and the printing medium) is reversed, this angle is also mirrored on a perpendicular to the printing direction.
- certain print pixels composed of main pixels and satellite pixels are in a first spatial orientation and other pixels, for example in a different color and / or size, in one varying geometric relationship.
- main and satellite pixels in adjacent main pixel satellite pixel ensembles may also be arranged in a different geometric arrangement relative to one another, wherein only ensembles with the same geometric orientation occur within a group.
- adjacent ensembles can also appear in different geometric orientations, provided that they belong to different groups.
- An essential feature of satellite pixels is that they are typically smaller than the major pixels to which they are associated.
- digital printing method is to be understood as a printing method in which the data required for imaging digitally created and printing directly, as in the inkjet printing process, or indirectly, as in a xerographic printing process can be used to produce the printed image without the need for an explicit printing plate.
- This is a non-impact printing process, i. a method in which no solid printing form (a printing cylinder or a stamp) is used.
- a polymer layer composite for a security and / or value document for example for a credit card, bank card, cash card, customer card, visa card, ID card or driver's license, passport, identity card, is proposed according to the invention, which comprises at least two having cohesively interconnected polymer layers, wherein on at least one surface of at least one of the polymer layers each consisting of printing pixels pressure layers are formed in a pressure range.
- the print pixels each consist of a main pixel and at least one satellite pixel assigned to the main pixel.
- Such a polymer layer composite is produced according to the invention using the following method steps: (a) providing the polymer layers for the polymer layer composite; (b) forming respective print layers of print pixels on at least one surface of at least one of the polymer layers in a print area; In this case, the print pixels are each formed from a main pixel and at least one satellite pixel associated with the main pixel; and (c) bonding the polymer layers together.
- the starting point of the present invention is the recognition that novel security features in security and / or value documents can be generated if pixel-oriented printing methods are used and the individual screen dots of a screened representation, in particular of personalized and / or individualized features, are modified in such a way that respectively a main pixel and satellite pixels associated therewith are generated.
- the entire representation is then preferably composed of main pixels and associated with them satellite pixels.
- pixel-oriented printing methods in particular the inkjet printing method, are set up such that the respectively printed pixels have the most reproducible shapes, areas and color densities.
- the print is optimized so that no satellite pixels form.
- Each printing pixel then ideally consists of a circular surface. Therefore, the presence of satellite pixels, in addition to the main pixels to which they are associated, constitutes a security feature in the security and / or value document. Thus, if no such satellite pixels are detected in a security and / or value document, even though the standard document is printed with such pixel shapes it is easy to identify a forgery or falsification.
- satellite pixels are smaller than the main pixels to which they are assigned.
- the relative diameter of the two pixel types reference is made to the above definition.
- each generated main pixel in the representation may be associated with a single satellite pixel.
- the rising edge of the actuator piezoelectric crystal, resistance heating in the bubble jet inkjet printer
- the single ink drops are ejected from the print head. This is because the main part of a drop is ejected from a discharge port in the print head at a high speed, but a smaller part still leaks when the discharge operation is actually already completed and the meniscus of the ink liquid in the discharge port is already starting to retire ( "fill-before-fire action").
- the security feature that can be produced with the invention can be realized in an arbitrarily designed representation: It can be structured, such as an image, for example a passport photograph, or as a graphic, such as guilloche, or as a raster, in particular a background raster (for example diamond, hahentritt -, pepita-, herringbone, checkerboard-shaped screening), or as alphanumeric characters, for example for the representation of personalized data of the holder or the marked object (for example motor vehicle), or as a barcode or as an emblem, coats of arms, insignia, a flag, a test mark, warranty, seal.
- the representation can also be just a uniformly colored surface without structure, such as a white, black, gray or somehow colored surface.
- all or only certain, uniquely identifiable groups of print pixels can be embodied as main pixel satellite pixel ensembles.
- all print pixels that are not black may be provided with satellite pixels.
- the present invention relates to a composite of polymer layers, which may optionally also contain layers of other materials, such as cardboard, paper, textiles, fabrics, knitted or prepregs, for the production of security and / or value documents.
- the polymer layers can, identically or differently, be based on a polymer material from the group comprising PC (polycarbonate, especially bisphenol A polycarbonate), PET (polyethylene glycol terephthalate), PMMA (polymethyl methacrylate), TPU (thermoplastic polyurethane elastomers), PE (polyethylene), PP (Polypropylene), PI (polyimide or poly-trans-isoprene), PVC (polyvinyl chloride) and copolymers of such polymers. Furthermore, coextruded films of these materials can be used.
- PC polycarbonate, especially bisphenol A polycarbonate
- PET polyethylene glycol terephthalate
- PMMA polymethyl methacrylate
- TPU thermoplastic polyurethane elastomers
- PE polyethylene
- PP Polypropylene
- PI polyimide or poly-trans-isoprene
- PVC polyvinyl chloride
- low-T g polycarbonate-based materials are polymers whose glass transition temperature is below 140 ° C.
- the polymer layers can be filled or unfilled.
- the filled polymer layers contain in particular color pigments or other fillers.
- the polymer layers may also be dyed with dyes or colorless and, in the latter case, transparent, translucent or opaque.
- the base polymer of at least one of the polymer layers to be joined contains identical or different mutually reactive groups, wherein react at a laminating temperature of less than 200 ° C reactive groups of a first polymer layer with each other and / or with reactive groups of a second polymer layer.
- the lamination temperature can be lowered without jeopardizing the intimate bond of the laminated layers.
- this is due to the fact that the various polymer layers can no longer be readily delaminated due to the reaction of the respective reactive groups. Because between the polymer layers takes place a reactive coupling, as it were a reactive lamination.
- the glass transition temperature T g of the at least one polymer layer before the thermal lamination is less than 120 ° C. (or even less than 110 ° C. or less than 100 ° C.). is, wherein the glass transition temperature of this polymer layer after the thermal lamination by reacting reactive groups of the base polymer of the polymer layer with each other by at least 5 ° C, preferably at least 20 ° C, higher than the glass transition temperature before the thermal lamination. In this case, not only is a reactive coupling of the layers to be laminated together.
- the lamination temperature when using such polymer materials less than 180 ° C, more preferably still less than 150 ° C.
- suitable reactive groups is readily possible for a person skilled in the art of polymer chemistry.
- the reactive groups may be attached directly to the base polymer or linked to the base polymer via a spacer group.
- Suitable spacer groups are all spacer groups known to the person skilled in the art of polymer chemistry.
- the spacer groups may also be oligomers or polymers which impart elasticity, whereby a risk of breakage of the security and / or value document is reduced. Such elasticity-promoting spacer groups are known to the person skilled in the art and therefore need not be further described here.
- base polymer in the context of the above statements designates a polymer structure which does not bear any groups reactive under the lamination conditions used. These may be homopolymers or copolymers. Compared to the polymers mentioned also modified polymers are included.
- the present invention serves to produce security features in security and / or value documents.
- the security features may in particular be personalized and / or individualized features.
- the personalized feature may in particular be a passport photograph.
- a personalized feature can also include data of the person to whom the security and / or value document is assigned, for example the date of birth, the address or identification number in a company, as well as biometric data, such as a digitized record of fingerprints, or the size, eye color of the person or their affiliation to a health insurance company.
- an individualized feature may represent data pertaining to a particular item, such as a motor vehicle, or to a particular entity, such as a bank account or a security.
- the personalized and / or individualized feature in turn is changed by the formation of the individual print pixels in the main pixels and satellite pixels as another security feature. That despite the change, the printed image can be seen with the naked eye, while it can be seen, given a corresponding optical magnification, that the individual printing pixels are formed as ensembles of main pixels and satellite pixels.
- the particular grid structure according to the invention with main pixels and satellite pixels is preferably realized with a digital printing method (non-impact printing), more preferably with a drop-on-demand printing method, and most preferably with an ink-jet printing method. If an inkjet printing process is used, ensembles of main and satellite pixels can be set by simply adjusting the printing process be generated. In other cases, these ensembles are merely simulated. In principle, therefore, all printing methods can be used with which such ensembles can be simulated in a screened representation of the individual picture elements (pixels).
- the printing method used achieves a sufficient resolution in order to be able to produce the picture elements composed of main and satellite pixels in addition to a conventional image composed of picture elements in the form of a sufficiently high quality image.
- the following printing methods are also basically applicable: conventional printing methods, such as wet and dry offset and other planographic printing, gravure, high-pressure, but also electrophotographic or thermographic process.
- digital printing methods in addition to the ink-jet printing method, for example, xerographic methods, preferred because they are very flexible, in particular for the production of personalized and / or individualized pattern.
- the pattern is formed with an ink jet print head on one of the surfaces, the pattern being subdivided into pixels, and at least a portion of these pixels consisting of main and satellite pixels in the sense of the invention.
- each satellite pixel is relative to a respective main pixel to which it is assigned at a predetermined angle ⁇ to the direction in which the inkjet printhead and the surface are moved relative to each other (printing direction) on the surface generated. This means that the satellite pixels, when viewed from the surface after printing, are arranged in a specific orientation to the associated main pixels, for example in the "5 o'clock position" or in the "half-o'clock position".
- said angle ⁇ is not 0 ° or 180 °, relative to the printing direction.
- the satellite pixels would lie on the connecting lines of main pixels which are successively printed in the process (scanning) of the print head and the print medium relative to each other.
- Such orientation would typically result in conventional ink jet printing, even though there are no particular devices to suppress satellite pixels, because the satellite drops are later due to their lower exit velocity from the print head exit ports than the main drop hit the print medium and impinge on the connecting line successively printed main pixels because of the now made offset in the process of the printhead next to the main pixel.
- a satellite drop might appear to the right or left of the main pixel.
- the satellite pixel would always appear behind the main pixel, taking into account the direction of travel of the printhead.
- the satellite pixels are not printed on the connecting lines, but above or below the connecting lines.
- Such an orientation can only be established if specific measures have been taken to specifically divert the satellite drops at an angle ⁇ with respect to a plane defined by the respective main pixel and the printing direction.
- each satellite pixel irrespective of the printing direction relative to the respective main pixel to which it is associated, may be formed at a predetermined angle ⁇ to a connecting line of adjacent printed major pixels on the surface.
- a device for deflecting the satellite drops emerging from the print head is provided on the print head.
- This device may, in particular, be a through-opening device, which is arranged directly adjacent to the outlet openings of the print head.
- the portion of the intervening liquid which ultimately forms the satellite pixels passes at an angle ⁇ to a plane passing through the respective main pixel and the printing direction is defined, off.
- This part of the ink liquid is formed by the tail of the ejected ink liquid whose airspeed is lower than the part of the ink liquid at the head of the ejected liquid stream and forming during the flight to the main droplet.
- the device for deflecting the satellite drops can, as in US 7,093,915 B2 or US 2003/0179258 A1 formed by a through-hole plate, which is brought into direct contact with the part of the print head in contact, in the the outlet openings for the ink liquid are located.
- the passage openings in this plate are inserted in register with the outlet openings in the printhead in the plate.
- the plate is not mounted on the print head so that the outlet openings are aligned with the through holes, but such that there is a small offset, so that although there is a free cross section for the passage of the ink liquid, but this cross-section is narrowed.
- the tail of the fluid path receives a pulse parallel to the plane of the plate so that the satellite drop forming from the tail is deflected from the original exit direction in which the bulk of the ink fluid is expelled. become.
- the main drop maintains the exit direction defined by the normal to the plane defined by the exit ports of the printhead.
- the passage openings in the plate are indeed adjusted in register with the outlet openings in the print head.
- these through-holes are designed in a special way, in such a way that the trajectory of the satellite drop is deflected, for instance through through-holes with a curved, S-shaped or otherwise specially designed profile.
- a predetermined color ⁇ at which a satellite pixel is generated relative to the main pixel to which it is associated is assigned a particular color.
- the main pixel and the associated satellite pixel are generated according to this embodiment at this angle ⁇ and printed in this color associated with the angle ⁇ .
- Another security feature is available. This security feature is that a particular color is associated with a particular orientation of a satellite pixel relative to the main pixel to which it is associated, and that the main and satellite pixels are also printed in that color. A forgery or falsification occurs when such a shaped printing pixel is not printed in the associated color.
- a plurality of predefined angles ⁇ 1 , ⁇ 2 ,..., ⁇ n ,... Below which satellite pixels are generated relative to the respective main pixels to which they are associated are each assigned a specific color be.
- the main pixel and the associated satellite pixels are generated under the respective angles ⁇ n and printed in this angle ⁇ n associated color.
- a pattern may include printing pixels that appear at the 1 o'clock position, 4 o'clock position, 7 o'clock position, and 10 o'clock position on the printed surface, relative to the associated main pixels ,
- the respective orientations are assigned specific colors, such as the colors of the CMYK color space, for example the 1 o'clock position of the color yellow, the 4 o'clock position of the color magenta, the 7 o'clock position of the color cyan and the 10 o'clock. Clock position of the color "Black”.
- a representation which consists of pixels, each consisting of main and satellite pixels, wherein at least individual pixels are printed in a color that does not correspond to the respective associated orientation of the satellite pixels to their associated main pixels, so for example Printing pixel with satellite pixels in 7 o'clock position in yellow, the document proves to be fake or as falsified.
- the main pixels and the associated satellite pixels are generated in this case at the respective angle ⁇ n and on this surface associated with the angle ⁇ n .
- the print pixels are printed on each surface with a different orientation of the satellite pixels to the associated main pixels, for example on the first surface with satellite pixels in the 2 o'clock position, on the second surface in the 5 o'clock position, on the third surface in 8 o'clock position and on the fourth surface in 11 o'clock position. If it turns out that in a document with such coding of the pixels with colors an incorrect assignment takes place, it can be determined that this document is forged or falsified.
- This embodiment is particularly advantageous when the different surfaces are spaced from each other by at least one layer of the composite, so that a distinction of the individual composite layers is made possible.
- the representations in the above embodiment may be printed on the different surfaces in different colors.
- multiple representations printed on different surfaces may be color separations of a color image.
- the individual color separations according to the above embodiments of the invention can be provided with different orientations of the satellite pixels and color-coded.
- the said security features may in principle be formed on a single surface of a layer of the composite layer, or it may be formed on different surfaces in the multilayer composite layers, these multiple surfaces are preferably separated from each other by at least one polymer layer and thus spaced from each other, and wherein the layers of the layer composite are joined together such that the representations of all printed layers, for example color separations of a photo, preferably lie exactly above one another on the different surfaces.
- polymer layers which are colorless and transparent in order to be able to visually visually recognize the printed layers in the different layers of the layer composite from the outside.
- a suitable representation for example a passport picture
- a division of the fields on two surfaces can be made such that the first, third, fifth ... field of successive in a row Fields in the representation on a first surface and the second, fourth, sixth, ... field on a second surface and the corresponding fields of further rows, for example offset from the adjacent rows, are distributed in the same way to the two surfaces.
- the result is a spatial impression of the representation, which is the more the more printed layers on different surfaces in the laminate are included in this representation. Furthermore, it is also possible to produce different color separations of the representation and to print the color separations on different surfaces in the layer composite so that the desired colored representation results when the individual polymer layers are combined to form the layer composite.
- a further printing layer can also be applied, this further printing layer being printed on a surface which is modified in partial regions, for example with a screen or other type of pattern. Screening or other patterning in the modification of the surface is performed in this embodiment by changing the surface energy of the surface to be screened in partial areas corresponding to the grid, so that the ink liquid does not wet the surface in these partial areas. This change in surface energy may consist in hydrophilizing an otherwise hydrophobic surface or in hydrophobing an otherwise hydrophilic surface.
- the portions of the surfaces in the printing areas may be modified by increasing their hydrophilicity, i. their tendency is increased to be wetted by water. This ensures that the ink is not absorbed during the printing process of the modified areas but rejected. Hydrophilization can be carried out, for example, by using reactive reagents on the surfaces in the subregions to be modified.
- the surface can be provided with a raster-shaped printing with a raster reproducing this silicone stamp in microcontact printing process.
- an aerosol writing method can also be used, for example the M 3 D® method from Optomec®, US. This is a maskless application method in which the reactive reagents are atomized with a sprayer, the generated aerosol is transported with a first gas stream to a nozzle and sprayed by means of a second gas stream focused on the surface sub-areas.
- the surface may be contacted with the reactive reagents which react with and hydrophilize the material of the surface.
- Such hydrophilic reagents may, in particular, be compounds which have at least one group reactive with the material of the polymer layers to be modified and at least one hydrophilic group.
- Spacer groups may be provided between the reactive groups and the hydrophilic groups.
- the reactive groups may, inter alia, be selected from the group comprising carboxylic acid chloride, carboxylic acid anhydride, Oxirane and phthalimide groups.
- the portions of the surface to be modified may be provided with a hydrophilic coating, such as a hydrophilic paste or a hydrophilic dispersion. To impart adhesion of the paste or dispersion to the hydrophobic surface, the paste or dispersion contains, for example, a surfactant.
- hydrophilic surfaces are rendered hydrophobic, for example by fluorination or siliconization, for example by applying a hydrophobic layer, for example a layer containing fluorinated binder components.
- the structuring to produce the hydrophobic subregions can in turn be realized with a stamp in the microcontact printing process or with a drop-on-demand printing process or with a photolithographic process.
- Polycarbonate layers can also be rendered hydrophobic.
- diamond-shaped, triangular, square or hexagonal or also differently sized printing pixels can be produced.
- a color can be assigned, for example, triangular pressure pixels of cyan, squared pressure pixels of the color magenta, hexagonal pressure pixels of the color yellow and diamond-shaped printing pixels of the color black .
- any other pattern may be created as a secondary latent visible image superimposing the primary visible image, such as guilloches.
- the security feature formed by the primary visible image and the secondary latent visible pattern may be generated in a print area other than the print area in which the security feature of the invention formed by print pixels with satellite pixels is created becomes.
- the two pressure areas may preferably be on surfaces in the layer composite, which are separated from each other by at least one layer of the composite.
- these two pressure ranges can overlap at least partially, so that overlapping partial images result in a common representation, for example a passport photograph.
- different security features are realized in this case: first, in a first printing area, the security feature formed by additional satellite pixels at the associated main pixels, and in a second printing area, the security feature realized by the modification of the partial areas of the surfaces.
- the generation of security features according to the invention by generating satellite pixels in addition to main pixels can also be combined with the above further embodiment, in which the surface is modified in subregions, in the same printing area and thus on the same surface of a polymer layer.
- the primary visible print image is to be printed with satellites
- the secondary latent visible information results in surface screening with grid areas that are larger than the areas of the print pixels.
- the satellites are visible at the main pixels because the print pixels in the grid areas are substantially completely contained.
- the presence of both the rasterization and the formation of the print pixels with main and satellite pixels represents further security features.
- the above embodiments may also refer to a black / white representation, optionally with gray tones, instead of colored representations. These embodiments represent additional security features to the security features according to the invention and can be combined with these.
- the respective printed layers are arranged in the polymer layer composite on inner layers of the composite. In this case is prevents or even precludes forgery or falsification of printed layers serving as security features.
- diphenols of the formula (Ia) may also be mixed with other diphenols, for example with those of the formula (Ib) HO-Z-OH (Ib), be used for the preparation of high molecular weight, thermoplastic, aromatic polycarbonate derivatives.
- Suitable other diphenols of the formula (Ib) are those in which Z is an aromatic radical having 6 to 30 C atoms, which may contain one or more aromatic nuclei, may be substituted, and aliphatic radicals or cycloaliphatic radicals other than those of the formula (II) Ia) or heteroatoms may contain as bridge members.
- diphenols of the formula (Ib) are hydroquinone, resorcinol, dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ether, bis ( hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) sulfoxides, ⁇ , ⁇ 'bis (hydroxyphenyl) diisopropylbenzenes and their nuclear alkylated and nuclear halogenated compounds.
- diphenols of the formula (Ib) are hydroquinone, resorcinol, dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ether, bis ( hydroxyphenyl) ketones, bis
- Preferred other diphenols are, for example: 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis ( 4-hydroxyphenyl) cyclohexane, ⁇ , ⁇ - bis (4-hydroxyphenyl) -p-diisopropylbenzene, 2,2-bis- (3-methyl-4-hydroxyphenyl) -propane, 2,2-bis (3-chloro-4-hydroxyphenyl) -propane, bis (3,5-dimethyl-4-hydroxyphenyl) - methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (3,5-dimethyl-4-hydroxyphenyl) sulfone, 2,4-bis (3,5-dimethyl 4-hydroxyphenyl) -2-methylbutane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexan
- diphenols of the formula (Ib) are, for example, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) -propane, 2,2-bis- (3,5-dichloro-4-hydroxyphenyl) -propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) -propane and 1,1-bis (4-hydroxyphenyl) -cyclohexane.
- 2,2-bis (4-hydroxyphenyl) propane is preferred.
- the other diphenols can be used both individually and in a mixture.
- the molar ratio of diphenols of the formula (Ia) to the other diphenols of the formula (Ib) which may optionally be used should be between 100 mol% (Ia) to 0 mol% (Ib) and 2 mol% (Ia) 98 mol% (Ib), preferably between 100 mol% (Ia) to 0 mol% (Ib) and 10 mol% (Ia) to 90 mol% (Ib) and in particular between 100 mol% (Ia ) to 0 mol% (Ib) and 30 mol% (Ia) to 70 mol% (Ib).
- the high molecular weight polycarbonate derivatives from the diphenols of the formula (Ia), optionally in combination with other diphenols, can be prepared by the known polycarbonate production processes.
- the various diphenols can be linked together both statistically and in blocks.
- the polycarbonate derivatives used can be branched in a manner known per se. If the branching is desired, this can in known manner by condensing small amounts, preferably amounts of 0.05 to 2.0 mol% (based on diphenols), of trifunctional or more than trifunctional compounds, especially those with three or more than three phenolic hydroxyl groups.
- Some branching agents having three or more than three phenolic hydroxyl groups are phloroglucinol, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptene-2,4,6-dimethyl-2,4,6-tri - (4-hydroxyphenyl) heptane, 1,3,5-tri (4-hydroxyphenyl) benzene, 1,1,1-tri- (4-hydroxyphenyl) -ethane, tri- (4-hydroxyphenyl) -phenylmethane , 2,2-bis [4,4-bis (4-hydroxyphenyl) cyclohexyl] propane, 2,4-bis (4-hydroxyphenyl-isopropyl) -phenol, 2,6-bis (2-bis) hydroxy-5-methylbenzyl) -4-methylphenol, 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphenyl) -propane, hexa- [4- (4-hydroxyphenyl-isopropyl
- Suitable compounds are, for example, phenol, tert-butylphenols or other alkyl-substituted phenols.
- R represents a branched C 8 and / or C 9 alkyl radical.
- R represents a branched C 8 and / or C 9 alkyl radical.
- R represents a branched C 8 and / or C 9 alkyl radical.
- R represents a branched C 8 and / or C 9 alkyl radical.
- R represents a branched C 8 and / or C 9 alkyl radical.
- R represents a branched C 8 and / or C 9 alkyl radical.
- the proportion of CH 3 protons between 47 and 89% and the proportion of CH and CH 2 protons between 53 and 11%; also preferably R is in the o- and / or p-position to the OH group, and more preferably the upper limit of the ortho-portion is 20%.
- the chain terminators are generally used in amounts of 0.5 to 10, preferably 1.5 to 8 mol%, based on diphenols used.
- the polycarbonate derivatives may preferably be prepared according to the interfacial behavior (cf. H. Schnell, Chemistry and Physics of Polycarbonates, Polymer Reviews, Vol. IX, p. 33ff., Interscience Publ. 1964 ) are prepared in a conventional manner. In this case, the diphenols of the formula (Ia) are dissolved in an aqueous alkaline phase. For the preparation of copolycarbonates with other diphenols, mixtures of diphenols of the formula (Ia) and the other diphenols, for example those of the formula (Ib), are used.
- chain terminators of, for example, the formula (Ic) can be added.
- organic phase is reacted with phosgene by the method of interfacial condensation.
- the reaction temperature is in the range of 0 ° C to 40 ° C.
- branching agents preferably 0.05 to 2.0 mol% can be presented either with the diphenols in the aqueous alkaline phase or dissolved in the organic solvent added before phosgenation.
- diphenols of the formula (Ia) and, if appropriate, other diphenols (Ib), their mono- and / or bis-chloroformates may also be used, these being dissolved in organic solvents be added.
- the amount of chain terminators and of branching agents then depends on the molar amount of diphenolate radicals corresponding to formula (Ia) and optionally formula (Ib); When using chloroformates the amount of phosgene can be reduced accordingly in a known manner.
- Suitable organic solvents for the chain terminators and optionally for the branching agents and the chloroformates are, for example, methylene chloride, chlorobenzene and in particular mixtures of methylene chloride and chlorobenzene.
- the chain terminators and branching agents used can be dissolved in the same solvent.
- methylene chloride, chlorobenzene and mixtures of methylene chloride and chlorobenzene serve as the organic phase for the interfacial polycondensation.
- the aqueous alkaline phase used is, for example, NaOH solution.
- the preparation of the polycarbonate derivatives by the interfacial process can be catalyzed in a conventional manner by catalysts such as tertiary amines, in particular tertiary aliphatic amines such as tributylamine or triethylamine; the catalysts can be used in amounts of 0.05 to 10 mol%, based on moles of diphenols used.
- the catalysts can be added before the beginning of the phosgenation or during or after the phosgenation.
- the polycarbonate derivatives can be prepared by the known method in the homogeneous phase, the so-called "pyridine process” and by the known melt transesterification process using, for example, diphenyl carbonate instead of phosgene.
- the polycarbonate derivatives may be linear or branched, they are homopolycarbonates or copolycarbonates based on the diphenols of the formula (Ia). By arbitrary composition with other diphenols, in particular with those of the formula (Ib), the polycarbonate properties can be varied in a favorable manner.
- the diphenols of the formula (Ia) are present in amounts of from 100 mol% to 2 mol%, preferably in amounts of from 100 mol% to 10 mol% and in particular in amounts of from 100 mol% to 30 mol% %, based on the total amount of 100 mol% of diphenol units contained in polycarbonate derivatives.
- the polycarbonate derivative may be a copolymer comprising, in particular consisting thereof, monomer units M1 based on the formula (Ib), preferably bisphenol A, and monomer units M2 based on the geminally disubstituted dihydroxydiphenylcycloalkane, preferably the 4,4 '- (3,3,5 -trimethylcyclohexane-1,1-diyl) diphenol, wherein the molar ratio M2 / M1 is preferably greater than 0.3, in particular greater than 0.4, for example greater than 0.5. It is preferred if the polycarbonate derivative has an average molecular weight (Weight average) of at least 10,000, preferably from 20,000 to 300,000.
- component B may be substantially organic or aqueous.
- Substantially aqueous means that up to 20% by weight of component B) can be organic solvents.
- Substantially organic means that up to 5% by weight of water may be present in component B).
- Component B preferably contains one or consists of a liquid aliphatic, cycloaliphatic and / or aromatic hydrocarbon, a liquid organic ester and / or a mixture of such substances.
- the organic solvents used are preferably halogen-free organic solvents.
- aliphatic, cycloaliphatic, aromatic hydrocarbons such as mesitylene, 1,2,4-trimethylbenzene, cumene and solvent naphtha, toluene, xylene
- (organic) esters such as methyl acetate, ethyl acetate, butyl acetate, methoxypropyl acetate, ethyl 3-ethoxypropionate
- mesitylene, 1,2,4-trimethylbenzene, cumene and solvent naphtha toluene, xylene, methyl acetate, ethyl acetate, methoxypropyl acetate.
- Ethyl 3-ethoxypropionate is particularly suitable.
- a suitable solvent mixture comprises, for example, L1) 0 to 10% by weight, preferably 1 to 5% by weight, in particular 2 to 3% by weight, mesitylene, L2) 10 to 50% by weight, preferably 25 to 50% by weight %, in particular 30 to 40% by weight, 1-methoxy-2-propanol acetate, L3) 0 to 20% by weight, preferably 1 to 20% by weight, in particular 7 to 15% by weight, 1 , 2,4-trimethylbenzene, L4) 10 to 50 wt.%, Preferably 25 to 50 wt.%, In particular 30 to 40 wt.%, Ethyl 3-ethoxypropionate, L5) 0 to 10 wt.
- the preparation may contain in detail: A) 0.1 to 10 wt .-%, in particular 0.5 to 5 wt .-%, of a binder with a polycarbonate derivative based on a geminal disubstituted dihydroxydiphenylcycloalkane, B) 40 to 99.9 wt %, in particular 45 to 99.5% by weight, of an organic solvent or solvent mixture, C) 0.1 to 6% by weight, in particular 0.5 to 4% by weight, of a colorant or colorant mixture, D ) 0.001 to 6 wt .-%, in particular 0.1 to 4 wt .-%, of a functional material or a Mixture of functional materials, E) 0.1 to 30 wt .-%, in particular 1 to 20 wt .-%, additives and / or auxiliaries, or a mixture of such substances.
- colorant is all colorants. That means it can be both colorant (a review of dyes there Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release 2007, Wiley Publishing, Chapter “Dyes, General Survey ”) as well as pigments (gives an overview of organic and inorganic pigments Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release 2007, Wiley Verlag, chapter “Pigments, Organic Dyes should be soluble or (stably) dispersible or suspendible in the solvents of component B.
- the colorant is heated at temperatures of 160 ° C and more for a period of time It is also possible for the colorant to undergo a predetermined and reproducible color change under the processing conditions and to be selected accordingly .Pigments must be present not only in temperature stability, but also in the finest particle size distribution In practice, this means that the particle size should not exceed 1.0 ⁇ m, since otherwise blockages in the print head are the result.As a rule, nanoscale solid-state pigments and dissolved dyes have proved useful.
- the colorants can be cationic, anionic or even neutral. Only as examples of inkstr Colorants which can be used for printing are: Brilliant black CI No. 28440, Chromogen black CI No.
- anthraquinone, azo, quinophthalone, coumarin, methine, perinone and / or pyrazole dyes can be used as soluble colorants.
- colorants can be added either directly as a dye or pigment or as a paste, a mixture of dye and pigment together with another binder additional binder should be chemically compatible with the other components of the formulation, if such a paste is used as a colorant, the quantity of component B refers to the colorant without the other components of the paste, these other components of the paste are then included in component E.
- so-called colored pigments in the scale colors cyan-magenta-yellow and preferably also (soot) black solid color images are possible.
- Component D comprises substances that can be seen directly by the human eye or by the use of suitable detectors using technical aids.
- materials known to those skilled in the art (see also van Renesse in: Optical document security, 3rd ed., Artech House, 2005 ), which are used to secure value and security documents.
- luminescent substances dye or pigments, organic or inorganic
- photoluminophores such as photoluminophores, electroluminophores, Antistokes luminophores, fluorophores, but also magnetizable, photoacoustically addressable or piezoelectric materials.
- Raman-active or Raman-reinforcing materials can be used, as well as so-called barcode materials.
- the preferred criteria are either the solubility in the component B or pigmented systems particle sizes ⁇ 1 micron and a temperature stability for temperatures> 160 ° C in the sense of the comments on the component C.
- Functional materials can be added directly or via a paste, ie a mixture with a further binder, which then forms part of component E, or the binder of component A.
- Component E in ink-jet inks comprises conventionally prepared materials such as anti-foaming agents, modifiers, wetting agents, surfactants, flow agents, dryers, catalysts, (light) stabilizers, preservatives, biocides, surfactants, organic Polymers for viscosity adjustment, and buffer systems.
- adjusting agents are customary actuating salts in question. An example of this is sodium lactate.
- biocides all commercially available preservatives which are used for inks come into question. Examples are Proxel® GXL and Parmetol® A26.
- Suitable surfactants are all commercially available surfactants which are used for inks. Preferred are amphoteric or nonionic surfactants.
- surfactants which do not alter the properties of the dye.
- suitable surfactants are betaines and ethoxylated diols. Examples are the product series Surfynol® and Tergitol®.
- the amount of surfactants is particularly selected when used for ink-jet printing, for example, provided that the surface tension of the ink is in the range of 10 to 60 mN / m, preferably 20 to 45 mN / m, measured at 25 ° C.
- a buffer system can be set up which stabilizes the pH in the range from 2.5 to 8.5, in particular in the range from 5 to 8.
- Suitable buffer systems are lithium acetate, borate buffer, triethanolamine or acetic acid / sodium acetate.
- a buffer system will be considered in particular in the case of a substantially aqueous component B.
- To adjust the viscosity of the ink (possibly water-soluble) polymers can be provided. Here all suitable for conventional ink formulations polymers come into question.
- Examples are water-soluble starch, in particular with an average molecular weight of 3,000 to 7,000, polyvinylpyrrolidone, in particular with an average molecular weight of 25,000 to 250,000, polyvinyl alcohol, in particular with an average molecular weight of 10,000 to 20,000, xanthan gum, carboxymethyl cellulose, ethylene oxide / propylene oxide Block copolymer, especially having an average molecular weight of 1,000 to 8,000.
- An example of the latter block copolymer is the product series Pluronic®.
- the proportion of biocide, based on the total amount of ink may be in the range of 0 to 0.5% by weight, preferably 0.1 to 0.3% by weight.
- the proportion of surfactant can range from 0 to 0.2 wt .-%.
- the proportion of adjusting agents based on the total amount of ink, 0 to 1 wt .-%, preferably 0.1 to 0.5 wt .-%, amount.
- the auxiliaries also include other components, such as, for example, acetic acid, formic acid or n-methyl-pyrrolidone or other polymers from the dye solution or paste used.
- component E is supplemented, for example, on Ullmann's Encyclopaedia of Chemical Industry, Electronic Release 2007, Wiley Publishing, Chapter “Paints and Coatings", Section “Paint Additives ", directed.
- the above-described ink composition is particularly suitable for ink-jet printing, but may be used for any other printing technique as long as the ratio of the individual components to the application is adjusted.
- An advantage in this context is that the composition described contains a polycarbonate derivative as a binder, if the polymer layers of the composite also consist of polycarbonate.
- Fig. 1 Two typical main pixel satellite pixel ensembles are shown.
- the respective satellite pixel B is assigned to the corresponding main pixel A. It is located in a defined relative position to the main pixel A, in the present case approximately in the "7 o'clock position".
- the satellite pixel B is not so far away from the main pixel A that both pixels are separated from each other.
- both pixels are separated from each other. This can be achieved each time by adjusting the deflection when ejecting the ink drops from the print head.
- FIG Fig. 2 Various embodiments of matrices of major and associated satellite pixels are shown.
- a printhead 1 is shown, which is moved in a printing direction 2 via a printing medium 3, for example a polymer film.
- a printing medium for example a polymer film.
- ink outlet openings 4 at the bottom of the printhead 1 single ink drops emerge, which are initially formed in the form of droplets and then split into a main drop and a satellite drop.
- the main drop is ejected along the normal to the plane formed by the underside of the print head 1 in which the exit openings 4 are located.
- the path of the main drop is marked 5.
- the main drop forms the main pixel 11.
- the satellite drop is ejected onto the polymer film 3 in a direction deflected from the normal. This path is marked 6.
- the satellite drop forms the satellite pixel 12.
- the angle at which the satellite drop is deflected with respect to a plane defined by the printing direction 2 and the main pixel 11 is denoted by ⁇ .
- the angle at which the satellite pixel 11 appears on the polymer film 3 relative to the main pixel 12 to the printing direction 2 is denoted by ⁇ .
- a deflection device 7 is shown schematically on a drop generator 8 of a print head 1.
- the droplet generating device 8 has outlet openings 4.
- the deflection device 7 is provided with channels 9 whose inlet openings 10 are aligned with the outlet openings 4 of the droplet generating device 8.
- the channels 9 are S-shaped and thus deflect the satellite drops, while the deflection of the trajectories of the main drops is negligible.
- the satellite drops are deflected in the example shown to the left.
- Example 1 Preparation of polycarbonate derivatives for an ink composition as a binder
- the polycarbonate derivative shows a relative solution viscosity of 1.263.
- the glass transition temperature is determined to be 183 ° C. (DSC).
- Example 2 Preparation of a liquid preparation suitable for the production of an ink jet ink
- a liquid preparation is prepared from 17.5 parts by weight of the polycarbonate derivative from Example 1 and 82.5 parts by weight of a solvent mixture according to Table I (data in% by weight, based on the solvent mixture).
- Table I material Wt .-% mesitylene 2.4 1-methoxy-2-propanol 34.95 1,2,4-trimethylbenzene 10.75 Ethyl 3-ethoxypropionate 33.35 cumene 0.105 Solvent naphtha 18.45
- the polycarbonate solution obtained is additionally admixed with about 2% of Pigment Black 28.
- the result is an ink by means of which black and white images can be printed on polycarbonate films.
- other pigments or dyes can be prepared according to monochrome and / or colored inks.
- a change in the resolution of a pixel pattern printed with the ink almost does not occur in a joining operation in which the substrate layer printed with the pixel pattern is connected to a substrate layer arranged above it. This means that the pixel pattern is maintained in almost the same resolution even after lamination.
- This black ink is used with an inkjet printer with a printhead in accordance with Fig. 4 is modified, a pixel pattern printed on a polycarbonate sheet. It results in the Fig. 5 reproduced pixel matrix.
- Each of the print pixels is bimodal and consists of a larger main pixel and a smaller satellite pixel. The satellite pixel appears at an angle ⁇ to the transport direction (defined from right to left by the rows of print pixels) of approximately 60 ° relative to the main pixel to which it is associated.
- Example 4 Formation of satellites on a pattern produced by ink-jet printing on surfaces previously rendered hydrophobic in diamond-shaped structures.
- the main pixels are printed with associated satellite pixels on a first polycarbonate film ( Fig. 6A ).
- a further polycarbonate film is first hydrophobized in a printing area with a diamond-shaped pattern.
- the diamonds are so large that at least one print pixel can be printed completely afterwards.
- the polycarbonate film is printed in a waterless offset process, the so-called Toray process, with a UV-curable and invisible to the human eye color.
- This color is silicone-containing, without colorants and optionally provided with fluorinated binder proportions.
- a print motif in the form of diamond lines is copied onto a printing form and printed on a PC film. This will make the in Fig. 6B Diamond lines, not visible to the human eye, printed on the surface.
- each printing pixel is printed in the form of a main pixel and a satellite pixel appearing at an angle ⁇ relative to the main pixel with respect to the printing direction. This angle ⁇ is indicated by a 1 o'clock position. Where the diamond-shaped rasterization is located, the pixels can not be printed ( Fig. 6C ).
- the position of the satellite pixels of the yellow color separation becomes relative to that of the main pixels in a 4 o'clock position set.
- the location of the satellite pixels of the cyan color separation is relative to that of the Main pixels set in a 7 o'clock position.
- the position of the satellite pixels of the magenta color separation is set relative to that of the main pixels in a 10 o'clock position.
- the satellite drops are partially recognizable and partially suppressed by the diamond patterns.
- the films are then stacked and laminated. It forms a monolithic composite of the films.
- the printed color separations in the layer composite can be assigned to the individual layers of the layer composite: the black color separation can be recognized by the fact that this satellite pixel contained in the 1 o'clock position; the yellow color separation is indicated by the fact that this satellite pixel is in the 4 o'clock position; The cyan color separation is indicated by the fact that this satellite pixel is in the 7 o'clock position, and the magenta color separation is indicated by the fact that it contains satellite pixels in the 10 o'clock position.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Printing Methods (AREA)
Claims (14)
- Composite polymère stratifié pour un document de sécurité et/ou de valeur, comprenant au moins deux couches de polymère reliées les unes aux autres par liaison de matière, dans lequel respectivement des couches d'impression constituées de pixels d'impression sont appliquées dans une zone d'impression sur au moins une surface d'au moins une des couches de polymère,
dans lequel la couche d'impression est générée au moyen d'une impression à jet d'encre, caractérisé en ce que les pixels d'impression sont constitués respectivement d'un pixel principal et d'au moins un pixel satellite associé au pixel principal et la présence de pixels satellites constitue en plus des pixels principaux, auxquels ils sont associés, une caractéristique de sécurité pour un document de sécurité et/ou de valeur. - Composite polymère stratifié pour un document de sécurité et/ou de valeur selon la revendication 1, caractérisé en ce que la couche d'impression reproduit une caractéristique personnalisée et/ou individualisée.
- Composite polymère stratifié pour un document de sécurité et/ou de valeur selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche d'impression est générée avec une tête d'impression à jet d'encre sur une des surfaces, et que chaque pixel satellite est généré sur la surface par rapport à un pixel principal respectif, auquel il est associé, selon une orientation prédéfinie par rapport aux pixels principaux respectifs.
- Composite polymère stratifié pour un document de sécurité et/ou de valeur selon la revendication 3, caractérisé en ce que chaque pixel satellite est généré sur la surface par rapport au pixel principal, auquel il est associé, selon un angle α spécifié par rapport à une ligne de liaison de pixels principaux imprimés adjacents, dans lequel α ≠ 0° et α ≠ 180°.
- Composite polymère stratifié pour un document de sécurité et/ou de valeur selon l'une quelconque des revendications précédentes, caractérisé en ce que les couches d'impression respectives dans le composite polymère stratifié sont disposées sur des surfaces situées à l'intérieur des couches du composite.
- Procédé servant à fabriquer un composite polymère stratifié pour un document de sécurité et/ou de valeur, comprenant au moins deux couches de polymère reliées les unes aux autres par liaison de matière, comprenant les étapes de procédé de : fourniture des couches de polymère pour le composite polymère stratifié, de formation de couches d'impression respectivement constituées de pixels d'impression sur au moins une surface d'au moins une des couches de polymère dans une zone d'impression et de liaison des couches de polymère les unes aux autres,
dans lequel la couche d'impression est générée au moyen d'une impression à jet d'encre, caractérisé en ce que les pixels d'impression sont constitués respectivement d'un pixel principal et d'au moins un pixel satellite associé au pixel principal, et
la présence de pixels satellites en plus des pixels principaux, auxquels ils sont associés, constitue une caractéristique de sécurité du document de sécurité et/ou de valeur. - Procédé servant à fabriquer un composite polymère stratifié pour un document de sécurité et/ou de valeur selon la revendication 6, caractérisé en ce que la couche d'impression est pratiquée sous la forme d'une caractéristique personnalisée ou individualisée.
- Procédé servant à fabriquer un composite polymère stratifié pour un document de sécurité et/ou de valeur selon l'une quelconque des revendications 6 et 7, caractérisé en ce que la couche d'impression est générée avec une tête d'impression à jet d'encre sur une des surfaces, et que chaque pixel satellite est généré sur la surface par rapport à un pixel principal respectif, auquel il est associé, selon un angle spécifié α par rapport à la direction, selon laquelle la tête d'impression à jet d'encre et la surface sont déplacées l'une par rapport à l'autre.
- Procédé servant à fabriquer un composite polymère stratifié pour un document de sécurité et/ou de valeur selon la revendication 8, caractérisé en ce qu'indépendamment de la direction, selon laquelle la tête d'impression à jet d'encre et la surface sont déplacées l'une par rapport à l'autre, chaque pixel satellite est généré sur la surface par rapport au pixel principal, auquel il est associé, selon un angle α spécifié par rapport à une ligne de liaison de pixels principaux imprimés adjacents.
- Procédé servant à fabriquer un composite polymère stratifié pour un document de sécurité et/ou de valeur selon l'une quelconque des revendications 8 et 9, caractérisé en ce que l'angle α est réglé par l'ajustement d'un équipement prévu au niveau de la tête d'impression à jet d'encre, servant à dévier des gouttes d'encre satellites sortant de la tête d'impression ou en ce que le système servant à dévier des gouttes d'encres satellites sortant de la tête d'impression est un système présentant des ouvertures traversantes, qui est disposé directement de manière à jouxter des ouvertures de sortie de la tête d'impression.
- Procédé servant à fabriquer un composite polymère stratifié pour un document de sécurité et/ou de valeur selon la revendication 10, caractérisé en ce que le système servant à dévier des gouttes d'encre satellites sortant de la tête d'impression est ajusté de telle manière et/ou est réalisé de telle manière qu'un liquide d'encre sortant des ouvertures de sortie de la tête d'impression, formant les pixels satellites sort selon un angle β par rapport à un plan, qui est défini par le pixel principal respectif et la direction, selon laquelle la tête d'impression et la surface sont déplacées l'une par rapport à l'autre.
- Procédé servant à fabriquer un composite polymère stratifié pour un document de sécurité et/ou de valeur selon l'une quelconque des revendications 6 à 11, caractérisé en ce que les couches d'impression respectives du composite polymère stratifié sont disposées sur des surfaces situées à l'intérieur des couches de polymère du composite.
- Document de sécurité et/ou de valeur contenant un composite polymère stratifié selon l'une quelconque des revendications 1 à 5.
- Utilisation du document de sécurité et/ou de valeur selon la revendication 13 en tant que pièce d'identité, passeport, carte de crédit, une carte d'espèces, une carte de paiement en espèces, une carte client, une carte visa, une carte ID ou un permis de conduire.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008012428A DE102008012428B3 (de) | 2008-02-29 | 2008-02-29 | Polymerschichtverbund für ein Sicherheits- und/oder Wertdokument und Verfahren zu dessen Herstellung sowie Sicherheits- und/oder Wertdokument und deren Verwendung |
PCT/EP2008/009335 WO2009106106A1 (fr) | 2008-02-29 | 2008-10-31 | Couche d'impression comprenant des pixels principaux et des pixels satellites sur un composite polymère stratifié pour un document de sécurité et/ou de valeur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2252470A1 EP2252470A1 (fr) | 2010-11-24 |
EP2252470B1 true EP2252470B1 (fr) | 2018-10-03 |
Family
ID=40350228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08872939.7A Active EP2252470B1 (fr) | 2008-02-29 | 2008-10-31 | Couche d'impression comprenant des pixels principaux et des pixels satellites sur un composite polymère stratifié pour un document de sécurité et/ou de valeur |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2252470B1 (fr) |
DE (1) | DE102008012428B3 (fr) |
ES (1) | ES2702817T3 (fr) |
WO (1) | WO2009106106A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013000717A1 (de) * | 2013-01-17 | 2014-07-17 | Bayer Material Science Ag | Datenblatt für ein Sicherheits- und/oder Wertdokument |
RU2733702C2 (ru) * | 2017-08-31 | 2020-10-06 | Роман Леонидович Пушко | Способ контроля подлинности продукции и защиты от контрафакта и фальсификации |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5049899A (en) * | 1988-10-18 | 1991-09-17 | Imaje (Sa) | Method of high resolution printing using satellite ink drops in a continuous ink jet printer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4814594A (en) * | 1982-11-22 | 1989-03-21 | Drexler Technology Corporation | Updatable micrographic pocket data card |
FR2571663B1 (fr) * | 1984-10-11 | 1987-01-16 | Matra | Document d'identite difficilement falsifiable et procede de fabrication d'un tel document |
US4687526A (en) * | 1986-01-08 | 1987-08-18 | Identification Systems Company L.P. | Method of making an identification card |
CH677905A5 (fr) * | 1989-02-20 | 1991-07-15 | Orell Fuessli Graph Betr Ag | |
GB9212628D0 (en) * | 1992-06-15 | 1992-07-29 | Ici Plc | Receiver sheet and a method for the production thereof |
US6104812A (en) * | 1998-01-12 | 2000-08-15 | Juratrade, Limited | Anti-counterfeiting method and apparatus using digital screening |
DE10008851A1 (de) * | 2000-02-25 | 2001-08-30 | Giesecke & Devrient Gmbh | Verfahren zur Herstellung laserbeschriftbarer Datenträger und damit hergestellte Datenträger |
US20030179258A1 (en) * | 2002-03-21 | 2003-09-25 | Xerox Corporation | Methods and apparatus for reducing or minimizing satellite defects in fluid ejector systems |
US7093915B2 (en) * | 2004-06-30 | 2006-08-22 | Xerox Corporation | Controlling direction of satellite droplet ejection in ink jet printer |
-
2008
- 2008-02-29 DE DE102008012428A patent/DE102008012428B3/de active Active
- 2008-10-31 WO PCT/EP2008/009335 patent/WO2009106106A1/fr active Application Filing
- 2008-10-31 ES ES08872939T patent/ES2702817T3/es active Active
- 2008-10-31 EP EP08872939.7A patent/EP2252470B1/fr active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5049899A (en) * | 1988-10-18 | 1991-09-17 | Imaje (Sa) | Method of high resolution printing using satellite ink drops in a continuous ink jet printer |
Also Published As
Publication number | Publication date |
---|---|
ES2702817T3 (es) | 2019-03-05 |
EP2252470A1 (fr) | 2010-11-24 |
WO2009106106A1 (fr) | 2009-09-03 |
DE102008012428B3 (de) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2214913B1 (fr) | Procede de fabrication d'un document de securite et/ou de valeur comportant des informations personnalisees | |
EP2214912B1 (fr) | Composite de couches polymères pour un document de sécurité et/ou un document de valeur | |
EP2207686B1 (fr) | Procédé de fabrication d'un composite polymère stratifié présentant une personnalisation et/ou individualisation multicouche | |
EP2209653B1 (fr) | Composite polymère stratifié pour document de sécurité et/ou de valeur et son procédé de fabrication | |
EP2212122B1 (fr) | Protection de documents au moyen d'informations numériques en filigrane | |
EP2205686B1 (fr) | Procédé de fabrication d'un composite stratifié de polycarbonate | |
WO2009056355A1 (fr) | Procédé de fabrication d'un ensemble de couches polymères et ensemble de couches polymères pourvu d'une caractéristique de sécurité en couleur | |
EP2250028B1 (fr) | Document de valeur et/ou de sécurité avec un motif de lignes fines, et son procédé de fabrication | |
DE102008012422A1 (de) | Verfahren zum Herstellen eines Sicherheitsdokuments und Sicherheitsdokument mit blickrichtungsabhängigem Sicherheitsmerkmal | |
EP2244882B1 (fr) | Composite polymère stratifié pour un document de sécurité et/ou de valeur, procédé de fabrication associé | |
EP2252470B1 (fr) | Couche d'impression comprenant des pixels principaux et des pixels satellites sur un composite polymère stratifié pour un document de sécurité et/ou de valeur | |
EP2259929B1 (fr) | Document avec impression de sécurité en pixels composés de points d'image variés | |
EP3046777B1 (fr) | Procédé de production d'un signe de sécurité d'un produit de valeur ou de sécurité |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100707 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BUNDESDRUCKEREI GMBH Owner name: COVESTRO DEUTSCHLAND AG |
|
17Q | First examination report despatched |
Effective date: 20160311 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502008016379 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B42D0015100000 Ipc: B42D0025460000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B41M 3/14 20060101ALI20180323BHEP Ipc: B44F 1/08 20060101ALI20180323BHEP Ipc: B42D 25/21 20140101ALI20180323BHEP Ipc: B42D 25/46 20140101AFI20180323BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180517 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1048191 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: DE Ref legal event code: R096 Ref document number: 502008016379 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWALTSBUERO JEAN HUNZIKER AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2702817 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190203 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190103 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190103 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190203 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190104 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008016379 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
26N | No opposition filed |
Effective date: 20190704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181003 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFUS Owner name: BUNDESDRUCKEREI GMBH, DE Free format text: FORMER OWNER: BUNDESDRUCKEREI GMBH, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231019 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231222 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20231019 Year of fee payment: 16 Ref country code: CZ Payment date: 20231023 Year of fee payment: 16 Ref country code: CH Payment date: 20231102 Year of fee payment: 16 Ref country code: AT Payment date: 20231020 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502008016379 Country of ref document: DE Owner name: BUNDESDRUCKEREI GMBH, DE Free format text: FORMER OWNERS: BUNDESDRUCKEREI GMBH, 10969 BERLIN, DE; COVESTRO DEUTSCHLAND AG, 51373 LEVERKUSEN, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20240822 AND 20240828 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241022 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241021 Year of fee payment: 17 |