EP2250308B1 - Device for needling a web of fiber - Google Patents
Device for needling a web of fiber Download PDFInfo
- Publication number
- EP2250308B1 EP2250308B1 EP09718088A EP09718088A EP2250308B1 EP 2250308 B1 EP2250308 B1 EP 2250308B1 EP 09718088 A EP09718088 A EP 09718088A EP 09718088 A EP09718088 A EP 09718088A EP 2250308 B1 EP2250308 B1 EP 2250308B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- balancing
- crank
- eccentric
- fact
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 9
- 230000007246 mechanism Effects 0.000 claims abstract description 54
- 230000033001 locomotion Effects 0.000 claims abstract description 32
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 239000013598 vector Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- AOSZTAHDEDLTLQ-AZKQZHLXSA-N (1S,2S,4R,8S,9S,11S,12R,13S,19S)-6-[(3-chlorophenyl)methyl]-12,19-difluoro-11-hydroxy-8-(2-hydroxyacetyl)-9,13-dimethyl-6-azapentacyclo[10.8.0.02,9.04,8.013,18]icosa-14,17-dien-16-one Chemical compound C([C@@H]1C[C@H]2[C@H]3[C@]([C@]4(C=CC(=O)C=C4[C@@H](F)C3)C)(F)[C@@H](O)C[C@@]2([C@@]1(C1)C(=O)CO)C)N1CC1=CC=CC(Cl)=C1 AOSZTAHDEDLTLQ-AZKQZHLXSA-N 0.000 description 1
- 229940126657 Compound 17 Drugs 0.000 description 1
- 229940125773 compound 10 Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H18/00—Needling machines
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H18/00—Needling machines
- D04H18/02—Needling machines with needles
Definitions
- the invention relates to a device for needling a fibrous web according to the preamble of claim 1.
- a needle bar In devices for needling a fibrous web, a needle bar, on the underside of which a multiplicity of needles are held, is driven in an oscillating up and down motion, so that the needles puncture the padded fiber web on a recurring basis.
- crank gears are usually used, with an eccentrically rotating eccentric mass for mass balance are usually compensated by appropriate balancing weights on the crankshaft.
- the mass effects due to the rotating us oscillating masses within the device can be kept so small that no inadmissible vibrations occur in the machine frame.
- a fiber web drive concepts of the needle bar are now known, in which a superimposed aligned in the horizontal direction reciprocating motion of the needle bar is generated to the up and down movement.
- Such a device is for example from the DE 196 15 697 A1 known.
- the needle bar is driven by a vertical engine to an up and down movement and superimposed by a horizontal engine to a reciprocating motion.
- the mass forces occur in the device both in the vertical direction and in the horizontal direction.
- several balance shafts are arranged in the machine frame in the known device, which counteract by mass counter-rotating eccentric mass forces and inertial moments of the crank mechanisms.
- This form of mass balance is technically very complex and requires a considerable amount of space within the device.
- the free mass forces and moments of inertia occurring with variable stroke adjustment of the horizontal engine are particularly problematical because they increase quadratically with the stroke frequency and linearly with the lifting height.
- higher stroke frequencies and thus higher production speeds and larger horizontal strokes of the needle bar in the known device inevitably lead to increased vibrations in the machine frame.
- such vibrations are very negative in terms of noise and especially in terms of product quality.
- Another object of the invention is to provide a device of the generic type which allows variable stroke settings of the needle bar with relatively large horizontal strokes and high stroke frequencies.
- the invention is distinguished from the principle of compensating for mass forces acting on a crank drive by means of a counterweight arranged in an eccentric plane opposite the eccentric mass.
- the invention is based on the recognition that the crank drive of the vertical engine can be used to counteract the vertically directed inertial forces and the horizontally directed inertial forces.
- This is a balancing mass the mass balancing device associated with the crank drive of the vertical engine and arranged at an angle in the range ⁇ 180 ° offset to an eccentric of the crank drive.
- the size of the balancing mass and the angular position of the balancing mass on the crank drive can be selected depending on the forces acting in the vertical direction and horizontal direction and mass moments.
- the balancing mass is for this purpose arranged directly on a crankshaft or an eccentric shaft of the crank drive. It is irrelevant whether the superimposed horizontal movement of the needle bar is generated by a horizontal engine or in phase adjustment directly by the vertical engine. In any case, the occurring horizontal mass forces can be compensated by the balancing mass on the crank mechanism of the vertical engine.
- the balancing mass is offset by the angle of 90 ° to the eccentric of the crank drive and a second balancing mass offset by the angle of 180 ° to the eccentric of the crank drive attached.
- This can be the vertical mass forces of the needle bar on the crank drive completely compensate.
- the horizontal mass forces is offset by 90 ° offset from the eccentric mass of the crank drive balancing mass.
- the balancing weights assigned to a crank drive can be identical or different in size.
- the choice of the size of the balancing weights is essentially dependent on the mass forces occurring during operation.
- the vertical engine is preferably formed by two synchronously rotating crank drives.
- each of the crank drives is assigned in each case one or more compensation masses.
- each crank drive can be used to balance the mass of vertical and horizontal inertial forces.
- the balancing weights on the crank drives of the vertical engine can be identical or different on each of the crank drives.
- one of the crank drives can be equipped with two balancing weights, whereas, on the other hand, the second crank drive receives only one balancing weight.
- the mass balancing device can also be expanded by arranging an additional balancing shaft with a circumferential eccentric mass within the machine frame.
- the mass moments within the machine frame can be fully compensated.
- the balancer shaft can be equipped with a rotating eccentric mass or with two eccentric masses that are offset by 90 °.
- the phase adjustment preferably has two separately controllable servo motors, which are assigned to the crankshaft of the crank mechanisms of the vertical engine. This makes it possible, depending on the phase difference between the crankshafts, to realize strokes of different lengths during the horizontal movement.
- the balance shaft is preferably arranged symmetrically to the two crankshafts of the crank mechanisms.
- At least one further balancing mass is assigned to the crank drive of the horizontal engine and arranged offset by an angle in the range of ⁇ 180 ° relative to the eccentric of the crank drive.
- balancing masses on the crank drive of the horizontal engine such that the balancing mass is held offset by 90 ° to the eccentric and a second balancing mass is arranged opposite to the eccentric mass.
- the horizontal engine is preferably formed by two synchronously rotating crank drives.
- at least one of the balancing weights is advantageously assigned to each of the crank drives.
- crank drives of the horizontal engine are driven in opposite directions and designed to be adjustable in their phase positions.
- balancing weights can be compensated in addition to the constant mass forces and the variable inertia forces. With a suitable choice of balancing weights thus the resulting mass force disappears approximately for each horizontal stroke adjustment between zero and a maximum stroke.
- the crank drives of the horizontal engine are preferably connected by a coupling gear with the needle bar.
- the drive movement of the crank drives via the coupling gear can be converted into an almost exclusive degree movement on the needle bar.
- crank drives of the vertical engine and the horizontal engine are usually each by a driven crankshaft or a driven Exzenterwelle formed, which are connected via a connecting rod with a connecting rod.
- the balancing weights are applied directly to the crankshaft or to the eccentric shaft.
- a first embodiment of the device according to the invention for needling a fiber web is shown.
- the embodiment is in the Fig. 1.1 and 1.2 shown in different operating situations. The description therefore applies to both figures.
- the embodiment of the inventive device has a beam support 2, which holds a needle bar 1 on its underside.
- the needle bar 1 holds on its underside a needle board 24 with a plurality of needles 25th
- the vertical engine 3 is formed by two parallel crank mechanisms 4.1 and 4.2.
- the crank drives 4.1 and 4.2 have two parallel juxtaposed crankshafts 5.1 and 5.2, which are arranged above the beam carrier 2.
- the crankshafts 5.1 and 5.2 each have at least one eccentric 6.1 and 6.2 for receiving a respective connecting rod 7.1 and 7.2.
- Fig. 1 are arranged on the beam support 2 connecting rods 7.1 and 7.2, which are held with their connecting rod heads on the eccentrics 6.1 and 6.2 of the crankshaft 5.1 and 5.2.
- At the crankshafts 5.1 and 5.2 can still further - be arranged - connecting rods - not shown here.
- the connecting rods 7.1 and 7.2 are connected with their free ends through the hinges 8.1 and 8.2 with the beam support 2.
- the crankshafts 5.1 and 5.2 are driven synchronously or in opposite directions synchronously, so that the beam support 2 is guided at least approximately parallel.
- the horizontal engine 10 engages via a crank drive 11.1 directly to the beam support 2.
- the crank drive 11.1 of the horizontal engine 10 has for this purpose a crankshaft 12.1 and a connecting rod 14.1.
- the connecting rod 14.1 is connected via an eccentric 13.1 with the crankshaft 12.1.
- the connecting rod 14.1 is coupled by the rotary joint 15 with the beam support 2.
- the crankshaft 12.1 is driven in synchronism with the crankshafts 5.1 and 5.2 of the vertical engine, so that the needle bar 1 performs a lifting movement with a constant horizontal stroke.
- the vertical engine 3 and the horizontal engine 10 is associated with a mass balancing device to compensate for the mass forces of the crank mechanisms.
- the mass balancing device is formed by a plurality of balancing masses which are assigned to the crank drives 4.1, 4.2 and 5.1.
- the crank drive 4.1 has the balancing weights 9.1 and 9.2.
- the balancing mass 9.1 is this offset by an angle of 180 ° to the eccentric 6.1 on the crankshaft 5.1.
- the balancing mass 9.2 is held at an angle of 90 ° offset from the eccentric 6.1 on the crankshaft 5.1.
- a third balancing mass 9.3 is arranged as a counterweight on the crank drive 4.2.
- the balancing mass is 9.3 offset by an angle of 180 ° to the eccentric 6.2 arranged on the crankshaft 5.2.
- the crank drive 11.1 of the horizontal engine 10, the balancing weights 16.1 and 16.2 are assigned.
- the balancing mass 16.1 is this offset by the angle of 180 ° to the eccentric 13.1 held on the crankshaft 12.1.
- the other balancing mass 16.2 is offset by the angle of 90 ° to the eccentric 13.1 attached to the crankshaft 12.1.
- the embodiment is in Fig. 1.1 shown in an operating situation in which the needle bar is shown in an upper position with vertically directed inertial forces.
- Fig. 1.2 the embodiment is shown in contrast in a central beam position in which horizontal inertial forces are effective.
- the mass forces generated by the balancing weights 9.1, 9.2, 9.3, 16.1 and 16.2 are shown as vectors.
- the force vector of the balancing mass 9.1 is marked with the code letter F E1 .
- the mass force of the balancing mass 9.2 is referred to the crank drive 4.1 by the letter F N1 .
- the force vector of the balancing mass 9.3, which is assigned to the crank drive 4.2 denoted by the letter F E2 .
- the the crank mechanism 11.1 of the horizontal engine 10 associated balancing weights 16.1 and 16.2 are denoted by the code letters F N3 and F E3 and shown as force vectors.
- the balancing weights 9.2 and 16.2, which cause the mass forces F N1 and F N3 , are now chosen so that they cancel each other in each position of the needle bar and cause a mass moment to compensate for the caused by the working line distance between beam forces and balancing forces mass moment.
- Fig. 1.1 and 1.2 illustrated embodiments are basically two ways to attach the balancing weights to the respective crank drive.
- Fig. 2 is shown a further possible arrangement of a balancing mass, as they can be performed alternatively, for example, to the crank drive 4.1 of the vertical drive unit 3 or the crank drive 11.1 of the horizontal engine 10.
- the crank drive 4.1 is assigned a compensating mass 9.2.
- the balancing mass 9.2 is offset by an angle ⁇ to the eccentric 6.1 of the crankshaft 5.1.
- the angle ⁇ is less than 180 ° and preferably chosen such that both horizontally acting and vertically acting forces can be compensated by the balancing mass 9.2.
- the number of balancing weights can be reduced while maintaining the same effect.
- Fig. 3.1 and 3.2 is a further embodiment of the erfindungsgeffle ⁇ en device schematically in a side view in several operating positions shown.
- the embodiment according to Fig. 3.1 and 3.2 is essentially identical to the embodiment according to Fig. 1.1 and 1.2 , so that at this point only the differences will be explained and otherwise reference is made to the above description.
- Fig. 3.1 the embodiment is in an upper position of the needle bar and in Fig. 3.2 shown in a middle position of the needle bar.
- two needle bars 1.1 and 1.2 are held on the beam support 2, each carrying a needle board 24 and a plurality of needles 25 on their undersides.
- the beam support 2 is coupled to a vertical engine 3, which is identical to the aforementioned embodiment.
- a central pivot 15 for horizontal movement of the beam support 2 of the beam support 2 is coupled via a central pivot 15 with a handlebar 19.
- the rotary joint 15 is arranged substantially with the hinges 8.1 and 8.2 for connecting the vertical engine 3 at a common height on the beam support 2, so that arranged to the transverse sides of the beam support 2 link 19 allow the power instructions and the leadership of the beam support 2 ,
- a horizontal engine 10 is provided, which is formed by two crank drives 11.1 and 11.2.
- the crank mechanisms 11.1 and 11.2 each have a crankshaft 12.1 and 12.2, which are arranged parallel to each other and together with the crankshafts 5.1 and 5.2 of the vertical engine 3 form a common drive plane.
- the crankshafts 12.1 and 12.2 are connected via their eccentric 13.1 and 13.2 each with a connecting rod 14.1 and 14.2.
- the connecting rods 14.1 and 14.2 are directed in an inclined position to each other, so that the free ends of the connecting rods 14.1 and 14.2 are connected via a double pivot joint 21 together with a coupling gear 17.
- the coupling mechanism 17 consists in this embodiment of a rocker arm 18 which is pivotally mounted on a pivot bearing 26.
- the rocker arm 18 has at a free end below the pivot bearing 26 has a pivot, with which the link 19 is connected to the rocker arm 18.
- a further rotary joint is provided, on which a push rod 20 engages.
- the push rod 20 is coupled to an opposite end by the double pivot 21 with the connecting rods 14.1 and 14.2.
- crankshafts 12.1 and 12.2 of the crank mechanisms 11.1 and 11.2 are driven in opposite directions at the same speed, wherein the phase angles of the crankshafts 12.1 and 12.2 are adjustable relative to each other in dependence on a desired horizontal stroke.
- the phase angles and thus the desired horizontal stroke of the crankshafts 12.1 and 12.2 can be carried out, for example, by two separate servomotors which effect a rotation of the crankshafts 12.1 and 12.2 relative to each other.
- the drive of the crankshafts 14.1 and 14.2 can be carried out by a common drive or separately via separate drives.
- a mass balancing device which is formed by a plurality of the crank mechanisms associated with balancing masses.
- Each of the crank drives 4.1 and 4.2 of the vertical engine 3 has two balancing weights.
- a first balancing mass is arranged as a counterweight on the crank drives 4.1 and 4.2 and arranged at an angle of 180 ° offset from the eccentrics 6.1 and 6.2 of the crankshafts 5.1 and 5.2.
- the balancing weights are denoted by the reference numeral 9.1 on the crank drive 4.1 and 9.3 on the crank drive 4.2.
- a second balancing mass is arranged offset by 90 ° to the eccentrics 6.1 and 6.2 at the shafts 5.1 and 5.2.
- the balancing weights 9.2 and 9.4 of the crank drive 4.1 and 4.2 are designed to be larger in mass than the balancing weights 9.1 and 9.3.
- the crank mechanisms 11.1 and 11.2 of the horizontal engine 10 each have a balancing mass 16.1 and 16.2.
- the balancing mass 16.1 is offset at an angle ⁇ 180 ° to the eccentric 13.1 of the crankshaft 12.1.
- the angle ⁇ which denotes the offset between the eccentric 13.1 and the balancing mass 16.1 on the crankshaft 12.1, is approximately 20 ° in this exemplary embodiment.
- the position of the balancing mass 16.1 and also the position of the balancing mass 16.2 is essentially determined by the arrangement of the crank drives 11.1 and 11.2 to each other.
- the connecting rods 14.1 and 14.2 are arranged in an inclined position and connected to each other via the double pivot 21.
- the balancing mass 16.2 on the crank drive 11.2 is thus mounted in the same position and in the same size on the crank drive 11.2.
- both the crank drives 4.1 and 4.2 of the vertical engine 3 and the crank mechanisms 11.1 and 11.2 of the horizontal engine 10 are driven synchronously and in opposite directions.
- Fig. 3.1 the situation is shown in which the beam support 2 is held with the needle bar 1.1 and 1.2 in an upper dead center.
- the Fig. 3.2 represents the embodiment in the operating situation, in which the beam support 2 with the needle bar 1.1 and 1.2 in a middle position when performing a horizontal movement.
- the masses 9.1 to 9.4 and the balancing weights 16.1 and 16.2 associated mass forces are the code letters F A and F E designated.
- the four compensating forces F A1 to F A4 of the balancing weights 9.2, 9.4, 16.1 and 16.2 compensate each other in the dead states of the beam carrier 2 as shown in FIG Fig. 3.1 is apparent.
- the mass forces F E1 and F E2 caused by the balancing weights 9.1 and 9.4 are opposite to the mass force F B acting on the beam carrier 2. Between the death positions remains due to the misalignment of the force components, a resultant inertial force.
- balancing weights 9.2, 9.4, 16.1 and 16.2 is with this force component, the horizontal Mass force of the beam carrier with the needle bar 1.1 and 1.2 compensated in the horizontal direction.
- the compensating force changes only slightly, especially at low adjustment angles and thus misalignment of the force components, so that the force compensation for each horizontal stroke up to a maximum adjustment angle of about 20 ° is maintained in very good nutrition, as can be seen from the situation in Fig. 3.2 evident.
- the mass balance for example, to an adjustment angle that is different from zero.
- the balancing weights are mounted on the crank drives 11.1 and 11.2 of the horizontal engine 10 rotated by the angle ⁇ , so that the corresponding balancing forces are perpendicular at a corresponding adjustment angle.
- the balancing weights 9.1 to 9.4 on the crank drives 4.1 and 4.2 of the vertical engine 3 are to be adapted in this case so that the mass forces in the vertical and horizontal directions are balanced for the region of the horizontal stroke.
- Fig. 3.1 and 3.2 illustrated embodiment of the device according to the invention run with a mass balancing device, in which in addition to the balancing masses in addition a balance shaft is provided with a circumferential eccentric mass.
- a mass balancing device in which in addition to the balancing masses in addition a balance shaft is provided with a circumferential eccentric mass.
- the mass balancing device on several balancing weights and a balancer shaft with rotating eccentric mass.
- the balancing shaft 22 is arranged in the drive plane between the crank drives 11.1 and 11.2 of the horizontal engine 10.
- the balance shaft 22 extends parallel to the lying in the drive plane crankshafts 12.1 and 12.2, which are also held parallel to the arranged in the same plane crankshafts 5.1 and 5.2 of the vertical engine 3.
- an eccentric mass 23 is arranged.
- the balancing shaft 22 is driven synchronously to the crankshafts 12.1 and 12.2 of the crank drives 11.1 and 11.2, wherein the balancer shaft 22 and the crankshaft 12.1 have the same direction of rotation.
- the balancing weights 16.1 and 16.2 are arranged on the crankshafts 12.1 and 12.2 of the crank drives 11.1 and 11.2.
- the arrangement is identical to the embodiment described above Fig. 3.1 ,
- the crank mechanisms 4.1 and 4.2 of the vertical engines 3 are also each two balancing weights assigned in an offset arrangement to each other.
- the balancing weights 9.1 and 9.2 are assigned to the crank drive 4.1 and the balancing weights 9.3 and 9.4 to the crank drive 4.2.
- the balancing weights 9.1 to 9.4 of the crank drives 4.1 and 4.2 are designed differently in size.
- the balancing mass 9.2, which is arranged essentially to compensate for horizontal mass forces on the crank drive 4.1, is smaller than the balancing mass 9.4 on the second crank drive 4.2 of the vertical engine 3.
- Fig. 5 a further embodiment of the apparatus according to the invention for needling a fibrous web is shown schematically in a side view.
- the embodiment according to Fig. 5 differs essentially from the aforementioned embodiments in that no separate horizontal engine is present to produce a superimposed horizontal movement of the needle bar.
- the superimposed horizontal movement of the needle bar via the vertical engine 3 is initiated.
- the vertical engine connected to the beam support 2 has two parallel juxtaposed crank drives 4.1 and 4.2.
- the crank drives 4.1 and 4.2 have two parallel juxtaposed crankshafts 5.1 and 5.2, which are arranged above the beam carrier 2.
- the crankshafts 5.1 and 5.2 each have at least one eccentric section for receiving at least one connecting rod.
- Fig. 5 are arranged on a beam support 2 connecting rods 7.1 and 7.2, which are guided with their connecting rod heads on the crankshafts 5.1 and 5.2.
- the crankshafts 5.1 and 5.2 are assigned a phase adjustment device 36.
- the phase adjustment device 36 has two servomotors 34.1 and 34.2, which are assigned to the crankshafts 5.1 and 5.2.
- the servomotors 34.1 and 34.2 are connected to a control device 35. Via the control device 35, the servomotors 34.1 and 34.2 can be activated independently of one another in order to turn the crankshafts 5.1 and 5.2 in their positions. Thus, the phase angle between the two crankshafts 5.1 and 5.2 can be adjusted. In addition to the pure vertical up and down movement of the beam support 2 can thereby perform a superimposed horizontal movement of the beam support 2.
- phase adjustment between the crankshafts 5.1 and 5.2 is directly proportional to a stroke length of the horizontal movement. The stroke of the horizontal movement can therefore be adjusted via the phase angle of the crankshafts 5.1 and 5.2.
- a phase difference is set between the crankshafts 5.1 and 5.2, so that the beam support 2 with the needle bar 1.1 and 1.2 performs a constant stroke in the horizontal direction.
- a guide device 27 is provided.
- the guide device has a link 19, which is connected to a free end via a rotary joint 15 with the beam support 2.
- a first rocker 28 which is connected via a pivot bearing 32 to a machine frame and a rotary joint 30 with the handlebars.
- a second rocker 29 is provided, which is held via a pivot 31 in the central region of the link 19 and a pivot bearing 33.
- the guide device 27 is arranged above the beam support 2.
- the pivot bearings 32 and 33 are arranged between the connecting rods 7.1 and 7.2.
- the link 19 is connected in the middle of the beam via the rotary joint 15 with the beam support. This allows a secure guidance of the beam support during the drive movement realized by the vertical engine 3.
- the cranks drives 4.1 and 4.2 associated mass balancing device is formed in this embodiment by a total of four balancing weights 9.1, 9.2, 9.3 and 9.4.
- the balancing weights 9.1 and 9.2 are assigned to the crankshaft 5.1.
- the balancing weights 9.3 and 9.4 are on the crankshaft 5.2 attached.
- the balancing mass 9.1 is arranged on the crankshaft 5.1 offset by the angle 180 ° to the eccentric 6.1.
- the balancing mass 9.2 is offset by an angle of 90 ° to the first balancing mass 9.1 attached to the crankshaft 5.1.
- the balancing mass 9.3 is offset by 180 ° relative to the eccentric 6.2 on the crankshaft 5.2.
- the balancing mass 9.4 is offset by the angle of 90 ° to the first balancing mass 9.3 held on the crankshaft 5.2.
- the mass balancing device additionally has a balancing shaft 22, which is arranged above the crankshafts 5.1 and 5.2.
- the balance shaft 22 is held symmetrically to the crank drives 4.1 and 4.2.
- two eccentric weights 23.1 and 23.2 are arranged at the balance shaft 22 .
- the balancer shaft 22 extends parallel to the crankshafts 5.1 and 5.2 and is driven in synchronism with the crankshafts 5.1 and 5.2.
- the sense of rotation of the balance shaft 22 and the sense of rotation of the crankshafts 5.1 and 5.2 is in Fig. 5 each indicated by an arrow.
- the invention extends not only to the in Fig. 1 . 3 and 4 shown embodiments of a device for needling a fiber web, but can also be advantageous to other engine concepts, in which the needle bar is performed with a constant horizontal stroke or with variable Horizontalh Wegney 2000 use. Particularly advantageous is the invention in such devices, in which the stroke adjustment of the horizontal stroke takes place by rotation of two eccentric shafts to each other. It should be expressly mentioned at this point that the invention is not limited to the fact that the crank mechanisms are driven by crankshafts. Basically, the crankshafts can easily be replaced by eccentric shafts.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Transmission Devices (AREA)
- Nonwoven Fabrics (AREA)
- Preliminary Treatment Of Fibers (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zum Vernadeln einer Faserbahn gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a device for needling a fibrous web according to the preamble of
Bei Vorrichtungen zum Vernadeln einer Faserbahn wird ein Nadelbalken, an dessen Unterseite eine Vielzahl von Nadeln gehalten sind, in eine oszillierende Auf-und Abwärtsbewegung angetrieben, so dass die Nadeln die auf einer Unterlage geführte Faserbahn wiederkehrend durchstechen. Zum Antrieb derartiger Nadelbalken werden üblicherweise Kurbeltriebe verwendet, wobei eine exzentrisch umlaufende Exzentermasse zum Massenausgleich üblicherweise durch entsprechende Ausgleichsmassen an der Kurbelwelle kompensiert werden. Damit lassen sich die Massenwirkungen aufgrund der rotierenden uns oszillierenden Massen innerhalb der Vorrichtung derart klein halten, dass keine unzulässigen Schwingungen in dem Maschinengestell auftreten. Um höhere Produktionsgeschwindigkeiten beim Vernadeln einer Faserbahn zu erreichen sind nun Antriebskonzepte des Nadelbalkens bekannt, bei welcher eine überlagerte in horizontaler Richtung ausgerichtete Hin- und Herbewegung des Nadelbalkens zu der Auf- und Abwärtsbewegung erzeugt wird. Eine derartige Vorrichtung ist beispielsweise aus der
Bei der bekannten Vorrichtung wird der Nadelbalken durch ein Vertikaltriebwerk zu einer Auf- und Abwärtsbewegung und durch ein Horizontaltriebwerk überlagert zu einer Hin- und Herbewegung angetrieben. Hierbei treten die Massenkräfte in der Vorrichtung sowohl in vertikaler Richtung als auch in horizontaler Richtung auf. Zum Ausgleich der Massenkräfte und Massenmomente sind bei der bekannten Vorrichtung mehrere Ausgleichswellen in dem Maschinengestell angeordnet, die durch gegenläufig drehende Exzentermassen den Massenkräften und Massenmomenten der Kurbelantriebe entgegenwirken. Diese Form des Massenausgleichs ist technisch sehr aufwändig und erfordert innerhalb der Vorrichtung einen erheblichen Platzbedarf. Besonders problematisch sind die sich bei variabler Hubeinstellung des Horizontaltriebwerkes auftretenden freien Massenkräfte und Massenmomente, da diese quadratisch mit der Hubfrequenz und linear mit der Hubhöhe steigen. Somit führen höhere Hubfrequenzen und damit höhere Produktionsgeschwindigkeiten sowie größere Horizontalhübe des Nadelbalkens bei der bekannten Vorrichtung zwangsläufig zu erhöhten Schwingungen im Maschinengestell. Derartige Schwingungen sind jedoch im Hinblick auf Geräusche und insbesondere im Hinblick auf die Produktqualität sehr negativ.In the known device, the needle bar is driven by a vertical engine to an up and down movement and superimposed by a horizontal engine to a reciprocating motion. Here, the mass forces occur in the device both in the vertical direction and in the horizontal direction. To compensate for the mass forces and moments of inertia several balance shafts are arranged in the machine frame in the known device, which counteract by mass counter-rotating eccentric mass forces and inertial moments of the crank mechanisms. This form of mass balance is technically very complex and requires a considerable amount of space within the device. The free mass forces and moments of inertia occurring with variable stroke adjustment of the horizontal engine are particularly problematical because they increase quadratically with the stroke frequency and linearly with the lifting height. Thus, higher stroke frequencies and thus higher production speeds and larger horizontal strokes of the needle bar in the known device inevitably lead to increased vibrations in the machine frame. However, such vibrations are very negative in terms of noise and especially in terms of product quality.
Es ist somit Aufgabe der Erfindung eine Vorrichtung zum Vernadeln einer Faserbahn der gattungsgemäßen Art derart auszubilden, dass ein Massenausgleich der in vertikaler und horizontaler Richtung auftretenden Massenkräfte mit einfachen Mitteln möglich ist.It is therefore an object of the invention to provide a device for needling a fiber web of the generic type such that a mass balance of the vertical forces occurring in the vertical and horizontal directions is possible by simple means.
Ein weiteres Ziel der Erfindung liegt darin, eine Vorrichtung der gattungsgemäβen Art bereitzustellen, die variable Hubeinstellungen des Nadelbalkens mit relativ großen Horizontalhüben und hohen Hubfrequenzen ermöglicht.Another object of the invention is to provide a device of the generic type which allows variable stroke settings of the needle bar with relatively large horizontal strokes and high stroke frequencies.
Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen nach Anspruch 1 gelöst.This object is achieved by a device with the features of
Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale und Merkmalskombinationen der Unteransprüche definiert.Advantageous developments of the invention are defined by the features and feature combinations of the subclaims.
Die Erfindung trennt sich von dem Prinzip, die an einem Kurbelantrieb wirksamen Massekräfte durch eine Gegenmasse zu kompensieren, die in einer Exzenterebene gegenüberliegend der Exzentermasse angeordnet ist. Die Erfindung basiert auf der Erkenntnis, dass der Kurbelantrieb des Vertikaltriebwerkes dazu genutzt werden kann, um neben den vertikal gerichteten Massenkräften auch die horizontal gerichteten Massenkräfte entgegenzuwirken. Hierzu ist eine Ausgleichsmasse der Massenausgleichseinrichtung dem Kurbelantrieb des Vertikaltriebwerkes zugeordnet und um einen Winkel im Bereich <180° versetzt zu einem Exzenter des Kurbelantriebes angeordnet. Die Größe der Ausgleichsmasse sowie die Winkellage der Ausgleichsmasse an dem Kurbelantrieb lässt sich dabei in Abhängigkeit von den in vertikaler Richtung und horizontaler Richtung wirkenden Massenkräften und Massenmomenten wählen. Damit lassen sich Ausgleichfunktionen an den vorhandenen Kurbelantrieben realisieren, die sonst nur durch zusätzliche Ausgleichswellen oder andere aufwändige Maßnahmen zu erreichen wären. Die Ausgleichsmasse ist hierzu unmittelbar an einer Kurbelwelle oder einer Exzenterwelle des Kurbelantriebes angeordnet. Hierbei ist es unerheblich, ob die überlagerte Horizontalbewegung des Nadelbalkens durch ein Horizontaltriebwerk oder bei Phasenverstellung direkt durch das Vertikaltriebwerk erzeugt wird. In jedem Fall lassen sich die dabei auftretenden horizontalen Massenkräfte durch die Ausgleichsmasse an dem Kurbeltrieb des Vertikaltriebwerkes ausgleichen.The invention is distinguished from the principle of compensating for mass forces acting on a crank drive by means of a counterweight arranged in an eccentric plane opposite the eccentric mass. The invention is based on the recognition that the crank drive of the vertical engine can be used to counteract the vertically directed inertial forces and the horizontally directed inertial forces. This is a balancing mass the mass balancing device associated with the crank drive of the vertical engine and arranged at an angle in the range <180 ° offset to an eccentric of the crank drive. The size of the balancing mass and the angular position of the balancing mass on the crank drive can be selected depending on the forces acting in the vertical direction and horizontal direction and mass moments. This allows compensation functions to be implemented on the existing crank drives, which would otherwise only be achieved by additional balance shafts or other complex measures. The balancing mass is for this purpose arranged directly on a crankshaft or an eccentric shaft of the crank drive. It is irrelevant whether the superimposed horizontal movement of the needle bar is generated by a horizontal engine or in phase adjustment directly by the vertical engine. In any case, the occurring horizontal mass forces can be compensated by the balancing mass on the crank mechanism of the vertical engine.
Bei einer besonders bevorzugten Weiterbildung der Erfindung ist die Ausgleichsmasse um den Winkel von 90° versetzt zu dem Exzenter des Kurbelantriebes angeordnet und eine zweite Ausgleichsmasse um den Winkel von 180° versetzt zu dem Exzenter des Kurbelantriebes angebracht. Damit lassen sich die vertikalen Massekräfte des Nadelbalkens an dem Kurbelantrieb vollständig kompensieren. Den horizontalen Massenkräften wird dabei die um 90° versetzt zur Exzentermasse des Kurbelantriebes angeordnete Ausgleichmasse entgegen. So lässt sich bei konstantem Horizontalhub des Nadelbalkens ein vollständiger Massenausgleich realisieren. Der Nadelbalken lässt sich mit entsprechend hohen Hubfrequenzen betreiben ohne dass unzulässige Schwingungen an dem Maschinengestell wirksam werden.In a particularly preferred embodiment of the invention, the balancing mass is offset by the angle of 90 ° to the eccentric of the crank drive and a second balancing mass offset by the angle of 180 ° to the eccentric of the crank drive attached. This can be the vertical mass forces of the needle bar on the crank drive completely compensate. The horizontal mass forces is offset by 90 ° offset from the eccentric mass of the crank drive balancing mass. Thus, a complete mass balance can be realized with constant horizontal stroke of the needle bar. The needle bar can be operated with correspondingly high stroke frequencies without undue vibrations on the machine frame being effective.
Die einem Kurbelantrieb zugeordneten Ausgleichsmassen können in ihrer Größe gleich oder unterschiedlich ausgebildet sein. Die Wahl der Größe der Ausgleichsmassen ist wesentlich von den während des Betriebes auftretenden Massenkräften abhängig.The balancing weights assigned to a crank drive can be identical or different in size. The choice of the size of the balancing weights is essentially dependent on the mass forces occurring during operation.
Um eine parallele Führung des Nadelbalkens innerhalb eines Maschinengestells zu realisieren, wird das Vertikaltriebwerk bevorzugt durch zwei synchron umlaufende Kurbelantriebe gebildet. Hierbei ist gemäß einer vorteilhaften Weiterbildung der Erfindung jedem der Kurbelantriebe jeweils eine oder mehrere Ausgleichsmassen zugeordnet. Somit lässt sich jeder Kurbelantrieb zum Massenausgleich der vertikalen und horizontalen Massenkräfte nutzen. Die Ausgleichsmassen an den Kurbelantrieben des Vertikaltriebwerkes können an jedem der Kurbelantriebe identisch oder unterschiedlich ausgebildet sein. So lässt sich beispielsweise einer der Kurbelantriebe mit zwei Ausgleichsmassen bestücken, wo hingegen der zweite Kurbelantrieb nur eine Ausgleichsmasse erhält.In order to realize a parallel guidance of the needle bar within a machine frame, the vertical engine is preferably formed by two synchronously rotating crank drives. In this case, according to an advantageous development of the invention, each of the crank drives is assigned in each case one or more compensation masses. Thus, each crank drive can be used to balance the mass of vertical and horizontal inertial forces. The balancing weights on the crank drives of the vertical engine can be identical or different on each of the crank drives. For example, one of the crank drives can be equipped with two balancing weights, whereas, on the other hand, the second crank drive receives only one balancing weight.
Bei besonders komplexen Antriebskonzepten des Nadelbalkens lässt sich die Massenausgleichseinrichtung auch dadurch erweitern, dass innerhalb des Maschinengestells eine zusätzliche Ausgleichswelle mit einer umlaufenden Exzentermasse angeordnet ist. Damit können insbesondere auch die Massenmomente innerhalb des Maschinengestells vollständig kompensiert werden. Je nach Antriebskonzept kann die Ausgleichswelle mit einer umlaufenden Exzentermasse oder mit zwei um 90° versetzt umlaufenden Exzentermassen bestückt sein.In particularly complex drive concepts of the needle bar, the mass balancing device can also be expanded by arranging an additional balancing shaft with a circumferential eccentric mass within the machine frame. Thus, in particular, the mass moments within the machine frame can be fully compensated. Depending on the drive concept, the balancer shaft can be equipped with a rotating eccentric mass or with two eccentric masses that are offset by 90 °.
Für den Fall, dass die Horizontalbewegung über die Phasenverstellung des Vertikaltriebwerkes erzeugt wird, weist die Phasenverstelleinrichtung vorzugsweise zwei separat steuerbare Stellmotore auf, die den Kurbelwellen der Kurbeltriebe des Vertikaltriebwerkes zugeordnet sind. Damit lassen sich je nach Phasendifferenz zwischen den Kurbelwellen verschieden große Hübe bei der Horizontalbewegung realisieren. Zum Massen- und Momentenausgleich ist die Ausgleichswelle bevorzugt symmetrisch zu den beiden Kurbelwellen der Kurbeltriebe angeordnet.In the event that the horizontal movement is generated by the phase adjustment of the vertical engine, the phase adjustment preferably has two separately controllable servo motors, which are assigned to the crankshaft of the crank mechanisms of the vertical engine. This makes it possible, depending on the phase difference between the crankshafts, to realize strokes of different lengths during the horizontal movement. For mass and torque compensation, the balance shaft is preferably arranged symmetrically to the two crankshafts of the crank mechanisms.
Um bei einem separaten Kurbelantrieb des Horizontaltriebwerkes unmittelbar die in dem Horizontaltriebwerk wirksamen Massenkräfte kompensieren zu können, wird gemäß einer vorteilhaften Weiterbildung der Erfindung zumindest eine weitere Ausgleichsmasse dem Kurbelantrieb des Horizontaltriebwerkes zugeordnet und um einen Winkel im Bereich <180° versetzt zu dem Exzenter des Kurbelantriebes angeordnet.In order to be able to directly compensate for the mass forces acting in the horizontal engine at a separate crank drive of the horizontal engine, According to an advantageous development of the invention, at least one further balancing mass is assigned to the crank drive of the horizontal engine and arranged offset by an angle in the range of <180 ° relative to the eccentric of the crank drive.
Alternativ besteht jedoch auch die Möglichkeit, die Anordnung der Ausgleichsmassen an dem Kurbelantrieb des Horizontaltriebwerkes derart zu wählen, dass die Ausgleichsmasse um 90° versetzt zu dem Exzenter gehalten wird und eine zweite Ausgleichsmasse gegenüberliegend zur Exzentermasse angeordnet ist.Alternatively, however, it is also possible to choose the arrangement of the balancing masses on the crank drive of the horizontal engine such that the balancing mass is held offset by 90 ° to the eccentric and a second balancing mass is arranged opposite to the eccentric mass.
Um möglichst einen flexiblen horizontalen Antrieb des Nadelbalkens zu realisieren, wird bevorzugt das Horizontaltriebwerk durch zwei synchron umlaufende Kurbelantriebe gebildet. Hierbei wird vorteilhaft jedem der Kurbelantriebe zumindest eine der Ausgleichsmassen zugeordnet.In order to realize as possible a flexible horizontal drive of the needle bar, the horizontal engine is preferably formed by two synchronously rotating crank drives. In this case, at least one of the balancing weights is advantageously assigned to each of the crank drives.
Um eine variable Hubeinstellung zu ermöglichen, sind die Kurbelantriebe des Horizontaltriebwerks gegensinnig antreibbar und in ihren Phasenlagen verstellbar ausgebildet. Durch die den Kurbelantrieben zugeordneten Ausgleichsmassen lassen sich dabei neben den konstanten Massenkräften auch die variablen Massenkräfte kompensieren. Bei geeigneter Wahl der Ausgleichsmassen verschwindet somit die resultierende Massenkraft annähernd für jede horizontale Hubeinstellung zwischen null und einem Maximalhub.In order to enable a variable stroke adjustment, the crank drives of the horizontal engine are driven in opposite directions and designed to be adjustable in their phase positions. By the crank mechanisms associated balancing weights can be compensated in addition to the constant mass forces and the variable inertia forces. With a suitable choice of balancing weights thus the resulting mass force disappears approximately for each horizontal stroke adjustment between zero and a maximum stroke.
Um eine möglichst stabile Führung der Antriebsbewegung des Nadelbalkens zu erhalten, werden die Kurbelantriebe des Horizontaltriebwerkes bevorzugt durch ein Kopplungsgetriebe mit dem Nadelbalken verbunden. So lässt sich die Antriebsbewegung der Kurbelantriebe über das Kopplungsgetriebe in eine fast ausschließliche Gradbewegung an dem Nadelbalken umsetzen.In order to obtain the most stable possible guidance of the drive movement of the needle bar, the crank drives of the horizontal engine are preferably connected by a coupling gear with the needle bar. Thus, the drive movement of the crank drives via the coupling gear can be converted into an almost exclusive degree movement on the needle bar.
Die Kurbelantriebe des Vertikaltriebwerkes sowie des Horizontaltriebwerkes werden üblicherweise durch jeweils eine angetriebene Kurbelwelle oder eine angetriebene Exzenterwelle ausgebildet, die über einem Pleuelkopf mit einer Pleuelstange verbunden sind.The crank drives of the vertical engine and the horizontal engine are usually each by a driven crankshaft or a driven Exzenterwelle formed, which are connected via a connecting rod with a connecting rod.
Zum Ausgleich der Massenkräfte werden die Ausgleichsmassen direkt an der Kurbelwelle oder an der Exzenterwelle angebracht.To compensate for the mass forces, the balancing weights are applied directly to the crankshaft or to the eccentric shaft.
Die erfindungsgemäße Vorrichtung wird nachfolgend anhand eines Ausführungsbeispiels unter Hinweis auf die beigefügten Figuren näher erläutert.The device according to the invention is explained in more detail below with reference to an embodiment with reference to the accompanying figures.
Es stellen dar:
- Fig. 1.1 und 1.2
- schematisch eine Seitenansicht eines ersten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung
- Fig. 2
- schematisch eine Seitenansicht eines Ausführungsbeispiels eines Kurbel- antriebes mit Massenausgleich
- Fig. 3.1 und 3.2
- schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung
- Fig. 4
- schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung
- Fig. 5
- schematisch eine Seitenansicht eines weiteren Ausführungsbeispiels der erfindungsgemäßen Vorrichtung
- Fig. 1.1 and 1.2
- schematically a side view of a first embodiment of the device according to the invention
- Fig. 2
- schematically a side view of an embodiment of a crank drive with mass balance
- Fig. 3.1 and 3.2
- schematically a side view of another embodiment of the device according to the invention
- Fig. 4
- schematically a side view of another embodiment of the device according to the invention
- Fig. 5
- schematically a side view of another embodiment of the device according to the invention
In den
An dem Balkenträger 2 greift ein Vertikaltriebwerk 3 und ein Horizontaltriebwerk 10 an. Durch das Vertikaltriebwerk 3 wird der Balkenträger 2 in vertikaler Richtung oszillierend bewegt, so dass der Nadelbalken 1 mit dem Nadelbrett 24 eine Auf- und Abwärtsbewegung ausführt. Das Vertikaltriebwerk 3 ist durch zwei parallel angeordnete Kurbelantriebe 4.1 und 4.2 gebildet. Die Kurbelantriebe 4.1 und 4.2 weisen zwei parallel nebeneinander angeordnete Kurbelwellen 5.1 und 5.2 auf, die oberhalb des Balkenträgers 2 angeordnet sind. Die Kurbelwellen 5.1 und 5.2 weisen jeweils zumindest einen Exzenter 6.1 und 6.2 zur Aufnahme jeweils einer Pleuelstange 7.1 und 7.2 auf.On the
In
Die Pleuelstangen 7.1 und 7.2 sind mit ihren freien Enden durch die Drehgelenke 8.1 und 8.2 mit dem Balkenträger 2 verbunden. Die Kurbelwellen 5.1 und 5.2 werden gleich- oder gegensinnig synchron angetrieben, so dass der Balkenträger 2 zumindest annähernd parallel geführt ist.The connecting rods 7.1 and 7.2 are connected with their free ends through the hinges 8.1 and 8.2 with the
Zur überlagerten Horizontalbewegung des Nadelbalkens 1 greift das Horizontaltriebwerk 10 über einen Kurbelantrieb 11.1 unmittelbar an den Balkenträger 2 an. Der Kurbelantrieb 11.1 des Horizontaltriebwerkes 10 weist hierzu eine Kurbelwelle 12.1 und eine Pleuelstange 14.1 auf. Die Pleuelstange 14.1 ist über einen Exzenter 13.1 mit der Kurbelwelle 12.1 verbunden. Am freien Ende ist die Pleuelstange 14.1 durch das Drehgelenk 15 mit dem Balkenträger 2 gekoppelt. Die Kurbelwelle 12.1 wird synchron zu den Kurbelwellen 5.1 und 5.2 des Vertikaltriebwerkes angetrieben, so dass der Nadelbalken 1 eine Hubbewegung mit einem konstanten Horizontalhub ausführt.For superimposed horizontal movement of the
Dem Vertikaltriebwerk 3 und dem Horizontaltriebwerk 10 ist eine Massenausgleichseinrichtung zum Ausgleich der Massenkräfte der Kurbelantriebe zugeordnet. Die Massenausgleichseinrichtung wird hierbei durch mehrere Ausgleichmassen gebildet, die den Kurbelantrieben 4.1, 4.2 und 5.1 zugeordnet sind. Der Kurbelantrieb 4.1 weist die Ausgleichsmassen 9.1 und 9.2 auf. Die Ausgleichsmasse 9.1 ist hierzu um einen Winkel von 180° versetzt zu dem Exzenter 6.1 an der Kurbelwelle 5.1 angeordnet. Die Ausgleichsmasse 9.2 ist um einen Winkel von 90° versetzt zu dem Exzenter 6.1 an der Kurbelwelle 5.1 gehalten.The
Eine dritte Ausgleichsmasse 9.3 ist als Gegenmasse an dem Kurbelantrieb 4.2 angeordnet. Hierzu ist die Ausgleichsmasse 9.3 um einen Winkel von 180° versetzt zu dem Exzenter 6.2 an der Kurbelwelle 5.2 angeordnet.A third balancing mass 9.3 is arranged as a counterweight on the crank drive 4.2. For this purpose, the balancing mass is 9.3 offset by an angle of 180 ° to the eccentric 6.2 arranged on the crankshaft 5.2.
Dem Kurbelantrieb 11.1 des Horizontaltriebwerkes 10 sind die Ausgleichsmassen 16.1 und 16.2 zugeordnet. Die Ausgleichsmasse 16.1 ist hierzu um den Winkel von 180° versetzt zu dem Exzenter 13.1 an der Kurbelwelle 12.1 gehalten. Die andere Ausgleichsmasse 16.2 ist um den Winkel von 90° versetzt zu dem Exzenter 13.1 an der Kurbelwelle 12.1 befestigt.The crank drive 11.1 of the
Zur weiteren Erläuterung der Massenausgleichseinrichtung ist das Ausführungsbeispiel in
In der in
Bei den in
Bei dem in den
In den
Bei dem in den
Zur Auslenkung des Lenkers 19 ist ein Horizontaltriebwerk 10 vorgesehen, das durch zwei Kurbelantriebe 11.1 und 11.2 gebildet wird. Die Kurbelantriebe 11.1 und 11.2 weisen jeweils eine Kurbelwelle 12.1 und 12.2 auf, die parallel nebeneinander angeordnet sind und gemeinsam mit den Kurbelwellen 5.1 und 5.2 des Vertikaltriebwerkes 3 eine gemeinsame Antriebsebene bilden. Die Kurbelwellen 12.1 und 12.2 sind über ihre Exzenter 13.1 und 13.2 jeweils mit einer Pleuelstange 14.1 und 14.2 verbunden. Die Pleuelstangen 14.1 und 14.2 sind in einer Schräglage zueinander gerichtet, so dass die freien Enden der Pleuelstangen 14.1 und 14.2 über ein Doppeldrehgelenk 21 gemeinsam mit einem Koppelgetriebe 17 verbunden sind.For the deflection of the
Das Koppelgetriebe 17 besteht in diesem Ausführungsbeispiel aus einem Kipphebel 18, der an einem Schwenklager 26 schwenkbar gelagert ist. Der Kipphebel 18 weist an einem freien Ende unterhalb des Schwenklagers 26 ein Drehgelenk auf, mit welchem der Lenker 19 mit dem Kipphebel 18 verbunden ist. An dem gegenüberliegenden freien Ende des Kipphebels 18 ist ein weiteres Drehgelenk vorgesehen, an welchem eine Schubstange 20 angreift. Die Schubstange 20 ist mit einem gegenüberliegenden Ende durch das Doppeldrehgelenk 21 mit den Pleuelstangen 14.1 und 14.2 gekoppelt.The
Die Kurbelwellen 12.1 und 12.2 der Kurbelantriebe 11.1 und 11.2 werden gegensinnig mit gleicher Drehzahl angetrieben, wobei die Phasenlagen der Kurbelwellen 12.1 und 12.2 in Abhängigkeit von einem gewünschten Horizontalhub zueinander einstellbar sind. Die Phasenlagen und damit der gewünschte Horizontalhub der Kurbelwellen 12.1 und 12.2 lässt sich beispielsweise durch zwei separate Stellmotoren ausführen, die eine Verdrehung der Kurbelwellen 12.1 und 12.2 zueinander bewirken. Der Antrieb der Kurbelwellen 14.1 und 14.2 lässt sich durch einen gemeinsamen Antrieb oder separat über getrennte Antriebe ausführen.The crankshafts 12.1 and 12.2 of the crank mechanisms 11.1 and 11.2 are driven in opposite directions at the same speed, wherein the phase angles of the crankshafts 12.1 and 12.2 are adjustable relative to each other in dependence on a desired horizontal stroke. The phase angles and thus the desired horizontal stroke of the crankshafts 12.1 and 12.2 can be carried out, for example, by two separate servomotors which effect a rotation of the crankshafts 12.1 and 12.2 relative to each other. The drive of the crankshafts 14.1 and 14.2 can be carried out by a common drive or separately via separate drives.
Zum Ausgleich der Massenkräfte an den Kurbelantrieben 4.1, 4.2, 11.1 und 11.2 ist eine Massenausgleichseinrichtung vorgesehen, die durch mehrere den Kurbelantrieben zugeordnete Ausgleichmassen gebildet wird. Jeder der Kurbelantriebe 4.1 und 4.2 des Vertikaltriebwerkes 3 weist zwei Ausgleichsmassen auf. Eine erste Ausgleichsmasse ist als Gegenmasse an den Kurbelantrieben 4.1 und 4.2 angeordnet und um einen Winkel von 180° versetzt zu den Exzentern 6.1 und 6.2 der Kurbelwellen 5.1 und 5.2 angeordnet. Die Ausgleichsmassen sind mit dem Bezugszeichen 9.1 an dem Kurbelantrieb 4.1 und 9.3 an dem Kurbelantrieb 4.2 bezeichnet. Eine zweite Ausgleichsmasse ist um 90° versetzt zu den Exzentern 6.1 und 6.2 an den Kurbewellen 5.1 und 5.2 angeordnet. Die Ausgleichsmassen 9.2 und 9.4 der Kurbelantrieb 4.1 und 4.2 sind dabei in ihrer Masse größer ausgebildet, als die Ausgleichsmassen 9.1 und 9.3.To compensate for the mass forces on the crank mechanisms 4.1, 4.2, 11.1 and 11.2, a mass balancing device is provided, which is formed by a plurality of the crank mechanisms associated with balancing masses. Each of the crank drives 4.1 and 4.2 of the
Die Kurbelantriebe 11.1 und 11.2 des Horizontaltriebwerkes 10 weisen jeweils eine Ausgleichsmasse 16.1 und 16.2 auf. An dem Kurbelantrieb 11.1 ist die Ausgleichsmasse 16.1 in einem Winkel <180° versetzt zu dem Exzenter 13.1 der Kurbelwelle 12.1 angeordnet. Der Winkel α, der den Versatz zwischen dem Exzenter 13.1 und der Ausgleichsmasse 16.1 an der Kurbelwelle 12.1 bezeichnet ist in diesem Ausführungsbeispiel ca. 20°. Die Lage der Ausgleichsmasse 16.1 und auch die Lage der Ausgleichsmasse 16.2 wird im Wesentlichen durch die Anordnung der Kurbelantriebe 11.1 und 11.2 zueinander bestimmt. So sind die Pleuelstangen 14.1 und 14.2 in einer Schräglage angeordnet und über das Doppeldrehgelenk 21 miteinander verbunden. Die Ausgleichsmasse 16.2 an dem Kurbelantrieb 11.2 ist somit in gleicher Lage und in gleicher Größe an dem Kurbelantrieb 11.2 angebracht.The crank mechanisms 11.1 and 11.2 of the
Zum Antrieb der Nadelbalken 1.1 und 1.2 werden sowohl die Kurbelantriebe 4.1 und 4.2 des Vertikaltriebwerkes 3 als auch die Kurbelantriebe 11.1 und 11.2 des Horizontaltriebwerkes 10 synchron und gegensinnig angetrieben. In der
Die vier Ausgleichskräfte FA1 bis FA4 der Ausgleichsmassen 9.2, 9.4, 16.1 und 16.2 kompensieren sich in den Todlagen des Balkenträgers 2 wie aus der
Es ist jedoch auch möglich, den Massenausgleich beispielsweise auf einen Verstellwinkel auszulegen, der von null verschieden ist. Das bedeutet, dass die Ausgleichsmassen auf den Kurbelantrieben 11.1 und 11.2 des Horizontaltriebwerkes 10 um den Winkel α verdreht angebracht werden, so dass die entsprechenden Ausgleichskräfte bei einem entsprechenden Verstellwinkel senkrecht stehen. Dies hat zur Folge, dass der nutzbare Verstellwinkel verdoppelt werden kann, ohne dass es zu nennenswerten Abweichungen im vertikalen Kraftausgleich kommt. Die Ausgleichsmassen 9.1 bis 9.4 an den Kurbelantrieben 4.1 und 4.2 des Vertikaltriebwerkes 3 sind in diesem Fall so anzupassen, dass für den Bereich des Horizontalhubes die Massenkräfte in vertikaler und horizontaler Richtung ausgeglichen sind.However, it is also possible to design the mass balance, for example, to an adjustment angle that is different from zero. This means that the balancing weights are mounted on the crank drives 11.1 and 11.2 of the
Um insbesondere neben dem Ausgleich der Massenkräfte auch jede Form von auftretenden freien Massenmomenten zu kompensieren, lässt sich die in den
Das Ausführungsbeispiel nach
Zum Massenausgleich weist die Massenausgleichseinrichtung mehrere Ausgleichsmassen sowie eine Ausgleichswelle mit umlaufender Exzentermasse auf. Die Ausgleichswelle 22 ist in der Antriebsebene zwischen den Kurbelantrieben 11.1 und 11.2 des Horizontaltriebwerkes 10 angeordnet. Die Ausgleichswelle 22 erstreckt sich parallel zu den in der Antriebsebene liegenden Kurbelwellen 12.1 und 12.2, die ebenfalls parallel zu den in gleicher Ebene angeordneten Kurbelwellen 5.1 und 5.2 des Vertikaltriebwerkes 3 gehalten sind. An der Ausgleichswelle 22 ist eine Exzentermasse 23 angeordnet. Die Ausgleichswelle 22 wird synchron zu den Kurbelwellen 12.1 und 12.2 der Kurbelantriebe 11.1 und 11.2 angetrieben, wobei die Ausgleichswelle 22 und die Kurbelwelle 12.1 den gleichen Drehsinn aufweisen.For mass balance, the mass balancing device on several balancing weights and a balancer shaft with rotating eccentric mass. The balancing
Zum Massenausgleich sind die Ausgleichsmassen 16.1 und 16.2 an den Kurbelwellen 12.1 und 12.2 der Kurbelantriebe 11.1 und 11.2 angeordnet. Die Anordnung ist dabei identisch zu dem vorher beschriebenen Ausführungsbeispiel nach
Den Kurbelantrieben 4.1 und 4.2 der Vertikaltriebwerke 3 sind ebenfalls jeweils zwei Ausgleichsmassen in versetzter Anordnung zueinander zugeordnet. So sind die Ausgleichsmassen 9.1 und 9.2 dem Kurbelantrieb 4.1 und die Ausgleichsmassen 9.3 und 9.4 dem Kurbelantrieb 4.2 zugeordnet. Die Ausgleichsmassen 9.1 bis 9.4 der Kurbelantriebe 4.1 und 4.2 sind in ihrer Größe unterschiedlich ausgebildet. Die im Wesentlichen zur Ausgleichung von horizontalen Massenkräften an dem Kurbelantrieb 4.1 angeordnete Ausgleichsmasse 9.2 ist kleiner ausgebildet als die Ausgleichsmasse 9.4 an dem zweiten Kurbelantrieb 4.2 des Vertikaltriebwerkes 3.The crank mechanisms 4.1 and 4.2 of the
Insgesamt ergibt sich bei der in
In
Hierzu weist das mit dem Balkenträger 2 verbundene Vertikaltriebwerk zwei parallel nebeneinander angeordnete Kurbelantriebe 4.1 und 4.2 auf. Die Kurbelantriebe 4.1 und 4.2 besitzen zwei parallel nebeneinander angeordnete Kurbelwellen 5.1 und 5.2, die oberhalb des Balkenträgers 2 angeordnet sind. Die Kurbelwellen 5.1 und 5.2 weisen jeweils mindestens einen Exzenterabschnitt zur Aufnahme mindestens einer Pleuelstange auf. In
Den Kurbelwellen 5.1 und 5.2 ist eine Phasenverstelleinrichtung 36 zugeordnet. Die Phasenverstelleinrichtung 36 weist zwei Stellmotoren 34.1 und 34.2 auf, die den Kurbelwellen 5.1 und 5.2 zugeordnet sind. Die Stellmotoren 34.1 und 34.2 sind mit einer Steuereinrichtung 35 verbunden. Über die Steuereinrichtung 35 lassen sich die Stellmotoren 34.1 und 34.2 unabhängig voneinander aktivieren, um die Kurbelwellen 5.1 und 5.2 in ihren Lagen zu verdrehen. Somit lässt sich die Phasenlage zwischen den beiden Kurbelwellen 5.1 und 5.2 verstellen. Neben der reinen vertikalen Auf- und Abwärtsbewegung des Balkenträgers 2 lässt sich dadurch eine überlagerte Horizontalbewegung an dem Balkenträger 2 ausführen. Bei einem Versatz der Phasenlagen der Kurbelwellen 5.1 und 5.2 wird über die Pleuelstangen 7.1 und 7.2 an dem Balkenträger 2 eine Schiefstellung eingeleitet, die bei fortschreitender Bewegung eine in Bewegungsrichtung einer Faserbahn gerichtete Bewegungskomponente erzeugt. Die Größe der Phasenverstellung zwischen den Kurbelwellen 5.1 und 5.2 ist direkt proportional einer Hublänge der Horizontalbewegung. Der Hub der Horizontalbewegung lässt sich also über den Phasenwinkel der Kurbelwellen 5.1 und 5.2 einstellen.The crankshafts 5.1 and 5.2 are assigned a
Bei der in
Zur Führung des Balkenträgers 2 ist eine Führungseinrichtung 27 vorgesehen. Die Führungseinrichtung weist einen Lenker 19 auf, der mit einem freien Ende über ein Drehgelenk 15 mit dem Balkenträger 2 verbunden ist. An dem gegenüberliegenden Ende des Lenkers greift eine erste Schwinge 28 an, die über ein Drehlager 32 an ein Maschinengestell und über ein Drehgelenk 30 mit dem Lenker verbunden ist. Im Abstand zu der ersten Schwinge 28 ist eine zweite Schwinge 29 vorgesehen, die über ein Drehgelenk 31 im mittleren Bereich des Lenkers 19 und über ein Drehlager 33 gehalten ist.To guide the
Die Führungseinrichtung 27 ist oberhalb des Balkenträgers 2 angeordnet. Die Drehlager 32 und 33 sind zwischen den Pleuelstangen 7.1 und 7.2 angeordnet. Der Lenker 19 ist in der Balkenmitte über das Drehgelenk 15 mit dem Balkenträger verbunden. Damit lässt sich eine sichere Führung des Balkenträgers während der Antriebsbewegung durch das Vertikaltriebwerk 3 realisieren.The
Die den Kurbelantrieben 4.1 und 4.2 zugeordnete Massenausgleichseinrichtung wird in diesem Ausführungsbeispiel durch insgesamt vier Ausgleichsmassen 9.1, 9.2, 9.3 und 9.4 gebildet. Die Ausgleichsmassen 9.1 und 9.2 sind der Kurbelwelle 5.1 zugeordnet. Die Ausgleichsmassen 9.3 und 9.4 sind an der Kurbelwelle 5.2 befestigt. Die Ausgleichsmasse 9.1 ist an der Kurbelwelle 5.1 um den Winkel 180° versetzt zu dem Exzenter 6.1 angeordnet. Die Ausgleichsmasse 9.2 ist um einen Winkel um 90° versetzt zu der ersten Ausgleichsmasse 9.1 an der Kurbelwelle 5.1 befestigt.The cranks drives 4.1 and 4.2 associated mass balancing device is formed in this embodiment by a total of four balancing weights 9.1, 9.2, 9.3 and 9.4. The balancing weights 9.1 and 9.2 are assigned to the crankshaft 5.1. The balancing weights 9.3 and 9.4 are on the crankshaft 5.2 attached. The balancing mass 9.1 is arranged on the crankshaft 5.1 offset by the angle 180 ° to the eccentric 6.1. The balancing mass 9.2 is offset by an angle of 90 ° to the first balancing mass 9.1 attached to the crankshaft 5.1.
Bei dem Kurbelantrieb 4.2 ist die Ausgleichsmasse 9.3 um 180° versetzt zu dem Exzenter 6.2 an der Kurbelwelle 5.2 gehalten. Die Ausgleichsmasse 9.4 ist um den Winkel von 90° versetzt zu der ersten Ausgleichsmasse 9.3 an der Kurbelwelle 5.2 gehalten. Somit lassen sich sowohl die vertikalen als auch die horizontalen Massenkräfte an den Kurbelantrieben 4.1 und 4.2 vorteilhaft durch die Ausgleichsmassen 9.1 bis 9.4 ausgleichen.In the case of the crank drive 4.2, the balancing mass 9.3 is offset by 180 ° relative to the eccentric 6.2 on the crankshaft 5.2. The balancing mass 9.4 is offset by the angle of 90 ° to the first balancing mass 9.3 held on the crankshaft 5.2. Thus, both the vertical and the horizontal inertia forces on the crank drives 4.1 and 4.2 can be compensated advantageously by the balancing weights 9.1 to 9.4.
Um insbesondere einen vollständigen Ausgleich der Massenkräfte und Massenmomente zu erreichen, weist die Massenausgleichseinrichtung zusätzliche eine Ausgleichwelle 22 auf, die oberhalb der Kurbelwellen 5.1 und 5.2 angeordnet ist. Die Ausgleichswelle 22 wird hierbei symmetrisch zu den Kurbelantrieben 4.1 und 4.2 gehalten. An der Ausgleichswelle 22 sind zwei Exzentermassen 23.1 und 23.2 angeordnet. Die Ausgleichswelle 22 erstreckt sich parallel zu den Kurbelwellen 5.1 und 5.2 und wird synchron zu den Kurbelwellen 5.1 und 5.2 angetrieben. Der Drehsinn der Ausgleichswelle 22 und der Drehsinn der Kurbelwellen 5.1 und 5.2 ist in
Die Funktion zum Ausgleich der Massenkräfte im Betrieb der in
Die Erfindung erstreckt sich nicht nur auf die in
- 1, 1.1, 1.21, 1.1, 1.2
- Nadelbalkenneedle beam
- 22
- Balkenträgerbeam support
- 33
- VertikaltriebwerkVertical engine
- 4.1,4.24.1,4.2
- Kurbelantriebecrank drives
- 5.1,5.25.1,5.2
- Kurbelwellencrankshafts
- 6.1, 6.26.1, 6.2
- Exzentereccentric
- 7.1, 7.27.1, 7.2
- Pleuelstangenconnecting rods
- 8.1,8.28.1,8.2
- Drehgelenkswivel
- 9.1, 9.2, 9.39.1, 9.2, 9.3
- AusgleichsmasseLeveling compound
- 1010
- HorizontalantriebHorizontal drive
- 11.1, 11.211.1, 11.2
- Kurbelantriebcrank drive
- 12.1, 12.212.1, 12.2
- Kurbelwellecrankshaft
- 13.1, 13.213.1, 13.2
- Exzentereccentric
- 14.1, 14.214.1, 14.2
- Pleuelstangeconnecting rod
- 1515
- Drehgelenkswivel
- 16.1, 16.216.1, 16.2
- AusgleichsmasseLeveling compound
- 1717
- Koppelgetriebecoupling gear
- 1818
- Kipphebelrocker arm
- 1919
- Lenkerhandlebars
- 2020
- Koppelgliedcoupling member
- 2121
- DoppeldrehgelenkDouble-hinge
- 2222
- Ausgleichswellebalancer shaft
- 23, 23.1, 23.223, 23.1, 23.2
- Exzentermasseeccentric
- 2424
- Nadelbrettneedle board
- 2525
- Nadelnneedles
- 2626
- Schwenklagerpivot bearing
- 2727
- Führungseinrichtungguide means
- 2828
- erste Schwingefirst swingarm
- 2929
- zweite Schwingesecond swingarm
- 3030
- Drehgelenkswivel
- 3131
- Drehgelenkswivel
- 3232
- Drehlagerpivot bearing
- 3333
- Drehlagerpivot bearing
- 34.1,34.234.1,34.2
- Stellmotorservomotor
- 3535
- Steuereinrichtungcontrol device
- 3636
- Phasenverstelleinrichtungphase adjustment
Claims (14)
- Device for needling of a fiber web with at least one driven needle beam (1) with a vertical drive mechanism (3) for oscillating movement of the needle beam (1) in a vertical up-and-down movement, with a horizontal drive mechanism (10) or a phase adjustment device (36) assigned to the vertical drive mechanism (3) for execution of a superimposed oscillating movement of the needle beam (1) in a horizontal back-and-forth movement, in which the vertical drive mechanism (3) has separate crank mechanisms (4.1, 4.2), and with a balancing device (9.1, 9.2) to balance the inertial forces of the crank mechanisms (4.1, 4.2),
characterized by the fact that
the balancing device is formed by at least one balancing weight (9.2) assigned to the crank mechanism (4.1) of the vertical drive mechanism (3) and offset at an angle (α) in the range less than 180° to an eccentric (6.1) of the crank mechanism (4.1). - Device according to Claim 1,
characterized by the fact that
the balancing weight (9.2) is offset by an angle of 90°relative to the eccentric (6.1) of the crank mechanism (4.1), and that a second balancing weight (9.1) is offset by an angle of 180° to the eccentric (6.1) of the crank mechanism (4.1). - Device according to Claim 2,
characterized by the fact that
the two balancing weights (9.1, 9.2) are equally large or unequally large. - Device according to one of the Claims 1 to 3,
characterized by the fact that
the vertical drive mechanism (3) is formed by two synchronously running crank mechanisms (4.1, 4.2), and that the balancing device is formed by several balancing weights (9.1-9.4) assigned to the two crank mechanisms (4.1, 4.2). - Device according to Claim 3,
characterized by the fact that
the eccentric (6.1, 6.2) of the crank mechanisms (4.1, 4.2) of the vertical drive mechanism (3) are assigned at least one of the balancing weights (9.1-9.4). - Device according to one of the Claims 1 to 5,
characterized by the fact that
the balancing device has an additional balancing shaft (22) with a rotating eccentric weight (23) or with two rotating eccentric weights (23.1, 23.2) offset by 90° relative to each other. - Device according to one of the Claims 1 to 6,
characterized by the fact that
the phase adjustment device (36) has two servo motors (34.1, 34.2) assigned to the crankshafts (5.1, 5.2) of the crank mechanisms (4.1, 4.2), and that the balancing shaft (22) is arranged symmetric to the crankshafts (5.1, 5.2). - Device according to one of the Claims 1 to 6,
characterized by the fact that
the horizontal drive mechanism (10) has at least one separate crank mechanism (11.1), and that at least one additional balancing weight (16.1) is provided, which is assigned to the crank mechanism (11.1) of the horizontal drive mechanism (10), and which is offset by an angle in the range less than 180° to an eccentric (13.1) of the drive mechanism (11.1). - Device according to Claim 8,
characterized by the fact that
the balancing weight (16.1) is offset by an angle of 90° to the eccentric (13.1) to crank mechanism (11.1), and that a second balancing weight (16.2) is offset by an angle of 180° to the eccentric (13.1) of the crank mechanism (11.1). - Device according to Claim 8 or 9,
characterized by the fact that
the horizontal drive mechanism (10) is formed by two synchronously running crank mechanisms (11.1, 11.2), and that at least one of the balancing weights (16.1, 16.2) is assigned to each of the crank mechanisms (11.1, 11.2). - Device according to Claim 10,
characterized by the fact that
the crank mechanisms (11.1, 11.2) of the horizontal drive mechanism (10) are driven oppositely, and that the phase positions of the two crank mechanisms (11.1, 11.2) are designed adjustable to set a stroke. - Device according to Claim 10 or 11,
characterized by the fact that
the horizontal drive mechanism (10) has a coupling mechanism (17) that forms the connection between the crank mechanisms (11.1, 11.2) and the needle beam (1). - Device according to one of the Claims 1 to 12, characterized by the fact that
the crank mechanisms (4.1, 4.2, 11.1, 11.2) each have a driven crankshaft (5.1, 5.2, 12.1, 12.2) or eccentric shaft and connecting rods (7.1, 7.2, 14.1, 14.2) connected to the crankshaft or eccentric shaft via a connecting rod small end. - Device according to Claim 13,
characterized by the fact that
the balancing weight (9.2) or the balancing weights (9.1-9.4, 16.1, 16.2) are arranged on the crankshaft (5.1, 5.2, 12.1, 12.2) or eccentric shaft.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008012294 | 2008-03-03 | ||
DE102008021958 | 2008-05-02 | ||
PCT/EP2009/052467 WO2009109553A1 (en) | 2008-03-03 | 2009-03-02 | Device for needling a web of fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2250308A1 EP2250308A1 (en) | 2010-11-17 |
EP2250308B1 true EP2250308B1 (en) | 2011-09-21 |
Family
ID=40740005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09718088A Not-in-force EP2250308B1 (en) | 2008-03-03 | 2009-03-02 | Device for needling a web of fiber |
Country Status (5)
Country | Link |
---|---|
US (1) | US8099840B2 (en) |
EP (1) | EP2250308B1 (en) |
CN (1) | CN101960065B (en) |
AT (1) | ATE525509T1 (en) |
WO (1) | WO2009109553A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202020106554U1 (en) | 2020-11-16 | 2022-02-17 | Autefa Solutions Austria Gmbh | needle machine |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013009267A1 (en) * | 2013-06-04 | 2014-12-18 | Autefa Solutions Germany Gmbh | Device for separating needles |
EP2886694B1 (en) * | 2013-12-17 | 2016-09-07 | Oskar Dilo Maschinenfabrik KG | Method for driving a needle bar in a needling machine |
CN106436033B (en) * | 2016-11-03 | 2018-08-31 | 汕头三辉无纺机械厂有限公司 | The acupuncture mechanism of single main shaft single needle area needing machine |
EP3372716B1 (en) * | 2017-03-09 | 2019-09-04 | Oskar Dilo Maschinenfabrik KG | Needling machine |
CN110409062A (en) * | 2019-07-17 | 2019-11-05 | 王永祥 | A lever horizontally opposed balanced ultra-high-speed needle loom |
CN111237422A (en) * | 2020-03-06 | 2020-06-05 | 王浦国 | Linear reciprocating motion mechanism and needling machine |
FR3109587B1 (en) | 2020-04-23 | 2022-05-20 | Andritz Asselin Thibeau | Device for controlling the movement of the needles of a needling machine, in particular an elliptical, and needling machine comprising such a device |
CN115199704B (en) * | 2022-09-15 | 2022-11-29 | 仪征市佳禾机械有限公司 | Dynamic balancing device for needling machine |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1288935A (en) | 1969-05-14 | 1972-09-13 | ||
GB1257669A (en) | 1969-05-17 | 1971-12-22 | ||
DE19615697B4 (en) * | 1995-09-15 | 2006-04-20 | Oskar Dilo Maschinenfabrik Kg | Needle bar drive of a needle machine |
US5732453A (en) * | 1995-09-15 | 1998-03-31 | Oskar Dilo Maschinenfabrik Kg | Needle bar driving apparatus of a needle loom |
AT406390B (en) * | 1998-03-31 | 2000-04-25 | Fehrer Textilmasch | DEVICE FOR NEEDING A FLEECE |
AT408235B (en) * | 1999-10-29 | 2001-09-25 | Fehrer Textilmasch | DEVICE FOR NEEDING A FLEECE |
AT412162B (en) | 2002-10-07 | 2004-10-25 | Fehrer Textilmasch | Assembly for needle bonding nonwovens, with a reciprocating needle board, has connecting rods from two eccentric shafts linked to a push rod, which rides through a swing guide sleeve |
FR2862988B1 (en) * | 2003-11-28 | 2007-11-09 | Fehrer Textilmasch | DEVICE FOR NEEDLING A FIBER MATTRESS |
DE102004043890B3 (en) * | 2004-09-08 | 2006-04-20 | Oskar Dilo Maschinenfabrik Kg | needle loom |
FR2887563B1 (en) * | 2005-06-22 | 2009-03-13 | Asselin Soc Par Actions Simpli | "METHOD AND INSTALLATION FOR NEEDING A FIBER TABLE WITH TWO NEEDLE BOARDS" |
FR2887564B1 (en) * | 2005-06-22 | 2007-10-26 | Asselin Soc Par Actions Simpli | CLAMPING APPARATUS FOR CONSOLIDATING A FIBER TABLE |
AT502044B1 (en) * | 2005-10-27 | 2007-01-15 | Neumag Saurer Austria Gmbh | Apparatus for needling nonwovens comprises a hydrostatic resonance drive comprising pistons acted upon on both sides by hydraulic springs and a device for applying pressure to the pistons at a resonance frequency |
CN100489174C (en) * | 2005-12-16 | 2009-05-20 | 厦门三维丝环保工业有限公司 | Production process of polytetrafluoroethylene fiber acupuncture filtering felt |
TW200806839A (en) * | 2006-05-20 | 2008-02-01 | Saurer Gmbh & Amp Co Kg | Apparatus for needling a non-woven web |
-
2009
- 2009-03-02 CN CN2009801074404A patent/CN101960065B/en not_active Expired - Fee Related
- 2009-03-02 AT AT09718088T patent/ATE525509T1/en active
- 2009-03-02 WO PCT/EP2009/052467 patent/WO2009109553A1/en active Application Filing
- 2009-03-02 US US12/920,778 patent/US8099840B2/en not_active Expired - Fee Related
- 2009-03-02 EP EP09718088A patent/EP2250308B1/en not_active Not-in-force
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202020106554U1 (en) | 2020-11-16 | 2022-02-17 | Autefa Solutions Austria Gmbh | needle machine |
US11639568B2 (en) | 2020-11-16 | 2023-05-02 | Autefa Solutions Austria Gmbh | Needling machine and needling process |
Also Published As
Publication number | Publication date |
---|---|
CN101960065A (en) | 2011-01-26 |
ATE525509T1 (en) | 2011-10-15 |
US20110047767A1 (en) | 2011-03-03 |
US8099840B2 (en) | 2012-01-24 |
CN101960065B (en) | 2012-03-14 |
EP2250308A1 (en) | 2010-11-17 |
WO2009109553A1 (en) | 2009-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2250308B1 (en) | Device for needling a web of fiber | |
EP2021539B1 (en) | Apparatus for needling a nonwoven web | |
EP2475814B1 (en) | Device for needling a fibrous web | |
EP2158348B1 (en) | Device for needling a nonwoven web | |
DE19615697B4 (en) | Needle bar drive of a needle machine | |
EP2173936B1 (en) | Device for needling a fibrous web | |
EP3372716B1 (en) | Needling machine | |
EP2265757B1 (en) | Apparatus for needling a fibrous web | |
DD298017A5 (en) | DEVICE FOR CONVERSION OF LINEAR MOVEMENTS IN TURNING MOVEMENTS | |
EP1725373B9 (en) | Wobble drive | |
EP2363212B1 (en) | Continuously adjustable vibration generator | |
DE102004043890B3 (en) | needle loom | |
DE10105687B4 (en) | Vibration generator for steerable soil compaction devices | |
DE4430201C2 (en) | Mechanical press | |
DE102010055584B4 (en) | Device for mass balancing | |
DE4441798A1 (en) | Lifting piston machine, especially combustion engine | |
DE102007000554B4 (en) | Traversing drive | |
DE19538837C1 (en) | Vibration compensation device in IC engine | |
DE2445486A1 (en) | Dynamically balanced eccentric press - uses linearly moving weights operated by levers joined by connecting rods | |
EP2201164A1 (en) | Device for needling a fiber web | |
CH695763A5 (en) | Press machine. | |
WO2020211931A1 (en) | Punching press | |
CH705751B1 (en) | Piston engine with an elliptical movement on the crank pin and variable compression. | |
CH710639B1 (en) | Embroidery machine, vibration compensator and method for compensating vibrations in an embroidery machine. | |
DE102015002705A1 (en) | Device for mass balance of a reciprocating internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100720 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BU, DANIEL Inventor name: DIE ANDERE ERFINDER HABEN AUF IHRE NENNUNG VERZICH Inventor name: PLUMP, ANDREAS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BU, DANIEL Inventor name: MAYER, ANDREAS Inventor name: PLUMP, ANDREAS Inventor name: REUTTER, TILMAN |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009001393 Country of ref document: DE Effective date: 20111117 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111221 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111222 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120121 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120123 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
26N | No opposition filed |
Effective date: 20120622 |
|
BERE | Be: lapsed |
Owner name: OERLIKON TEXTILE G.M.B.H. & CO. KG Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009001393 Country of ref document: DE Effective date: 20120622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090302 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150324 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160302 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190503 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200325 Year of fee payment: 12 Ref country code: AT Payment date: 20200319 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200325 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009001393 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 525509 Country of ref document: AT Kind code of ref document: T Effective date: 20210302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210302 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210302 |