EP2245441A1 - Microspectrometer - Google Patents
MicrospectrometerInfo
- Publication number
- EP2245441A1 EP2245441A1 EP09714805A EP09714805A EP2245441A1 EP 2245441 A1 EP2245441 A1 EP 2245441A1 EP 09714805 A EP09714805 A EP 09714805A EP 09714805 A EP09714805 A EP 09714805A EP 2245441 A1 EP2245441 A1 EP 2245441A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid channel
- optical
- microspectrometer
- housing
- microspectrometer according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 35
- 239000012530 fluid Substances 0.000 claims abstract description 28
- 230000003595 spectral effect Effects 0.000 claims abstract description 11
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 238000011156 evaluation Methods 0.000 claims description 13
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 238000001746 injection moulding Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 3
- 239000012780 transparent material Substances 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 238000001228 spectrum Methods 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 4
- 239000012491 analyte Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/255—Details, e.g. use of specially adapted sources, lighting or optical systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/021—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0237—Adjustable, e.g. focussing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0256—Compact construction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0256—Compact construction
- G01J3/0259—Monolithic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0291—Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/04—Slit arrangements slit adjustment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
- G01N21/532—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/062—LED's
- G01N2201/0628—Organic LED [OLED]
Definitions
- the invention relates to a microspectrometer.
- Microspectrometers are known. Typically, components such as optical grating, mirrors, evaluation electronics and optical fibers are arranged in a housing or on a base plate, which couple the light to be analyzed into the spectrometer. Outside the microspectrometer is a light source and the sample to be analyzed, which is irradiated by the light of the external light source. The light, which is separated from the optical grating into its spectral components, passes via optical fibers to a plurality of photodetectors.
- the invention provides a microspectrometer which can be made extremely compact and without external components and has only a fluidic interface and electrical connections to the outside.
- the advantage of the invention set out in the appended claims is that it permits the continuous spectroscopy of an analyte, e.g. in the monitoring of drinking water quality is of great importance.
- optical grating is rotatably arranged, so that instead of a detector line, a single photodetector can be used.
- the housing of the microspectrometer as a rigid molded body by injection molding from at least partially transparent To manufacture plastic.
- the fluid channel is then passed across a solid portion of the molded article from one side surface to the opposite surface.
- the required optical grating is molded during injection molding in a surface of the molding. But it is also possible to use a grid after injection into a recess of the housing.
- the light source may e.g. be an LED and integrated as Einlegteil in the molding.
- the light source could also be inserted into a recess of the plastic part and then attached, for example, by gluing.
- OLED it is also possible to use OLED or use other known methods such as laser technology to generate the light source.
- a further light source could be arranged below / above the fluid channel.
- the scattered light would then be radiated at an angle of 90 ° on the same path as the test section described.
- the scattered light falls on the grid, is spectrally decomposed and reaches the evaluation electronics.
- the fluid channel is transversely irradiated by a separate light source, and the scattered light occurring in this case is collected directly (without spectral decomposition) by means of another photodiode.
- the scattered light intensity is measured and evaluated separately.
- 1 is a schematic plan view of an embodiment of the microspectrometer with the housing open; 2 shows a plan view of a second exemplary embodiment of the microspectrometer with the housing open in a schematic illustration;
- FIG. 5 shows a rigid molded body, which is suitable as a housing.
- Fig. 6 shows an embodiment using the housing of Fig. 5;
- FIG. 7 shows a further embodiment using the housing according to Fig. 5; and
- FIG. 8 shows a further embodiment using a rigid shaped body as the housing.
- a light source 2 and an optical grating 6 are arranged in a housing 1 on opposite sides.
- the housing 1 is penetrated by a fluid channel 3.
- the channel 3 can either be filled and sealed with medium to be analyzed, or this medium can flow continuously through the channel.
- the fluid channel 3 can be connected to lines (not shown in FIG. 1) in which the medium is transported to and from the spectrometer.
- the fluid channel 3 is arranged in the housing such that it is located on the optical measuring path between the light source 2 and the grating 6.
- the fluid channel 3 must be made of translucent material.
- Fluid channel 3 can be either completely or partially provided in the injection mold for the housing 1 of the microspectrometer, or this or window-like parts thereof are subsequently made of transparent material such
- a diaphragm 4 wherein the opening is placed so that light from the light source 2 on the grid 6 falls.
- the diameter of the aperture 4 is ideally adjustable.
- a mirror 5 is arranged so that light reflected by the grating 6 is incident on it.
- the mirror 5 may for example be part of Aperture 4, arranged so that it faces the grating 6 and not the light source 2.
- the mirror 5 directs incident light on to an evaluation unit (not shown in FIG. 1).
- This evaluation unit can e.g. a photodetector like an organic photodiode array.
- the beam path 7 of the optical measuring path is shown.
- Light from the light source 2 ideally passes through the fluid channel 3 at an angle of incidence of 90 °, passes through the diaphragm 4 to the grating 6, which spectrally splits the light and reflects it onto the mirror 5, which redirects the light to the evaluation unit.
- the evaluation unit can be arranged inside the microspectrometer or can also be located outside.
- a second light source 2a e.g. LED arranged, which also sends light across the fluid channel. From the main beam at an angle of 90 ° sloping stray light (dashed line) passes according to beam path 8, for. for the purpose of turbidity measurement by the diaphragm 4 on the optical grating 6 and the evaluation unit.
- the light source 2 is not activated simultaneously with the light source 2a.
- the two light sources 2 and 2a are activated alternately, the turbidity and the concentration of constituents in liquids can thus be determined in succession with the same device.
- the evaluation of the scattered light with spectral decomposition takes place through the optical grating 6.
- FIG. 4 shows the sectional view of a further exemplary embodiment in which the evaluation of the scattered light takes place without spectral decomposition.
- the arrangement of the individual components is identical to that of the first embodiment, except that in addition below the fluid channel 3 is a photodiode 2b.
- the photodiode 2b detects scattered light radiated at an angle of 90 ° from the main beam emitted from the light source 2 and which transmits the light Transmitted fluid channel 3 transversely.
- the beam path of the scattered light is shown in dashed lines according to arrow 9.
- the main beam of the light source 2 can be optically decomposed and evaluated by means of grids and the scattered light occurring thereby can be collected directly by means of the photodiode 2b and the scattered light intensity can be measured.
- the rigid shaped body 20 which is suitable as a housing of the microspectrometer and is shown in FIG. 5, is a flat cuboid with a solid block 20a, which merges with a step 22 into a flat region 20b in which a rectangular recess 24 is formed. This recess 24 can be closed by a cover 26, which is flush with the block 20a.
- the molded body 20 is produced by injection molding of a particularly transparent plastic, such as polymethyl acrylate.
- a channel 28 is recessed, which is guided from one side surface up to the opposite side surface. Furthermore, a cylindrical recess 30 is introduced perpendicular to the channel 28 in the block 20 a.
- a light source such as an LED 32 is inserted in the recess 30.
- the channel 28 is provided at its ends with fluidic fittings 34.
- the recess 24 accommodates all further components of the microspectrometer: the diaphragm 36, the optical grating 38 and the photodetector row 40 with evaluation electronics 42.
- further optical and / or electronic components can be arranged in the recess 24.
- a plurality of light sources for different spectral ranges can be arranged in the block 20a.
- the micro-spectrometer has only a fluidic interface in the form of the connecting pieces 34 and electrical connections that can be realized by connectors. Since all optical components are in a rigid spatial relationship, no adjustments are required to make measurements.
- Fig. 7 differs from that of Fig. 6 by the use of a rotatably mounted optical grating 38a with rotary drive 44 and the use of a single photodiode 40a as a detector.
- the rotary drive 44 is activated by the evaluation electronics 42a in such a way. Experts that the photodiode 40a successively detects all the spectral components of the light reflected from the grid.
- the shaped body 20b forms a uniform flat cuboid made of transparent plastic.
- a recess 46 which is introduced into the molded body 20b parallel to the channel 28b, accommodates the photodetector row 40b and the evaluation electronics 42b.
- the optical grating 38b is formed in the outer surface of the molded body 20b opposite to the light source 32b and provided with a reflective coating, e.g. is applied by vapor deposition.
- the grid 38b is covered with a protective layer.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
The compact microspectrometer for fluid media has, in a fixed spatial assignment in a housing (20b), a light source, a fluid passage (28b), a reflective optical grating (38b) and a detector (40b). The optical measurement path starting from the light source passes through the fluid passage and strikes the optical grating. The spectral light components which are reflected by the optical grating strike the detector.
Description
Mikrospektrometer microspectrometer
Die Erfindung betrifft ein Mikrospektrometer.The invention relates to a microspectrometer.
Mikrospektrometer sind bekannt. Üblicherweise sind in einem Gehäuse oder auf einer Grundplatte Komponenten wie optisches Gitter, Spiegel, Auswerteelektronik und Lichtfasern angeordnet, welche das zu analysierende Licht in das Spektrometer einkoppeln. Außerhalb des Mikrospektrometers befinden sich eine Lichtquelle sowie die zu analysierende Probe, die vom Licht der externen Lichtquelle durchstrahlt wird. Das von dem optischen Gitter in seine spektralen Kom- ponenten zerlegte Licht gelangt über Lichtleitfasern zu mehreren Photodetektoren.Microspectrometers are known. Typically, components such as optical grating, mirrors, evaluation electronics and optical fibers are arranged in a housing or on a base plate, which couple the light to be analyzed into the spectrometer. Outside the microspectrometer is a light source and the sample to be analyzed, which is irradiated by the light of the external light source. The light, which is separated from the optical grating into its spectral components, passes via optical fibers to a plurality of photodetectors.
Durch die Erfindung wird ein Mikrospektrometer bereit gestellt, das äußerst kompakt und ohne externe Komponenten ausgebildet werden kann und nach außen nur eine Fluidikschnittstelle und elektrische Anschlüsse besitzt. Vorteil der in den beigefügten Patentansprüchen angegebenen Erfindung ist unter anderem, dass dadurch die kontinuierliche Spektroskopie eines Analyts ermöglicht wird, was z.B. bei der Überwachung der Trinkwasserqüalität große Bedeutung hat.The invention provides a microspectrometer which can be made extremely compact and without external components and has only a fluidic interface and electrical connections to the outside. Amongst other things, the advantage of the invention set out in the appended claims is that it permits the continuous spectroscopy of an analyte, e.g. in the monitoring of drinking water quality is of great importance.
Außerdem werden mögliche Fehlerquellen ausgeschlossen, weil die Licht- ' quelle nicht bei jeder Messung neu zu dem den zu messenden Analyten enthaltenden Behälter ausgerichtet werden muss.In addition, possible sources of error are excluded because the source of light 'does not have to be realigned for each measurement to the containing the analyte to be measured container.
Zusätzliche Linsen, die in bekannten Mikrospektrometern benötigt werden, um Licht in die Lichtfaser einzukoppeln, so wie die Lichtfaser selbst sind überflüssig. Das durch das optische Gitter in seine spektralen Komponenten zerlegte Licht kann ohne Umwege über Lichtleitfasern direkt von einer Photodetektorzeile aufgenommen werden. Bei einer alternativen Ausführungsform ist das optische Gitter drehbeweglich angeordnet, so dass an Stelle einer Detektorzeile ein einzelner Photodetektor verwendet werden kann.Additional lenses, which are required in known microspectrometer to couple light into the optical fiber, as the optical fiber itself are superfluous. The light separated into its spectral components by the optical grating can be picked up directly from a photodetector line via optical fibers without detours. In an alternative embodiment, the optical grating is rotatably arranged, so that instead of a detector line, a single photodetector can be used.
Besonders günstig ist es, das Gehäuse des Mikrospektrometers als starrer Formkörper im Spritzgussverfahren aus zumindest bereichsweise transparentem
Kunststoff zu fertigen. Der Fluidkanal wird dann quer durch einen massiven Bereich des Formkörpers von einer Seitenfläche zur gegenüberliegenden Fläche geführt. Bei einer vorteilhaften Ausführungsform wird das benötigte optische Gitter beim Spritzguss in eine Fläche des Formkörpers eingeformt. Es ist aber auch möglich, ein Gitter nach dem Spritzguss in eine Ausnehmung des Gehäuses einzusetzen.It is particularly favorable, the housing of the microspectrometer as a rigid molded body by injection molding from at least partially transparent To manufacture plastic. The fluid channel is then passed across a solid portion of the molded article from one side surface to the opposite surface. In an advantageous embodiment, the required optical grating is molded during injection molding in a surface of the molding. But it is also possible to use a grid after injection into a recess of the housing.
Für reflektierende Flächen, die als Spiegel wirken sollen, können Metallschichten anschließend aufgedampft werden, oder es wird geeignete Folie hin- tersprizt. Die Lichtquelle kann z.B. eine LED sein und als Einlegteil in den Formkörper integriert werden. Die Lichtquelle könnte aber auch in eine Ausnehmung des Kunststoffteils eingesetzt und anschließend beispielsweise durch Kleben befestigt werden.For reflective surfaces that are to act as a mirror, metal layers can subsequently be vapor-deposited, or suitable film is back-sprayed. The light source may e.g. be an LED and integrated as Einlegteil in the molding. The light source could also be inserted into a recess of the plastic part and then attached, for example, by gluing.
Es ist auch möglich OLED zu verwenden oder andere bekannte Methoden wie Lasertechnologie zur Erzeugung der Lichtquelle einzusetzen.It is also possible to use OLED or use other known methods such as laser technology to generate the light source.
Werden mehrere verschiedene Lichtquellen in ein Mikrospektrometer integriert, so können mit einem Gerät vorteilhaft mehrere spektrale Messungen unterschiedlicher Wellenlängen ausgeführt werden.If several different light sources are integrated into a microspectrometer, it is advantageously possible to carry out a plurality of spectral measurements of different wavelengths with one instrument.
So könnte eine weitere Lichtquelle unter/ oberhalb des Fluidkanals angeord- net sein. Das Streulicht würde dann im Winkel von 90° abgestrahlt werden auf dem gleichen Weg wie die beschriebene Messstrecke. Das Streulicht fällt auf das Gitter, wird spektralzerlegt und gelangt zur Auswerteelektronik.Thus, a further light source could be arranged below / above the fluid channel. The scattered light would then be radiated at an angle of 90 ° on the same path as the test section described. The scattered light falls on the grid, is spectrally decomposed and reaches the evaluation electronics.
Gemäß einer Variante oder zusätzlich wird der Fluidkanal von einer gesonderten Lichtquelle quer durchstrahlt, und das hierbei auftretende Streulicht wird direkt (ohne spektrale Zerlegung) mittels weiterer Photodiode aufgefangen. Die Streulichtintensität wird separat gemessen und ausgewertet.According to a variant or additionally, the fluid channel is transversely irradiated by a separate light source, and the scattered light occurring in this case is collected directly (without spectral decomposition) by means of another photodiode. The scattered light intensity is measured and evaluated separately.
Vorteilhafte Ausführungsformen werden nun unter Bezugnahme auf die Zeichnungen näher beschrieben. In den beigefügten Figuren zeigen:Advantageous embodiments will now be described in detail with reference to the drawings. In the attached figures show:
Fig. 1 Draufsicht auf ein Ausführungsbeispiel des Mikrospektrometers bei geöffnetem Gehäuse in schematischer Darstellung;
Fig. 2 Draufsicht auf ein zweites Ausführungsbeispiel des Mikrospektrometers bei geöffnetem Gehäuse in schematischer Darstellung;1 is a schematic plan view of an embodiment of the microspectrometer with the housing open; 2 shows a plan view of a second exemplary embodiment of the microspectrometer with the housing open in a schematic illustration;
Fig. 3 Schnitt von Fig. 2;Fig. 3 section of Fig. 2;
Fig. 4 Schnittbild eines weiteren Ausführungsbeispiels;Fig. 4 sectional view of another embodiment;
Fig. 5 einen starren Formkörper, der als Gehäuse geeignet ist; Fig. 6 eine Ausführungsform unter Verwendung des Gehäuses nach Fig. 5;5 shows a rigid molded body, which is suitable as a housing. Fig. 6 shows an embodiment using the housing of Fig. 5;
Fig. 7 eine weitere Ausführungsform unter Verwendung des Gehäuses nach Fig. 5; und Fig. 8 eine weitere Ausführungsform unter Verwendung eines starren Formkörpers als Gehäuse.Fig. 7 shows a further embodiment using the housing according to Fig. 5; and FIG. 8 shows a further embodiment using a rigid shaped body as the housing.
Bei der Ausführungsform eines erfindungsgemäßen Mikrospektrometers nach Fig. 1 sind in einem Gehäuse 1 auf gegenüberliegenden Seiten eine Lichtquelle 2 und ein optisches Gitter 6 angeordnet. Das Gehäuse 1 wird von einem Fluidkanal 3 durchragt. Der Kanal 3 kann entweder mit zu analysierendem Medium befüllt und verschlossen werden, oder dieses Medium kann kontinuierlich durch den Kanal strömen. Dazu ist der Fluidkanal 3 verbindbar mit Leitungen (in Fig.1 nicht dargestellt), in denen das Medium zum Spektrometer hin bzw. von diesem weg transportiert wird. Der Fluidka- nal 3 ist im Gehäuse so angeordnet, dass er sich auf der optischen Meßstrecke zwischen der Lichtquelle 2 und dem Gitter 6 befindet.In the embodiment of a microspectrometer according to the invention according to FIG. 1, a light source 2 and an optical grating 6 are arranged in a housing 1 on opposite sides. The housing 1 is penetrated by a fluid channel 3. The channel 3 can either be filled and sealed with medium to be analyzed, or this medium can flow continuously through the channel. For this purpose, the fluid channel 3 can be connected to lines (not shown in FIG. 1) in which the medium is transported to and from the spectrometer. The fluid channel 3 is arranged in the housing such that it is located on the optical measuring path between the light source 2 and the grating 6.
Der Fluidkanal 3 muss aus lichtdurchlässigem Material gefertigt sein. DerThe fluid channel 3 must be made of translucent material. Of the
Fluidkanal 3 kann entweder schon komplett oder teilweise in der Spritzgussform für das Gehäuse 1 des Mikrospektrometers vorgesehen sein, oder dieser oder fensterartige Teile davon werden nachträglich aus transparentem Material wieFluid channel 3 can be either completely or partially provided in the injection mold for the housing 1 of the microspectrometer, or this or window-like parts thereof are subsequently made of transparent material such
Glas oder PMMA in das Gehäuse eingesetzt.Glass or PMMA inserted into the housing.
Um unerwünschtes Streulicht auszufiltem, befindet sich zwischen Fluidkanal 3 und Gitter 6 eine Blende 4, wobei deren Öffnung so platziert ist, dass Licht von der Lichtquelle 2 auf das Gitter 6 fällt. Der Durchmesser der Blende 4 ist idealer Weise einstellbar.In order to filter unwanted scattered light, located between the fluid channel 3 and grid 6, a diaphragm 4, wherein the opening is placed so that light from the light source 2 on the grid 6 falls. The diameter of the aperture 4 is ideally adjustable.
Zwischen Blende 4 und Gitter 6 ist ein Spiegel 5 so angeordnet, dass auf ihn vom Gitter 6 reflektiertes Licht fällt. Der Spiegel 5 kann beispielsweise Teil der
Blende 4 sein, so angeordnet dass er dem Gitter 6 und nicht der Lichtquelle 2 zugewandt ist.Between aperture 4 and grating 6, a mirror 5 is arranged so that light reflected by the grating 6 is incident on it. The mirror 5 may for example be part of Aperture 4, arranged so that it faces the grating 6 and not the light source 2.
Der Spiegel 5 lenkt auftreffendes Licht weiter zu einer Auswerteeinheit (in Fig. 1 nicht dargestellt). Diese Auswerteeinheit kann z.B. ein Photodetektor sein wie ein Organic Photodiode Array.The mirror 5 directs incident light on to an evaluation unit (not shown in FIG. 1). This evaluation unit can e.g. a photodetector like an organic photodiode array.
In Fig. 1 ist außer den für das Spektrometer benötigten einzelnen Komponenten der Strahlengang 7 der optischen Meßstrecke gezeigt. Licht aus der Lichtquelle 2 durchquert idealer Weise mit einem Einfallswinkel von 90° den Fluidka- nal 3, gelangt durch die Blende 4 zum Gitter 6, welches das Licht spektralzerlegt und auf den Spiegel 5 reflektiert, der das Licht zur Auswerteeinheit umlenkt.In Fig. 1, except for the individual components required for the spectrometer, the beam path 7 of the optical measuring path is shown. Light from the light source 2 ideally passes through the fluid channel 3 at an angle of incidence of 90 °, passes through the diaphragm 4 to the grating 6, which spectrally splits the light and reflects it onto the mirror 5, which redirects the light to the evaluation unit.
Die Auswerteeinheit kann innerhalb des Mikrospektrometers angeordnet sein oder sich auch außerhalb befinden.The evaluation unit can be arranged inside the microspectrometer or can also be located outside.
Wie in Fig. 2 und Fig. 3 gezeigt, ist in einem zweiten Ausführungsbeispiel unterhalb des Fluidkanals eine zweite Lichtquelle 2a z.B. LED angeordnet, die Licht ebenfalls quer durch den Fluidkanal sendet. Vom Hauptstrahl im Winkel von 90° abfallendes Streulicht (gestrichelte Linie) gelangt gemäß Strahlengang 8 z.B. zum Zweck der Trübungsmessung durch die Blende 4 auf das optische Gitter 6 und zur Auswerteeinheit. Dabei ist die Lichtquelle 2 nicht gleichzeitig mit der Lichtquelle 2a aktiviert. Bei Aktivierung der beiden Lichtquellen 2 und 2a im Wechsel können somit hintereinander die Trübung und die Konzentration von Bestandteilen in Flüssigkeiten mit der gleichen Vorrichtung bestimmt werden.As shown in Fig. 2 and Fig. 3, in a second embodiment, below the fluid channel, a second light source 2a, e.g. LED arranged, which also sends light across the fluid channel. From the main beam at an angle of 90 ° sloping stray light (dashed line) passes according to beam path 8, for. for the purpose of turbidity measurement by the diaphragm 4 on the optical grating 6 and the evaluation unit. In this case, the light source 2 is not activated simultaneously with the light source 2a. When the two light sources 2 and 2a are activated alternately, the turbidity and the concentration of constituents in liquids can thus be determined in succession with the same device.
Bei dieser Ausführungsform erfolgt die Auswertung des Streulichts mit spektraler Zerlegung durch das optische Gitter 6.In this embodiment, the evaluation of the scattered light with spectral decomposition takes place through the optical grating 6.
Fig. 4 zeigt das Schnittbild eines weiteren Ausführungsbeispiels, bei dem die Auswertung des Streulichts ohne spektrale Zerlegung erfolgt.4 shows the sectional view of a further exemplary embodiment in which the evaluation of the scattered light takes place without spectral decomposition.
Die Anordnung der einzelnen Komponenten ist identisch mit der des ersten Ausführungsbeispiels, außer dass sich zusätzlich unterhalb des Fluidkanals 3 eine Photodiode 2b befindet.The arrangement of the individual components is identical to that of the first embodiment, except that in addition below the fluid channel 3 is a photodiode 2b.
Die Photodiode 2b erfasst Streulicht, das im Winkel von 90° abgestrahlt wird vom Hauptstrahl, der von der Lichtquelle 2 ausgesendet wird und welcher den
Fluidkanal 3 quer durchstrahlt. Der Strahlengang des Streulichts ist gemäß Pfeil 9 gestrichelt dargestellt.The photodiode 2b detects scattered light radiated at an angle of 90 ° from the main beam emitted from the light source 2 and which transmits the light Transmitted fluid channel 3 transversely. The beam path of the scattered light is shown in dashed lines according to arrow 9.
In diesem Ausführungsbeispiel kann gleichzeitig der Hauptstrahl der Lichtquelle 2 mittels Gitter optisch zerlegt und ausgewertet werden und das dabei auftretende Streulicht direkt mit Hilfe der Photodiode 2b aufgefangen und die Streulichtintensität gemessen werden.In this embodiment, at the same time the main beam of the light source 2 can be optically decomposed and evaluated by means of grids and the scattered light occurring thereby can be collected directly by means of the photodiode 2b and the scattered light intensity can be measured.
Der in Fig. 5 gezeigte, als Gehäuse des Mikrospektrometers geeignete starre Formkörper 20 ist ein flacher Quader mit einem massiven Block 20a, der mit einer Stufe 22 in einen flachen Bereich 20b übergeht, in dem eine rechteckige Ausnehmung 24 gebildet ist. Diese Ausnehmung 24 ist durch einen Deckel 26 verschließbar, der bündig an den Block 20a anschließt. Der Formkörper 20 wird durch Spritzgießen eines insbesondere transparenten Kunststoffs wie Polymethy- lacrylat hergestellt. In dem Block 20a ist ein Kanal 28 ausgespart, der von einer Seitenfläche ausgehend bis zu der gegenüberliegenden Seitenfläche geführt ist. Ferner ist in den Block 20a eine zylindrische Ausnehmung 30 senkrecht zu dem Kanal 28 eingebracht.The rigid shaped body 20, which is suitable as a housing of the microspectrometer and is shown in FIG. 5, is a flat cuboid with a solid block 20a, which merges with a step 22 into a flat region 20b in which a rectangular recess 24 is formed. This recess 24 can be closed by a cover 26, which is flush with the block 20a. The molded body 20 is produced by injection molding of a particularly transparent plastic, such as polymethyl acrylate. In the block 20a, a channel 28 is recessed, which is guided from one side surface up to the opposite side surface. Furthermore, a cylindrical recess 30 is introduced perpendicular to the channel 28 in the block 20 a.
Wie in Fig. 6 gezeigt, wird in die Ausnehmung 30 eine Lichtquelle wie eine LED 32 eingebracht. Der Kanal 28 wird an seinen Enden mit fluidischen Anschlußstücken 34 versehen. Die Ausnehmung 24 nimmt alle weiteren Kompo- nenten des Mikrospektrometers auf: die Blende 36, das optische Gitter 38 und die Photodetektorzeile 40 mit Auswerteelektronik 42. Selbstverständlich können in der Ausnehmung 24 weitere optische und/oder elektronische Komponenten angeordnet werden. Ebenso können in dem Block 20a mehrere Lichtquellen für verschiedene Spektralbereiche angeordnet werden. Nach außen hat das Mikro- spektrometer lediglich eine fluidische Schnittstelle in Form der Anschlußstücke 34 sowie elektrische Anschlüsse, die durch Steckverbinder realisiert sein können. Da alle optischen Komponenten in starrer räumlicher Beziehung zueinander stehen, sind keinerlei Justierungen zur Durchführung von Messungen erforderlich.As shown in FIG. 6, a light source such as an LED 32 is inserted in the recess 30. The channel 28 is provided at its ends with fluidic fittings 34. The recess 24 accommodates all further components of the microspectrometer: the diaphragm 36, the optical grating 38 and the photodetector row 40 with evaluation electronics 42. Of course, further optical and / or electronic components can be arranged in the recess 24. Likewise, a plurality of light sources for different spectral ranges can be arranged in the block 20a. To the outside, the micro-spectrometer has only a fluidic interface in the form of the connecting pieces 34 and electrical connections that can be realized by connectors. Since all optical components are in a rigid spatial relationship, no adjustments are required to make measurements.
Die Ausführungsform in Fig. 7 unterscheidet sich von der nach Fig. 6 durch die Verwendung eines drehbar angeordneten optischen Gitters 38a mit Drehantrieb 44 sowie die Verwendung einer einzelnen Photodiode 40a als Detektor. Der Drehantrieb 44 wird durch die Auswerteelektronik 42a in solcher Weise anges-
teuert, daß die Photodiode 40a alle spektralen Komponenten des vom Gitter reflektierten Lichtes nacheinander detektiert.The embodiment in Fig. 7 differs from that of Fig. 6 by the use of a rotatably mounted optical grating 38a with rotary drive 44 and the use of a single photodiode 40a as a detector. The rotary drive 44 is activated by the evaluation electronics 42a in such a way. Experts that the photodiode 40a successively detects all the spectral components of the light reflected from the grid.
Bei der Ausführungsform nach Fig. 8 bildet der Formkörper 20b einen einheitlichen flachen Quader aus transparentem Kunststoff. Eine Ausnehmung 46, die parallel zu dem Kanal 28b in den Formkörper 20b eingebracht ist, nimmt die Photodetektorzeile 40b sowie die Auswerteelektronik 42b auf. Das optische Gitter 38b ist in die der Lichtquelle 32b gegenüberliegende Außenfläche des Formkörpers 20b eingeformt und mit einer reflektierenden Beschichtung versehen, die z.B. durch Aufdampfen angebracht wird. Zweckmäßig wird das Gitter 38b noch mit einer Schutzschicht abgedeckt.
In the embodiment according to FIG. 8, the shaped body 20b forms a uniform flat cuboid made of transparent plastic. A recess 46, which is introduced into the molded body 20b parallel to the channel 28b, accommodates the photodetector row 40b and the evaluation electronics 42b. The optical grating 38b is formed in the outer surface of the molded body 20b opposite to the light source 32b and provided with a reflective coating, e.g. is applied by vapor deposition. Suitably, the grid 38b is covered with a protective layer.
Claims
1. Mikrospektrometer für fluide Medien, mit einem Gehäuse, das in fester räumlicher Zuordnung eine Lichtquelle, einen Fluidkanal, ein reflektierendes optisches Gitter und einen Detektor enthält, wobei die von der Lichtquelle ausgehen- de optische Messstrecke den Fluidkanal durchquert und auf das optische Gitter trifft und wobei die von dem optischen Gitter reflektierten spektralen Lichtkomponenten auf den Detektor treffen.1. A micro-spectrometer for fluid media, comprising a housing, which contains a solid spatial allocation of a light source, a fluid channel, a reflective optical grating and a detector, wherein the emanating from the light source optical measuring path passes through the fluid channel and hits the optical grating and wherein the spectral light components reflected from the optical grating strike the detector.
2. Mikrospektrometer nach Anspruch 1 , bei dem eine vorzugsweise einstellbare optische Blende auf der optischen Meßstrecke zwischen dem Fluidkanal und dem optischen Gitter angeordnet ist.2. Microspectrometer according to claim 1, wherein a preferably adjustable optical aperture is arranged on the optical measuring path between the fluid channel and the optical grating.
3. Mikrospektrometer nach Anspruch 1 oder 2, mit einem Spiegel, der im Gehäuse fest angeordnet und dem optischen Gitter, das als Reflexionsgitter ausgebildet ist, zugewandt ist.3. microspectrometer according to claim 1 or 2, comprising a mirror which is fixedly disposed in the housing and the optical grating, which is designed as a reflection grating, facing.
4. Mikrospektrometer nach Anspruch 2 und 3, bei dem der Spiegel an der Blende angebracht ist.4. A microspectrometer according to claim 2 and 3, wherein the mirror is attached to the diaphragm.
5. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem das Gehäuse in Spritzgießtechnik hergestellt ist.5. Microspectrometer according to one of the preceding claims, wherein the housing is made by injection molding.
6. Mikrospektrometer nach Anspruch 5, bei dem der Fluidkanal mindestens im Bereich der optischen Meßstrecke durch eine transparente Wandung begrenzt ist.6. microspectrometer according to claim 5, wherein the fluid channel is limited at least in the region of the optical measuring path by a transparent wall.
7. Mikrospektrometer nach Anspruch 5, bei dem der Fluidkanal wenigstens im Bereich der optischen Meßstrecke durch ein in das Gehäuse eingesetztes Rohrstück aus transparentem Material gebildet ist.7. A microspectrometer according to claim 5, wherein the fluid channel is formed at least in the region of the optical measuring path by an inserted into the housing pipe section of transparent material.
8. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem der Fluidkanal Anschlüsse zur Einfügung in eine Rohrleitung aufweist.8. A microspectrometer according to any one of the preceding claims, wherein the fluid channel has ports for insertion into a pipeline.
9. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem auch eine optoelektrische Auswerteeinheit im Gehäuse fest angeordnet ist.9. microspectrometer according to one of the preceding claims, in which an opto-electrical evaluation unit is fixedly arranged in the housing.
10. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem mehrere Lichtquellen mit verschiedenen Lichtspektren im Gehäuse fest angeord- net sind. 10. Microspectrometer according to one of the preceding claims, in which a plurality of light sources with different light spectra are fixedly arranged in the housing.
11. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem eine separate Lichtquelle zur Streulichtmessung quer zur optischen Meßstrecke in den Fluidkanal einstrahlt und das quer zum Fluidkanal austretende Streulicht auf das optische Gitter fällt. 11. A microspectrometer according to one of the preceding claims, wherein a separate light source for scattered light measurement transversely to the optical measuring path radiates into the fluid channel and the transversely to the fluid channel escaping scattered light falls on the optical grating.
12. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem das quer zur optischen Meßstrecke aus dem Fluidkanal austretende Streulicht zur Streulichtmessung von einem separaten Lichtempfänger ohne Spektralzerlegung aufgenommen wird.12. A microspectrometer according to one of the preceding claims, wherein the scattered light emerging transversely to the optical measurement path from the fluid channel for scattered light measurement is received by a separate light receiver without spectral decomposition.
13. Mikrospektrometer nach einem der vorstehenden Ansprüche, bei dem das Gehäuse als starrer Formkörper aus zumindest bereichsweise transparentem Material mit Ausnehmungen zur Aufnahme optischer Komponenten ausgebildet ist und der Fluidkanal von einer Seite des Formkörpers ausgehend diesen durchquerend bis zu der gegenüberliegenden Seite geführt ist.13. A microspectrometer according to one of the preceding claims, wherein the housing is designed as a rigid molded body made of at least partially transparent material with recesses for receiving optical components and the fluid channel from one side of the molded body starting from this traversing is guided to the opposite side.
14. Mikrospektrometer nach Anspruch 13, bei dem das optische Gitter in ei- ne Außenfläche des starren Formkörpers eingeformt ist.14. A microspectrometer according to claim 13, wherein the optical grating is formed in an outer surface of the rigid molded body.
15. Mikrospektrometer nach Anspruch 13, bei dem der starre Formkörper eine Ausnehmung aufweist, in der das optische Gitter drehbeweglich gelagert sowie mit einem Drehantrieb gekoppelt ist. 15. A microspectrometer according to claim 13, wherein the rigid molded body has a recess in which the optical grating is rotatably mounted and coupled to a rotary drive.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202008002683 | 2008-02-26 | ||
DE202008003977U DE202008003977U1 (en) | 2008-02-26 | 2008-03-20 | microspectrometer |
PCT/EP2009/001339 WO2009106313A1 (en) | 2008-02-26 | 2009-02-25 | Microspectrometer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2245441A1 true EP2245441A1 (en) | 2010-11-03 |
Family
ID=40822428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09714805A Withdrawn EP2245441A1 (en) | 2008-02-26 | 2009-02-25 | Microspectrometer |
Country Status (5)
Country | Link |
---|---|
US (1) | US8885160B2 (en) |
EP (1) | EP2245441A1 (en) |
JP (1) | JP2011513717A (en) |
DE (1) | DE202008003977U1 (en) |
WO (1) | WO2009106313A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012021917A (en) * | 2010-07-15 | 2012-02-02 | Kyokko Denki Kk | Fluid detection sensor and spectroscopic analyzer |
DE102015100395B4 (en) | 2014-02-03 | 2020-06-18 | Bürkert Werke GmbH | Spectrometer and fluid analysis system |
US9835816B2 (en) * | 2015-06-10 | 2017-12-05 | Telect, Inc. | Fiber blocking kits |
US9945790B2 (en) * | 2015-08-05 | 2018-04-17 | Viavi Solutions Inc. | In-situ spectral process monitoring |
DE102016222253A1 (en) * | 2016-11-14 | 2018-05-17 | BSH Hausgeräte GmbH | Spectrometer, system containing a spectrometer and a household appliance and method of operation thereof |
EP3536205B1 (en) | 2018-03-06 | 2021-06-02 | Vorwerk & Co. Interholding GmbH | Food preparation apparatus |
JP7559061B2 (en) | 2020-05-15 | 2024-10-01 | 株式会社 堀場アドバンスドテクノ | Optical measuring device and water quality analysis system |
DE102020120199A1 (en) | 2020-07-30 | 2022-02-03 | Bürkert Werke GmbH & Co. KG | Method for detecting the concentration of organic particles in the air and sensor therefor |
US11841270B1 (en) * | 2022-05-25 | 2023-12-12 | Visera Technologies Company Ltd. | Spectrometer |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2297431A1 (en) | 1975-01-07 | 1976-08-06 | Instruments Sa | Optical module for spectroscopic equipment - has block made of transparent or light transmitting plastic |
JPS5946332B2 (en) | 1976-03-31 | 1984-11-12 | 株式会社島津製作所 | Spectrometer |
GB2165061A (en) | 1984-09-26 | 1986-04-03 | Int Standard Electric Corp | Optical coupler |
JPS6311822A (en) * | 1986-07-02 | 1988-01-19 | Hitachi Ltd | Diffraction grating |
JPH01308943A (en) | 1988-06-07 | 1989-12-13 | Fuji Electric Co Ltd | Fine particle measuring apparatus |
ES2035985T3 (en) | 1989-05-20 | 1993-05-01 | Hewlett-Packard Gmbh | METHOD OF OPERATION OF A SPECTOMETER OF PHOTODIODS AND CORRESPONDING PHOTODIODES SPECTOMETER. |
US5037201A (en) | 1990-03-30 | 1991-08-06 | Xerox Corporation | Spectral resolving and sensing apparatus |
DE4122925C2 (en) | 1991-07-11 | 1994-09-22 | Fraunhofer Ges Forschung | Optical spectrometer |
US5424826A (en) * | 1993-07-30 | 1995-06-13 | Control Development, Inc. | Wideband optical micro-spectrometer system |
DE4434814A1 (en) * | 1994-09-29 | 1996-04-04 | Microparts Gmbh | Infrared spectrometric sensor for gases |
US5856870A (en) * | 1997-04-08 | 1999-01-05 | Foster-Miller, Inc. | Spectroanalytical system |
DE19717014A1 (en) | 1997-04-23 | 1998-10-29 | Inst Mikrotechnik Mainz Gmbh | Process and mold for the production of miniaturized moldings |
JP4032483B2 (en) * | 1998-02-26 | 2008-01-16 | 株式会社日立製作所 | Spectrometer |
US6075252A (en) | 1998-11-16 | 2000-06-13 | Innovative Lasers Corporation | Contaminant identification and concentration determination by monitoring the temporal characteristics of an intracavity laser |
JP2000161654A (en) | 1998-11-20 | 2000-06-16 | Nippon Furnace Kogyo Kaisha Ltd | Combustion device by heat storage type burner and combustion method |
WO2002101339A2 (en) | 2000-10-12 | 2002-12-19 | Amnis Corporation | Imaging and analyzing parameters of small moving objects such as cells |
US7605370B2 (en) * | 2001-08-31 | 2009-10-20 | Ric Investments, Llc | Microspectrometer gas analyzer |
IL146404A0 (en) * | 2001-11-08 | 2002-07-25 | E Afikin Computerized Dairy Ma | Spectroscopic fluid analyzer |
JP2003161654A (en) | 2001-11-26 | 2003-06-06 | Ando Electric Co Ltd | Optical spectrum analyzer and method of measuring optical spectrum |
JP2003279483A (en) | 2002-03-26 | 2003-10-02 | Kubota Corp | Spectroscopic analysis device |
DE10305093A1 (en) | 2003-02-07 | 2004-08-19 | BSH Bosch und Siemens Hausgeräte GmbH | Method and device for determining and monitoring contamination states of different liquids |
US6985216B2 (en) * | 2003-07-18 | 2006-01-10 | Chemimage Corporation | Method and apparatus for compact birefringent interference imaging spectrometer |
DE10360563A1 (en) * | 2003-12-22 | 2005-07-14 | BSH Bosch und Siemens Hausgeräte GmbH | Fluid contamination measurement procedure records selectively filtered transmitted and scatter light in visible, UV and IR regions as function of contamination level |
US7324195B2 (en) * | 2004-01-08 | 2008-01-29 | Valorbec Societe Em Commandite | Planar waveguide based grating device and spectrometer for species-specific wavelength detection |
DE102004030029B3 (en) * | 2004-06-22 | 2005-12-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Light transmission measurement for solid body or fluid in tube involves light source, collimation lens, lens and mirror and lens focusing light on photocell |
JP4473665B2 (en) * | 2004-07-16 | 2010-06-02 | 浜松ホトニクス株式会社 | Spectrometer |
US7502109B2 (en) | 2005-05-17 | 2009-03-10 | Honeywell International Inc. | Optical micro-spectrometer |
DE102006035581B3 (en) | 2006-07-29 | 2008-02-07 | INSTITUT FüR MIKROTECHNIK MAINZ GMBH | Optical measuring cell |
-
2008
- 2008-03-20 DE DE202008003977U patent/DE202008003977U1/en not_active Expired - Lifetime
-
2009
- 2009-02-25 EP EP09714805A patent/EP2245441A1/en not_active Withdrawn
- 2009-02-25 JP JP2010548019A patent/JP2011513717A/en active Pending
- 2009-02-25 WO PCT/EP2009/001339 patent/WO2009106313A1/en active Application Filing
- 2009-02-25 US US12/866,078 patent/US8885160B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2009106313A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20110080583A1 (en) | 2011-04-07 |
JP2011513717A (en) | 2011-04-28 |
US8885160B2 (en) | 2014-11-11 |
DE202008003977U1 (en) | 2009-07-02 |
WO2009106313A1 (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2245441A1 (en) | Microspectrometer | |
EP0793090B1 (en) | Measuring system with probe carrier transparent for excitation and measurement beam | |
DE69709921T2 (en) | OPTICAL DETECTION DEVICE FOR CHEMICAL ANALYSIS ON SMALL VOLUME SAMPLES | |
DE69835247T2 (en) | Improved sensor arrangements | |
EP1068511B1 (en) | Arrangement for surface plasmon resonance spectroscopy | |
DE2812872C2 (en) | Spectrophotometer | |
WO2003067228A1 (en) | Method for analysing liquids, in addition to a device therefor | |
DE68922181T2 (en) | Optical transmission spectrometer. | |
EP3084397B1 (en) | Atr infrared spectrometer | |
AT510631B1 (en) | SPECTROMETER | |
DE102011075530A9 (en) | Photometer for in situ measurement in fluids | |
DE19509157C2 (en) | Optical system with large measuring ranges | |
EP2717044A1 (en) | Method for detecting analytes | |
DE2600371C3 (en) | Optical arrangement | |
DE102007058563A1 (en) | Spectrometer measuring head for analyzing characteristics of liquid, pasty or solid substances | |
EP2619551B1 (en) | Sensor for monitoring a medium | |
DE102012108620A1 (en) | Method for determining the path length of a sample and validation of the measurement obtained therewith | |
DE102010041141B4 (en) | Sensor for monitoring a medium | |
DE10149879A1 (en) | Device for the spectrophotometric analysis of liquid media | |
DE102012018015B3 (en) | Measuring module for remission photometric analysis and method for its production | |
DE10324973B4 (en) | Arrangement and method for the optical detection of chemical, biochemical molecules and / or particles contained in samples | |
WO2016012276A1 (en) | Arrangement for spatially resolved and wavelength-resolved detection of light radiation emitted from at least one oled or led | |
DE19920184C2 (en) | Methods for the simultaneous detection of diffuse and specular reflection of samples, in particular opaque samples, and reflectance measuring probe | |
EP2427751B1 (en) | Modular optical sensor system for fluid media | |
DE102004015906B4 (en) | Microfluidic apparatus for use in optical analysis comprises substrate containing fluid channels or reservoirs and optical components, e.g. transmission gratings, for dividing or filtering light which has been refracted by substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100727 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20160901 |