EP2240620B1 - Method for the hardened galvanisation of a steel strip - Google Patents
Method for the hardened galvanisation of a steel strip Download PDFInfo
- Publication number
- EP2240620B1 EP2240620B1 EP08761863.3A EP08761863A EP2240620B1 EP 2240620 B1 EP2240620 B1 EP 2240620B1 EP 08761863 A EP08761863 A EP 08761863A EP 2240620 B1 EP2240620 B1 EP 2240620B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- liquid mixture
- coating tank
- strip
- preparation device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 75
- 229910000831 Steel Inorganic materials 0.000 title claims description 19
- 239000010959 steel Substances 0.000 title claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 198
- 239000000203 mixture Substances 0.000 claims description 156
- 239000007788 liquid Substances 0.000 claims description 150
- 239000011248 coating agent Substances 0.000 claims description 123
- 238000000576 coating method Methods 0.000 claims description 123
- 229910052782 aluminium Inorganic materials 0.000 claims description 98
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 98
- 229910052742 iron Inorganic materials 0.000 claims description 83
- 238000002360 preparation method Methods 0.000 claims description 66
- 239000011701 zinc Substances 0.000 claims description 44
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 33
- 229910052725 zinc Inorganic materials 0.000 claims description 30
- 238000005246 galvanizing Methods 0.000 claims description 21
- 230000004927 fusion Effects 0.000 claims description 17
- 239000004411 aluminium Substances 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000004090 dissolution Methods 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 230000006698 induction Effects 0.000 claims description 5
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 5
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000033228 biological regulation Effects 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 229910007570 Zn-Al Inorganic materials 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims description 2
- 230000002829 reductive effect Effects 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 230000000977 initiatory effect Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 description 40
- 230000008018 melting Effects 0.000 description 40
- 238000010586 diagram Methods 0.000 description 17
- 238000009434 installation Methods 0.000 description 14
- 238000000746 purification Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000010992 reflux Methods 0.000 description 9
- 238000007598 dipping method Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005339 levitation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 101150032645 SPE1 gene Proteins 0.000 description 2
- 101100233725 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) IXR1 gene Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009189 diving Effects 0.000 description 2
- 235000021183 entrée Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 101150028225 ordA gene Proteins 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 238000010591 solubility diagram Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 229910000576 Laminated steel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
- C23C2/00342—Moving elements, e.g. pumps or mixers
- C23C2/00344—Means for moving substrates, e.g. immersed rollers or immersed bearings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
- C23C2/521—Composition of the bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/50—Controlling or regulating the coating processes
- C23C2/52—Controlling or regulating the coating processes with means for measuring or sensing
- C23C2/522—Temperature of the bath
Definitions
- the present invention relates to a galvanizing method by dipping a steel strip according to the preamble of claim 1.
- the dipping galvanization of continuously rolling laminated steel strips is a known technique which essentially comprises two variants, that in which the strip emerging from a galvanizing furnace slopes obliquely into a bath of liquid metal comprising at least one metal adapted to the galvanizing such as zinc, aluminum, and is then deflected vertically and upwards by a roll immersed in said bath of liquid metal.
- the other alternative is to deflect the strip vertically and upward from its exit from the oven and then to scroll through a vertical channel containing magnetically levitated liquid zinc.
- the liquid metal bath is a zinc alloy with varying proportions of aluminum or magnesium or manganese. For the sake of clarity, only the case of a zinc and aluminum alloy will be described.
- the purpose of the operation is to create on the surface of the steel strip a continuous adherent deposit of a liquid mixture of zinc and aluminum in which said strip passes.
- the kinetics of formation of this deposit is known to those skilled in the art, it has been the subject of numerous communications among which "Modeling of galvanizing reactions” by Giorgi and All. in “La Revue de Metallurgie - CIT" of October 2004 .
- EP 1 070 765 describes a series of variants of a galvanizing installation comprising, in addition to the coating tank in which dross is formed, an auxiliary tank to which the dross will be evacuated.
- EP 0 429 351 discloses a method and a device for arranging a circulation of liquid mixture between a coating zone of the metal strip and a cleaning zone of the galvanizing bath containing liquid zinc, to ensure the separation of the dross in the zone of purification and then bring back to the coating zone a liquid mixture "whose iron content is close to or less than the solubility limit". But, if the physical principles involved are well described, this document gives no indication allowing the skilled person to implement them, in particular how to control simultaneously a cooling by a heat exchanger and reheating by induction of the same purification zone. Nor is there any indication of how to determine a flow rate of liquid zinc.
- An object of the present invention is to provide a method of galvanizing the dipping of a steel strip in a liquid mixture, for which a circulation circuit of the liquid mixture is thermally optimized.
- the figure 1 shows a schematic diagram of the installation for implementing the method according to the invention.
- a steel strip (1) is introduced into the installation, ideally in continuous scrolling, obliquely in a coating tank (2) through a connecting pipe to a galvanizing furnace (3) (not shown upstream of the tray coating).
- the strip is deflected vertically by a roller (4) and passes through a liquid coating mixture (5) contained in said coating tank.
- the deflection of the band can be achieved by means of a roller (4) horizontal accompanying the scrolling of the band.
- a channel (6) allows the flow of the overflow of liquid mixture to a preparation device (7) composed of two zones, a first zone (71) in which is ensured the melting of at least one Zn alloy ingot Al (8) in an amount necessary to compensate for the liquid mixture consumed by deposition on the strip in the coating tank and during the inevitable (material) losses, and a second zone (72) sequentially juxtaposed with the first zone and in a direction flow path of the liquid mixture (coating tank to first zone then second zone).
- a separating device such as an open wall in its central part or may consist of two separate tanks placed side by side.
- the liquid mixture can also be transferred by pumping or by a connecting channel.
- the level of a pumping inlet in the first zone (71) or the inlet level of the connecting channel are advantageously located between the upper zone of decantation of the surface dross (81) and the lower zone of sedimentation of the dross. bottom (82) is in the middle third of the height of the area (71). Indeed, at this median height of the preparation device, the method according to the invention provides that it is possible to isolate a free interstice of dross between the two lower and upper accumulation zones (gradually increasing in the direction of flow (FL)) of said dross (81, 82).
- the liquid mixture from the coating tank is at a sufficiently high temperature for the ingot melting.
- the energy consumption for the smelting of the ingot leads to a cooling of the liquid mixture which causes the formation of the surface dross (81) and bottom (82) retained by the downstream sealing parts by the separating device (73).
- Supplemental cooling means (62) for the ingot cooling effect may also be arranged between the coating pan and the preparation device, for example on their connecting channel (6).
- the second zone (72) of the preparation device thus receives a purified liquid mixture which can be heated by a heating means (75), preferably by induction.
- a tubing (9) recovers the liquid mixture in the second zone (72) and, in the case of the figure 1 under the action of a pumping device (10) and a tubing as a reflux path (11) feeds the coating tank (2) via a chute (12) at a mixing flow rate purified liquid.
- Devices such as, for example, skimming or pumping systems make it possible to evacuate the dross out of the preparation device (first zone (71)).
- the first zone (71) of the preparation device may comprise partitions isolating liquid mixture portions disposed between several ingots (8), sequentially arranged in the direction of the flow path. These can be achieved by means of an open wall in its middle part, thus allowing to concentrate the bottom dross (82) and surface (81) ingot by ingot according to their aluminum content.
- the first zone (71) of the preparation device advantageously comprises several ingots (8 1 , 8 2 , ..., 8 n ), at least two of which have different contents of aluminum and at least one of which ingots has a content greater than a required content of the liquid mixture in the preparation device.
- the first zone (71) of the preparation device comprises a means for regulating the melting flow rate of at least two ingots, ideally by dipping or selective removal of at least one ingot in the first zone (71).
- the first compartment of the preparation device may comprise a regulating means (6, 62) for a predefined temperature reduction (T2, T3) of the liquid mixture in which the ingots merge, ideally also initially produced by selective diving or removal. at least one ingot in the first zone (71).
- the continuous melting of the ingots (8) in the preparation device (71) is ensured at the total melting rate of at least two ingots. It is then advantageous that a plurality of ingots immersed simultaneously in the liquid-mixing bath each have a different aluminum content and at least one of them has an aluminum content greater than a required content in the preparation device. in order to be able to establish a profile in content (or a rate of fusion) variable according to time.
- This required content is itself determinable from an aluminum consumption measured or estimated in the coating tank, in the combination layer Fe 2 Al 5 Zn x formed on the surface of the strip and in the dross formed in the preparation device.
- the melt flow rate of each of the ingots is also controllable individually so as to adjust the aluminum content in the preparation device to the required content while maintaining the required total melting speed.
- the continuous melting of the ingots in the preparation device leads locally to a cooling of the liquid mixture of the second temperature (outlet of the coating tank) at a predetermined temperature in the first zone (71) in order to lower the solubility threshold of the iron and allowing the localized formation of dross in said preparation device up to the solubility threshold at the predetermined temperature.
- the so-called "surface” dross with a high aluminum content are then formed preferentially in the vicinity of immersed ingots with a high aluminum content and then decanted towards the surface, and the so-called “bottom” dross with a high zinc content preferentially form in the vicinity of immersed ingots with low aluminum content and sediment towards the bottom.
- the rate of renewal of the liquid mixture entering the coating tank with an iron content equal to the threshold of solubility of iron at the predetermined temperature makes it possible to limit an increase in the dissolved iron content below the threshold. solubility at the second temperature.
- the preparation device (7) can thus be composed of a single tank comprising the two zones (71, 72) separated by a separating wall (73), the first zone ensuring the fusion of the ingots and locating the formation of the dross, the second zone receiving the purified liquid mixture.
- the second zone is equipped with a single and simple heating means (75) by induction ensuring the heating of the purified liquid mixture before returning to the coating tank, so as to ensure a thermal loop backflow in end of stream channel to the beginning of a new stream.
- the two zones (71) and (72) can also be in two separate tanks connected by a connecting channel.
- the figure 2 presents a variant of the schematic diagram of the installation according to figure 1 for which the liner initial is subdivided into a first deflection tray (15) of the strip (without liquid mixture) and coating pan (13) comprising a liquid mixing bath (5) maintained by magnetic levitation.
- the present installation thus implements a variant of the process in which the liquid mixing bath (5) is maintained by magnetic levitation in a coating tank (13) connected to the preparation device such as the figure 1 .
- the levitation effect is provided in known manner by electromagnetic devices (14).
- a compartment (15) provides the connection to the oven and the deflection of the strip (1) by the roller (4).
- Figure 3 has in its upper part a simplified example of the installation according to the figure 1 , having the main elements already mentioned (coating tank 2 and its inlet 12 for liquid mixture reflux, ingots 8, preparation device 7, ingots melting tank on first zone 71, sewage treatment tank on second zone 72 and its output 11, heating means 75) allowing a better interpretation of the implementation of the method according to the invention.
- Under the scheme of the installation are also shown three distribution profiles - temperature T, aluminum content Al% and dissolved iron content Fe% associated with a solubility threshold SFe iron - which are obtained by implementation of the process according to the invention.
- the profiles shown thus vary according to the location considered next a flow path direction from the inlet 12 of the coating tank 2 to the outlet 11 of the purification tank 72.
- outlet 11 is coupled to the inlet 12 via a reflux path of the liquid mixture, distinct from and opposite to the flow path.
- the invention thus makes it possible to align the values of the profiles between the inlet and the outlet as well as between the different tanks on the voice of flow, in order to achieve a closed thermal looping as well as a precise maintenance of target contents in aluminum and in iron (under a threshold of adequate solubility according to the given temperature).
- the liquid mixture in the coating tank (2) in the vicinity of the strip to be quenched is fixed at a said second temperature (T 2 ).
- T 2 the temperature
- the temperature may be lower than the second temperature (T2), since it comes from the outlet 11 of the purification tank (72) and the reflux path where thermal loss is inevitable, but without consequence on the process.
- the second target temperature (T 2 ) of the liquid mixture at the outlet of the coating tank - and thus at the inlet to the first zone (71) - is furthermore chosen sufficiently high so as to allow the ingots (8) to merge.
- the aluminum content (Al%) of the liquid mixture undergoes a decrease (Al c ) depending a loss rate in a combination layer and passes from a first content (Al t ) (aluminum content of the liquid mixture from the molten ingots in the preparation device, then by purification (second zone 72) and reflux, aluminum content of the liquid mixture re-channeled to the inlet (12) of the coating tank) to a second content (Al v ) at the outlet of the coating tank (2).
- the controlled melting of the ingots allows a rise (Al l ) of the content (or a flow rate according to a unit of time) of aluminum to a content (Al m ) liquid mixture at the outlet of the first zone (71).
- This latter content (Al m ) must, however, be interpreted as virtual, because correlatively to the contribution of aluminum by the ingots, a part of aluminum is inevitably consumed with the appearance of the dross which causes a real decrease (Al d ) the aluminum content according to the flow rate until reaching the aluminum content (Al t ) in the purification tank (second zone 72) necessary (and equal) to the content of aluminum at the reflux inlet 12 in the coating pan.
- the solubility threshold of iron (SFe) in the liquid mixture is almost stable at a value (SFe T 2 ) at the second temperature (T 2 ), then decreases considerably to a value (SFe T 3 ) at the third temperature (T 3 ) in the ingots melting zone and undergoes a rise to a value (SFe T 4 ) at the fourth temperature (T 4 ) in the zone of the heating means (75) before returning to the coating tank (2).
- the iron content (Fe%) of the liquid mixture increases, in turn, in the coating tank (2) to a level remaining below the solubility threshold of the iron (SFe T 2 ) of the liquid mixture at the second temperature ( T 2 ) and is thus maintained until the precipitation of the dross in the first zone (71) for melting the ingots to reach a value equal to a saturation threshold of the iron (SFe T 3 ) of the liquid mixture at the third temperature ( T 3 ) of this first zone.
- a shaded area (Dross) of the diagram between the iron content variation curves (Fe%) and the iron solubility threshold (SFe) of the liquid mixture makes it possible to locate the dross precipitation domain.
- the solubility threshold of the iron (SFe) of the liquid mixture is raised to a higher value (SFe T 4 ) at the fourth temperature (T 4 ) (higher than in the first zone 71).
- a precipitation of dross is then locally avoided so that the liquid mixture in the purification tank remains clean and can be flowed back to the entrance of the coating tank (2) free of any dross.
- the figure 5 shows an evolution of the solubility limit (Fe%) as a function of the temperature (T) for an aluminum content (Al%) of 0.19%.
- T 470 ° C.
- the solubility limit of iron (Fe%) is of the order of 0.015%.
- the iron solubility limit (Fe%) is of the order of 0.07%.
- a saturated liquid mixture or close to the temperature saturation limit The working temperature of 470 ° C. thus sees its solubility limit divided by 2 at 440 ° C.
- the figure 6 shows the variations of the power supplied (PB) to the liquid mixture by the running steel strip and the required power (PZ) to ensure the melting of the consumed mixture in the coating tank (2).
- These powers (PB, PZ) are limited by two data specific to continuous galvanizing plants: the heating power of the furnace (not shown on figure 1 , but placed upstream of the coating tank) on the one hand and the maximum speed for which a spinning of the band remains effective.
- these limits are of the order of 100 tons of treated strip per hour for an oven (downstream from the entrance of the strip in the coating tank) and of a little more than 200 m / min. tape speed for spinning (leaving the tape outside the coating tray).
- the so-called “strip" (dashed) power curve rises continuously in function of the thickness (E) of the strip up to a level corresponding to the heating limits of the oven.
- the curve (solid line) of required power (PZ) is first limited by the maximum speed of the tape, itself limited by the maximum spin speed and then gradually decreases.
- the delivered power (PB) by the web is smaller than the required power (PZ) for zinc smelting (PZ> PB) and a power deviation ( ⁇ P) must thus be provided by heating the circulating liquid mixture, in particular before it returns to the coating tank (2).
- This power difference is here understood as a necessary power supply ( ⁇ P> 0).
- the case of a power withdrawal ( ⁇ P ⁇ 0) is of course also conceivable, in which case, at least one of the power generating parameters (oven temperature, band speed, etc.) must be modified in order to reduce the supply power (PB) to the liquid mixture while ensuring a melting of the mixture consumed in the coating tank (2).
- a cooling system may, if necessary, also be coupled to the coating tank.
- a method according to the invention namely a method of galvanizing the dipping of a strip (1) of rolled steel in continuous scrolling for which the strip is immersed in a tray coating material (2) containing a bath of liquid mixture (5) of metal, such as zinc (Zn) and aluminum (Al), to be deposited on the permanently circulated strip between said coating pan and a device of preparation (7) in which the temperature of the liquid mixture is deliberately lowered in order to reduce a solubility threshold of iron and sufficiently high to activate, in said preparation device, a melting of at least one Zn-Al ingot (8). ) in the amount necessary to compensate for the liquid mixture consumed by deposition on the strip and the inevitable losses (of the order of 5%).
- the method allows a circulation flow of the liquid mixture continuously and sequentially on a flow path between the inlet of the coating tank and the outlet of the preparation device and then on an identical reverse flow path, which is identical and opposite to the flow path.
- This flow rate is also thermally optimized, because looped sequentially (flow, reflux) so that each heat exchange required is controlled accurately.
- the control of the second temperature (T 2 ) and the target aluminum content (Al v ), allows the control of the solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 ) in the bath (coating tank) at a level such that, given the expected iron dissolution rate (QFe) in the coating tank, the overall iron content (Fe 2 ) is kept below the solubility threshold of iron ( SFe T 2 ) at the second temperature (T 2 ). In this way, the coating tank remaining free of any dross, the coating has an irreproachable quality.
- a solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 ) in the liquid mixture of the coating tank is controlled to a level such that, given an expected iron dissolution rate (QFe) in the coating tank, an overall iron content (Fe 2 ) is kept below the threshold of solubility of iron (SFe T 2 ) at the second temperature (T 2 ).
- the continuous smelting is ensured at a total melting flow (Vm) of at least two ingots.
- a variable number (n) of ingots can be advantageously immersed selectively and simultaneously in the bath of liquid mixture.
- the ingots preferably each have an aluminum content (Al 1 , Al 2 ..., Al n ) different from one another and at least one of the ingots has an aluminum content greater than a required content (Al t ). in the preparation device (in particular in the second zone 72 comprising the purified mixture). In this way, maintaining or obtaining a target value of the aluminum content in the areas of the preparation device can be made more flexibly and more precisely.
- cooling means of the liquid mixture to the second temperature (T 2) to the third temperature (T 3) can be activated in the preparation device as an auxiliary of the entire cooling system carried out by the fusion of ingots.
- Such a complementary cooling means thus makes it possible to provide better control flexibility of the method according to the invention.
- a compartmentalization between the ingots and according to their respective aluminum content can advantageously be carried out in order to separate the different types of dross, in that so-called "surface” dross with a high aluminum content are preferentially formed in the vicinity of ingots immersed in water. high aluminum content and so-called “background” dross with low aluminum content are formed preferentially in the vicinity of immersed ingots with a low aluminum content.
- This compartmentalization can be simply carried out by adding partitions arranged between the ingots on the surface and at the bottom of the first zone (71).
- the method according to the invention provides that a necessary flow rate of liquid zinc, that is to say also of liquid mixture renewal entering the coating tank, is regulated under an iron content equal to the solubility threshold (SFe T 3 ) of the iron at the third temperature (T 3 ) in order to limit an increase in the dissolved iron content well below the solubility threshold at the second temperature (T 2 ) in the coating tank.
- This makes it possible to withstand a quantity of dissolved iron coming from the band in the range between the solubility threshold (SFe T 3 ) of the iron at the third temperature (T 3 ) and the solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 )
- PB power control loop
- This is done by sending a reduction (or increase) instruction to the strip temperature (T 1 ) at the coating tank inlet.
- the method provides that the preparation device is provided with additional regulated means for recovering and discharging calories associated with a controlled induction heating means adapted to modulate the third temperature (T 3 ) in an ingot melt zone and in a temperature range, particularly defined by +/- 10 ° C, of values close to a temperature value recorded by the regulation means or external controls.
- a controlled induction heating means adapted to modulate the third temperature (T 3 ) in an ingot melt zone and in a temperature range, particularly defined by +/- 10 ° C, of values close to a temperature value recorded by the regulation means or external controls.
- the method recommends that the first temperature (T 1 ) of the steel strip at its entry into the coating tank is ideally between 450 and 550 ° C. Similarly, the second temperature (T 2 ) of the liquid mixture in the coating tank is ideally between 450 and 520 ° C. For maximum efficiency of the process, a temperature difference ( ⁇ T 1 ) between the steel strip and the liquid mixture in the coating tank is maintained between 0 and 50 ° C.
- the second temperature (T 2 ) of the liquid mixture is thus maintained in the coating tank, ideally at an accuracy of +/- 1 at 3 ° C, at a value (T 1 - ⁇ T 1 ) equal to the first temperature (T 1 ) minus the difference in temperature ( ⁇ T 1 ) between the steel strip and the liquid mixture.
- the method provides that a flow rate (Q 2 ) of the liquid mixture from the coating pan is maintained between 10 and 30 times the amount of mixture deposited on the web in the same time unit.
- the method according to the invention also provides for the implementation of measurement and control steps for regulating / maintaining the thermal loop, the circulation circuit and the target contents of aluminum, zinc and iron.
- values of temperature and aluminum concentration of the liquid mixture are measured, ideally continuously, on at least the flow path from the feed inlet (12) in the coating pan to the outlet ( 11) of the preparation device. These values are essential in order to associate them with diagrams of contents of aluminum or iron depending on the location of the liquid mixture in the circulation circuit to be looped.
- a level of liquid mixture is measured, ideally continuously, in the preparation device or, if necessary, in the coating tank. This makes it possible to regulate the melting flow rate of the ingots and to know the quantity of metal deposited on the strip.
- a flow rate for example an aluminum content per unit of time
- a temperature of the liquid mixture are maintained at predetermined pairs of values. by means of a simplified regulation. This allows for example to be able to deduce simply from a diagram (such as those of figures 1 and 2 ) and quickly reach an ideal solubility (iron) threshold for a pair of values.
- the method includes a function for which a temperature of the strip at the outlet of a galvanizing furnace bound to a strip inlet in the coating pan is maintained within a range of adjustable values.
- the tape speed is maintained within a range of adjustable values.
- the method provides that a width and a strip thickness are measured or estimated upstream of the coating pan if, however, they have not already been collected as a Primary Data Input PDI in the control system of the galvanizing plant. These parameters are useful for determining input conditions, in particular in relation to the power provided by the band in the circulation circuit managed by the method according to the invention.
- introduction and maintenance of ingots in a melting zone of the preparation device is performed dynamically and selectively.
- the method according to the invention is thus implemented as a function of dynamic measurement and adjustment parameters related to the strip, the coating tank and the preparation device. These parameters are ideally controlled centrally, autonomously according to an analytic model with predictive controls, in real time, being optionally updatable by self-learning.
- a mode of external commands can also be implemented (for example, by simple input of external commands on the analytical model driving the said method) so, for example for an operator to allow a registration of aluminum content, a strip temperature registration, etc.
- the analytical model of process control is also updated.
- the first temperature (T 1 ) of the strip at the outlet of the galvanizing furnace downstream of the coating tank and the second temperature (T 2 ) referred to in the coating tank are calculated the band powers (PB) and required (PZ).
- the required power can also be lower than the band power (PZ ⁇ PB, case "N”).
- the method according to the invention then provides a cooling setpoint (ORD1) ( ⁇ T) of the first strip temperature (T 1 ) by means of a temperature decrease at the outlet of a galvanizing furnace.
- ORD1 cooling setpoint
- Figure 8 presents the logic diagram for determining the flow rate of circulation of the liquid mixture, associated with the continuation of step "1" of the figure 7 , also shown as the logical starting point of this schema.
- the flow (Q 2 ) of liquid mixture from the coating tank and necessary to ensure the continuous melting of ingots is determined.
- This flow rate (Q 2 ) also indicates the flow rate of the liquid mixture between the coating tank and the preparation device.
- the figure 9 shows the logic diagram for determining the aluminum content (Al t ) of the liquid mixture resulting from the melting of the ingots in the preparation device (purification tank 72).
- the aluminum consumptions (QAl c ) and (QAl d ) are calculated from the mass flow (QBm) of the strip. They are also included in the calculation scheme of the fourth temperature (T 4 ) of the liquid mixture returning to the coating tank as a function of the third temperature (T 3 ) obtained after melting of the ingots and the complementary power ( ⁇ P) necessary to bring the temperature of the liquid mixture to the second temperature (T 2 ) in the coating tank.
- the value of the aluminum content (Al t ) of the liquid mixture is then known in terms of consumption to go to a step "2" according to the next figure.
- a quantity of aluminum losses (QAl c ) in the combination and aluminum loss layer (QAl d ) in the dross which vary in particular according to the width of the treated strip, it is necessary to be able to adapt the content aluminum (Al t ) resulting from the melting of the ingots in order to maintain in return a target value of aluminum content (Al v ) in the coating tank.
- Each of the (n) ingots of aluminum content (Al 1 , Al 2 , ..., Al n ) is immersed selectively and according to a dynamic (dive time) variably adaptable to each ingot associated with a melting speed (V 1 , V 2 , ..., V n ) calculated to ensure a resulting aluminum content (Al t ) related to the total melting speed (V m ) and to control that the content required aluminum (Al t ) related to the expected consumption of aluminum according to the value from step "2" of the previous figure 9 is ensured by the aluminum content (Al t ) resulting from the melting ingots.
- the figure 11 shows the logic diagram for checking the theoretical iron content (SFe) dissolved in the liquid mixture from step "1" described above (see figures 6 , 7 , 8 ).
- the method implements a calculation of the iron dissolution rate (QFe) from both sides of the strip. and on the other hand, the solubility threshold (SFe T 2 ) of the iron in the liquid mixture at the second temperature (T 2 ).
- S Fe safety factor
- At the surface of the band is established a strong iron concentration gradient favoring the development of the Fe 2 Al 5 Zn x combination layer.
- the iron content of the liquid mixture (Fe 2 ) in the coating tank is then the iron content at the end of said gradient and can be considered as the overall iron content of the liquid mixing bath.
- solubility threshold (SFe T 2 ) of the iron in the liquid mixture at the second temperature (T 2 ) is greater than the actual iron content of the liquid mixture (Fe 2 ) in the coating tank (see case “SFe T 2 > Fe 2 ")
- the various process control parameters selected are validated (see case "VAL_PA”).
- the reduction of the iron dissolution rate (QFe) is obtained by decreasing the first temperature (T 1 ) and / or the second temperature (T 2 ) and / or the band surface flux (QBs) and / or by increase in the aluminum content (Al v ) in the coating tank. Practically, it acts preferentially on the first temperature (T 1 ) of the band and / or on its running speed (V).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Electroplating Methods And Accessories (AREA)
Description
La présente invention concerne un procédé de galvanisation au trempé d'une bande d'acier selon le préambule de la revendication 1.The present invention relates to a galvanizing method by dipping a steel strip according to the preamble of
La galvanisation au trempé de bandes d'acier laminé défilant en continu est une technique connue qui essentiellement comporte deux variantes, celle où la bande sortant d'un four de galvanisation descend obliquement dans un bain de métal liquide comprenant au moins un métal adapté à la galvanisation tel que du zinc, de l'aluminium, et se trouve ensuite défléchie verticalement et vers le haut par un rouleau immergé dans ledit bain de métal liquide. L'autre variante consiste à défléchir la bande verticalement et vers le haut à sa sortie du four et à la faire ensuite défiler dans un chenal vertical contenant du zinc liquide sustenté magnétiquement. Le bain de métal liquide est un alliage de zinc avec des proportions variables d'aluminium ou de magnésium ou de manganèse. Pour la clarté du brevet, seul sera décrit le cas d'un alliage de zinc et d'aluminium.The dipping galvanization of continuously rolling laminated steel strips is a known technique which essentially comprises two variants, that in which the strip emerging from a galvanizing furnace slopes obliquely into a bath of liquid metal comprising at least one metal adapted to the galvanizing such as zinc, aluminum, and is then deflected vertically and upwards by a roll immersed in said bath of liquid metal. The other alternative is to deflect the strip vertically and upward from its exit from the oven and then to scroll through a vertical channel containing magnetically levitated liquid zinc. The liquid metal bath is a zinc alloy with varying proportions of aluminum or magnesium or manganese. For the sake of clarity, only the case of a zinc and aluminum alloy will be described.
Dans les deux cas, l'opération a pour but de créer en surface de la bande d'acier un dépôt continu et adhérent d'un mélange liquide de zinc et d'aluminium dans lequel défile ladite bande. La cinétique de formation de ce dépôt est connue de l'homme de métier, elle a fait l'objet de nombreuses communications parmi lesquelles
Parmi les moyens envisagés pour tenter de contrôler les dross ou, au minimum, de réduire leur quantité dans le bac de revêtement, on a depuis longtemps mis en oeuvre l'écrémage manuel de la surface du mélange liquide. Ce procédé étant à juste titre considéré comme dangereux pour des opérateurs, il a été envisagé de mécaniser puis de robotiser cette opération d'écrémage comme le décrit
D'autres techniques diverses procédant par débordement, pompage ou éjection ont été envisagées afin d'évacuer les dross formées dans le bac de revêtement. Ainsi,
De manière plus élaborée,
Other various techniques proceeding by overflow, pumping or ejection were considered in order to evacuate the dross formed in the coating pan. So,
More elaborately,
Un but de la présente invention est de fournir un procédé de galvanisation au trempé d'une bande d'acier dans un mélange liquide, pour lequel un circuit de circulation du mélange liquide est thermiquement optimisé.An object of the present invention is to provide a method of galvanizing the dipping of a steel strip in a liquid mixture, for which a circulation circuit of the liquid mixture is thermally optimized.
Un tel procédé peut ainsi être mis en oeuvre au travers de la méthode proposée par la revendication 1.Such a method can thus be implemented using the method proposed by
Afin de pouvoir illustrer plus clairement les aspects du procédé proposé selon l'invention, une installation de galvanisation au trempé d'une bande d'acier dans un mélange liquide et une de ses variantes permettant la mise en oeuvre du procédé sont présentées à l'aide des
- Figure 1
- Schéma de principe de l'installation mettant en oeuvre le procédé,
- Figure 2
- Schéma de principe d'une variante de l'installation mettant en oeuvre le procédé.
- Figure 1
- Schematic diagram of the installation implementing the method,
- Figure 2
- Schematic diagram of a variant of the installation implementing the method.
La
Le mélange liquide issu du bac de revêtement est à température suffisamment élevée pour la fusion du lingot. La consommation d'énergie pour la fusion du lingot conduit à un refroidissement du mélange liquide qui entraine la formation des dross de surface (81) et de fond (82) retenues par les parties étanches en aval par le dispositif de séparation (73). Un moyen de refroidissement d'appoint (62) à l'effet de refroidissement par consommation des lingots peut aussi être disposé entre le bac de revêtement et le dispositif de préparation, par exemple sur leur chenal (6) de liaison. La deuxième zone (72) du dispositif de préparation reçoit donc un mélange liquide épuré qui peut être réchauffé par un moyen de chauffage (75) de préférence par induction. Une tubulure (9) récupère le mélange liquide dans la deuxième zone (72) et, dans le cas de la
Concernant la fusion de lingot, la première zone (71) du dispositif de préparation comporte avantageusement plusieurs lingots (81, 82, ..., 8n) dont au moins deux comportent des teneurs différentes en aluminium et dont au moins un des lingots a une teneur supérieure à une teneur requise du mélange liquide dans le dispositif de préparation. De plus, la première zone (71) du dispositif de préparation comporte un moyen de régulation de débit de fusion d'au moins deux lingots, idéalement par plongée ou retrait sélectifs d'au moins un lingot dans la première zone (71). Enfin, le premier compartiment du dispositif de préparation peut comporter un moyen de régulation (6, 62) d'un abaissement de température prédéfini (T2, T3) du mélange liquide dans lequel les lingots fusionnent, idéalement aussi réalisé initialement par plongée ou retrait sélectifs d'au moins un lingot dans la première zone (71).With regard to ingot melting, the first zone (71) of the preparation device advantageously comprises several ingots (8 1 , 8 2 , ..., 8 n ), at least two of which have different contents of aluminum and at least one of which ingots has a content greater than a required content of the liquid mixture in the preparation device. In addition, the first zone (71) of the preparation device comprises a means for regulating the melting flow rate of at least two ingots, ideally by dipping or selective removal of at least one ingot in the first zone (71). Finally, the first compartment of the preparation device may comprise a regulating means (6, 62) for a predefined temperature reduction (T2, T3) of the liquid mixture in which the ingots merge, ideally also initially produced by selective diving or removal. at least one ingot in the first zone (71).
Dans cette optique, la fusion continue des lingots (8) dans le dispositif de préparation (71) est assurée au débit total de fusion d'au moins deux lingots. Il est alors avantageux qu'une pluralité de n lingots plongés simultanément dans le bain de mélange liquide aient chacun une teneur en aluminium différente et au moins l'un d'eux comporte une teneur en aluminium supérieure à une teneur requise dans le dispositif de préparation afin de pouvoir établir un profil en teneur (ou un débit de fusion) variable suivant le temps. Cette teneur requise est elle-même déterminable à partir d'une consommation d'aluminium mesurée ou estimée dans le bac de revêtement, dans la couche de combinaison Fe2Al5Znx formée à la surface de la bande et dans les dross formées dans le dispositif de préparation. Avantageusement, le débit de fusion de chacun des n lingots est aussi contrôlable individuellement de manière à ajuster la teneur en aluminium dans le dispositif de préparation à la teneur requise tout en maintenant la vitesse totale de fusion requise.In this respect, the continuous melting of the ingots (8) in the preparation device (71) is ensured at the total melting rate of at least two ingots. It is then advantageous that a plurality of ingots immersed simultaneously in the liquid-mixing bath each have a different aluminum content and at least one of them has an aluminum content greater than a required content in the preparation device. in order to be able to establish a profile in content (or a rate of fusion) variable according to time. This required content is itself determinable from an aluminum consumption measured or estimated in the coating tank, in the combination layer Fe 2 Al 5 Zn x formed on the surface of the strip and in the dross formed in the preparation device. Advantageously, the melt flow rate of each of the ingots is also controllable individually so as to adjust the aluminum content in the preparation device to the required content while maintaining the required total melting speed.
La fusion continue des lingots dans le dispositif de préparation entraine localement un refroidissement du mélange liquide de la deuxième température (sortie du bac de revêtement) à une température prédéterminée dans la première zone (71) en vue d'abaisser le seuil de solubilité du fer et de permettre la formation localisée de dross dans ledit dispositif de préparation jusqu'à concurrence du seuil de solubilité à la température prédéterminée. Les dross dites « de surface » à forte teneur en aluminium se forment alors préférentiellement au voisinage des lingots immergés à forte teneur en aluminium puis décantent vers la surface et les dross dites « de fond » à forte teneur en zinc se forment préférentiellement au voisinage des lingots immergés à faible teneur en aluminium puis sédimentent vers le fond.The continuous melting of the ingots in the preparation device leads locally to a cooling of the liquid mixture of the second temperature (outlet of the coating tank) at a predetermined temperature in the first zone (71) in order to lower the solubility threshold of the iron and allowing the localized formation of dross in said preparation device up to the solubility threshold at the predetermined temperature. The so-called "surface" dross with a high aluminum content are then formed preferentially in the vicinity of immersed ingots with a high aluminum content and then decanted towards the surface, and the so-called "bottom" dross with a high zinc content preferentially form in the vicinity of immersed ingots with low aluminum content and sediment towards the bottom.
Après formation des dross, le débit de renouvellement du mélange liquide entrant dans le bac de revêtement avec une teneur en fer égale au seuil de solubilité du fer à la température prédéterminée permet de limiter une augmentation de la teneur en fer dissous au-dessous du seuil de solubilité à la deuxième température.After formation of dross, the rate of renewal of the liquid mixture entering the coating tank with an iron content equal to the threshold of solubility of iron at the predetermined temperature makes it possible to limit an increase in the dissolved iron content below the threshold. solubility at the second temperature.
Le dispositif de préparation (7) peut ainsi être composé d'un seul bac comportant les deux zones (71, 72) séparées par une paroi de séparation (73), la première zone assurant la fusion des lingots et localisant la formation des dross, la seconde zone recevant le mélange liquide purifié. Dans ce cas, la seconde zone est équipée d'un unique et simple moyen de chauffage (75) par induction assurant le réchauffage du mélange liquide purifié avant son retour au bac de revêtement, de façon à assurer un bouclage thermique de voie de reflux en fin de voie de flux jusqu'au début de voie d'un nouveau flux. Les deux zones (71) et (72) peuvent aussi être dans deux bacs séparés reliés par un chenal de liaison.The preparation device (7) can thus be composed of a single tank comprising the two zones (71, 72) separated by a separating wall (73), the first zone ensuring the fusion of the ingots and locating the formation of the dross, the second zone receiving the purified liquid mixture. In this case, the second zone is equipped with a single and simple heating means (75) by induction ensuring the heating of the purified liquid mixture before returning to the coating tank, so as to ensure a thermal loop backflow in end of stream channel to the beginning of a new stream. The two zones (71) and (72) can also be in two separate tanks connected by a connecting channel.
La
Pour des raisons de clarté et suivant l'exemple de la
- Figure 3
- Répartition des températures, des teneurs en aluminium et en fer dissous dans le circuit de l'installation.
- Figure 3
- Distribution of temperatures, aluminum and dissolved iron contents in the system circuit.
Sous le schéma de l'installation sont également représentés trois profils répartition - en température T, en teneur en aluminium Al% et en teneur en fer dissous Fe% associée à un seuil de solubilité du fer SFe - qui sont obtenus par mise en oeuvre du procédé selon l'invention. Les profils représentés varient ainsi en fonction de l'emplacement considéré suivant une direction de voie de flux depuis l'entrée 12 du bac de revêtement 2 jusqu'à la sortie 11 du bac d'épuration 72. Il est à noter que la sortie 11 est couplée à l'entrée 12 par une voie de reflux du mélange liquide, distincte de et opposée à la voie de flux. L'invention permet ainsi d'aligner les valeurs des profils entre l'entrée et la sortie ainsi que entre les différents bacs sur la voix de flux, afin de réaliser un bouclage thermique fermé ainsi qu'un maintien précis de teneurs visées en aluminium et en fer (sous un seuil de solubilité adéquate suivant la température donnée).
Under the scheme of the installation are also shown three distribution profiles - temperature T, aluminum content Al% and dissolved iron content Fe% associated with a solubility threshold SFe iron - which are obtained by implementation of the process according to the invention. The profiles shown thus vary according to the location considered next a flow path direction from the
Le mélange liquide dans le bac de revêtement (2) au voisinage de la bande à tremper est fixé à une dite deuxième température (T2). A l'entrée (12) du bac de revêtement (2) distincte -de la zone de trempage, la température peut être moins élevée que la deuxième température (T2), car provient de la sortie 11 du bac d'épuration (72) et de la voie de reflux où une perte thermique est inévitable, mais sans conséquence sur le procédé. En effet, par la plongée de la bande dans le mélange liquide du bac de revêtement, il est prévu que la bande est à une dite première température plus élevée que la deuxième température visée (T2), ainsi est-il avantageusement possible d'atteindre sans difficulté cette deuxième température (T2), car la bande agit par transfert thermique dans le bain de mélange liquide. La deuxième température visée (T2) du mélange liquide en sortie de bac de revêtement - et donc en entrée dans la première zone (71) - est de plus choisie suffisamment élevée de façon à pouvoir permettre une fusion des lingots (8).The liquid mixture in the coating tank (2) in the vicinity of the strip to be quenched is fixed at a said second temperature (T 2 ). At the inlet (12) of the coating tank (2) distinct from the soaking zone, the temperature may be lower than the second temperature (T2), since it comes from the
La consommation d'énergie nécessaire à la fusion des lingots (8) dans la première zone (71) du dispositif de préparation (7) entraine une diminution de la deuxième température (T2) du mélange liquide provenant du bac de revêtement jusqu'à une valeur visée, dite troisième température (T3). Dans la deuxième zone (72) du dispositif de préparation (7), le moyen de chauffage (75) apporte si besoin une puissance (ΔP = PZ - PB) qui remonte la température du mélange liquide de la troisième température (T3) à une quatrième température (T4 < T2) qui a fortiori est choisie suffisamment élevée pour répondre aux pertes sur la voie de reflux et aux exigences de température à l'entrée (12) du bac de revêtement. Le bouclage thermique est donc ainsi réalisé simplement. Seule la bande et, le cas échéant, le moyen de chauffage (75) régule par apport d'énergie le procédé thermique. Si aucun apport d'énergie n'est souhaité en sortie du bac d'épuration (72), le moyen de chauffage (75) est inactivé.The consumption of energy necessary for the melting of the ingots (8) in the first zone (71) of the preparation device (7) causes a decrease in the second temperature (T 2 ) of the liquid mixture coming from the coating tank to a target value, called third temperature (T 3 ). In the second zone (72) of the preparation device (7), the heating means (75) provides, if necessary, a power (ΔP = PZ-PB) which raises the temperature of the liquid mixture from the third temperature (T 3 ) to a fourth temperature (T 4 <T 2 ) which a fortiori is chosen sufficiently high to meet the losses on the reflux path and the temperature requirements at the inlet (12) of the coating tank. Thermal looping is thus simply realized. Only the band and, if appropriate, the heating means (75) regulates by supply of energy the thermal process. If no energy input is desired at the outlet of the purification tank (72), the heating means (75) is inactivated.
Entre l'entrée (12) et la sortie du bac de revêtement (2) vers la première zone (71), la teneur en aluminium (Al%) du mélange liquide, quant à elle, subit une baisse (Alc) en fonction d'un débit de perte dans une couche de combinaison et passe d'une première teneur (Alt) (teneur en aluminium du mélange liquide issu des lingots fondus dans le dispositif de préparation, puis par épuration (deuxième zone 72) et reflux, teneur en aluminium du mélange liquide re-canalisé vers l'entrée (12) du bac de revêtement) à une deuxième teneur (Alv) en sortie du bac de revêtement (2). Après passage de la sortie du bac de revêtement (2), la fusion contrôlée des lingots permet une hausse (All) de la teneur (ou un débit suivant une unité de temps) d'aluminium jusqu'à une teneur (Alm) du mélange liquide en sortie de première zone (71). Cette dernière teneur (Alm) doit toutefois être interprétée comme virtuelle, car corrélativement à l'apport d'aluminium par les lingots, une partie d'aluminium est inévitablement consommée avec l'apparition des dross qui engendre une diminution réelle (Ald) de la teneur en aluminium selon le débit jusqu'à atteindre la teneur d'aluminium (Alt) dans le bac d'épuration (deuxième zone 72) nécessaire (et égale) à la teneur d'aluminium à l'entrée 12 de reflux dans le bac de revêtement.Between the inlet (12) and the outlet of the coating tank (2) to the first zone (71), the aluminum content (Al%) of the liquid mixture, in turn, undergoes a decrease (Al c ) depending a loss rate in a combination layer and passes from a first content (Al t ) (aluminum content of the liquid mixture from the molten ingots in the preparation device, then by purification (second zone 72) and reflux, aluminum content of the liquid mixture re-channeled to the inlet (12) of the coating tank) to a second content (Al v ) at the outlet of the coating tank (2). After passing the outlet of the coating tank (2), the controlled melting of the ingots allows a rise (Al l ) of the content (or a flow rate according to a unit of time) of aluminum to a content (Al m ) liquid mixture at the outlet of the first zone (71). This latter content (Al m ) must, however, be interpreted as virtual, because correlatively to the contribution of aluminum by the ingots, a part of aluminum is inevitably consumed with the appearance of the dross which causes a real decrease (Al d ) the aluminum content according to the flow rate until reaching the aluminum content (Al t ) in the purification tank (second zone 72) necessary (and equal) to the content of aluminum at the
Dans le bac de revêtement (2) et sous l'effet des variations de température et de teneur en aluminium, le seuil de solubilité du fer (SFe) dans le mélange liquide est quasi-stable à une valeur (SFe T2) à la deuxième température (T2), puis diminue considérablement jusqu'à une valeur (SFe T3) à la troisième température (T3) dans la zone de fusion des lingots et subit une ré-hausse à une valeur (SFe T4) à la quatrième température (T4) dans la zone du moyen de chauffage (75) avant retour au bac de revêtement (2).In the coating tank (2) and under the effect of variations in temperature and aluminum content, the solubility threshold of iron (SFe) in the liquid mixture is almost stable at a value (SFe T 2 ) at the second temperature (T 2 ), then decreases considerably to a value (SFe T 3 ) at the third temperature (T 3 ) in the ingots melting zone and undergoes a rise to a value (SFe T 4 ) at the fourth temperature (T 4 ) in the zone of the heating means (75) before returning to the coating tank (2).
La teneur en fer (Fe%) du mélange liquide croit, quant à elle dans le bac de revêtement (2) jusqu' à un niveau restant inférieur au seuil de solubilité du fer (SFe T2) du mélange liquide à la deuxième température (T2) et se maintient ainsi jusqu'à la précipitation des dross dans la première zone (71) de fusion des lingots pour atteindre une valeur égale à un seuil de saturation du fer (SFe T3) du mélange liquide à la troisième température (T3) de cette première zone. Une zone hachurée (Dross) du diagramme, entre les courbes de variation de la teneur en fer (Fe%) et du seuil de solubilité du fer (SFe) du mélange liquide permet de situer le domaine de précipitation des dross. Finalement, dans la deuxième zone (72) d'épuration, le seuil de solubilité du fer (SFe) du mélange liquide est remonté à une valeur plus haute (SFe T4) à la quatrième température (T4) (plus haute que dans la première zone 71). Une précipitation de dross est alors localement évitée afin que le mélange liquide dans le bac d'épuration reste épuré et puisse être reflué vers l'entrée du bac de revêtement (2) libre de toute dross.The iron content (Fe%) of the liquid mixture increases, in turn, in the coating tank (2) to a level remaining below the solubility threshold of the iron (SFe T 2 ) of the liquid mixture at the second temperature ( T 2 ) and is thus maintained until the precipitation of the dross in the first zone (71) for melting the ingots to reach a value equal to a saturation threshold of the iron (SFe T 3 ) of the liquid mixture at the third temperature ( T 3 ) of this first zone. A shaded area (Dross) of the diagram between the iron content variation curves (Fe%) and the iron solubility threshold (SFe) of the liquid mixture makes it possible to locate the dross precipitation domain. Finally, in the second zone (72) of purification, the solubility threshold of the iron (SFe) of the liquid mixture is raised to a higher value (SFe T 4 ) at the fourth temperature (T 4 ) (higher than in the first zone 71). A precipitation of dross is then locally avoided so that the liquid mixture in the purification tank remains clean and can be flowed back to the entrance of the coating tank (2) free of any dross.
Des figures complémentaires aux figures précédentes sont aussi fournies afin de mieux introduire et comprendre le procédé selon l'invention :
- Figure 4
- diagramme de solubilité du fer (Fe%)dans le mélange liquide en fonction de la température (T) et de la teneur en aluminium (Al%),
- Figure 5
- détail du diagramme de solubilité du fer (Fe%) dans le mélange liquide en fonction de la température (T) pour une teneur donnée (Al% = 0.19%) en aluminium,
- Figure 6
- diagramme de variations de puissance (PB) apportée au mélange liquide par la bande d'acier en défilement et de puissance requise (PZ) pour assurer la fusion du mélange liquide dans le bac de revêtement (2),
- Figure 4
- solubility diagram of iron (Fe%) in the liquid mixture as a function of temperature (T) and aluminum content (Al%),
- Figure 5
- detail of the solubility diagram of iron (Fe%) in the liquid mixture as a function of temperature (T) for a given content (Al% = 0.19%) of aluminum,
- Figure 6
- power variation diagram (PB) provided to the liquid mixture by the running steel strip and the required power (PZ) to ensure the melting of the liquid mixture in the coating tank (2),
La
La
La
A partir des figures précédentes, il est alors possible de proposer un procédé selon l'invention, à savoir un procédé de galvanisation au trempé d'une bande (1) d'acier laminé en défilement continu pour lequel la bande est immergée dans un bac de revêtement (2) contenant un bain de mélange liquide (5) de métal, tel que du zinc (Zn) et de l'aluminium (Al), à déposer sur la bande mis en circulation permanente entre ledit bac de revêtement et un dispositif de préparation (7) dans lequel la température du mélange liquide est volontairement abaissée afin de diminuer un seuil de solubilité de fer et suffisamment élevée pour activer, dans le dit dispositif de préparation, une fusion d'au moins un lingot Zn-Al (8) en quantité nécessaire pour compenser le mélange liquide consommé par dépôt sur la bande et les inévitables pertes (de l'ordre de 5%).From the previous figures, it is then possible to propose a method according to the invention, namely a method of galvanizing the dipping of a strip (1) of rolled steel in continuous scrolling for which the strip is immersed in a tray coating material (2) containing a bath of liquid mixture (5) of metal, such as zinc (Zn) and aluminum (Al), to be deposited on the permanently circulated strip between said coating pan and a device of preparation (7) in which the temperature of the liquid mixture is deliberately lowered in order to reduce a solubility threshold of iron and sufficiently high to activate, in said preparation device, a melting of at least one Zn-Al ingot (8). ) in the amount necessary to compensate for the liquid mixture consumed by deposition on the strip and the inevitable losses (of the order of 5%).
Ledit procédé comporte les étapes suivantes :
- déterminer une première puissance (PB) fournie par la bande d'acier entrant à une première température (T1) dans le bain de mélange liquide du bac de revêtement, ledit bain étant lui-même stabilisé à une deuxième température prédéterminée (T2) inférieure à la première température (T1),
- déterminer une deuxième puissance (PZ) nécessaire pour maintenir le mélange liquide à la deuxième température prédéterminée (T2) et comparer cette deuxième puissance à la première puissance (PB) apportée par la bande,
- si la première puissance (PB) est supérieure à la deuxième puissance (PZ), attribuer une consigne de diminution la première température (T1) de la bande,
- si la première puissance (PB) est inférieure ou égale à la deuxième puissance (PZ), déterminer une énergie nécessaire à la fusion continue, dans le dispositif de préparation, de lingot (8) en quantité nécessaire pour compenser le mélange liquide consommé par dépôt sur la bande ainsi que toute autre perte additive,
- ajuster un débit de circulation (Q2) du mélange liquide entre le bac de revêtement et le dispositif de préparation afin d'apporter l'énergie nécessaire à la fusion continue de lingot (8) tout en maintenant la température du mélange liquide dans le dispositif de préparation à une troisième température prédéterminée (T3) inférieure à la deuxième température prédéterminée (T2),
- ajuster une quatrième température (T4) du mélange liquide en sortie (9) du dispositif de préparation afin d'apporter un complément de puissance (ΔP = PZ - PB) nécessaire à un équilibre thermique entre ladite sortie et une entrée d'alimentation (12) du bac de revêtement, ladite entrée étant alimentée par la sortie (9).
- determining a first power (PB) provided by the incoming steel strip at a first temperature (T 1 ) in the bath of liquid mixture of the coating tank, said bath being itself stabilized at a second predetermined temperature (T 2 ) less than the first temperature (T 1 ),
- determining a second power (PZ) necessary to maintain the liquid mixture at the second predetermined temperature (T 2 ) and comparing this second power to the first power (PB) provided by the band,
- if the first power (PB) is greater than the second power (PZ), assigning a decrease instruction to the first temperature (T 1 ) of the band,
- if the first power (PB) is less than or equal to the second power (PZ), determining an energy necessary for the continuous melting, in the preparation device, ingot (8) in an amount necessary to compensate for the liquid mixture consumed by deposit on the tape as well as any other additive loss,
- adjusting a flow rate (Q 2 ) of the liquid mixture between the coating pan and the preparation device to provide the energy necessary for the continuous melting of the ingot (8) while maintaining the temperature of the liquid mixture in the device for preparing at a third predetermined temperature (T 3 ) lower than the second predetermined temperature (T 2 ),
- adjusting a fourth temperature (T 4 ) of the liquid mixture at the outlet (9) of the preparation device in order to provide additional power (ΔP = PZ-PB) necessary for thermal equilibrium between said output and a supply input ( 12) of the coating tank, said inlet being fed from the outlet (9).
De la sorte, le procédé permet un débit de circulation du mélange liquide en continu et séquentiel sur une voie de flux entre l'entrée du bac de revêtement et la sortie du dispositif de préparation puis sur une voie identique de reflux, inverse et distincte à la voie de flux. Ce débit de circulation est aussi thermiquement optimisé, car bouclé séquentiellement (flux, reflux) pour que chaque échange de chaleur nécessaire soit contrôlé de manière précise.In this way, the method allows a circulation flow of the liquid mixture continuously and sequentially on a flow path between the inlet of the coating tank and the outlet of the preparation device and then on an identical reverse flow path, which is identical and opposite to the flow path. This flow rate is also thermally optimized, because looped sequentially (flow, reflux) so that each heat exchange required is controlled accurately.
Le contrôle de la deuxième température (T2) et de la teneur visée en aluminium (Alv), permet le contrôle du seuil de solubilité (SFe T2) du fer à la deuxième température (T2) dans le bain (bac de revêtement) à un niveau tel que, compte tenu du débit de dissolution de fer (QFe) attendu dans le bac de revêtement, la teneur globale en fer (Fe2) soit maintenue inférieure au seuil de solubilité de fer(SFe T2) à la deuxième température (T2). De cette façon, le bac de revêtement restant libre de toute dross, le revêtement présente une qualité irréprochable. A cet effet, au moyen d'un réglage de la deuxième température (T2) et de la teneur visée en aluminium (Alv), un seuil de solubilité (SFe T2) du fer à la deuxième température (T2) dans le mélange liquide du bac de revêtement est contrôlé à un niveau tel que, compte tenu d'un débit de dissolution de fer (QFe) attendu dans le bac de revêtement, une teneur globale en fer (Fe2) soit maintenue inférieure au seuil de solubilité de fer(SFe T2) à la deuxième température (T2).The control of the second temperature (T 2 ) and the target aluminum content (Al v ), allows the control of the solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 ) in the bath (coating tank) at a level such that, given the expected iron dissolution rate (QFe) in the coating tank, the overall iron content (Fe 2 ) is kept below the solubility threshold of iron ( SFe T 2 ) at the second temperature (T 2 ). In this way, the coating tank remaining free of any dross, the coating has an irreproachable quality. For this purpose, by means of an adjustment of the second temperature (T 2 ) and the target aluminum content (Al v ), a solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 ) in the liquid mixture of the coating tank is controlled to a level such that, given an expected iron dissolution rate (QFe) in the coating tank, an overall iron content (Fe 2 ) is kept below the threshold of solubility of iron (SFe T 2 ) at the second temperature (T 2 ).
Il est préférable que la fusion continue de lingots soit assurée à un débit total de fusion (Vm) d'au moins deux lingots.It is preferable that the continuous smelting is ensured at a total melting flow (Vm) of at least two ingots.
Au titre de la fusion, tel qu'à la
Pour cette pluralité (n) de lingots, une vitesse d'immersion (V1, V2, ..., Vn) de chacun des (n) lingots peut aussi être contrôlée individuellement, de manière à ajuster dynamiquement la teneur en aluminium dans le dispositif de préparation à la teneur requise (Alt) tout en maintenant la vitesse (= débit) totale de fusion (Vm) requise.For this plurality (n) of ingots, an immersion rate (V 1 , V 2 , ..., V n ) of each of the (n) ingots can also be controlled individually, so as to dynamically adjust the aluminum content in the preparation device to the required content (Al t ) while maintaining the required total melting rate (= flow rate) (Vm).
Le cas échéant, un moyen de refroidissement du mélange liquide de la deuxième température (T2) à la troisième température (T3) peut être activé dans le dispositif de préparation en tant que système d'appoint de l'ensemble de refroidissement réalisé par la fusion des lingots. Un tel moyen de refroidissement complémentaire permet ainsi de fournir une meilleure souplesse de pilotage du procédé selon l'invention.Where appropriate, cooling means of the liquid mixture to the second temperature (T 2) to the third temperature (T 3) can be activated in the preparation device as an auxiliary of the entire cooling system carried out by the fusion of ingots. Such a complementary cooling means thus makes it possible to provide better control flexibility of the method according to the invention.
Une compartimentation entre les lingots et suivant leur teneur respective en aluminium peut avantageusement-être réalisée afin de séparer des différents types de dross, en ce que des dross dites « de surface » à forte teneur en aluminium se forment préférentiellement au voisinage des lingots immergés à forte teneur en aluminium et des dross dites « de fond » à faible teneur en aluminium se forment préférentiellement au voisinage des lingots immergés à faible teneur en aluminium. Cette compartimentation peut être simplement réalisée par ajout de cloisonnements disposés entre les lingots en surface et au fond de la première zone (71).A compartmentalization between the ingots and according to their respective aluminum content can advantageously be carried out in order to separate the different types of dross, in that so-called "surface" dross with a high aluminum content are preferentially formed in the vicinity of ingots immersed in water. high aluminum content and so-called "background" dross with low aluminum content are formed preferentially in the vicinity of immersed ingots with a low aluminum content. This compartmentalization can be simply carried out by adding partitions arranged between the ingots on the surface and at the bottom of the first zone (71).
La méthode selon l'invention prévoit qu'un débit nécessaire de zinc liquide, c'est-à-dire aussi de renouvellement de mélange liquide entrant dans le bac de revêtement, soit régulé sous une teneur en fer égale au seuil de solubilité (SFe T3) du fer à la troisième température (T3) afin de limiter une augmentation de la teneur en fer dissous largement au-dessous du seuil de solubilité à la deuxième température (T2) dans le bac de revêtement. Ceci permet de supporter une quantité de fer dissous en provenance de la bande comprise dans l'intervalle entre le seuil de solubilité (SFe T3) du fer à la troisième température (T3) et le seuil de solubilité (SFe T2) du fer à la deuxième température (T2)The method according to the invention provides that a necessary flow rate of liquid zinc, that is to say also of liquid mixture renewal entering the coating tank, is regulated under an iron content equal to the solubility threshold (SFe T 3 ) of the iron at the third temperature (T 3 ) in order to limit an increase in the dissolved iron content well below the solubility threshold at the second temperature (T 2 ) in the coating tank. This makes it possible to withstand a quantity of dissolved iron coming from the band in the range between the solubility threshold (SFe T 3 ) of the iron at the third temperature (T 3 ) and the solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 )
Une boucle de régulation de la première puissance (PB) fournie par la bande contrôle un apport ou un retrait de puissance (ΔP), aboutissant à un équilibre tel que la première puissance (PB) soit égale à la somme de la deuxième puissance (PZ) et de l'apport ou le retrait de puissance (ΔP), c'est-à-dire tel que PB = PZ + ΔP. Ceci s'effectue en envoyant une consigne de réduction (ou d'augmentation) à la température de bande (T1) en entrée de bac de revêtement.A first power control loop (PB) provided by the band controls a supply or a power draw (ΔP), resulting in an equilibrium such that the first power (PB) is equal to the sum of the second power (PZ ) and power supply or withdrawal (ΔP), that is, such that PB = PZ + ΔP. This is done by sending a reduction (or increase) instruction to the strip temperature (T 1 ) at the coating tank inlet.
Le procédé prévoit que le dispositif de préparation est doté de moyens régulés additionnels de récupération et d'évacuation de calories associés à un moyen régulé de chauffage par induction adaptés pour moduler la troisième température (T3) dans une zone de fusion de lingots et dans un intervalle de température, particulièrement défini par +/- 10 °C, de valeurs proches d'une valeur de température consignée par les moyens de régulation ou de commandes externes.The method provides that the preparation device is provided with additional regulated means for recovering and discharging calories associated with a controlled induction heating means adapted to modulate the third temperature (T 3 ) in an ingot melt zone and in a temperature range, particularly defined by +/- 10 ° C, of values close to a temperature value recorded by the regulation means or external controls.
Thermiquement, le procédé préconise que la première température (T1) de la bande d'acier à son entrée dans le bac de revêtement est idéalement comprise entre 450 et 550°C. De même, la deuxième température (T2) du mélange liquide dans le bac de revêtement est idéalement comprise entre 450 et 520°C. Pour une efficacité maximale du procédé, une différence de température (ΔT1) entre la bande d'acier et le mélange liquide dans le bac de revêtement est maintenue comprise entre 0 et 50°C. La deuxième température (T2) du mélange liquide est ainsi maintenue dans le bac de revêtement, idéalement sous une précision de +/- 1 à 3°C, à une valeur (T1 - ΔT1) égale à la première température (T1) diminuée de la différence de température (ΔT1) entre la bande d'acier et le mélange liquide. Enfin, une diminution de température (ΔT2 = T2 - T3) entre la deuxième et la troisième température du mélange liquide dans le dispositif de préparation est maintenue à au moins 10°C. Ces valeurs permettent pour des teneurs en zinc, aluminium et fer, un bouclage thermique optimal sur le circuit (flux/reflux) de circulation mis en oeuvre par le procédé de galvanisation selon l'invention.Thermally, the method recommends that the first temperature (T 1 ) of the steel strip at its entry into the coating tank is ideally between 450 and 550 ° C. Similarly, the second temperature (T 2 ) of the liquid mixture in the coating tank is ideally between 450 and 520 ° C. For maximum efficiency of the process, a temperature difference (ΔT 1 ) between the steel strip and the liquid mixture in the coating tank is maintained between 0 and 50 ° C. The second temperature (T 2 ) of the liquid mixture is thus maintained in the coating tank, ideally at an accuracy of +/- 1 at 3 ° C, at a value (T 1 - ΔT 1 ) equal to the first temperature (T 1 ) minus the difference in temperature (ΔT 1 ) between the steel strip and the liquid mixture. Finally, a decrease in temperature (ΔT2 = T 2 - T 3 ) between the second and the third temperature of the liquid mixture in the preparation device is maintained at at least 10 ° C. These values make it possible, for zinc, aluminum and iron contents, to obtain optimum heat circulation on the circulation (flow / reflux) circuit used by the galvanizing process according to the invention.
Le procédé prévoit qu'un débit de circulation (Q2) du mélange liquide provenant du bac de revêtement est maintenu compris entre 10 et 30 fois la quantité de mélange déposé sur la bande dans la même unité de temps.The method provides that a flow rate (Q 2 ) of the liquid mixture from the coating pan is maintained between 10 and 30 times the amount of mixture deposited on the web in the same time unit.
Le procédé selon l'invention prévoit aussi des la mise en oeuvre d'étapes de mesure et de contrôle permettant la régulation/maintien du bouclage thermique, du circuit de circulation et des teneurs visées en aluminium, en zinc et en fer.The method according to the invention also provides for the implementation of measurement and control steps for regulating / maintaining the thermal loop, the circulation circuit and the target contents of aluminum, zinc and iron.
En particulier, des valeurs de température et de concentration en aluminium du mélange liquide sont mesurées, idéalement en continu, sur au moins la voie de flux depuis l'entrée d'alimentation (12) dans le bac de revêtement jusqu' à la sortie (11) du dispositif de préparation. Ces valeurs sont essentielles afin de les associer aux diagrammes de teneurs en aluminium ou en fer suivant l'emplacement du mélange liquide dans le circuit de circulation à boucler.In particular, values of temperature and aluminum concentration of the liquid mixture are measured, ideally continuously, on at least the flow path from the feed inlet (12) in the coating pan to the outlet ( 11) of the preparation device. These values are essential in order to associate them with diagrams of contents of aluminum or iron depending on the location of the liquid mixture in the circulation circuit to be looped.
Un niveau de mélange liquide est mesuré, idéalement en continu, dans le dispositif de préparation, voire le cas échéant dans le bac de revêtement. Ceci permet de réguler le débit de fusion des lingots et de connaitre la quantité de métal déposé sur la bande.A level of liquid mixture is measured, ideally continuously, in the preparation device or, if necessary, in the coating tank. This makes it possible to regulate the melting flow rate of the ingots and to know the quantity of metal deposited on the strip.
Dans la pratique, un débit (par exemple une teneur en aluminium par unité de temps) et une température du mélange liquide sont maintenus à des couples de valeurs prédéterminés au moyen d'une régulation simplifiée. Cela permet par exemple de pouvoir déduire simplement d'un diagramme (tel que ceux des
Le procédé inclut une fonction pour laquelle une température de la bande en sortie d'un four de galvanisation lié à une entrée de bande dans le bac de revêtement est maintenue dans un intervalle de valeurs réglables. De la même façon, la vitesse de.défilement de la bande est maintenue dans un intervalle de valeurs réglables. Idéalement, le procédé prévoit qu'une largeur et une épaisseur de bande soient mesurées ou estimées en amont du bac de revêtement si toutefois elles n'ont pas déjà été collectées en tant qu'entrée de paramètres primaires (Primary Data Input PDI) dans le système de pilotage de l'installation de galvanisation. Ces paramètres sont utiles pour déterminer des conditions d'entrée, en particulier en relation avec la puissance apportée par la bande dans le circuit de circulation géré par le procédé selon l'invention.The method includes a function for which a temperature of the strip at the outlet of a galvanizing furnace bound to a strip inlet in the coating pan is maintained within a range of adjustable values. In the same way, the tape speed is maintained within a range of adjustable values. Ideally, the method provides that a width and a strip thickness are measured or estimated upstream of the coating pan if, however, they have not already been collected as a Primary Data Input PDI in the control system of the galvanizing plant. These parameters are useful for determining input conditions, in particular in relation to the power provided by the band in the circulation circuit managed by the method according to the invention.
Afin de pouvoir moduler la vitesse de fusion de chacun des lingots, une introduction et un maintien de lingots dans une zone de fusion du dispositif de préparation est effectuée de façon dynamique et sélective.In order to be able to modulate the melting speed of each of the ingots, introduction and maintenance of ingots in a melting zone of the preparation device is performed dynamically and selectively.
Le procédé selon l'invention est ainsi mis en oeuvre en fonction de paramètres dynamiques de mesure et de réglage liés à la bande, au bac de revêtement et au dispositif de préparation. Ces paramètres sont idéalement pilotés centralement, de façon autonome selon un modèle analytique à commandes prédictives, en temps réel, étant optionnellement actualisable par auto-apprentissage. A ces aspects, un mode de commandes externes peut être aussi mis en oeuvre (par exemple, par simple entrée de commandes externes sur le modèle analytique pilotant le dit procédé) afin, par exemple pour un opérateur de permettre un recalage de teneur en aluminium, un recalage de température de bande, etc. En accord avec de telles commandes externes, le modèle analytique de régulation du procédé est également réactualisé.The method according to the invention is thus implemented as a function of dynamic measurement and adjustment parameters related to the strip, the coating tank and the preparation device. These parameters are ideally controlled centrally, autonomously according to an analytic model with predictive controls, in real time, being optionally updatable by self-learning. To these aspects, a mode of external commands can also be implemented (for example, by simple input of external commands on the analytical model driving the said method) so, for example for an operator to allow a registration of aluminum content, a strip temperature registration, etc. In accordance with such external commands, the analytical model of process control is also updated.
De la même façon que pour des paramètres issus d'un four de galvanisation en amont du bac de revêtement, des paramètres de mesure et de réglage issus d'un procédé d'essorage de la bande défilant hors du bac de revêtement peuvent être fournis au pilotage du procédé selon l'invention. Ceci permet de mieux calibrer des valeurs de préréglage telles qu'en rapport avec l'épaisseur de revêtement et les teneurs requises des métaux à déposer.In the same way as for parameters coming from a galvanizing furnace upstream of the coating tank, measurement and adjustment parameters resulting from a spinning process of the strip passing out of the coating tank can be provided to the control of the process according to the invention. This makes it possible to better calibrate presetting values such as in relation to the coating thickness and the required contents of the metals to be deposited.
Un ensemble de sous-revendications présente en ce sens des avantages de l'invention.A set of subclaims in this sense has advantages of the invention.
Des exemples de réalisation et d'application pour la mise en oeuvre du procédé sont fournis à l'aide des figures précédentes et des figures suivantes :
- Figure 7
- schéma logique de détermination des puissances,
- Figure 8
- schéma logique de détermination du débit de circulation d mélange liquide,
- Figure 9
- schéma logique de détermination de la teneur en aluminium,
- Figure 10
- schéma logique de détermination de la vitesse de fusion des lingots,
- Figure 11
- schéma logique de vérification de la teneur théorique en fer dissous dans le mélange liquide.
- Figure 7
- logic diagram for determining the powers,
- Figure 8
- logic diagram for determining the circulation rate of the liquid mixture,
- Figure 9
- logic diagram for determining the aluminum content,
- Figure 10
- logic diagram for determining the melting speed of the ingots,
- Figure 11
- logical scheme of verification of the theoretical content of dissolved iron in the liquid mixture.
- la largeur (L) et l'épaisseur (E) de la bande en défilement continu,
- l'épaisseur de zinc (EZ) déposé sur les deux faces de la bande et vitesse visée (V) de la bande
- the width (L) and the thickness (E) of the continuously moving strip,
- the thickness of zinc (EZ) deposited on both sides of the strip and the target speed (V) of the strip
Sont calculés des débits massiques (QBm) et surfaciques (QBs) de bande ainsi qu'un débit (Q1) total de zinc consommé, y compris les inévitables pertes.Belt mass (QBm) and surface (QBs) flow rates are calculated as well as a total flow rate (Q 1 ) of zinc consumed, including unavoidable losses.
A partir de ces débits, de la première température (T1) de la bande en sortie de four de galvanisation en aval du bac de revêtement et de la deuxième température (T2) visée dans le bac de revêtement sont calculées les puissances de bande (PB) et requise (PZ).From these flow rates, the first temperature (T 1 ) of the strip at the outlet of the galvanizing furnace downstream of the coating tank and the second temperature (T 2 ) referred to in the coating tank are calculated the band powers (PB) and required (PZ).
Si, comme dans le cas de la
Dans le cas contraire, la puissance requise peut aussi être inférieure à la puissance de bande (PZ < PB, cas « N »). Le procédé selon l'invention prévoit alors une consigne (ORD1) de refroidissement (ΔT) de la première température de bande (T1) au moyen d'une diminution de température en sortie d'un four de galvanisation. A l'issue de cette étape, la température du mélange liquide dans le bac de revêtement doit retrouver sa valeur (T2), sachant que la température de la bande (T1) en entrée dans le bac de revêtement est égale à la deuxième température (T2) augmentée d'une valeur déterminée, ici le refroidissement (ΔT) en valeur absolue, c'est à-dire : T1 = T2 + ΔT.In the opposite case, the required power can also be lower than the band power (PZ <PB, case "N"). The method according to the invention then provides a cooling setpoint (ORD1) (ΔT) of the first strip temperature (T 1 ) by means of a temperature decrease at the outlet of a galvanizing furnace. At the end of this step, the temperature of the liquid mixture in the coating tank must recover its value (T 2 ), knowing that the temperature of the strip (T 1 ) entering the coating pan is equal to the second temperature (T 2 ) increased by a determined value, here the cooling (ΔT) in absolute value, that is to say: T 1 = T 2 + ΔT.
En tenant compte de la deuxième température (T2) du mélange liquide en provenance du bac de revêtement et de l'énergie (W) précédemment calculée, le débit (Q2) de mélange liquide provenant du bac de revêtement et nécessaire pour assurer la fusion continue des lingots est déterminé. Ce débit (Q2) indique aussi le débit de circulation du mélange liquide entre le bac de revêtement et le dispositif de préparation.Taking into account the second temperature (T 2 ) of the liquid mixture from the coating tank and the energy (W) previously calculated, the flow (Q 2 ) of liquid mixture from the coating tank and necessary to ensure the continuous melting of ingots is determined. This flow rate (Q 2 ) also indicates the flow rate of the liquid mixture between the coating tank and the preparation device.
La
La
La
dans lequel est introduit un coefficient de sécurité (SFe). A la surface de la bande s'établit un fort gradient de concentration en fer favorisant le développement de la couche de combinaison Fe2Al5Znx. La teneur en fer du mélange liquide (Fe2) dans le bac de revêtement est alors la teneur en fer en fin du dit gradient et peut être considérée comme la teneur globale en fer du bain de mélange liquide. Si seuil de solubilité (SFe T2) du fer dans le mélange liquide à la deuxième température (T2) est supérieur à la teneur réelle en fer du mélange liquide (Fe2) dans le bac de revêtement (voir cas « SFe T2 > Fe2 »), les différents paramètres de régulation du procédé retenus sont validés (voir cas « VAL_PA »).The
in which a safety factor (S Fe ) is introduced. At the surface of the band is established a strong iron concentration gradient favoring the development of the Fe 2 Al 5 Zn x combination layer. The iron content of the liquid mixture (Fe 2 ) in the coating tank is then the iron content at the end of said gradient and can be considered as the overall iron content of the liquid mixing bath. If the solubility threshold (SFe T 2 ) of the iron in the liquid mixture at the second temperature (T 2 ) is greater than the actual iron content of the liquid mixture (Fe 2 ) in the coating tank (see case "SFe T 2 > Fe 2 "), the various process control parameters selected are validated (see case "VAL_PA").
Dans le cas contraire, ces paramètres doivent être modifiés (voir cas « MOD_PA ») en vue d'augmenter (cas « UP(SFe T2) »)le seuil de solubilité (SFe T2) du fer dans le mélange liquide à la deuxième température (T2) et / ou de diminuer (cas « DOWN(QFe) ») le débit de dissolution du fer (QFe). L'augmentation du dit seuil de solubilité (SFe T2) est obtenue par augmentation de la deuxième température (T2) et / ou diminution de la teneur en aluminium (Alv) dans le bac de revêtement. La diminution du débit de dissolution du fer (QFe) est obtenue par diminution de la première température (T1) et / ou de la deuxième température (T2) et / ou du débit surfacique de la bande (QBs) et / ou par augmentation de la teneur en aluminium (Alv) dans le bac de revêtement. Pratiquement, on agit préférentiellement sur la première température (T1) de la bande et / ou sur sa vitesse de défilement (V).In the opposite case, these parameters must be modified (see "MOD_PA" case) in order to increase ("UP (SFe T 2 )") the solubility threshold (SFe T 2 ) of the iron in the liquid mixture to the second temperature (T 2 ) and / or decrease (case "DOWN (QFe)") the dissolution rate of the iron (QFe). The increase in said solubility threshold (SFe T 2 ) is obtained by increasing the second temperature (T 2 ) and / or reducing the aluminum content (Al v ) in the coating tank. The reduction of the iron dissolution rate (QFe) is obtained by decreasing the first temperature (T 1 ) and / or the second temperature (T 2 ) and / or the band surface flux (QBs) and / or by increase in the aluminum content (Al v ) in the coating tank. Practically, it acts preferentially on the first temperature (T 1 ) of the band and / or on its running speed (V).
- 11
- bande à défilement continucontinuous scrolling tape
- 2, 132, 13
- bac de revêtementcoating tray
- 77
- dispositif de préparationpreparation device
- 71, 7271, 72
- première et deuxième zones du dispositif de préparationfirst and second zones of the preparation device
- 88
- lingot(s)ingot (s)
- AAT
- point limite de solubilité du fer à 470°C pour une teneur en aluminium de 0.19%iron solubility limit point at 470 ° C for an aluminum content of 0.19%
- Alal
- AluminiumAluminum
- Al1, ..., Aln Al 1 , ..., Al n
-
teneur en aluminium des lingots 1 à naluminum content of
ingots 1 to n - Alc Al c
- Consommation d'aluminium dans la couche de combinaisonAluminum consumption in the combination layer
- Ald Al d
- Consommation d'aluminium dans les drossAluminum consumption in dross
- All Al l
- hausse de teneur en aluminium du mélange liquide requise dans le dispositif de préparationincrease in the aluminum content of the liquid mixture required in the preparation device
- Alm Al m
- teneur maximale (virtuelle) en aluminium du mélange liquide dans le dispositif de préparation (première zone 71)maximum (virtual) aluminum content of the liquid mixture in the preparation device (first zone 71)
- Alt Al t
- teneur en aluminium du mélange liquide issu des lingots fondus dans le dispositif de préparation (donc, dans la deuxième zone 72)aluminum content of the liquid mixture from the molten ingots in the preparation device (thus, in the second zone 72)
- Alv Al v
- teneur visée en aluminium du mélange liquide en sortie du bac de revêtementtarget aluminum content of the liquid mixture at the outlet of the coating tank
- BB
- point limite de solubilité du fer à 440°C pour une teneur en aluminium de 0.19%point of solubility of iron at 440 ° C for an aluminum content of 0.19%
- DAT_BANDDAT_BAND
- données de bandetape data
- DAT_DRIVDAT_DRIV
- données de conduitedriving data
- DOWN(x)DOWN (x)
- diminuer la variable xdecrease the variable x
- DrossDross
- Matte, DrossMatte, Dross
- ΔP.DELTA.P
- apport (ΔP>0) ou retrait (ΔP<0) de puissancesupply (ΔP> 0) or withdrawal (ΔP <0) of power
- ΔTDT
- variation positive (ΔT>0) ou négative (ΔT<0) de température correspondant à un apport ou un retrait d'énergiepositive (ΔT> 0) or negative (ΔT <0) temperature variation corresponding to a contribution or a withdrawal of energy
- EE
- épaisseur de bandetape thickness
- EZEZ
- épaisseur de zinczinc thickness
- FeFe
- feriron
- Fe1 Fe 1
- teneur en fer du mélange liquide en entrée de bac de revêtementiron content of the liquid mixture at the entrance of the coating tank
- Fe2 Fe 2
- teneur maximum en fer du mélange liquide dans le bac de revêtementmaximum iron content of the liquid mixture in the coating tank
- LThe
- largeur de bandebandwidth
- MOD_PAMOD_PA
- modification de paramètres choisismodification of selected parameters
- NNOT
- nonno
- ORD1ORD1
- consigneorder
- PZPZ
- puissance nécessaire au maintien du zinc à T2power required to maintain zinc at T2
- PBPB
- puissance fournie par la bandepower provided by the band
- Q1 Q 1
-
= Q1_fus_Zn débit de fusion des lingots de zinc
= Q1_cons_Zn débit total de zinc-aluminium consommé= Q 1_fus_Zn melting rate of zinc ingots
= Q 1_cons_Zn total flow of zinc-aluminum consumed - Q2 Q 2
- débit nécessaire de zinc liquide en sortie du bac de revêtementrequired flow of liquid zinc at the outlet of the coating tank
- QAlc QAl c
- débit de perte en Al dans la couche de combinaisonAl loss rate in the combination layer
- QAld QAl d
- débit de perte en Al dans les drossloss rate in Al in dross
- QBmQBM
- débit massique de bandeband mass flow
- QBsQBs
- débit surfacique de bandeband flow rate
- QFeQFE
- débit de dissolution du fer dans le mélange liquidedissolution rate of iron in the liquid mixture
- SFeSFe
- seuil de solubilité/saturation du fer dans le mélange liquidethreshold of solubility / saturation of iron in the liquid mixture
- SFe T2 SFe T 2
- SFe pour mélange liquide à température T2 SFe for liquid mixture at temperature T 2
- SFe T3 SFe T 3
- SFe pour mélange liquide à température T3 SFe for liquid mixture at temperature T 3
- SFe T4 SFe T 4
- SFe pour mélange liquide à température T4 SFe for liquid mixture at temperature T 4
- T1 T 1
- 1ière température de bande en entrée de bac de revêtement1 st strip temperature in coating tank inlet
- T1_mes T 1_mes
- T1 mesuréeT 1 measured
- T2 T 2
- 2ième température du mélange liquide dans le bac de revêtement 2nd temperature of the liquid mixture in the coating tank
- T3 T 3
- 3ième température du dispositif (bain) de préparation 3rd device temperature (bath) for preparing
- T4 T 4
- 4ième température du liquide en sortie du bac d'épuration4 th temperature of the output of the cleansing tank liquid
- TL T L
- température initiale des lingots de zinc avant plongée dans la zone de fusioninitial temperature of the zinc ingots before diving into the melting zone
- UP(x)UP (x)
- augmenter la variable xincrease the variable x
- VV
- vitesse de défilement de bandetape scrolling speed
- Vm V m
- Débit total de fusion des lingots immergésTotal melting rate of immersed ingots
- Vmax V max
- vitesse maximale de défilement de bandemaximum speed of tape scrolling
- V1, ..., Vn V 1 , ..., V n
-
Débits de fusion des lingots 1 à nMelting rates of
ingots 1 to n - VAL_PAVAL_PA
- validation de paramètres choisisvalidation of selected parameters
- WW
-
= Wfus_Zn énergie de fusion des lingots de zinc
= Winc_Zn énergie à apporter par le zinc liquide provenant du bac de revêtement= W fus_Zn fusion energy of zinc ingots
= W inc_Zn energy to be supplied by the liquid zinc coming from the coating tank - YY
- ouiYes
- ZnZn
- zinczinc
Claims (27)
- Method for the hardened galvanisation of a continuously-running rolled steel strip (1) in which the strip is immersed in a coating tank (2) containing a bath (5) of a liquid metal mixture, e.g. zinc and aluminium, to be deposited on the strip, and permanently circulated between said coating tank and a preparation device (7), in which the temperature of the liquid mixture is deliberately lowered in order to reduce the iron solubility threshold and sufficiently high for initiating, in said preparation device, the fusion of at least one Zn-Al ingot (8) in an amount necessary for compensating for the liquid mixture used for deposition on the strip,
said method comprising the following steps:- determine a first power (PB) supplied by the steel strip entering at a first temperature (T1) in the bath of liquid mixture of the coating tank, said bath itself being stabilised at a second predetermined temperature (T2) lower than the first temperature (T1),- determine a second power (PZ) necessary to bring the liquid mixture to the second predetermined temperature (T2) and compare this second power to the first power (PB) supplied by the strip,- if the first power (PB) is greater than the second power (PZ), assign a setpoint for reduction of the first temperature (T1) of the strip,- if the first power (PB) is less than or equal to the second power (PZ), determine the energy required for continuous fusion, in the preparation device, of the ingot (8) in an amount necessary for compensating for the liquid mixture used for deposition on the strip,- set a circulating rate (Q2) for the liquid mixture between the coating tank and the preparation device in order to provide the necessary energy for the continuous fusion of the ingot (8) whilst maintaining the temperature of the liquid mixture in the preparation device at a third predetermined temperature (T3) lower than the second predetermined temperature (T2),- set a fourth temperature (T4) of the liquid mixture at the outlet (9) of the preparation device in order to provide additional power (ΔP = PZ - PB) necessary for a thermal equilibrium between said outlet and the supply inlet (12) of the coating tank, said inlet being supplied by the outlet (9). - Method according to claim 1, in which by means of adjusting the second temperature (T2) and the target aluminium content (Alv), an iron solubility threshold (SFe T2) at the second temperature (T2) in the liquid mixture of the coating tank is controlled at a level such that, given an expected iron dissolution rate (QFe) in the coating tank, a total iron content (Fe2) is maintained lower than the iron solubility threshold (SFe T2) at the second temperature (T2).
- Method according to claim 1 or 2, in which the continuous fusion of ingots is ensured at total fusion rate (Vm) of at least two ingots.
- Method according to claim 3, in which a variable number (n) of ingots is immersed selectively and simultaneously in the bath of liquid mixture, the ingots each having a different aluminium content (Al1, Al2, ..., Aln) and at least one of the ingots comprises an aluminium content greater than the content required (Alt) in the preparation device.
- Method according to claim 4, in which an immersion speed (V1, V2, ..., Vn) of each of the n ingots is individually controlled, in order to adjust the aluminium content in the preparation device to the required content (Alt) whilst maintaining the total fusion speed (Vm) required.
- Method according to one of the preceding claims, in which cooling of the liquid mixture from the second temperature (T2) to the third temperature (T3) is activated in the preparation device in order to lower the iron solubility threshold and to localise the formation of dross in said preparation device.
- Method according to claims 3 to 6, in which a compartmentation between ingots and according to their respective aluminium content is achieved in order to separate the different types of dross, such that so-called "surface" dross with a high aluminium content preferentially forms in close proximity to the immersed ingots with a high aluminium content and so called "bottom" dross with a low aluminium content preferentially forms in close proximity to immersed ingots with a low aluminium content.
- Method according to one of the preceding claims, in which a replenishing flow (Q2) of liquid mixture entering the coating tank is regulated below an iron content equal to the solubility threshold at the third temperature (T3) in order to limit an increase in the dissolved iron content to below the solubility threshold at the second temperature (T2) in the coating tank.
- Method according to one of the preceding claims, in which a regulation loop of the first power (PB) supplied by the strip controls an increase or decrease in power provided (ΔP), reaching an equilibrium such that the first power (PB) is equal to the sum of the second power (PZ) and the increase or decrease in power provided (ΔP), such that PB = PZ + ΔP, and at a temperature setpoint of the strip.
- Method according to one of the preceding claims, in which the preparation device is equipped with regulated means for recovering and discharging calories associated with a regulated heating means by induction adapted to adjust the third temperature (T3) in an ingot fusion zone and within a temperature interval, particularly defined by +/-10°C, with values close to a temperature value setpoint.
- Method according to one of the preceding claims, in which the first temperature (T1) of the steel strip as it enters the coating tank is between 450 and 550°C.
- Method according to one of the preceding claims, in which the second temperature (T2) of the liquid mixture in the coating tank is between 450 and 520°C.
- Method according to one of claims 11 or 12, in which a temperature difference (ΔT1) between the steel strip and the liquid mixture in the coating tank is maintained between 0 and 50°C.
- Method according to claim 13, in which the second temperature (T2) of the liquid mixture is maintained in the coating tank, ideally at an accuracy of +/-1 at 3°C, at a value (T1 - ΔT1) equal to the first temperature (T1) reduced by the temperature difference (ΔT1) between the steel strip and the liquid mixture.
- Method according to one of claims 11 to 12, in which a decrease in temperature (ΔT2 = T2 - T3) between the second and third temperature of the liquid mixture in the preparation device is maintained at at least 10°C.
- Method according to one of the preceding claims, in which the circulating flow (Q3) of the liquid mixture from the coating tank is maintained between 10 and 30 times the quantity of mixture deposited on the strip within the same time unit.
- Method according to one of the preceding claims, in which the temperature and aluminium concentration values of the liquid mixture are measured, ideally continuously, on at least one flow path from the supply inlet in the coating tank up to the preparation device outlet.
- Method according to one of the preceding claims, in which a liquid mixture level is measured, ideally continuously, in the preparation device.
- Method according to one of the preceding claims, in which a flow and a temperature of the liquid mixture are maintained at predetermined pairs of values by means of regulation.
- Method according to one of the preceding claims, in which a temperature of the strip exiting a galvanising furnace linked to a strip entering the coating tank is maintained within an adjustable range of values.
- Method according to one of the preceding claims, in which the running speed of the strip is maintained within an adjustable range of values.
- Method according to one of the preceding claims, in which a width and thickness of strip are measured upstream of the coating tank.
- Method according to one of the preceding claims, in which the introduction and maintenance of ingots in a fusion zone of the preparation device is performed dynamically.
- Method according to one of the preceding claims, in which the dynamic measuring and adjusting parameters linked to the strip, the coating tank and the preparation device are controlled centrally.
- Method according to one of the preceding claims, in which the control parameters are readjusted through the input of external controls into an analytical model controlling said method.
- Method according to claim 25, in which the analytical model is updated by auto-programming.
- Method according to one of the preceding claims, in which the measuring and adjusting parameters from a drying method of the strip running outside the coating tank are supplied to control said method.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2008/000163 WO2009098362A1 (en) | 2008-02-08 | 2008-02-08 | Method for the hardened galvanisation of a steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2240620A1 EP2240620A1 (en) | 2010-10-20 |
EP2240620B1 true EP2240620B1 (en) | 2014-11-26 |
Family
ID=39865627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08761863.3A Active EP2240620B1 (en) | 2008-02-08 | 2008-02-08 | Method for the hardened galvanisation of a steel strip |
Country Status (10)
Country | Link |
---|---|
US (1) | US9238859B2 (en) |
EP (1) | EP2240620B1 (en) |
JP (1) | JP5449196B2 (en) |
KR (1) | KR101502198B1 (en) |
CN (1) | CN101939461B (en) |
AU (1) | AU2008350133B2 (en) |
BR (1) | BRPI0822294A2 (en) |
CA (1) | CA2714472C (en) |
ES (1) | ES2529697T3 (en) |
WO (1) | WO2009098362A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110256420A1 (en) * | 2008-07-30 | 2011-10-20 | Pangang Group Steel Vanadium & Titanium Co., Ltd. | Hot-dip galvanized steel plate and production method thereof |
WO2012029511A1 (en) * | 2010-09-02 | 2012-03-08 | 新日本製鐵株式会社 | Device for producing hot-dip galvanized steel sheet and process for producing hot-dip galvanized steel sheet |
EP2599888B1 (en) * | 2010-09-02 | 2017-03-08 | Nippon Steel & Sumitomo Metal Corporation | Apparatus for producing alloying galvanized sheet steel and method for producing alloying galvanized sheet steel |
DE102011118199B3 (en) | 2011-11-11 | 2013-05-08 | Thyssenkrupp Steel Europe Ag | A method and apparatus for hot dip coating a metal strip with a metallic coating |
DE102011118197B3 (en) | 2011-11-11 | 2013-05-08 | Thyssenkrupp Steel Europe Ag | A method and apparatus for hot dip coating a metal strip with a metallic coating |
EP2703515A1 (en) * | 2012-09-03 | 2014-03-05 | voestalpine Stahl GmbH | Method for applying a protective cover to a flat steel product and flat steel product with such a protective cover |
DE102021123320A1 (en) | 2021-09-09 | 2023-03-09 | Coatinc PreGa GmbH & Co. KG | Process for high-temperature galvanizing of ferrous material parts |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2235720A (en) * | 1939-01-28 | 1941-03-18 | Matarese Lawrence | Cargo loading and unloading platform |
US3808033A (en) * | 1970-01-27 | 1974-04-30 | Nat Steel Corp | Continuous metallic strip hot-dip metal coating apparatus |
JPS5735671A (en) | 1980-08-11 | 1982-02-26 | Nippon Kokan Kk <Nkk> | Continuously galvanizing method for strip |
FR2654749B1 (en) * | 1989-11-21 | 1994-03-25 | Sollac | PROCESS AND DEVICE FOR PURIFYING A HOT-TIME LIQUID METAL BATH FROM A STEEL STRIP. |
JP2808334B2 (en) * | 1989-12-15 | 1998-10-08 | 川崎製鉄株式会社 | Plating bath used for continuous hot metal plating |
JPH05171386A (en) * | 1991-12-16 | 1993-07-09 | Nkk Corp | Method and device for reducing dross in hot-dip metal bath |
JP2643048B2 (en) * | 1992-01-09 | 1997-08-20 | 川崎製鉄株式会社 | Hot-dip plating apparatus and method of operating hot-dip plating apparatus |
JPH05222500A (en) | 1992-02-12 | 1993-08-31 | Sumitomo Metal Ind Ltd | Continuous hot dip equipment |
JPH05271893A (en) * | 1992-03-27 | 1993-10-19 | Sumitomo Metal Ind Ltd | Method and apparatus for manufacturing hot-dip galvanized steel sheet |
FR2700779B1 (en) * | 1993-01-22 | 1995-03-10 | Lorraine Laminage | Method for purifying a coating bath of metallurgical products with a metal alloy, and installation for implementing this method. |
ATE161109T1 (en) * | 1994-01-17 | 1997-12-15 | Siemens Ag | METHOD AND DEVICE FOR CONDUCTING A PROCESS |
JPH0853744A (en) | 1994-08-09 | 1996-02-27 | Kobe Steel Ltd | Production of galvannealed steel sheet |
CA2225537C (en) | 1996-12-27 | 2001-05-15 | Mitsubishi Heavy Industries, Ltd. | Hot dip coating apparatus and method |
JP3156963B2 (en) | 1997-07-31 | 2001-04-16 | 川崎製鉄株式会社 | Method for preventing dross formation in continuous hot-dip metal plating bath |
US5958518A (en) * | 1998-01-29 | 1999-09-28 | Sippola; Perti J. | Method of producing hot-dip zinc coated steel sheet free of dross pick-up defects on coating and associated apparatus |
US6177140B1 (en) * | 1998-01-29 | 2001-01-23 | Ispat Inland, Inc. | Method for galvanizing and galvannealing employing a bath of zinc and aluminum |
CN1263886C (en) | 1998-04-01 | 2006-07-12 | 杰富意钢铁株式会社 | Hot dip zincing method and device therefor |
JP4631913B2 (en) | 1998-04-01 | 2011-02-16 | Jfeスチール株式会社 | Hot-dip galvanizing method and apparatus therefor |
JPH11323519A (en) | 1998-05-13 | 1999-11-26 | Nkk Corp | Galvanizing apparatus and method therefor |
JP2001262306A (en) * | 2000-03-21 | 2001-09-26 | Nisshin Steel Co Ltd | METHOD FOR ADJUSTING COMPONENT IN HOT DIPPING Zn-Al BASE COATING BATH |
RU2209846C2 (en) | 2001-04-26 | 2003-08-10 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Method for continuous zincing of strip |
KR100887114B1 (en) * | 2002-07-15 | 2009-03-04 | 주식회사 포스코 | Aluminum concentration control device and method for hot dip galvanizing bath |
JP2004339553A (en) | 2003-05-14 | 2004-12-02 | Nkk Steel Sheet & Strip Corp | Method of producing hot dip metal plated steel strip |
JP4507681B2 (en) | 2003-06-19 | 2010-07-21 | Jfeスチール株式会社 | Temperature control method for plating bath for hot dip galvanized steel sheet |
JP2005248208A (en) * | 2004-03-01 | 2005-09-15 | Nippon Steel Corp | Plate temperature control method in induction heating of galvannealed steel sheet. |
JP4428096B2 (en) | 2004-03-10 | 2010-03-10 | Jfeスチール株式会社 | Method for controlling temperature of metal strip entering plate to hot dipping bath |
CN100494430C (en) | 2006-06-23 | 2009-06-03 | 宝山钢铁股份有限公司 | Method for producing zinc alloy from zinc dross |
JP4503086B2 (en) | 2008-08-11 | 2010-07-14 | Dic株式会社 | Superhydrophobic powder, structure having superhydrophobic surface using the same, and production method thereof |
EP2317006A4 (en) | 2008-08-11 | 2012-08-01 | Kawamura Inst Chem Res | ULTRA-HYDROPHOBIC POWDER, ULTRA-HYDROPHOBIC SURFACE STRUCTURE, AND THEIR MANUFACTURING PROCESS |
-
2008
- 2008-02-08 ES ES08761863.3T patent/ES2529697T3/en active Active
- 2008-02-08 BR BRPI0822294-0A patent/BRPI0822294A2/en active Search and Examination
- 2008-02-08 WO PCT/FR2008/000163 patent/WO2009098362A1/en active Application Filing
- 2008-02-08 JP JP2010545517A patent/JP5449196B2/en not_active Expired - Fee Related
- 2008-02-08 KR KR1020107019974A patent/KR101502198B1/en active IP Right Grant
- 2008-02-08 CA CA2714472A patent/CA2714472C/en not_active Expired - Fee Related
- 2008-02-08 US US12/866,791 patent/US9238859B2/en not_active Expired - Fee Related
- 2008-02-08 AU AU2008350133A patent/AU2008350133B2/en not_active Ceased
- 2008-02-08 EP EP08761863.3A patent/EP2240620B1/en active Active
- 2008-02-08 CN CN2008801264955A patent/CN101939461B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR101502198B1 (en) | 2015-03-12 |
CA2714472C (en) | 2015-08-04 |
ES2529697T3 (en) | 2015-02-24 |
US9238859B2 (en) | 2016-01-19 |
BRPI0822294A2 (en) | 2021-04-06 |
US20100323095A1 (en) | 2010-12-23 |
EP2240620A1 (en) | 2010-10-20 |
JP2011511165A (en) | 2011-04-07 |
CA2714472A1 (en) | 2009-08-13 |
WO2009098362A1 (en) | 2009-08-13 |
CN101939461B (en) | 2013-01-02 |
CN101939461A (en) | 2011-01-05 |
AU2008350133B2 (en) | 2012-11-22 |
JP5449196B2 (en) | 2014-03-19 |
KR20100126359A (en) | 2010-12-01 |
AU2008350133A1 (en) | 2009-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2240620B1 (en) | Method for the hardened galvanisation of a steel strip | |
WO2009098363A1 (en) | Plant for the hardened galvanisation of a steel strip | |
EP2129810B1 (en) | Method for coating a substrate and metal alloy vacuum deposition facility | |
US9181612B2 (en) | Manufacturing equipment for galvannealed steel sheet, and manufacturing method of galvannealed steel sheet | |
CN103080361B (en) | Hot-dip galvanized steel sheet manufacturing installation and hot-dip galvanized steel sheet manufacture method | |
WO2010055211A1 (en) | Method and device for controlling the introduction of several metals into a cavity designed to melt said metals | |
FR2919876A1 (en) | COMBINED LINE OF ANNEALING AND GALVANIZING AND PROCESS FOR TRANSFORMING A CONTINUOUS ANNEALING LINE INTO SUCH A COMBINED LINE | |
EP2797840B1 (en) | Process and device for purifying silicon | |
FR2546534A1 (en) | PROCESS AND INSTALLATION FOR CONTINUOUS MANUFACTURING OF A SURFACE STEEL STRIP CARRYING A COATING OF ZN, AL OR ALLOY ZN-AL | |
RU2463379C2 (en) | Method of galvanisation by submersion of steel strip | |
BE699497A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100721 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: D'HALLUIN, ARNAUD Inventor name: GRENIER, BENJAMIN Inventor name: BARJON, STEPHANE |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20131010 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140623 |
|
INTG | Intention to grant announced |
Effective date: 20140704 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 698277 Country of ref document: AT Kind code of ref document: T Effective date: 20141215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008035583 Country of ref document: DE Effective date: 20150108 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2529697 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150224 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150326 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150226 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150326 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150227 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008035583 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150208 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
26N | No opposition filed |
Effective date: 20150827 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008035583 Country of ref document: DE Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R082 Ref document number: 602008035583 Country of ref document: DE Representative=s name: FISCHER, MICHAEL, DR., DE Ref country code: DE Ref legal event code: R081 Ref document number: 602008035583 Country of ref document: DE Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS, FR Free format text: FORMER OWNER: SIEMENS VAI METALS TECHNOLOGIES SAS, SAINT CHAMOND, FR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS; FR Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: SIEMENS VAI METALS TECHNOLOGIES SAS Effective date: 20150918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150226 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS, FR Effective date: 20160204 Ref country code: FR Ref legal event code: CA Effective date: 20160204 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 698277 Country of ref document: AT Kind code of ref document: T Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008035583 Country of ref document: DE Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: PC Ref document number: 698277 Country of ref document: AT Kind code of ref document: T Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS, FR Effective date: 20170403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141126 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20210217 Year of fee payment: 14 Ref country code: DE Payment date: 20210217 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602008035583 Country of ref document: DE Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 602008035583 Country of ref document: DE Owner name: CLECIM SAS, FR Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES FRANCE SAS, SAVIGNEUX, FR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: CLECIM SAS; FR Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: SIEMENS VAI METALS TECHNOLOGIES SAS Effective date: 20210831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: HC Owner name: CLECIM SAS; FR Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: PRIMETALS TECHNOLOGIES FRANCE SAS Effective date: 20211008 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: HC Owner name: CLECIM SAS; FR Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: PRIMETALS TECHNOLOGIES FRANCE SAS Effective date: 20211008 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: HC Ref document number: 698277 Country of ref document: AT Kind code of ref document: T Owner name: CLECIM S.A.S., FR Effective date: 20220311 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20220217 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20220204 Year of fee payment: 15 Ref country code: NL Payment date: 20220216 Year of fee payment: 15 Ref country code: IT Payment date: 20220218 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220426 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008035583 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230301 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 698277 Country of ref document: AT Kind code of ref document: T Effective date: 20230208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230208 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240221 Year of fee payment: 17 |