[go: up one dir, main page]

EP2232035B1 - Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne - Google Patents

Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne Download PDF

Info

Publication number
EP2232035B1
EP2232035B1 EP08866387.7A EP08866387A EP2232035B1 EP 2232035 B1 EP2232035 B1 EP 2232035B1 EP 08866387 A EP08866387 A EP 08866387A EP 2232035 B1 EP2232035 B1 EP 2232035B1
Authority
EP
European Patent Office
Prior art keywords
signal
engine
cylinder
combustion
nocyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08866387.7A
Other languages
German (de)
English (en)
Other versions
EP2232035A1 (fr
Inventor
Guillermo Ballesteros
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2232035A1 publication Critical patent/EP2232035A1/fr
Application granted granted Critical
Publication of EP2232035B1 publication Critical patent/EP2232035B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient

Definitions

  • the present invention relates to a method for generating a synchronization signal, representative of the unfolding of the operating cycle of a four-stroke internal combustion engine, of the multicylinder type, the expansion phases of each cylinder, during which the combustions take place. , occur at different angular positions of the crankshaft rotation motion as is the case with odd-numbered four-stroke engines.
  • the invention more specifically relates to a method for generating a signal for locating a predetermined time of the cycle such as the passage to the High Admission Dead Point or to the Low Admission Dead Point.
  • the performance of an engine as well as the control of the emission of pollutants are related to the various control processes governing the operation of the engine. These methods, for example fuel injection or ignition, require precise knowledge of the current thermodynamic cycle in the engine cylinders.
  • the document FR 2,441,829 proposes a way: to detect information on the thermodynamic cycle of the cylinders by locating, on a target secured to the crankshaft, the angular position zones corresponding to a specific phase of the stroke of the different pistons.
  • the target consists of a disc having locating elements disposed along its periphery, such as teeth of different lengths.
  • a fixed receiving member detects these locating elements and generates electrical pulses to produce a signal identifying the passage to the top dead center position of a determined piston.
  • This method uses a timing signal that is generated from the combustion conditions in each of the four-cycle and four-cylinder fitter cylinders, and information transmitted by the crankshaft sensor.
  • At least one factor governing the combustion in a given reference cylinder is modified so as to cause an alteration controlled combustion.
  • This alteration of the combustion in the reference cylinder is then detected thanks to a value Cg developed from the information from the crankshaft position sensor of the engine, thus making it possible to synchronize the passages at the Top Dead Center Admission of the engine cylinders with the Top Dead Center signal of the crankshaft sensor.
  • this invention requires a degradation of the combustion of the engine altering its operation and increasing pollutant emissions.
  • the present invention therefore aims to overcome the drawbacks of known tracking systems in the case of a four-stroke engine having an odd number of cylinders, by providing an improved registration method, requiring no specific position sensor outside of that which serves to locate the angular position of the crankshaft, and does not affect the operation of the engine, for example of the type described in the document DE-A1-102005043129 .
  • the representative signal may be a representation of the gas pair or a harmonic representation of the tooth duration.
  • an engine control system implementing the method for generating the synchronization signal object of the present invention has been shown. Only the constituent parts necessary for understanding the invention have been shown. Moreover, in this example, the synchronization signal makes it possible to control an injection system, but the use of the signal is not limited and the synchronization signal can be used to control other elements or processes of the engine.
  • a four-stroke internal combustion engine for a motor vehicle comprises three cylinders (C1, C2, C3) each comprising a fuel injection device of the multipoint type with control electronics whereby each cylinder is supplied with fuel from a specific electro-injector 5.
  • each electro-injector 5 is controlled by the electronic engine control system 7, which adjusts the amount of fuel injected and the injection time (Inj) in the cycle according to the operating conditions of the engine, so that precisely slaving the richness of the air-fuel fuel mixture admitted into the cylinders to a predetermined target value.
  • the electronic engine control system 7 conventionally comprises a microprocessor (CPU), random access memories (RAM), read only memories (ROM), as well as analog-digital converters (A / D), and various input and output interfaces. exits,
  • the microprocessor includes electronic circuitry and appropriate software (10, 222, 223, 224) for processing signals from suitable sensors, determining engine states, and implementing predefined operations to generate control signals at the desired destination. in particular injectors so as to better manage the combustion conditions in the engine cylinders.
  • the electronic engine control system 7 is more particularly intended to operate a fuel injection of separately triggering each injection 5 so that the fuel injection is completed before opening the corresponding intake valve or valves.
  • crankshaft sensor 22 of the type for example magneto-reluctant, is fixedly mounted on the motor housing to be positioned in front of a measuring ring 12 integral with the steering wheel. inertia attached to one end of the crankshaft.
  • This ring 12 is provided at its periphery with a succession of identical teeth and troughs with the exception of a tooth which has been removed so as to define an absolute reference point making it possible to deduce the moment of passage to the Top Dead Center. a given cylinder of reference, in this case the cylinder C1.
  • the sensor 22 delivers a signal Dn corresponding to the running of the teeth of the ring gear 12, which signal after treatment by a processing device 10 makes it possible to generate a PMH signal every 120 ° of crankshaft rotation making it possible to locate the passages at Top Dead Center alternately.
  • the device 10 for processing the signal Dn emitted by the sensor 22 also makes it possible to measure the running time of the teeth of the ring 12, and thus to obtain the running speed and the instantaneous rotation speed N of the motors.
  • the signal Dn is further processed by the device 10 to produce a signal (Cg, Bn) which is a representation of a magnitude representative of the kinematics of the crankshaft.
  • this quantity can define a representation of the estimated gas torque generated by each of the combustions.
  • the value of the signal Cg for each combustion of the gas mixture in the engine cylinders is obtained in particular from the analysis of the signal Dn delivered by the fixed sensor 22 observing the toothed wheel 12 integral with the crankshaft.
  • the signal is not used directly, for example by taking the instantaneous speed of rotation, because the presence of measurement noise or the lack of realization of the teeth would generate significant errors due to inaccuracies of the signal and make the process less robust .
  • a harmonic decomposition analysis makes it possible to eliminate these defects.
  • other quantities representative of the kinematics of the crankshaft can be defined as harmonic components representative of the speed or the duration of travel of the teeth of the crown.
  • the tooth duration is the duration measured between two teeth of the target.
  • the torque estimate is will do by observing the speed of rotation between 0 and 240 ° or a angular window generally encompassing 0-180 ° of the combustion phase of the cylinder C1.
  • the combustion time associated with the cylinder C3 is between 240 ° and 420 °, the observation will be made on the angular range between 240 ° and 480 °.
  • the combustion time is between 480 ° and 660 °
  • the observation range of the engine speed will be around 480 and 720 °.
  • the location of the predetermined moment in the unfolding of the engine cycle for phasing the injection of each of the cylinders which in the example illustrated is the passage to the High Admission Dead Point, or any other time that can serve as a reference, is operated from a synchronization signal NOCYL synchronized with the signal PMH providing the identification of the passage to the top dead center of each cylinder in a circuit 224,
  • NOCYL synchronization signal can be used which alone or in association with a signal from a counter of the number of High Dead Point cylinders passing in front of the position sensor to determine the phase of the combustion cycle for each cylinder.
  • the NOCYL signal represented at figure 3 does not require comparison with other signals and it provides all the predetermined moments of the stints in the course of the engine cycle for phasing the injection or ignition of each of the cylinders for all the cylinders of the motor.
  • the signal NOCYL provides the passage to the High Admission Dead Point and the passage to the Top Dead Center of all your cylinders at the time of the change of value. A single signal is then sufficient to synchronize all the actuators of the motor control.
  • the PMH signal indicates each passage to the Top Dead Center of the engine cylinders by generating a leading or falling edge.
  • the signal NOCYL is arbitrarily initialized to 0 at the first detection of the transition to the Top Dead Center of the reference cylinder (C1 in this example) which is therefore considered arbitrarily as a High Admission Dead Point, then it is incremented.
  • the NOCYL signal is constructed by incrementing a modulo 6 counter each time the High Dead Point of the PMH signal is passed.
  • NOCYL signal provides a unique reference for all motor cycles that allows a phasing system 222 to synchronize any motor control process (ignition, injection, control actuators ...) .
  • the estimation of the torque Cg by the torque estimator described above makes it possible to know if the synchronization is the right one. Indeed, if the injection and ignition are poorly phased, the engine can not produce torque because combustion is done during admission.
  • a processing unit 223 compares the estimated value Cg with a reference or setpoint value that is conventionally developed by the engine control during the start-up phase to estimate whether the phasing is correct. The condition to check is then: Cg ⁇ CC - ⁇
  • is a positive torque value that can be constant mapped according to the engine control parameters to ensure the robustness of the criterion E1 by limiting the consideration of signal noise.
  • the strategy then considers that the Top Dead Point initially detected was the High Dead Point, the NOCYL signal is then reset in the circuit 224 by an Init signal of C3 signal processing circuit 223. The phasing is now correct, the condition E1 must then be verified. If this is not the case, there is a failure in the injection or ignition system or at the engine level.
  • a second embodiment of the invention makes it possible to operate in the case of a startup with lost spark.
  • the ignition of the engine is controlled in "lost spark" mode. previously described to ensure the starting and operation of the engine including when the phasing engine is not identified.
  • the torque estimation is done by observing the acyclic speed or instantaneous rotation times of the crankshaft of the engine over an angular range directly related to the supposed phasing of the engine which theoretically covers the combustion phases of the three cylinders.
  • the combustion time of the cylinder C1 is between 0 ° and 180 °
  • the estimation of the torque will be done by observing the speed of rotation between. 0 and 240 ° or an angular window generally encompassing 0-180 ° of the combustion phase of the cylinder C1.
  • the combustion time associated with cylinder C3 is between 240 ° and 420 °, the observation of acyclism will be on the angular range between 240 ° and 480 °.
  • the combustion time is between 480 ° and 660 °
  • the observation range of the engine speed will be around 480 and 720 °.
  • a first variant of the second embodiment consists in estimating the gas torque Cg for all the engine revolutions.
  • the torque of cylinder C1 thus estimated in the first round Cg1_1 is recorded and compared with a new observation of the pair Cg1_2 of the cylinder C1 in the next turn.
  • the synchronization can thus be performed according to the result of the comparison.
  • the signal NOCYL does not correspond to the thermodynamic cycle of each cylinder, the value of the estimated torque Cg is then significantly less than the torque value of Setpoint Cc and vice versa.
  • the Delta offset is a torque value that can be a constant or derived from a map dependent on the Engine Speed and / or Torque, and which makes it possible to freeze a threshold necessary for the comparison in order to exclude any risk of false synchronization due to noise in the signals,
  • the basic methods and variants of the first and second embodiments can be reliable by limiting errors due to disturbances or noise of the signals for example by summing the torque estimates Cg.
  • the error limitation can also be carried out by filtering, for example carried out according to a filtering of the first or second order or any other filter making it possible to filter the noise of the measurements and estimates and thus rendering the result of the comparisons more robust.
  • F not X B ⁇ ⁇ X not + 1 _ ⁇ ⁇ F not - 1 with 0 ⁇ ⁇ 1
  • a representation of a magnitude representative of the kinematics of the crankshaft other than the flexible can be used.
  • a third embodiment of the invention uses a harmonic analysis representative of either the tooth duration or the instantaneous rotation speed of the crankshaft.
  • this embodiment consists in studying the harmonic component of order n of the rotational speed or preferably of the tooth duration established from the signal Dn.
  • the harmonic component of Bn will here be calculated using the cosine harmonic function, but the method can be adapted for any other harmonic function for example using a trapezoid function or other more complex function.
  • This component Bn is a simplified representation based on the relationship of the estimated torque (Cg) above, taking appropriate coefficients.
  • This embodiment is robust to target defects, since it compares two quantities potentially biased in the same way by the target defect, the calculations of Bn on the two PMH of the cylinder originating from durations measured on the same portions. angular of the target of the crown.
  • the harmonic component established in the first round will be decomposed into a sum of the harmonic component representative of the thermodynamic cycle during the first round and a harmonic component representative of the target defects.
  • the harmonic component established in the second round will be decomposed into a sum of the harmonic component representative of the thermodynamic cycle during the second round and a harmonic component representative of the target defects that is the same as in the first round. Therefore, a comparison of the harmonic component established in the first round and that established in the second round will eliminate the representative component of the target defects.
  • the NOCYL signal is reset by changing the synchronization hypothesis (offset of one revolution of the synchronization). This reset can be done on the PMH of the reference cylinder or on any PMH of any cylinder. The synchronization must then be confirmed again by a method according to one of the previously described embodiments before establishing the normal operation of the engine with sequential ignition.
  • the invention advantageously makes it possible to synchronize the thermodynamic cycle of each cylinder without modifying operating parameters of the engine and without altering the operation of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

  • La présente invention concerne un procédé permettant de générer un signal de synchronisation, représentatif du déroulement du cycle de fonctionnement d'un moteur à combustion interne à quatre temps, du type multicylindre dont les phases de détente de chaque cylindre, pendant lesquelles les combustions se déroulent, se produisent à des positions angulaires du mouvement de rotation du vilebrequin distinctes comme c'est le cas pour les moteurs à quatre temps à nombre impaires de cylindres.
  • L'invention concerne plus précisément un procédé pour générer un signal permettant le repérage d'un instant prédéterminé du cycle tel que le passage au Point Mort Haut Admission ou encore au Point Mort Bas Admission.
  • Les performances d'un moteur ainsi que le contrôle de l'émission de polluantes sont liés aux différents procédés de contrôle régissant le fonctionnement du moteur. Ces procédés, par exemple l'injection du carburant ou l'allumage, nécessitent la connaissance précise du cycle thermodynamique en cours dans les cylindres du moteur.
  • Le document FR 2 441 829 , propose un moyen: de détecter une information sur le cycle thermodynamique des cylindres en repérant, sur une cible solidaire du vilebrequin, les zones de position angulaire correspondantes à une phase déterminée de la course des différents pistons. La cible consiste en un disque présentant des éléments de repérage disposés le long de sa périphérie, telles que des dents de longueur différente. Un organe récepteur fixe détecte ces éléments de repérage et génère des impulsions électriques permettent de produire un signal repérant le passage à la position Point Mort Haut d'un piston déterminé.
  • Un tel dispositif de repérage s'avère toutefois insuffisant. En effet, pour un moteur à combustion ïnterne à quatre temps, le vilebrequin exécute deux tours complets (ou 720° d'angle), avant qu'un piston donné se retrouve dans la même position de fonctionnement dans le cycle moteur. Il en résulte qu'à partir de la seule observation de la rotation de la cible solidaire du vilebrequin, il n'est, a priori, pas possible de fournir une information sur chaque cylindre sans une indétermination de deux temps moteur dans te cycle (le repérage de la position Point Mort Haut recouvrant aussi bien la phase Admission que la phase Détente).
  • La détermination précise de la position de chaque cylindre dans le cycle ne pouvant pas être déduite de la seule observation de la position du vilebrequin, la recherche d'informations complémentaires est donc nécessaire pour savoir si le cylindre est dans la première ou dans la seconde moitié du cycle moteur (phases Admission puis Compression durant le premier tour vilebrequin, phases Détente puis Echappement lors du second tour).
  • Afin d'obtenir de telles informations complémentaires, il est connu d'utiliser des éléments de repérage secondaires portés par un disque émetteur qui tourne deux fois moins vite que le vilebrequin. A cet effet, on peut disposer ce disque émetteur sur l'arbre à cames ou bien sur tout autre arbre qui est entraîné par l'intermédiaire d'un réducteur de rapport 1/2 à partir du vilebrequin.
  • La combinaison des signaux issus du capteur vilebrequin et du capteur arbre à cames permet au système de détecter précisément le Point Mort Haut en phase Admission d'un cylindre de référence.
  • Cependant, de tels systèmes de repérage angulaire utilisant à la fois un capteur vilebrequin et un capteur arbre à cames, sont relativement encombrants, coûteux et d'un montage délicat.
  • Afin de remédier à ces inconvénients, la publication FR 2 749 885 propose un procédé de repérage simple et efficace qui ne nécessite aucun capteur de position spécifique en dehors de celui qui sert à repérer la position angulaire du vilebrequin.
  • Ce procédé utilise un signal de synchronisation qui est généré à partir des conditions de combustion dans chacun des cylindres d'un monteur à quatre temps et à quatre cylindres, et des informations transmises par le capteur du vilebrequin.
  • Pour cela, au moins une facteur régissant la combustion dans un cylindre donné de référence est modifié de façon à provoquer une altération contrôlée de la combustion. Cette altération de la combustion dans le cylindre de référence est ensuite détectée grâce à une grandeur Cg élaborée à partir de l'information issue du capteur de position du vilebrequin du moteur permettant ainsi de synchroniseur les passages au Point Mort Haut Admission des cylindres du moteur avec le signal Point Mort Haut du capteur du vilebrequin.
  • Cependant cette invention nécessite une dégradation de la combustion du moteur altérant son fonctionnement et augmentant les émissions polluantes.
  • La présente invention a donc pour objet de remédier aux inconvénients des systèmes de repérage connus dans le cas de moteur à quatre temps comportant un nombre de cylindres impaires, en proposant un procédé de repérage amélioré, ne nécessitant aucun capteur de position spécifique en dehors de celui qui sert à repérer la position angulaire du vilebrequin, et n'altérant pas le fonctionnement du moteur, par exemple du type décrit dans le document DE-A1-102005043129 .
  • A cet effet l'invention propose un procédé pour produire un signal de synchronisation d'un moteur à combustion interne à quatre temps à nombre impair dé cylindres par un système électronique de contrôle le signal de synchronisation permettant le repérage d'un instant prédéterminé dans le cycle thermodynamique de chacun des cylindres du moteur étant déterminé à partir d'un signal repérant une position déterminée de chaque cylindre, et d'un signal représentatif d'une grandeur représentative de la cinématique du vilebrequin engendrée par chacune des combustions, tous deux génèrés à partir des informations d'un capteur de position du vilebrequin du moteur le procédé comprenant les étapes suivantes :
    • fonctionnement du moteur durant une période donnée avec un allumage des cylindres à chaque tour des cylindres, de manière à produire une combustion systématique du carburant injecté,
    • calcul du signal représentatif
    • comparaison du signal représentatif (Cg, Bn) d'un cylindre lors d'un premier tour du cycle (Cg1_1, B n Comb
      Figure imgb0001
      ) avec le signal représentatif du cylindre lors d'un second tour du cycle (Cg1_2, B n ech
      Figure imgb0002
      ), de manière à connaître la phase du premier tour.
    • réinitialisation du signal de synchronisation si l'analyse de la comparaison indique que le phasage du signal de synchronisation était erroné.
  • Selon d'autres caractéristiques de l'invention, le signal représentatif peut être une représentation du couple gaz ou une représentation harmonique de la durée de dent.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va maintenant en être faite en se référant aux dessins annexés, sur lesquels :
    • La figure 1 est un schéma du dispositif de contrôle moteur intégrant le procédé de l'invention ;
    • La figure 2 est un schéma détaillant les étapes d'un procédé d'injection utilisant le signal de synchronisation de l'invention :
    • La figure 3 représente le phasage du signal de synchronisation NOCYL selon l'invention.
  • Les références utilisées dans toute la description sont les mêmes pour désigner des éléments identiques ou similaires, quant à leur fonction, quelle que soit la variante de réalisation de l'invention.
  • En référence aux figures, un système de contrôle moteur mettant en oeuvre le procédé permettant de générer le signal de synchronisation objet de la présente invention a été représenté. Seules les parties constitutives nécessaires à la compréhension de l'invention ont été montrées. De plus, dans cet exemple, le signal de synchronisation permet de contrôler un système d'injection, mais l'utilisation du signal n'est pas limitée et le signal de synchronisation peut servir au contrôle d'autres éléments ou procédés du moteur.
  • Un moteur à combustion interne 1 à quatre temps pour véhicule automobile comporte trois cylindres (C1, C2, C3) chacun comportent un dispositif d'injection de carburant du type multipoints à commande électronique grâce auquel chaque cylindre est alimenté en carburant à partir d'un électro-injecteur 5 spécifique.
  • L'ouverture de chaque électro-injecteur 5 est commandée par le système électronique de contrôle moteur 7, qui ajuste la quantité de carburant injectée et l'instant d'injection (Inj) dans le cycle suivant les conditions de fonctionnement du moteur, de façon à asservir précisément la richesse du mélange combustible air-carburant admis dans les cylindres à une valeur de consigne prédéterminée.
  • Le système électronique de contrôle moteur 7 comprend classiquement un microprocesseur (CPU), des mémoires vives (RAM), des mémoires mortes (ROM), ainsi que des convertisseurs analogiques-numériques (A/D), et différentes interfaces d'entrées et de sorties,
  • Le microprocesseur comporte des circuits électroniques et des logiciels appropriés (10, 222, 223, 224) pour traiter les signaux en provenance de capteurs adaptés, déterminer les états du moteur et mettre en oeuvre des opérations prédéfinies afin de générer des signaux de commande à destination notamment des injecteurs de façon à gérer au mieux les conditions de combustion dans les cylindres du moteur.
  • Le système électronique de contrôle moteur 7 est plus particulièrement destiné à opérer une injection de carburant consistant à déclencher isolément chaque injecter 5 afin que l'injection de carburant soit terminée avant l'ouverture de la ou des soupapes d'admission correspondantes.
  • Parmi les signaux d'entrée du microprocesseur figurent notamment ceux adressés par un capteur vilebrequin 22. Ce capteur 22, du type par exemple magnéto-reluctant, est monté fixe sur le bâti du moteur pour être positionné devant une couronne de mesure 12 solidaire du volant d'inertie fixé à une extrémité du vilebrequin. Cette couronne 12 est munie à sa périphérie d'une succession de dents et de creux identiques à l'exception d'une dent qui a été supprimée de façon à définir un repère absolu permettant de déduire l'instant de passage au Point Mort Haut d'un cylindre donné de référence, en l'occurrence te cylindre C1.
  • Le capteur 22 délivre un signal Dn correspondant au défilement des dents de la couronne 12, signal qui après traitement par un dispositif de traitement 10 permet de générer un signal PMH tous les 120° de rotation vilebrequin permettant le repérage des passages au Point Mort Haut alternativement des cylindres C1 (référence 0°) puis C2 (référence 120°) et enfin C3 (référence 240°) si l'ordre de combustion du moteur est C1-C3-C2 comme dans cet exemple.
  • Il est à noter que pour ce type de moteur à quatre temps et trois cylindres, et plus généralement pour tous les moteurs à quatre temps et un nombre impair de cylindres, les cylindres, ici C1, C2 et C3, passent à la position Point Mort Haut dans des positions angulaires distinctes.
  • Le dispositif ce traitement 10 du signal Dn émis par le capteur 22 permet également de mesurer la durée de défilement des dents de la couronne 12, et ainsi d'obtenir la vitesse de défilement et le régime de rotation instantané N du moteurs.
  • Le signal Dn est de plus traité parle dispositif 10 pour produire un signai (Cg, Bn) qui est une représentation d'une grandeur représentative de la cinématique du vilebrequin. Par exemple cette grandeur peut définir une représentation du couple gaz estimé engendré par chacune des combustions.
  • La valeur du signal Cg pour chacune des combustions du mélange gazeux dans les cylindres du moteur est notamment obtenue à partir de l'analyse du signal Dn délivré par le capteur fixe 22 observant la roue dentée 12 solidaire du vilebrequin.
  • Le signal n'est pas utilisé de manière directe, par exemple en prenant la vitesse instantanée de rotation, car la présence de bruit de mesure ou le défaut de réalisation des dents engendreraient des erreurs importantes dues aux imprécisions du signal et rendrai le procédé peu robuste. Ainsi une analyse par décomposition harmonique permet d'éliminer ces défauts.
  • Un procédé d'élaboration d'un tel signal Cg est décrit notamment dans les brevets EP0532420 ou WO9829718 dans desquels le signal Cg est une représentation du couple gaz. De manière générale, l'estimation du couple gaz moyen produit par au moins une combustion dans le cylindre "u" du moteur comportant p cylindres est donné par une relation du type : C gaz , 0 u = i δ i k = q u r u α k , i β k , i + α 0 , i
    Figure imgb0003

    dans laquelle:
    • [Cgaz,0]u est le couple gaz moyen produit par au moins une combustion dans un cylindre u au cours d'un cycle de combustion,
    • βk,i est une fonction de Δtk et/ou de ωk respectivement durée et vitesse de passage du motif Dk en face du capteur,
    • α k,i est un coefficient de pondération de la durée associée au motif Dk, dépendant au moins d'un paramètre dé fonctionnement du moteur,
    • α 0,i est une variable dépendant au moins d'un paramètre de fonctionnement du moteur,
    • δi est un coefficient de pondération,
    • i est un indice qui comptabilise les combinaisons linèaires de fonctions,
    • qu et ru désignent respectivement le numéro du premier motif et le numéro du dernier motif perçus par le capteur de position au cours de la combustion du cylindre u, ou du dernier motif virtuel élaboré à partir du signal du capteur, définissant la fenêtre angulaire d'analyse du couple du moteur associé à la combustion du cylindre u.
  • En appliquant des valeurs spécifiques à certains coefficients de la relation de Cg ci-dessus, d'autres grandeurs représentatives de la cinématique du vilebrequin peuvent être définies comme des composantes harmoniques représentatives de la vitesse ou de la durée de défilement des dents de la couronne. La durée de dent est la durée mesurée entre deux dents de la cible.
  • Par exemple, en utilisant une représentation du couple gaz moyen estimé, pour un moteur à quatre temps et trois cylindres C1, C2 et C3, le temps de combustion du cylindre C1 est compris entre 0° et 480°, l'estimation du couple se fera en observant la vitesse de rotation entre 0 et 240° ou une fenêtre angulaire englobant généralement les 0-180° de la phase de combustion du cylindre C1.
  • Sur ce même principe, le temps de combustion associé au cylindre C3 est compris entre 240° et 420°, l'observation se fera sur la plage angulaire comprise entre 240° et 480°.
  • Pour le cylindre C2, le temps de combustion est compris entre 480° et 660°, la plage d'observation du régime moteur sera comprise autour de 480 et 720°.
  • Le principe du procédé d'élaboration du signal de synchronisation est alors le suivant.
  • Le repérage de l'instant prédéterminé dans le déroulement du cycle moteur servant au phasage de l'injection de chacun des cylindres, qui dans l'exemple illustré est le passage au Point Mort Haut Admission, ou tout autre instant pouvant servir de repère, est opéré à partir d'un signal de synchronisation NOCYL synchronisé avec le signal PMH fournissant le repérage du passage au Point Mort Haut de chaque cylindre dans un circuit 224,
  • Plusieurs type de signal de synchronisation NOCYL peuvent être utdisés qui seul ou en association avec un signal issu d'un compteur du nombre de Point Mort Haut cylindres défilant devant le capteur de position permettent de déterminer la phase du cycle de combustion pour chaque cylindre.
  • Dans cet exemple, le signal NOCYL représenté à la figure 3, ne nécessite pas de comparaison avec d'autres signaux et il fournit l'ensemble des répérages des instants prédéterminés dans le déroulement du cycle moteur servant au phasage de l'injection ou de l'allumage de chacun des cylindres pour l'ensemble des cylindres du moteur.
  • En effet, le signal NOCYL fournit le passage au Point Mort Haut Admission et le passage au Point Mort Haut Détente de tous tes cylindres au moment du changement de valeur. Un seul signal suffit alors pour synchroniser l'ensemble des actuateurs du contrôle moteur.
  • Le signal PMH indique chaque passage au Point Mort Haut des cylindres du moteur par la génération d'un front montrant ou descendant. Le signal NOCYL est arbitrairement initialisé à 0 à la première détection du passage au Point Mort Haut du cylindre de référence (C1 dans cet exemple) qui est donc considéré arbitrairement comme une Point Mort Haut Admission, puis il est incrémenté. Le signal NOCYL est construit par incrémentation d'un compteur modulo 6 à chaque passage du Point Mort Haut du signal PMH.
  • Ainsi quand le Signal NOCYL passe à la valeur 0 ou 3 cela signifie que le PMH du cylindre C1 vient d'être détecté respectivement en phase d'admission ou de détente.
  • Quand le signal NOCYL passe à la valseur 1 ou 4, cela signifie que le PMH du cylindre C2 vient d'être détecté respectivement en phase d'admission ou de détente..
  • Quand le signal NOCYL passe à la valeur 2 ou 5, cela signifie que le PMH du cylindre C3 vient d'être détecté respectivement en phase d'admission ou de détente.
  • Quel que soit le mode de réalisation du signal NOCYL, ce dernier fournit une référence unique pour tous les cycles moteurs qui permet à un système de phasage 222 de synchroniser tout processus de contrôle moteur (allumage, injection, commande d'actuateurs...).
  • Compte tenu du choix arbitraire effectué lors de l'initialisation du signal NOCYL, deux cas se présentent : soit le signal NOCYL est bien phasé, le Point Mort Haut de référence ayant servi à l'initialisation du signal correspondant effectivement à un Point Mort Haut Admission pour le cylindre de référence C1, soit le signal NOCYL est mal phasé, le Point Mort Haut de référence correspondant alors à un Point Mort Haut Détente pour le cylindre de référence C1.
  • Dans un premier mode de réalisation de l'invention, lorsque le moteur est en phase de démarrage par exemple, l'estimation du couple Cg par l'estimateur de couple décrit ci-dessus permet de connaître si la synchronisation est la bonne. En effet, si l'injection et l'allumage sont mal phases, le moteur ne peut pas produire de couple car la combustion s'effectue pendant l'admission. Une unité dé traitement 223 compare la valeur estimée Cg avec une valeur de référence ou de consigne Ce élaborée classiquement par le contrôle moteur au cours de la phase de démarrage pour estimer si le phasage est correcte. La condition à vérifier est alors : Cg Cc - ξ
    Figure imgb0004
  • ξ est une valeur de couple positive qui peut être constante pu cartographiée en fonction des paramètres de contrôle moteur afin d'assurer la robustesse du critère E1 en limitant la prise en compte des bruits des signaux.
  • Si cette condition n'est pas satisfaite, le phasage n'est pas correct, la stratégie considère alors que le Point Mort Haut détecté initialement était le Point Mort Haut Détente, le signal NOCYL est alors réinitialisé dans le circuit 224 par un signal Init du circuit de traitement du signal Cg 223. Le phasage étant maintenant correcte, la condition E1 doit alors être vérifiée. Si ce n'est pas le cas c'est qu'il y a une défaillance dans le système d'injection ou d'allumage ou au niveau moteur.
  • Cependant, ce procédé n'est pas forcément compatible avec une stratégie dite à « étincelle perdue » généralement utilisée lors du démarrage du moteur qui consiste à allumer les cylindres à chaque tour moteur (Point Mort Haut Admission et Détente) pendant la phase de démarrage d'un moteur essence, contrairement à l'allumage séquentiel une fois par cycle thermodynamique, pour être sur que la combustion se fera et éviter ainsi le risque d'injecter du carburant qui ne sera pas brûlé et assurer en même temps un démarrage rapide. Ainsi, tant que la reconnaissance du cycle thermodynamique n'est pas effective, l'allumage du moteur est commandé en mode « étincelle perdue » avant de rétablir un allumage séquentiel
  • Un second mode de réalisation de l'invention permet quant à lui de fonctionner dans le cas d'un démarrage avec étincelle perdue.
  • Dans ce mode de réalisation, tant que la synchronisation n'est pas établie, l'allumage du moteur est commandé en mode « étincelle perdue » décrit précédemment pour assurer le démarrage et le fonctionnement du moteur y compris quand le phasage du moteur n'est pas identifié.
  • L'estimation du couple se fait en observant l'acyclisme de la vitesse ou des durées de rotation instantanées du vilebrequin du moteur sur une plage angulaire directement liée au phasage supposé du moteur qui couvre théoriquement les phases de combustion des trois cylindres.
  • Dans cet exemple le temps de combustion du cylindre C1 est compris entre 0° et 180°, l'estimation du couple se fera en observant la vitesse de rotation entre. 0 et 240° ou une fenêtre angulaire englobant généralement les 0-180° de la phase de combustion du cylindre C1.
  • Sur ce même principe, le temps de combustion associé au cylindre C3 est compris entre 240° et 420°, l'observation de l'acyclisme se fera sur la plage angulaire comprise entre 240° et 480°.
  • Pour le cylindre C2, le temps de combustion est compris entre 480° et 660°, la plage d'observation du régime moteur sera comprise autour de 480 et 720°.
  • Si le phasage des séquences de combustion n'est pas identifié, l'observation du couple estimé Cg de la combustion du cylindre C1 se fera un tour plus tard soit entre 360° et 600° au lieu de la plage 0-240°.
  • Dès lors, ce n'est plus la combustion du cylindre C1 qui est observée mais la fin de la combustion du cylindre C3 et le début de la combustion du cylindre C2, et le couple estimé Cg dans cet exemple pour ces moments de combustions du cylindre C2 et C3 est négatif.
  • Ainsi, lorsque la synchronisation, n'est pas correcte, la valeur du couple estimé Cg est ici négative au lieu d'être positive. De ce fait, si Cg ≥ 0 (E2) la synchronisation est bonne, au contraire si Cg ≤ 0 (E3) la synchronisation est mauvaise et le signal NOCYL est alors réinitialisé comme dans le premier mode de réalisation.
  • Des variantes du second mode de réalisation peuvent aussi être envisagées.
  • Une première variante du second mode de réalisation consiste à estimer le couple gaz Cg tous les tours moteurs. Le couple du cylindre C1 ainsi estimé au premier tour Cg1_1 est enregistré et comparé avec une nouvelle observation du couple Cg1_2 du cylindre C1 au tour suivant.
  • La comparaison des couples Cg1_1 et C1_2 permet de déterminer la bonne synchronisation selon la propriété suivante :
    • Cg1_1 > Cg1_2 (E4) si le tour 1 correspond au cylindre C1 en détente et le tour 2 à l'admission.
    • Cg1_1 < Cg1_2 (E5) si le tour 2 correspond au cylindre C1 en détente et le tour 1 à l'admission.
  • Dans chacun de ces deux cas, la synchronisation peut être ainsi effectuée suivant la résultat de la comparaison.
  • Une seconde variante consiste à comparer la valeur du couple estimé Cg pour un cylindre donné par rapport à une valeur de couple de consigne Cc selon la relation suivante :
    • Cg > Cc - Delta(Régime, Cc) (E6) si la synchronisation est correcte
    • Cg < Cc - Delta(Régime, Cc) (E7) si la synchronisation n'est pas correcte
  • En effet, si la synchronisation n'est pas correcte, le signal NOCYL ne correspondant pas au cycle thermodynamique de chaque cylindre, la valeur du couple estimé Cg est alors significativement inférieure à la valeur de couple de Consigne Cc et inversement.
  • L'offset Delta est une valeur de couple qui peut être une constante ou issue d'une cartographie dépendant du Régime et/ou du Couple du moteur, et qui permet de figer un seuil nécessaire à la comparaison afin d'exclure tout risque de fausse synchronisation due à des bruits dans les signaux,
  • Les procédés de base et les variantes du premier et second mode de réalisation peuvent être fiabilités en limitant les erreurs dues aux perturbations ou aux bruits des signaux par exemple en sommant les estimations de couple Cg.
  • La relation (E1) du premier mode de réalisation devient alors : 1 NbreCycles Cg 1 NbreCycles Cc - ξ
    Figure imgb0005
  • Les relations (E2) et (E3) du procédé de base du second mode de réalisation deviennent : 1 NbreCycles Cg 0
    Figure imgb0006
    si la synchronisation est correcte 1 NbreCycles Cg 0
    Figure imgb0007
    si la synchronisation est incorrecte
  • Les relations (E4) et (E5) de la première variante du second mode de réalisation de l'invention deviennent : 1 NbreCycles Cg 1 _ 1 1 NbreCycles Cg 1 _ 2
    Figure imgb0008
    1 NbreCycles Cg 1 _ 1 1 NbreCycles Cg 1 _ 2
    Figure imgb0009
  • Les relations (E6) et (E7) de la seconde variante du second mode de réalisation de l'invention deviennent : 1 NbreCycles Cg 1 NbreCycles Cc - Delta N Cc
    Figure imgb0010
    1 NbreCycles Cg 1 NbreCycles Cc - Delta N Cc
    Figure imgb0011
  • Pour chacun des deux modes de réalisation la limitation d'erreurs peut aussi être effectuée par filtrage par exemple réalisé selon un filtrage du premier ou du deuxième ordre ou tout autre filtre permettant de filtrer le bruit des mesures et des estimations et rendant ainsi le résultat des comparaisons plus robuste. A titre d'exemple nous donnerons un filtre du premier Ordre F discret définit par : F n X B = α X n + 1 _ α F n - 1
    Figure imgb0012
    avec 0 < α < 1
  • La relation (E1) du premier mode de réalisation devient alors : F Cg F Cc - ξ
    Figure imgb0013
  • Les relations (E2) et (E3) du procédé de base du second mode de réalisation deviennent : F Cg 0
    Figure imgb0014
    F Cg 0
    Figure imgb0015
  • Les relations (E4) et (E5) dé la première variante du second mode de réalisation dé l'invention deviennent : F Cg 1 _ 1 F Cg 1 _ 2
    Figure imgb0016
    F Cg 1 _ 1 F Cg 1 _ 2
    Figure imgb0017
  • Les relations (E6) et (E7) de la seconde variante du second mode de réalisation de l'invention deviennent : F Cg F Cc - Delta N Cc
    Figure imgb0018
    F Cg F Cc - Delta N Cc
    Figure imgb0019
  • Comme décrit précédemment une représentation d'une grandeur représentative de la cinématique du vilebrequin autre que le souple peut être utilisée. Ainsi un troisième mode de réalisation de l'invention utilise une analyse harmonique représentative soit de la durée de dent soit de la vitesse de rotation instantanée du vilebrequin.
  • Ainsi ce mode de réalisation consiste à étudier la composante harmonique d'ordre n de la vitesse de rotation ou préférentiellement de la durée de dent établie à partir du signal Dn. La composante harmonique de Bn, sera ici calculée en utilisant la fonction harmonique cosinus, mais le procédé peut-être adapté pour n'importe quelle autre fonction harmonique par exemple à l'aide d'une fonction trapèze ou autre fonction plus complexe. Cette composante Bn est une représentation simplifiée établie à partir de la relation du couple estimé (Cg) plus haut, en prenant des coefficients adéquats.
  • Pour cet exemple la composante harmonique de la durée de dent peut donc s'établir par la relation suivante : B n = i = 0 n - 1 d i cos 2 i π n
    Figure imgb0020
  • Le calcul de la différence B n comb - B n ech
    Figure imgb0021
    entre les amplitudes harmoniques calculées pour les deux phasages possibles du cylindre étudié, calculés sur le Point Mort Haut supposé combustion, et sur le Point Mort Haut supposé échappement, permet d'établir trois cas.
  • Si B n comb - B n ech
    Figure imgb0022
    est supérieur à une valeur maximale, alors le moteur est bien phasé ;
  • Si B n comb - B n ech
    Figure imgb0023
    est inférieur à une valeur minimale, alors le moteur est mal phasé ;
  • Si B n comb - B n ech
    Figure imgb0024
    est compris entre ces deux seuils. Il y a indétermination, et le calcul doit être à nouveau effectué.
  • Dans chacun de ces cas, la synchronisation peut être ainsi effectuée suivant le résultat de la comparaison comme dans les modes de réalisations précédents
  • Ce mode de réalisation, est robuste aux défauts de cible, puisqu'il compare deux grandeurs potentiellement biaisés de la même façon par le défaut de cible, les calculs de Bn sur les deux PMH du cylindre ayant pour origine des durées mesurées sur les même portions angulaires de la cible de la couronne. En effet la composante harmonique établie au premier tour se décomposera en une somme de la composante harmonique représentative du cycle thermodynamique lors du premier tour et une composante harmonique représentative des défauts de cible. La composante harmonique établie au second tour se décomposera en une somme de la composante harmonique représentative du cycle thermodynamique lors du second tour et une composante harmonique représentative des défauts de cible qui est la même qu'au premier tour. Par conséquent, une comparaison de la composante harmonique établie au premier tour et celle établie au second tour permettra de supprimer la composante représentative des défauts de cible.
  • Quel que soit le mode de détection, en cas de mauvaise synchronisation, le signal NOCYL est réinitialisé en changeant l'hypothèse de synchronisation (décalage d'un tour de la synchronisation). Cette réinitialisation peut se faire sur le PMH du cylindre de référence ou sur n'importe quel PMH de n'importe quel cylindre. La synchronisation doit alors être confirmée de nouveau par un procédé selon un des modes de réalisation précédemment décrits avant d'établir le fonctionnement normal du moteur avec allumage séquentiel.
  • L'invention permet avantageusement d'effectuer la synchronisation du cycle thermodynamique de chaque cylindre sans modifier de paramètres de fonctionnement du moteur et sans altérer le fonctionnement du moteur.

Claims (4)

  1. Procédé pour produire un signal de synchronisation (NOCYL) d'un moteur à combustion interne à quatre temps à nombre impair de cylindres (C1, C2, C3) par un système électronique de contrôle (7), le signal de synchronisation (NOCYL) permettant le repérage d'un instant prédéterminé dans le cycle thermodynamique de chacun des cylindres du moteur étant déterminé à partir d'un signal PMH repérant une position déterminée de chaque cylindre et d'un signal (Cg, Bn) représentatif d'une grandeur représentative de la cinématique du vilebrequin engendrée par chacune des combustions, tous deux générés à partir des informations d'un capteur de position (22) du vilebrequin du moteur, caractérisé en ce qu'il comprend les étapes suivantes :
    - fonctionnement du moteur durant une période donnée avec un allumage des cylindres à chaque tour des cylindres, de manière à produire une combustion systématique du carburant injecté,
    - calcul du signal représentatif (Cg, Bn),
    - comparaison du signal représentatif (Cg, Bn) d'un cylindre lors d'un premier tour du cycle (Cg1_1, B n Comb
    Figure imgb0025
    ) avec la signal représentatif du cylindre lors d'un second tour du cycle (Cg1_2, B n ech
    Figure imgb0026
    ), de manière à connaître la phase du premier tour,
    - réinitialisation du signal de synchronisation (NOCYL) si l'analyse de la comparaison indique que le phasage du signal de synchronisation était erroné.
  2. Procédé pour produire un signal de synchronisation (NOCYL) selon la revendication 1, caractérisé en ce que le signal représentatif (Cg) est une représentation du couple gaz.
  3. Procédé pour produire un signal de synchronisation (NOCYL) selon la revendication 2, caractérisé en ce que l'estimation du couple gaz produit par au moins une combustion dans le cylindre "u" du moteur comportant p cylindres est donné par une relation du type : C gaz , 0 u = i δ i k = q u r u α k , i β k , i + α 0 , i
    Figure imgb0027

    dans laquelle :
    [Cgaz,0]u est le couple gaz moyen produit par au moins une combustion dans un cylindre u au cours d'un cycle de combustion,
    β k,i est une fonction de Δtk et/ou de ωk respectivement durée et vitesse de passage du motif Dk en face du capteur,
    αk,i est un coefficient de pondération de la durée associée au motif Dk, dépendant au moins d'un paramètre de fonctionnement du monteur,
    α 0,i est une variable dépendant au moins d'un paramètre de fonctionnement du moteur,
    δl est un coefficient de pondération,
    i est un indice qui comptabilise les combinaisons linéaires: de fonctions,
    qu et ru désignent respectivement le numéro du premier motif et le numéro du dernier motif perçus par le capteur de position au cours de la combustion du cylindre u, ou du dernier motif virtuel élaboré à partir du signal du capteur, définissant la fenêtre angulaire d'analyse du couple du moteur associé à la combustion du cylindre u.
  4. Procédé pour produire un signal de synchronisation (NOCYL) selon la revendications 1, caractérisé en ce que le signal représentatif (Bn) est une représentation harmonique de la durée de dent.
EP08866387.7A 2007-12-20 2008-12-19 Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne Not-in-force EP2232035B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0760081A FR2925593B1 (fr) 2007-12-20 2007-12-20 Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne
PCT/EP2008/068005 WO2009083492A1 (fr) 2007-12-20 2008-12-19 Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP2232035A1 EP2232035A1 (fr) 2010-09-29
EP2232035B1 true EP2232035B1 (fr) 2015-11-25

Family

ID=39673275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08866387.7A Not-in-force EP2232035B1 (fr) 2007-12-20 2008-12-19 Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne

Country Status (6)

Country Link
EP (1) EP2232035B1 (fr)
JP (1) JP5588877B2 (fr)
CN (1) CN101952579B (fr)
FR (1) FR2925593B1 (fr)
RU (1) RU2504680C2 (fr)
WO (1) WO2009083492A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950393B1 (fr) * 2009-09-24 2012-02-24 Peugeot Citroen Automobiles Sa Procede de determination du cycle d'un moteur a cylindres impair
DE102011083471A1 (de) * 2011-09-27 2013-03-28 Robert Bosch Gmbh Verfahren zum Synchronisieren eines Verbrennungsmotors
FR2981121B1 (fr) * 2011-10-05 2013-12-27 Continental Automotive France Procede de synchronisation de moteur
US20170082055A1 (en) * 2015-09-17 2017-03-23 GM Global Technology Operations LLC System and Method for Estimating an Engine Operating Parameter Using a Physics-Based Model and Adjusting the Estimated Engine Operating Parameter Using an Experimental Model
KR102085896B1 (ko) * 2018-12-07 2020-03-06 현대오트론 주식회사 파워트레인 엔진 정밀 제어방법 및 이에 의해 운용되는 자동차
CN111486002A (zh) * 2019-01-29 2020-08-04 岁立电控科技(盐城)有限公司 一种四冲程内燃机活塞冲程位置标定方法
CN115468750A (zh) * 2021-05-24 2022-12-13 一汽-大众汽车有限公司 翻转气缸的监控方法、监控系统及存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO940239A1 (it) * 1994-05-23 1995-11-23 Weber Srl Sistema elettronico per l'identificazione delle fasi di un motore endotermico.
IT1268605B1 (it) * 1994-09-30 1997-03-06 Marelli Autronica Dispositivo di sincronizzazione per un motore termico senza sensore di posizione camma.
JPH08121299A (ja) * 1994-10-28 1996-05-14 Daihatsu Motor Co Ltd 独立点火方法
FR2749885B1 (fr) * 1996-06-14 1998-07-31 Renault Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
DE19638010A1 (de) * 1996-09-18 1998-03-19 Bosch Gmbh Robert Verfahren zur Bestimmung der Phasenlage bei einer 4-Takt Brennkraftmaschine
JP3324412B2 (ja) * 1996-10-22 2002-09-17 三菱自動車工業株式会社 気筒識別装置
GB2337123A (en) * 1998-05-09 1999-11-10 Rover Group Calculation of crankshaft angle in a four stroke engine having an odd number of cylinders
DE19844910A1 (de) * 1998-09-30 2000-04-06 Bosch Gmbh Robert Einrichtung zur Phasenerkennung
JP2000352348A (ja) * 1999-06-09 2000-12-19 Suzuki Motor Corp 内燃機関の気筒判別装置
DE10036436C2 (de) * 2000-07-26 2002-06-13 Siemens Ag Verfahren zum Synchronisieren einer Brennkraftmaschine
FR2821887B1 (fr) * 2001-03-07 2003-08-15 Siemens Automotive Sa Procede de detection de la phase du cycle d'un moteur a combustion interne a nombre de cylindres impair
JP4033718B2 (ja) * 2002-06-13 2008-01-16 愛三工業株式会社 内燃機関の行程判別方法および行程判別装置
US7069140B2 (en) * 2004-06-30 2006-06-27 General Electric Company Engine operation without cam sensor
EP1710421A1 (fr) * 2005-04-06 2006-10-11 Scania CV AB (publ) Méthode et dispositif pour moteur à combustion interne
DE102005043129B4 (de) * 2005-09-10 2007-05-31 Daimlerchrysler Ag Verfahren zum Betreiben eines Verbrennungsmotors
DE602005013104D1 (de) * 2005-12-30 2009-04-16 Scania Cv Abp System und Verfahren zur Synchronisierung

Also Published As

Publication number Publication date
WO2009083492A1 (fr) 2009-07-09
RU2504680C2 (ru) 2014-01-20
JP2011506851A (ja) 2011-03-03
JP5588877B2 (ja) 2014-09-10
CN101952579A (zh) 2011-01-19
RU2010130261A (ru) 2012-01-27
EP2232035A1 (fr) 2010-09-29
FR2925593A1 (fr) 2009-06-26
FR2925593B1 (fr) 2014-05-16
CN101952579B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
EP2232035B1 (fr) Procede pour produire un signal de synchronisation du cycle de fonctionnement d&#39;un moteur a combustion interne
EP0826099B1 (fr) Procede de reconnaissance de la phase des cylindres d&#39;un moteur multicylindres a combustion interne a cycle a quatre temps
FR2692623A1 (fr) Procédé de repérage cylindres pour le pilotage d&#39;un système d&#39;injection électronique d&#39;un moteur à combustion interne.
WO2007028584A1 (fr) Procédé de détermination de l&#39;inversion du sens de rotation d&#39;un moteur
WO2016165829A1 (fr) Procede et dispositif de detection de rotation inverse d&#39;un moteur a combustion interne
FR2780448A1 (fr) Dispositif et procede de gestion de moteur
WO2017097396A1 (fr) Procede et dispositif de determination du debit d&#39;air entrant dans le collecteur d&#39;admission d&#39;un moteur à deux temps
WO2007147484A1 (fr) Procede de detection de rate d&#39;allumage et dispositif correspondant
WO2008080861A1 (fr) Procede d&#39;estimation du couple d&#39;un moteur a combustion interne
EP0932751B1 (fr) Procede de synchronisation du systeme electronique de commande de moteur a combustion interne
FR3059717A1 (fr) Procede de synchronisation d&#39;un moteur a combustion interne
EP0755482B1 (fr) Procede de detection des irregularites de combustion d&#39;un moteur a combustion interne
FR2878574A1 (fr) Procede de gestion d&#39;un moteur a combustion interne a plusieurs cylindres
FR2749885A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d&#39;un systeme d&#39;injection electronique d&#39;un moteur a combustion interne
WO2020099471A1 (fr) Procédé de synchronisation d&#39;un moteur à combustion interne
WO1998029718A1 (fr) Procede de calcul du couple d&#39;un moteur thermique a injection commandee electroniquement
EP1217354B1 (fr) Procédé d&#39;évaluation du couple d&#39;un moteur a combustion
EP1936169A2 (fr) Méthode d&#39;estimation des durées des dents d&#39;une cible moteur
FR3143686A1 (fr) Perfectionnement d’un procédé de synchronisation de la position angulaire d’un arbre à cames de moteur à combustion interne
FR2851611A1 (fr) Procede de detection de rates de combustion dans un moteur a combustion interne par combinaison d&#39;indices d&#39;irregularite de combustion
WO2024083788A1 (fr) Procédé de gestion d&#39;une phase de redémarrage d&#39;un moteur à combustion interne en mode dégradé
WO2023072565A1 (fr) Procédé d&#39;estimation de la pression atmosphérique pour un moteur à combustion interne
FR3108676A1 (fr) Procédé et dispositif de contrôle moteur avec signal vilebrequin reconstitué
FR2925592A3 (fr) Dispositif pour produire un signal de synchronisation du cycle de fonctionnement d&#39;un moteur a combustion interne
WO1999019616A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d&#39;un systeme d&#39;injection electronique d&#39;un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING A SYNCHRONIZATION SIGNAL FOR AN INTERNAL COMBUSTION ENGINE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 762752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008041328

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151221

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 762752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160226

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008041328

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151219

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

26N No opposition filed

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161213

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151125

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008041328

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703