EP2225501B1 - Cryogenic refrigeration method and device - Google Patents
Cryogenic refrigeration method and device Download PDFInfo
- Publication number
- EP2225501B1 EP2225501B1 EP08852903.7A EP08852903A EP2225501B1 EP 2225501 B1 EP2225501 B1 EP 2225501B1 EP 08852903 A EP08852903 A EP 08852903A EP 2225501 B1 EP2225501 B1 EP 2225501B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid
- expansion
- working
- compressors
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 11
- 238000005057 refrigeration Methods 0.000 title claims description 10
- 239000012530 fluid Substances 0.000 claims description 68
- 238000007906 compression Methods 0.000 claims description 42
- 230000006835 compression Effects 0.000 claims description 42
- 239000007789 gas Substances 0.000 claims description 34
- 238000001816 cooling Methods 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 15
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 239000007792 gaseous phase Substances 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 claims 4
- 239000002887 superconductor Substances 0.000 claims 1
- 239000003921 oil Substances 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 4
- 241001646071 Prioneris Species 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000021183 entrée Nutrition 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/06—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/10—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0062—Light or noble gases, mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0062—Light or noble gases, mixtures thereof
- F25J1/0065—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0075—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0077—Argon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0082—Methane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0095—Oxides of carbon, e.g. CO2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0097—Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0276—Laboratory or other miniature devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0284—Electrical motor as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0287—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1401—Ericsson or Ericcson cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/22—Compressor driver arrangement, e.g. power supply by motor, gas or steam turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/14—External refrigeration with work-producing gas expansion loop
- F25J2270/16—External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/912—Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator
Definitions
- the present invention relates to a cryogenic refrigeration device and method.
- the invention more particularly relates to a cryogenic refrigeration device for transferring heat from a cold source to a hot source via a working fluid circulating in a closed work circuit, the working circuit comprising in series: a portion of compression, a cooling portion, a detent portion and a warming portion.
- the cold source may be, for example, liquid nitrogen to be cooled and the hot source of water or air.
- Refrigerators known to cool superconducting elements generally use a reverse Brayton cycle. These known refrigerators use a screw-lubricated compressor, a countercurrent plate heat exchanger and an expansion turbine.
- the document US 3494145 describes a refrigeration system using geared couplings requiring oil bearings.
- This type of device uses rotating joints such as mechanical seals between the working gas and the gear housing and oil bearings.
- This architecture increases the risk of leakage of the working gas and the possible pollution of the working gas by the oil.
- This system also relates to a low speed type motor.
- An object of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
- the invention proposes a cryogenic refrigeration device for transferring heat from a cold source to a hot source via a working fluid circulating in a closed working circuit, the working circuit comprising in series: a substantially isothermal compression portion of the fluid, a substantially isobaric cooling portion of the fluid, a substantially isothermal expansion portion of the fluid and a substantially isobaric heating portion of the fluid, the compression portion of the working circuit comprising at least two compressors arranged in series and at least one compressed fluid cooling exchanger disposed at the outlet of each compressor, the expansion portion of the working circuit comprising at least one expansion turbine and at least one expanded fluid heating exchanger, the compressors and the or the expansion turbines being driven by at least one engine said to high fast sse comprising an output shaft whose one end carries and rotates by direct coupling a first compressor and the other end carries and rotates by direct coupling an expansion turbine.
- the embodiments make it possible to obtain a system without oil pollution and without contact. Indeed, the combination of centrifugal compressors, centripetal turbines and bearings according to the invention reduces or eliminates any contact with the fixed parts and the rotating parts. This avoids any risk of leakage.
- the entire system is indeed hermetic and has no rotating joints vis-à-vis the atmosphere (such as mechanical seals or "dry face seal").
- the refrigerator according to the invention is provided for transferring heat from a cold source 15 at a cryogenic temperature to a hot source at room temperature 1 for example.
- the cold source 15 may be, for example, liquid nitrogen to be cooled and the hot source 1 of water or air.
- the refrigerator shown in the figure 1 uses a working circuit 200 of a working gas comprising the components listed below.
- the circuit 200 comprises a plurality of compressors 3, 5, 7 centrifugals arranged in series and operating at ambient temperature.
- the circuit 200 comprises a plurality of heat exchangers 2, 4, 6 operating at ambient temperature respectively disposed at the output of the compressors 3, 5, 7.
- the working gas temperatures at the inlet and at the outlet of each compression stage (c ') that is to say at the inlet and the outlet of each compressor 3, 5, 7), are maintained by the heat exchange at a substantially identical level (see zone A on the figure 3 which represents a working cycle of the gas: temperature in K according to the entropy S in J / kg).
- zone A on the figure 3 which represents a working cycle of the gas: temperature in K according to the entropy S in J / kg.
- the exchangers 2, 4, 6 may be distinct or consist of distinct portions of the same exchanger in heat exchange with the hot source 1.
- the refrigerator comprises several engines (70 cf. figure 2 ) said at high speed.
- high speed motor is usually meant motors whose rotational speed allows direct coupling with a centrifugal compression stage or a centripetal expansion stage.
- High speed motors 70 preferably use magnetic or dynamic gas bearings 171 ( figure 2 ).
- a high speed motor typically rotates at a rotational speed of 10,000 rpm or several tens of thousands of revolutions per minute.
- a low-speed motor runs rather with a speed of a few thousand revolutions per minute.
- the refrigerator Downstream of the compression portion comprising the compressors in series, the refrigerator comprises a heat exchanger 8 preferably of plate type against the current separating the elements at room temperature (in the upper part of the circuit 200 shown in FIG. figure 1 ) cryogenic temperature elements (in the lower part of the circuit 200).
- the fluid is cool (corresponding to zone D of the figure 3 ).
- the cooling of the gas from room temperature to cryogenic temperature is carried out by countercurrent exchange with the same gas working gas at cryogenic temperature which returns from the expansion portion after heat exchange with the cold source 15.
- the circuit Downstream of this cooling portion constituted by the exchanger 8 with plates, the circuit comprises one or more turbines 9, 11, 13 of expansion, preferably centripetal type, arranged in series.
- the turbines 9, 11, 13 operate at cryogenic temperature
- the inlet and outlet temperatures of each expansion stage are maintained substantially identical by one or more cryogenic heat exchangers 10, 12, 14 disposed at the exit of the turbine or turbines.
- the downward portions of the zone C each corresponding to a relaxation stage while the rising portions of this zone correspond to the heating in the exchangers 10, 12, 14.
- This arrangement makes it possible to approach an isothermal expansion.
- the inlet and outlet temperatures of each flash stage are substantially the same.
- the increase of the temperature of the working gas in the exchanger or exchangers (10, 12, 14) may be substantially identical (in absolute value) to the decrease in the temperature of the refrigerator.
- fluid to be cooled (15) (cold source).
- These heat exchangers 10, 12, 14 may be distinct or consist of separate portions of the same exchanger in heat exchange with the cold source 15.
- the working fluid thermally exchanges again with the heat exchanger 8 plates (zone B of the figure 3 ).
- the fluid thermally exchanges in the exchanger 8 against the current relative to its passage after the compression portion. After reheating the fluid returns to the compression portion and can start a cycle again.
- the circuit may further comprise a working gas capacity at room temperature (not shown for the sake of simplification) to limit the pressure in the circuits, during the stopping of the refrigerator for example.
- the refrigerator preferably uses as a working fluid a gas phase fluid circulating in a closed circuit.
- a gas phase fluid circulating in a closed circuit.
- This consists for example of a pure gas or a mixture of pure gas.
- gases best suited to this technology include: helium, neon, nitrogen, oxygen and argon. Carbon monoxide and methane can also be used.
- the refrigerator is designed and controlled so as to obtain a working cycle of the fluid approaching the reverse Ericsson cycle. That is: isothermal compression, isobaric cooling, isothermal expansion and isobaric heating.
- the refrigerator uses for the drive at least compressors 3, 5, 7 (that is to say, for driving the wheels of the compressors) several motors 70 said to high speeds.
- each high-speed motor 70 receives on one end of its output shaft a compressor wheel 31 and, on the other end of its shaft, another compressor wheel or a turbine wheel 9.
- This arrangement provides numerous advantages .
- This configuration allows in the refrigerator a direct coupling between the motor 70 and the compressor wheels 3, 5, 7 or between the motor 70 and the wheels of the turbines 9, 11, 13. This makes it possible to overcome a multiplier or speed reducer (which limits the number of moving parts required).
- This configuration also allows a valuation of the mechanical work of the turbine or turbines 9, 11, 13 and therefore an increase in the overall energy efficiency of the refrigerator.
- the refrigerator has an oil-free operation, which ensures the purity of the working gas and eliminates the need for a de-oiling operation.
- the number of high speed engines is mainly a function of the desired energy efficiency for the refrigerator. The higher this efficiency, the higher the number of high speed motors.
- the ratio between the number of compression stage (compressors) and the number of expansion stages (turbines) is a function of the target cold temperature. For example, for a refrigerator whose cold source is 273 K, the number of compression stage will be substantially equal to the number of stage of relaxation. For a refrigerator with a cold source of 65 K, the number of compression stages is approximately 3 times greater than the number of stages of expansion.
- the figure 4 illustrates another embodiment which can for example be used to cool or maintain superconducting cables at a cryogenic temperature of about 65 K.
- the number of compression stages compressors
- the number of stages of relaxation turbines. This can be done according to several possible configurations. For example three compressors and a turbine or six compressors and two turbines, ...
- the refrigerator comprises six compressors 101, 102, 103, 104, 105, 106 and two turbines 116, 111 and four high speed motors 107, 112, 114, 109.
- the first two compressors 101, 102 i.e. the compressor wheels
- the two following compressors 103, 104 are respectively mounted at the two ends of a second high-speed motor 112.
- the following compressor 105 and the turbine 116 (that is to say the wheel of the turbine) are respectively mounted at both ends of a third high-speed motor 114.
- the last turbine 111 and the sixth compressor 106 are mounted respectively at both ends of a fourth engine 109.
- the gas is gradually compressed by passing successively in the four series compressors 101, 102, 103, 104, 105, 106.
- each compression stage at the outlet of each compressor the working gas is cooled in a respective heat exchanger 108 (by heat exchange with air or water for example) to get closer an isothermal compression.
- the gas is isobarically cooled through a countercurrent plate heat exchanger 103.
- the cooling gas is progressively expanded in the two series centripetal turbines 116, 111.
- the working gas is heated by heat exchange in an exchanger 110 (for example by heat exchange with the cold source), so as to achieve a substantially isothermal expansion.
- the working gas is reheated in the exchanger 113 and can then start a new cycle again by compression.
- the figure 5 represents the cycle (temperature T and entropy S) of the working fluid of the refrigerator of the figure 5 .
- the figure 3 in the compression zone A there are six sawtooths corresponding to the six successive compressions and coolings.
- zone C of relaxation we recognize two sawtooth corresponding to two successive relaxation and warming.
- the invention improves cryogenic refrigerators in terms of energy efficiency, reliability and size.
- the invention makes it possible to reduce the maintenance operations and to eliminate the use of oils.
- one or both ends of the output shafts of the motor (s) can directly drive more than one road (ie several compressors or several turbines).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Emergency Medicine (AREA)
- Clinical Laboratory Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
La présente invention concerne un dispositif et un procédé de réfrigération cryogénique.The present invention relates to a cryogenic refrigeration device and method.
L'invention concerne plus particulièrement un dispositif de réfrigération cryogénique destiné à transférer de la chaleur d'une source froide vers une source chaude via un fluide de travail circulant dans un circuit de travail fermé, le circuit de travail comprenant en série : une portion de compression, une portion de refroidissement, une portion de détente et une portion de réchauffement.The invention more particularly relates to a cryogenic refrigeration device for transferring heat from a cold source to a hot source via a working fluid circulating in a closed work circuit, the working circuit comprising in series: a portion of compression, a cooling portion, a detent portion and a warming portion.
La source froide peut être par exemple de l'azote liquide à refroidir et la source chaude de l'eau ou de l'air.The cold source may be, for example, liquid nitrogen to be cooled and the hot source of water or air.
Des réfrigérateurs connus pour refroidir des éléments supraconducteurs utilisent en général un cycle de Brayton inverse. Ces réfrigérateurs connus utilisent un compresseur lubrifié à vis, un échangeur à contre courant à plaques et une turbine de détente.Refrigerators known to cool superconducting elements generally use a reverse Brayton cycle. These known refrigerators use a screw-lubricated compressor, a countercurrent plate heat exchanger and an expansion turbine.
Ces réfrigérateurs connus présentent de nombreux inconvénients parmi :
- un faible rendement énergétique du cycle et par conséquent du réfrigérateur,
- l'utilisation d'huile pour refroidir et lubrifier le compresseur, ceci impose une opération de déshuilage du gaz de travail après compression,
- l'utilisation de joints tournants entre le moteur électrique et le compresseur,
- le faible rendement isotherme de compression du compresseur,
- la périodicité des opérations de maintenance.
- a low energy efficiency of the cycle and consequently of the refrigerator,
- the use of oil to cool and lubricate the compressor, this requires a de-oiling operation of the working gas after compression,
- the use of rotating joints between the electric motor and the compressor,
- the low compressor isothermal efficiency of the compressor,
- the frequency of maintenance operations.
Le document
Le document
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.An object of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
A cette fin, l'invention propose un dispositif de réfrigération cryogénique destiné à transférer de la chaleur d'une source froide vers une source chaude via un fluide de travail circulant dans un circuit de travail fermé, le circuit de travail comprenant en série : une portion de compression sensiblement isotherme du fluide, une portion de refroidissement sensiblement isobare du fluide, une portion de détente sensiblement isotherme du fluide et une portion de réchauffement sensiblement isobare du fluide, la portion de compression du circuit de travail comprenant au moins deux compresseurs disposés en série et au moins un échangeur de refroidissement du fluide comprimé disposé à la sortie de chaque compresseur, la portion de détente du circuit de travail comprenant au moins une turbine de détente et au moins un échangeur de réchauffement du fluide détendu, les compresseurs et la ou les turbines de détente étant entraînés par au moins un moteur dit à haute vitesse comprenant un arbre de sortie dont l'une des extrémité porte et entraîne en rotation par accouplement direct un premier compresseur et dont l'autre extrémité porte et entraîne en rotation par accouplement direct une turbine de détente.To this end, the invention proposes a cryogenic refrigeration device for transferring heat from a cold source to a hot source via a working fluid circulating in a closed working circuit, the working circuit comprising in series: a substantially isothermal compression portion of the fluid, a substantially isobaric cooling portion of the fluid, a substantially isothermal expansion portion of the fluid and a substantially isobaric heating portion of the fluid, the compression portion of the working circuit comprising at least two compressors arranged in series and at least one compressed fluid cooling exchanger disposed at the outlet of each compressor, the expansion portion of the working circuit comprising at least one expansion turbine and at least one expanded fluid heating exchanger, the compressors and the or the expansion turbines being driven by at least one engine said to high fast sse comprising an output shaft whose one end carries and rotates by direct coupling a first compressor and the other end carries and rotates by direct coupling an expansion turbine.
Les modes de réalisation permettent d'obtenir un système sans pollution d'huile et sans contact. En effet, la combinaison de compresseurs centrifuges, des turbines centripètes et des paliers selon l'invention réduit ou supprime tout contact avec les parties fixes et les parties tournantes. Ceci permet d'éviter tout risque de fuite. L'ensemble du système est en effet hermétique et ne comporte aucun joint tournant vis-à-vis de l'atmosphère (tel que des garnitures mécaniques ou des « dry face seal »).The embodiments make it possible to obtain a system without oil pollution and without contact. Indeed, the combination of centrifugal compressors, centripetal turbines and bearings according to the invention reduces or eliminates any contact with the fixed parts and the rotating parts. This avoids any risk of leakage. The entire system is indeed hermetic and has no rotating joints vis-à-vis the atmosphere (such as mechanical seals or "dry face seal").
Par ailleurs, l'invention comporte en outre les caractéristiques suivantes :
- les compresseurs sont du type à compression centrifuge,
- la ou les turbines de détente sont du type à détente centripète,
- les arbres de sortie des moteurs sont montés sur des paliers de type magnétique ou de type dynamique à gaz, lesdits paliers étant utilisés pour sustenter les compresseurs et les turbines,
- la portion de refroidissement et la portion de réchauffement comprennent un échangeur de chaleur commun dans lequel le fluide de travail transite à contre-courant selon qu'il est refroidit ou réchauffé,
- le circuit de travail comprend un volume formant une capacité tampon de stockage du fluide de travail,
- le fluide de travail est en phase gazeuse et constitué d'un gaz pur ou d'un mélange de gaz purs parmi : l'hélium, le néon, l'azote, l'oxygène, l'argon, le monoxyde de carbone, le méthane, ou tout autre fluide présentant une phase gazeuse à la température de la source froide.
- the compressors are of the centrifugal compression type,
- the expansion turbine or turbines are of the centripetal expansion type,
- the output shafts of the motors are mounted on bearings of magnetic type or dynamic gas type, said bearings being used to support compressors and turbines,
- the cooling portion and the heating portion comprise a common heat exchanger in which the working fluid transits countercurrently as it is cooled or heated,
- the working circuit comprises a volume forming a buffer storage capacity of the working fluid,
- the working fluid is in the gas phase and consists of a pure gas or a mixture of pure gases among: helium, neon, nitrogen, oxygen, argon, carbon monoxide, methane, or any other fluid having a gaseous phase at the temperature of the cold source.
L'invention propose en outre un procédé de réfrigération cryogénique destiné à transférer de la chaleur d'une source froide vers une source chaude via un fluide de travail circulant dans un circuit de travail fermé, le circuit de travail comprenant en série : une portion de compression comprenant au moins deux compresseurs disposés en série, une portion de refroidissement du fluide, une portion de détente comprenant au moins une turbine de détente, et une portion de réchauffement, le procédé comprenant un cycle de travail comportant une première étape de compression sensiblement isotherme du fluide dans la portion de compression par refroidissement du fluide comprimé en sortie des compresseurs, une seconde étape de refroidissement sensiblement isobare du fluide dans la portion de refroidissement, une troisième étape de détente sensiblement isotherme du fluide dans la portion de détente par réchauffement du fluide détendu en sortie de turbine, et une quatrième étape de réchauffement sensiblement isobare du fluide ayant échangé thermiquement avec la source froide, le cycle de travail du fluide (température T, entropie S) étant du type Ericsson inverser selon la revendication 6. Par ailleurs :
- lors de la première étape de compression sensiblement isotherme, le fluide comprimé est refroidit en sortie de chaque compresseur pour maintenir les températures du fluide en entrée et en sortie de chaque compresseur sensiblement égales et de préférence dans une fourchette d'environ 10 K,
- lors de la troisième étape de détente sensiblement isotherme le fluide détendu est refroidit en sortie de chaque turbine pour maintenir les températures du fluide en entrée et en sortie de chaque turbine sensiblement égales et de préférence dans une fourchette d'environ 5 K,
- les compresseurs et la ou les turbines de détente sont entraînée par au moins un moteur dit à haute vitesse comprenant un arbre de sortie dont l'une des extrémité porte et entraîne en rotation par accouplement direct un premier compresseur et dont l'autre extrémité porte et entraîne en rotation par accouplement direct une turbine de détente et en ce que le procédé comprend une étape de transfert d'une partie du travail mécanique de la ou des turbines vers le ou les compresseurs via le ou les arbres de sortie. En outre, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :
- à l'issue de la seconde étape de refroidissement le fluide de travail est amené à une température basse de l'ordre de 60 K et en ce que le circuit de travail comprend un nombre de compresseurs trois fois plus important environ que le nombre de turbines de détente,
- le fluide de travail est utilisé pour refroidir ou maintenir en froid des éléments supraconducteurs à une température de l'ordre de 65 K,
- la chute de température du fluide constituant la source froide est sensiblement identique à l'augmentation de température du gaz dans les échangeurs.
- during the first substantially isothermal compression step, the compressed fluid is cooled at the outlet of each compressor to maintain the inlet and outlet fluid temperatures of each compressor substantially equal and preferably in a range of about 10 K,
- during the third substantially isothermal expansion step the expanded fluid is cooled at the outlet of each turbine to maintain the inlet and outlet fluid temperatures of each turbine substantially equal and preferably in a range of about 5 K,
- the compressors and the expansion turbine or turbines are driven by at least one so-called high speed motor comprising an output shaft whose one end carries and rotates by direct coupling a first compressor and whose other end carries and rotates by direct coupling an expansion turbine and in that the method comprises a step of transferring part of the mechanical work of the turbine or turbines to the compressor or compressors via the output shaft or trees. In addition, embodiments of the invention may include one or more of the following features:
- at the end of the second cooling step the working fluid is brought to a low temperature of the order of 60 K and in that the work circuit comprises a number of compressors three times larger than the number of turbines of relaxation,
- the working fluid is used to cool or keep cold superconducting elements at a temperature of the order of 65 K,
- the temperature drop of the fluid constituting the cold source is substantially identical to the temperature increase of the gas in the exchangers.
L'invention peut présenter l'un ou plusieurs des avantages suivants :
- le cycle du fluide de travail (type Ericsson inverse) permet d'obtenir un rendement plus important que les systèmes connus sans pour autant créer ou augmenter d'autres inconvénients,
- le travail de détente dans les turbines peut être avantageusement valorisé,
- il est possible de s'affranchir de l'utilisation d'huile pour la lubrification ou le refroidissement, ceci permet de supprimer l'installation de déshuilage en aval du compresseur, ainsi que les opérations de traitement et de recyclage des huiles usagées,
- le système ne nécessite qu'un faible nombre de pièces mobiles ce qui accroît sa simplicité et sa fiabilité. Il est possible grâce à l'invention de s'affranchir pour le compresseur d'une transmission de puissance mécanique du type multiplicateur de vitesse, joints de cardan, ...
- les opérations de maintenance sont réduites voir pratiquement inexistantes,
- le système permet d'éviter des joints tournant et d'utiliser un système totalement hermétique vis à vis de l'extérieur. Ceci empêche toute perte ou pollution du gaz de cycle de travail,
- l'encombrement du réfrigérateur peut être réduit par rapport aux systèmes connus.
- the cycle of the working fluid (inverse Ericsson type) makes it possible to obtain a higher yield than the known systems without creating or increasing other disadvantages,
- the work of relaxation in the turbines can be advantageously valued,
- it is possible to get rid of the use of oil for lubrication or cooling, this makes it possible to eliminate the de-oiling plant downstream of the compressor, as well as the operations of treatment and recycling of waste oils,
- the system requires only a small number of moving parts which increases its simplicity and reliability. It is possible thanks to the invention to get rid of the compressor for a mechanical power transmission of the speed multiplier type, cardan joints, ...
- maintenance operations are reduced or virtually nonexistent,
- the system avoids rotating joints and uses a totally hermetic system with respect to the outside. This prevents any loss or pollution of the working cycle gas,
- the size of the refrigerator can be reduced compared to known systems.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
- la
figure 1 représente une vue schématique illustrant la structure et le fonctionnement d'un premier exemple de réalisation de dispositif de réfrigération selon l'invention, - la
figure 2 représente de façon schématique un détail de lafigure 1 illustrant un agencement d'un moteur d'entraînement d'un ensemble compresseur-compresseur ou compresseur-turbine, - la
figure 3 représente de façon schématique un exemple de cycle de travail du fluide de travail du réfrigérateur de lafigure 1 , - la
figure 4 représente une vue schématique illustrant la structure et le fonctionnement d'un second exemple de réalisation d'un réfrigérateur selon l'invention, - la
figure 5 représente de façon schématique un second exemple de cycle de travail du fluide de travail du réfrigérateur selon lafigure 3 .
- the
figure 1 represents a schematic view illustrating the structure and operation of a first embodiment of a refrigeration device according to the invention, - the
figure 2 schematically represents a detail of thefigure 1 illustrating an arrangement of a drive motor of a compressor-compressor or compressor-turbine assembly, - the
figure 3 schematically represents an example of working cycle of the working fluid of the refrigerator of thefigure 1 , - the
figure 4 represents a schematic view illustrating the structure and operation of a second embodiment of a refrigerator according to the invention, - the
figure 5 schematically represents a second example of working cycle of the working fluid of the refrigerator according to thefigure 3 .
En se référant à l'exemple de réalisation de la
La source froide 15 peut être, par exemple, de l'azote liquide à refroidir et la source chaude 1 de l'eau ou de l'air. Pour réaliser ce transfert de chaleur, le réfrigérateur illustré à la
Le circuit 200 comprend plusieurs compresseurs 3, 5, 7 centrifuges disposés en série et fonctionnant à température ambiante.The
Le circuit 200 comprend plusieurs échangeurs de chaleur 2, 4, 6 fonctionnant à température ambiante disposés respectivement à la sortie des compresseurs 3, 5, 7. Les températures du gaz de travail en entrée et en sortie, de chaque étage de compression (c'est-à-dire à l'entrée et à la sortie de chaque compresseur 3, 5, 7), sont maintenues par les échanges thermiques à un niveau sensiblement identique (cf. zone A sur la
Cette disposition permet de se rapprocher d'une compression isotherme. Les températures d'entrée et de sortie, de chaque étage de compression, sont sensiblement les mêmes.This arrangement makes it possible to approach an isothermal compression. The inlet and outlet temperatures of each compression stage are substantially the same.
Les échangeurs 2, 4, 6 peuvent être distincts ou être constitués de portions distinctes d'un même échangeur en échange thermique avec la source chaude 1.The
Le réfrigérateur comprend plusieurs moteurs (70 cf.
En aval de la portion de compression comprenant les compresseurs en série, le réfrigérateur comprend un échangeur 8 de chaleur de préférence de type à plaques à contre courant séparant les éléments à température ambiante (en partie haute du circuit 200 représenté à la
En aval de cette portion de refroidissement constituée par l'échangeur 8 à plaques, le circuit comporte une ou plusieurs turbines 9, 11, 13 de détente, de préférence de type centripètes, disposées en série. Les turbines 9, 11, 13 fonctionnent à température cryogéniques, les températures d'entrée et de sortie de chaque étage de détente (entrée et sortie de turbine) sont maintenues sensiblement identiques par un ou plusieurs échangeurs de chaleur 10, 12, 14 cryogéniques disposés à la sortie de la ou des turbines. Ceci correspond à la zone C de la
Ces échangeurs 10, 12, 14 de réchauffement peuvent être distincts ou être constitués de portions distinctes d'un même échangeur en échange thermique avec la source froide 15.These
En aval de la portion de détente et de l'échange thermique avec la source froide 15, le fluide de travail échange thermiquement à nouveau avec l'échangeur 8 de chaleur à plaques (zone B de la
Le circuit peut comprendre en outre une capacité de gaz de travail à température ambiante (non représentée par soucis de simplification) pour limiter la pression dans les circuits, lors de l'arrêt du réfrigérateur par exemple.The circuit may further comprise a working gas capacity at room temperature (not shown for the sake of simplification) to limit the pressure in the circuits, during the stopping of the refrigerator for example.
Le réfrigérateur utilise de préférence comme fluide de travail un fluide en phase gazeuse circulant en circuit fermé. Celui-ci est constitué par exemple d'un gaz pur ou d'un mélange de gaz pur. Les gaz les mieux adaptés à cette technologie sont notamment : l'hélium, le néon, l'azote, l'oxygène et l'argon. Le monoxyde de carbone et le méthane peuvent également être utilisés.The refrigerator preferably uses as a working fluid a gas phase fluid circulating in a closed circuit. This consists for example of a pure gas or a mixture of pure gas. The gases best suited to this technology include: helium, neon, nitrogen, oxygen and argon. Carbon monoxide and methane can also be used.
Le réfrigérateur est conçu et piloté ainsi de façon à obtenir un cycle de travail du fluide se rapprochant du cycle d'Ericsson inverse. C'est à dire: une compression isotherme, un refroidissement isobare, une détente isotherme et un réchauffement isobare.The refrigerator is designed and controlled so as to obtain a working cycle of the fluid approaching the reverse Ericsson cycle. That is: isothermal compression, isobaric cooling, isothermal expansion and isobaric heating.
Selon une particularité avantageuse le réfrigérateur utilise pour l'entraînement au moins des compresseurs 3, 5, 7 (c'est-à-dire pour l'entraînement des roues des compresseurs) plusieurs moteurs 70 dits à hautes vitesses.According to an advantageous feature the refrigerator uses for the drive at least compressors 3, 5, 7 (that is to say, for driving the wheels of the compressors)
Comme schématisé à la
Le nombre de moteur à haute vitesse est principalement fonction du rendement énergétique souhaité pour le réfrigérateur. Plus ce rendement est important, plus le nombre de moteur haute vitesse doit être élevé.The number of high speed engines is mainly a function of the desired energy efficiency for the refrigerator. The higher this efficiency, the higher the number of high speed motors.
Le rapport entre le nombre d'étage de compression (compresseurs) et le nombre d'étages de détente (turbines) est fonction de la température froide cible. Par exemple, pour un réfrigérateur dont la source froide est à 273 K, le nombre d'étage de compression sera sensiblement égal au nombre d'étage de détente. Pour un réfrigérateur dont la source froide est à 65 K, le nombre d'étage de compression est environ 3 fois plus important que le nombre d'étage de détente.The ratio between the number of compression stage (compressors) and the number of expansion stages (turbines) is a function of the target cold temperature. For example, for a refrigerator whose cold source is 273 K, the number of compression stage will be substantially equal to the number of stage of relaxation. For a refrigerator with a cold source of 65 K, the number of compression stages is approximately 3 times greater than the number of stages of expansion.
La
Le choix du nombre d'organe sera fonction du rendement énergétique souhaité. Ainsi, une solution utilisant trois compresseurs et une turbine aura un rendement énergétique moins important qu'une solution utilisant six compresseurs et deux turbines.The choice of the number of organs will depend on the desired energy efficiency. Thus, a solution using three compressors and a turbine will have a lower energy efficiency than a solution using six compressors and two turbines.
Dans l'exemple de la
Le cheminement du gaz de travail lors d'un cycle dans le circuit en boucle fermée peut être décrit comme suit.The flow of the working gas during a cycle in the closed loop circuit can be described as follows.
Lors d'une première étape le gaz est comprimé progressivement en passant successivement dans les quatre compresseurs en série 101, 102, 103, 104, 105, 106.In a first step the gas is gradually compressed by passing successively in the four
A l'issue de chaque étage de compression (à la sortie de chaque compresseur) le gaz de travail est refroidi dans un échangeur de chaleur respectif 108 (par échange thermique avec de l'air ou de l'eau par exemple) pour se rapprocher d'une compression isotherme. Après cette portion de compression le gaz est refroidi de façon isobare au travers d'un échangeur à plaques à contre-courant 103. Après cette portion de refroidissement, le gaz de refroidissement est détendu progressivement dans les deux turbines centripètes en série 116, 111. Après chaque étage de détente le gaz de travail est réchauffé par échange thermique dans un échangeur 110 (par exemple par échange thermique avec la source froide), de façon à réaliser une détente sensiblement isotherme. A l'issue de cette détente isotherme le gaz de travail est réchauffé dans l'échangeur 113 et peut ensuite recommencer un nouveau cycle par une compression.At the end of each compression stage (at the outlet of each compressor) the working gas is cooled in a respective heat exchanger 108 (by heat exchange with air or water for example) to get closer an isothermal compression. After this portion of compression the The gas is isobarically cooled through a countercurrent
La
L'invention améliore les réfrigérateurs cryogéniques en terme de rendement énergétique, de fiabilité et d'encombrement. L'invention permet de diminuer les opérations de maintenance et de supprimer l'utilisation d'huiles.The invention improves cryogenic refrigerators in terms of energy efficiency, reliability and size. The invention makes it possible to reduce the maintenance operations and to eliminate the use of oils.
Bien entendu l'une ou les deux extrémités des arbres de sortie du ou des moteurs peuvent entraîner directement plus d'une route (c'est-à-dire plusieurs compresseurs ou plusieurs turbines).Of course, one or both ends of the output shafts of the motor (s) can directly drive more than one road (ie several compressors or several turbines).
Claims (9)
- Cryogenic refrigeration device intended to transfer the heat from a cold source (15) to a hot source (1) via a working fluid circulating in a closed working circuit (200), the working circuit (200) comprising in series: a substantially isothermal fluid compression section, a substantially isobar fluid cooling section, a substantially isothermal fluid expansion section and a substantially isobar fluid heating section, the compression section of the working circuit (200) comprising at least two compressors (7, 5, 3, 101, 102, 103, 104, 105, 106) arranged in series and at least one compressed fluid cooling exchanger (6, 4, 2, 108) arranged at the outlet of each compressor (7, 5, 3, 101, 102, 103, 104, 105, 106), the expansion section of the working circuit (200) comprising at least one expansion turbine (9, 11, 13, 116, 111) and at least one expanded fluid heating exchanger (10, 12, 14, 110), characterised in that the compressors (7, 5, 3, 101, 102, 103, 104, 105, 106) and the expansion turbine(s) (9, 11, 13) is/are driven by several motors (70, 107, 112, 114, 109) called high-speed motors, in other words, rotating at a speed of 10000 rotations per minute, or several tens of thousands of rotations per minute, and of which at least one of the motors comprises an output shaft, of which one of the ends supports and rotates by direct coupling, a first compressor (7, 5, 3, 101, 102, 103, 104, 105, 106) and of which the other end supports and rotates by direct coupling, a expansion turbine (9, 11, 13, 116, 111), the number of compression levels, in other words compressors, being substantially equal to or more than the number of expansion levels, in other words turbines, and in that the compressors (7, 5, 3, 101, 102, 103, 104, 105, 106) are of the centrifugal compression type, and in that the expansion turbine(s) (9, 11, 13, 116, 111) is/are of the centripetal expansion type, and in that the output shafts (71) of the motors (70, 107, 112, 114, 109) are assembled on the magnetic-type or gas-activated-type bearings (171), said bearings (171) being used for sustaining the compressors (7, 5, 3, 101, 102, 103, 104, 105, 106) and the turbines (9, 11, 13, 116, 111), and in that the cooling section and the heating section comprise a shared heat exchanger (8, 113) wherein the working fluid passes through at counter-current depending on if it is cooled or heated.
- Device according to claim 1, characterised in that the working circuit comprises a volume forming a buffer capacity for storing the working fluid.
- Device according to claim 1 or 2, characterised in that the working fluid is in gaseous phase and constituted by a pure gas or a mixture of pure gases among: helium, neon, nitrogen, oxygen, argon, carbon monoxide, methane, or any other fluid that has a gaseous phase at the temperature of the cold source.
- Device according to any one of claims 1 to 3, characterised in that it comprises at least one motor (70, 107, 112, 114, 109) of which at least one of the ends of the output shaft rotates by direct coupling, at least two wheels (compressor wheels and/or turbine wheels).
- Device according to claim 4, characterised in that it comprises at least one motor of which one end of the output shaft thereof rotates by direct coupling, two compressor wheels, the other end of the output shaft rotates by direct coupling, one turbine wheel.
- Method of cryogenic refrigeration intended to transfer the heat from a cold source (15) to a hot source (1) via a working fluid circulating in a closed working circuit (200), the working circuit (200) comprising in series: a compression section comprising at least two compressors (7, 5, 3, 101, 102, 103, 104, 105, 106) arranged in series, a fluid cooling section, a expansion section comprising at least one expansion turbine (9, 11, 13, 116, 111), and a heating section, the method comprising a working cycle comprising a first substantially isothermal fluid compression step in the compression section by cooling the compressed fluid exiting the compressors (7, 5, 3, 101, 102, 103, 104, 105, 106), a second substantially isobar fluid compression step in the cooling section, a third substantially isothermal fluid expansion step in the expansion portion by heating the expanded fluid exiting the turbine, and a fourth substantially isobar fluid heating step having thermally exchanged with the cold source (15), the fluid working cycle (temperature T, entropy S) being of the opposite Ericsson type, during the first substantially isothermal compression step, the compressed fluid is cooled exiting each compressor (7, 5, 3, 101, 102, 103, 104, 105, 106) to keep the fluid temperatures entering and exiting each compressor substantially equal, and preferably in a range of around 10K, during the third substantially isothermal expansion step, the expanded fluid being heated exiting each turbine (9, 11, 13, 116, 111) to keep the fluid temperatures entering and exiting each turbine (9, 11, 13, 116, 111) substantially equal, and preferably in a range of around 5K, characterised in that the compressors (7, 5, 3, 101, 102, 103, 104, 105, 106) and the expansion turbine(s) (9, 11, 13, 116, 111) is/are driven by several motors (70, 107, 112, 114, 109) called high-speed motors, in other words, rotating at a speed of 10000 rotations per minutes or several tens of thousands of rotations per minutes, and of which at least one of the motors comprises an output shaft of which one of the ends supports and rotates by direct coupling, a first compressor (7, 5, 3, 101, 102, 103, 104, 105, 106) and of which the other end supports and rotates by direct coupling, a expansion turbine (9, 11, 13, 116, 111), the number of compression steps, in other words compressors, being substantially equal to or more than the number of expansion steps, in other words turbines, and in that the method comprises a step of transferring from one part of the mechanical working of the turbine(s) (9, 11, 13, 116, 111) to the compressor(s) (7, 5, 3, 101, 102, 103, 104, 105, 106) via the output shaft(s) (71), and in that the output shafts (71) of the motors (70, 107, 112, 114, 109) are assembled on the magnetic-type or gas-activation-type bearings (171), said bearings (171) being used for sustaining the compressors and turbines, and in that the cooling section and the heating section comprise a shared heat exchanger (8, 113) wherein the working fluid passes through at counter-current depending on if it is cooled or heated.
- Method according to claim 6, characterised in that from the second cooling step, the working fluid is brought to a low temperature of around 60K and in that the working circuit (200) comprises a number of compressors (7, 5, 3, 101, 102, 103, 104, 105, 106) that is three times the amount the number of expansion turbines (9, 11, 13, 116, 111).
- Method according to any one of claims 6 or 7, characterised in that the working fluid is used for cooling or keeping cold the superconductor elements at a temperature of around 65K.
- Method according to any one of claims 6 to 8, characterised in that the fall in temperature of the fluid constituting the cold source (15) is substantially identical to the increase in temperature of the working gas in the heat exchangers (110, 10, 12, 14) of the working circuit (200).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08852903.7T PL2225501T5 (en) | 2007-11-23 | 2008-10-23 | Cryogenic refrigeration method and device |
EP19174805.2A EP3561411A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
EP18178529.6A EP3410035A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0759243A FR2924205B1 (en) | 2007-11-23 | 2007-11-23 | CRYOGENIC REFRIGERATION DEVICE AND METHOD |
PCT/FR2008/051919 WO2009066044A2 (en) | 2007-11-23 | 2008-10-23 | Cryogenic refrigeration method and device |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19174805.2A Division-Into EP3561411A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
EP19174805.2A Division EP3561411A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
EP18178529.6A Division-Into EP3410035A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
EP18178529.6A Division EP3410035A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2225501A2 EP2225501A2 (en) | 2010-09-08 |
EP2225501B1 true EP2225501B1 (en) | 2018-09-05 |
EP2225501B2 EP2225501B2 (en) | 2025-01-15 |
Family
ID=39691274
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19174805.2A Withdrawn EP3561411A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
EP08852903.7A Active EP2225501B2 (en) | 2007-11-23 | 2008-10-23 | Cryogenic refrigeration method and device |
EP18178529.6A Pending EP3410035A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19174805.2A Withdrawn EP3561411A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18178529.6A Pending EP3410035A1 (en) | 2007-11-23 | 2008-10-23 | Device and method for cryogenic refrigeration |
Country Status (12)
Country | Link |
---|---|
US (1) | US20100263405A1 (en) |
EP (3) | EP3561411A1 (en) |
JP (1) | JP2011504574A (en) |
KR (1) | KR20100099129A (en) |
CN (1) | CN101868677B (en) |
DK (1) | DK2225501T4 (en) |
ES (1) | ES2693066T5 (en) |
FI (1) | FI2225501T4 (en) |
FR (1) | FR2924205B1 (en) |
HU (1) | HUE040042T2 (en) |
PL (1) | PL2225501T5 (en) |
WO (1) | WO2009066044A2 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2951815B1 (en) * | 2009-10-27 | 2012-09-07 | Technip France | METHOD FOR FRACTIONING A CRACKED GAS CURRENT TO OBTAIN AN ETHYLENE RICH CUT AND A FUEL CURRENT, AND ASSOCIATED INSTALLATION. |
MX2012005275A (en) | 2009-11-06 | 2012-06-19 | Aerpio Therapeutics Inc | Compositions and methods for treating colitis. |
DE102011013345A1 (en) * | 2011-03-08 | 2012-09-13 | Linde Aktiengesellschaft | refrigeration plant |
FR2977014B1 (en) | 2011-06-24 | 2016-04-15 | Saipem Sa | PROCESS FOR THE LIQUEFACTION OF NATURAL GAS WITH A MIXTURE OF REFRIGERANT GAS. |
FR2977015B1 (en) * | 2011-06-24 | 2015-07-03 | Saipem Sa | METHOD FOR LIQUEFACTING NATURAL GAS WITH TRIPLE FIRM CIRCUIT OF REFRIGERATING GAS |
FR2980564A1 (en) * | 2011-09-23 | 2013-03-29 | Air Liquide | REFRIGERATION METHOD AND INSTALLATION |
FR2981982B1 (en) * | 2011-10-28 | 2013-11-01 | IFP Energies Nouvelles | METHOD FOR CONTROLLING A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND CIRCUIT USING SUCH A METHOD |
US9234480B2 (en) | 2012-07-04 | 2016-01-12 | Kairama Inc. | Isothermal machines, systems and methods |
US20140186170A1 (en) * | 2012-12-27 | 2014-07-03 | Ronald E. Graf | Centrifugal Expanders And Compressors Each Using Rotors In Both Flow Going From Periphery To Center And Flow Going From Center To Periphery Their Use In Engines Both External Heat And Internal Combustion. Means to convert radial inward flow to radial outward flow with less eddy currents |
US10072665B1 (en) | 2012-12-27 | 2018-09-11 | Ronald E. Graf | Multistage compressors and reverse compressors comprising a series of centrifugal pumps alternating flow toward and away from axle with better flow transitions between stages |
FR3014543B1 (en) * | 2013-12-06 | 2018-11-09 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | LOW TEMPERATURE COOLING AND / OR LIQUEFACTION DEVICE AND METHOD |
FR3047551B1 (en) | 2016-02-08 | 2018-01-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | CRYOGENIC REFRIGERATION DEVICE |
CN106121743B (en) * | 2016-08-18 | 2017-07-14 | 开封空分集团有限公司 | A kind of liquid radial-inward-flow turbine energy recycle device |
FR3055692B1 (en) * | 2016-09-06 | 2018-08-24 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | INSTALLATION, METHOD FOR STORING AND RELICITING LIQUEFIED GAS AND ASSOCIATED TRANSPORT VEHICLE |
IT201600109378A1 (en) * | 2016-10-28 | 2018-04-28 | Nuovo Pignone Tecnologie Srl | Natural gas liquefaction system including a turbocharger with integrated multiplier |
AU2018201851C1 (en) * | 2017-03-14 | 2023-06-08 | Woodside Energy Technologies Pty Ltd | A containerised lng liquefaction unit and associated method of producing lng |
CN107477898A (en) * | 2017-08-11 | 2017-12-15 | 北京理工大学 | A kind of plural serial stage tandem type large-scale low-temperature refrigeration system |
FR3072160B1 (en) | 2017-10-09 | 2019-10-04 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | REFRIGERATION DEVICE AND METHOD |
CN108775723A (en) * | 2018-06-27 | 2018-11-09 | 芜湖盘云石磨新能源科技有限公司 | A kind of carbon dioxide refrigeration device |
JP7141342B2 (en) * | 2019-01-31 | 2022-09-22 | 大陽日酸株式会社 | Cryogenic fluid circulation cooling system and cryogenic fluid circulation cooling method |
JP6926153B2 (en) * | 2019-07-03 | 2021-08-25 | 大陽日酸株式会社 | Superconductor cooling device and superconductor cooling method |
FR3098574B1 (en) * | 2019-07-10 | 2021-06-25 | Air Liquide | Refrigeration and / or liquefaction device |
FR3099818B1 (en) * | 2019-08-05 | 2022-11-04 | Air Liquide | Refrigeration device and installation and method for cooling and/or liquefaction |
FR3099820B1 (en) * | 2019-08-05 | 2022-11-04 | Air Liquide | Refrigeration device and installation |
EP4196727A1 (en) * | 2020-08-12 | 2023-06-21 | Cryostar SAS | Simplified cryogenic refrigeration system |
KR102458455B1 (en) | 2020-11-03 | 2022-10-26 | 한국기계연구원 | An apparatus for manufacturing a vacuum hollow shaft for a turbo-machine, method manufacturing the same by the apparatus, and turbomachine having the same manufactured by the method |
FR3119667B1 (en) * | 2021-02-10 | 2023-03-24 | Air Liquide | Device and method for liquefying a fluid such as hydrogen and/or helium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1120615A2 (en) * | 2000-01-26 | 2001-08-01 | Cryostar-France SA | Apparatus for reliquefying compressed vapour |
WO2007066474A1 (en) * | 2005-12-09 | 2007-06-14 | Ntn Corporation | Motor built-in magnetic bearing device |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL287922A (en) * | 1962-02-12 | |||
US3494145A (en) * | 1968-06-10 | 1970-02-10 | Worthington Corp | Integral turbo compressor-expander system for refrigeration |
FR2165729B1 (en) * | 1971-12-27 | 1976-02-13 | Technigaz Fr | |
GB1510629A (en) * | 1974-08-08 | 1978-05-10 | Penny Turbines Ltd N | Centrifugal compressor or centripetal turbine |
DE2440215A1 (en) * | 1974-08-22 | 1976-03-04 | Linde Ag | Liquefaction of low-boiling gases - by partial liquefaction with mixed liquid coolant and further cooling with expanded gas coolant |
US3992167A (en) * | 1975-04-02 | 1976-11-16 | Union Carbide Corporation | Low temperature refrigeration process for helium or hydrogen mixtures using mixed refrigerant |
JPS6079125A (en) * | 1983-10-05 | 1985-05-04 | Kiichi Taga | Closed cycle power transmission system utilizing isothermal compressor |
JPS6251723A (en) * | 1985-08-29 | 1987-03-06 | Isuzu Motors Ltd | Ultrahigh speed motor-generator |
GB8625391D0 (en) * | 1986-10-23 | 1986-11-26 | Crane Packing Ltd | Mechanical face seals |
US4984432A (en) * | 1989-10-20 | 1991-01-15 | Corey John A | Ericsson cycle machine |
JPH03286968A (en) * | 1990-03-31 | 1991-12-17 | Aisin Seiki Co Ltd | Cryogenic freezer device |
JPH0781754B2 (en) * | 1990-06-28 | 1995-09-06 | 新技術事業団 | refrigerator |
NO910827D0 (en) * | 1991-03-01 | 1991-03-01 | Sinvent As Sintef Gruppen | MULTI-STEP GEAR MACHINE FOR COMPRESSION OR EXPANSION OF GAS. |
FR2679635B1 (en) * | 1991-07-26 | 1993-10-15 | Air Liquide | COMPRESSION CIRCUIT FOR A LOW-PRESSURE AND LOW-TEMPERATURE GAS FLUID. |
US5248239A (en) * | 1992-03-19 | 1993-09-28 | Acd, Inc. | Thrust control system for fluid handling rotary apparatus |
US5310311A (en) * | 1992-10-14 | 1994-05-10 | Barber-Colman Company | Air cycle machine with magnetic bearings |
US5473899A (en) * | 1993-06-10 | 1995-12-12 | Viteri; Fermin | Turbomachinery for Modified Ericsson engines and other power/refrigeration applications |
US5590528A (en) * | 1993-10-19 | 1997-01-07 | Viteri; Fermin | Turbocharged reciprocation engine for power and refrigeration using the modified Ericsson cycle |
US5495718A (en) * | 1994-01-14 | 1996-03-05 | Pierce; James G. | Refrigeration of superconducting magnet systems |
JPH09329034A (en) * | 1996-06-11 | 1997-12-22 | Ishikawajima Harima Heavy Ind Co Ltd | Closed cycle gas turbine |
JP3928230B2 (en) * | 1997-12-01 | 2007-06-13 | 石川島播磨重工業株式会社 | Rotating machine for refrigerator |
EP1026755A4 (en) * | 1998-05-22 | 2009-11-11 | Sumitomo Electric Industries | METHOD AND DEVICE FOR COOLING A SUPERCONDUCTOR |
JP2001041598A (en) * | 1999-07-30 | 2001-02-16 | Mitsubishi Heavy Ind Ltd | Multi-stage compression refrigerating machine |
JP2003148824A (en) * | 2001-11-13 | 2003-05-21 | Daikin Ind Ltd | Air conditioner |
CA2373905A1 (en) * | 2002-02-28 | 2003-08-28 | Ronald David Conry | Twin centrifugal compressor |
US6948314B2 (en) * | 2003-09-12 | 2005-09-27 | Honeywell International, Inc. | High response, compact turbocharger |
US7322207B2 (en) * | 2004-07-30 | 2008-01-29 | Mitsubishi Heavy Industries, Ltd. | Air refrigerant cooling apparatus and air refrigeration system using the air refigerant cooling apparatus |
JP4335115B2 (en) * | 2004-10-20 | 2009-09-30 | 鹿島建設株式会社 | Air refrigerant refrigeration system |
CN2795751Y (en) * | 2005-04-21 | 2006-07-12 | 北京航空航天大学 | High speed motor driven high efficiency air refrigerator |
CN1952529A (en) * | 2005-10-19 | 2007-04-25 | 周凌云 | Refrigeration device and refrigeration method thereof |
JP2007162724A (en) * | 2005-12-09 | 2007-06-28 | Ntn Corp | Motor integrated magnetic bearing device |
JP4779741B2 (en) * | 2006-03-22 | 2011-09-28 | 株式会社日立製作所 | Heat pump system, shaft sealing method of heat pump system, modification method of heat pump system |
JP4779761B2 (en) * | 2006-03-30 | 2011-09-28 | 株式会社ジェイテクト | Compressor for fuel cell |
JP2007303792A (en) * | 2006-05-15 | 2007-11-22 | Sanyo Electric Co Ltd | Refrigerating device |
-
2007
- 2007-11-23 FR FR0759243A patent/FR2924205B1/en active Active
-
2008
- 2008-10-23 JP JP2010534519A patent/JP2011504574A/en active Pending
- 2008-10-23 WO PCT/FR2008/051919 patent/WO2009066044A2/en active Application Filing
- 2008-10-23 PL PL08852903.7T patent/PL2225501T5/en unknown
- 2008-10-23 HU HUE08852903A patent/HUE040042T2/en unknown
- 2008-10-23 EP EP19174805.2A patent/EP3561411A1/en not_active Withdrawn
- 2008-10-23 ES ES08852903T patent/ES2693066T5/en active Active
- 2008-10-23 DK DK08852903.7T patent/DK2225501T4/en active
- 2008-10-23 US US12/742,751 patent/US20100263405A1/en not_active Abandoned
- 2008-10-23 KR KR1020107011068A patent/KR20100099129A/en not_active Ceased
- 2008-10-23 FI FIEP08852903.7T patent/FI2225501T4/en active
- 2008-10-23 EP EP08852903.7A patent/EP2225501B2/en active Active
- 2008-10-23 CN CN2008801166825A patent/CN101868677B/en active Active
- 2008-10-23 EP EP18178529.6A patent/EP3410035A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1120615A2 (en) * | 2000-01-26 | 2001-08-01 | Cryostar-France SA | Apparatus for reliquefying compressed vapour |
WO2007066474A1 (en) * | 2005-12-09 | 2007-06-14 | Ntn Corporation | Motor built-in magnetic bearing device |
Also Published As
Publication number | Publication date |
---|---|
PL2225501T3 (en) | 2019-02-28 |
DK2225501T3 (en) | 2018-11-19 |
ES2693066T5 (en) | 2025-04-21 |
DK2225501T4 (en) | 2025-03-10 |
FR2924205A1 (en) | 2009-05-29 |
PL2225501T5 (en) | 2025-04-28 |
EP2225501A2 (en) | 2010-09-08 |
EP2225501B2 (en) | 2025-01-15 |
HUE040042T2 (en) | 2019-02-28 |
ES2693066T3 (en) | 2018-12-07 |
FI2225501T4 (en) | 2025-03-17 |
CN101868677B (en) | 2012-10-03 |
US20100263405A1 (en) | 2010-10-21 |
EP3410035A1 (en) | 2018-12-05 |
WO2009066044A2 (en) | 2009-05-28 |
JP2011504574A (en) | 2011-02-10 |
WO2009066044A3 (en) | 2009-07-16 |
CN101868677A (en) | 2010-10-20 |
KR20100099129A (en) | 2010-09-10 |
FR2924205B1 (en) | 2013-08-16 |
WO2009066044A4 (en) | 2009-09-11 |
EP3561411A1 (en) | 2019-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2225501B1 (en) | Cryogenic refrigeration method and device | |
EP3414498B1 (en) | Cryogenic refrigeration device | |
EP1096209B1 (en) | Heat pumping device, in particular for refrigeration | |
CH697852B1 (en) | compression spiral device or expansion. | |
WO2021023458A1 (en) | Cooling and/or liquefying system and method | |
EP4010640A1 (en) | Refrigeration device and system | |
WO2021023459A1 (en) | Refrigeration device and system | |
EP4291843B1 (en) | Device and method for liquefying a fluid such as hydrogen and/or helium | |
EP3698048B1 (en) | Compression device and method and refrigeration machine | |
WO2022171392A1 (en) | Device and method for liquefying a fluid such as hydrogen and/or helium | |
FR3098574A1 (en) | Refrigeration and / or liquefaction device | |
WO2022171395A1 (en) | Device and method for refrigerating or liquefying a fluid | |
WO2025002660A1 (en) | Fluid liquefaction facility and method | |
EP4551876A1 (en) | Fluid liquefaction method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100623 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170523 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602008056871 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F25B0001100000 Ipc: F25J0001020000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 9/10 20060101ALI20171010BHEP Ipc: F25B 1/10 20060101ALI20171010BHEP Ipc: F25B 9/06 20060101ALI20171010BHEP Ipc: F25J 1/00 20060101ALI20171010BHEP Ipc: F25J 1/02 20060101AFI20171010BHEP Ipc: F25B 9/14 20060101ALI20171010BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20171116 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20180712 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1038310 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008056871 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20181112 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2693066 Country of ref document: ES Kind code of ref document: T3 Effective date: 20181207 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1038310 Country of ref document: AT Kind code of ref document: T Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E040042 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20180403071 Country of ref document: GR Effective date: 20190225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602008056871 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181023 |
|
26 | Opposition filed |
Opponent name: CRYOSTAR SAS Effective date: 20190527 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: CRYOSTAR SAS Effective date: 20190527 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: CRYOSTAR SAS Effective date: 20190527 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: CRYOSTAR SAS Effective date: 20190527 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230518 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: CRYOSTAR SAS Effective date: 20190527 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20241024 Year of fee payment: 17 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20241023 Year of fee payment: 17 |
|
27A | Patent maintained in amended form |
Effective date: 20250115 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20241025 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 602008056871 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241021 Year of fee payment: 17 Ref country code: PL Payment date: 20241015 Year of fee payment: 17 Ref country code: FI Payment date: 20241025 Year of fee payment: 17 Ref country code: GR Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241022 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241015 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20241015 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241022 Year of fee payment: 17 Ref country code: ES Payment date: 20241127 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241021 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20241101 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T4 Effective date: 20250305 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2693066 Country of ref document: ES Kind code of ref document: T5 Effective date: 20250421 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20250400418 Country of ref document: GR Effective date: 20250409 |