EP2211300B1 - Method of forecasting electricity production of photovoltaic means - Google Patents
Method of forecasting electricity production of photovoltaic means Download PDFInfo
- Publication number
- EP2211300B1 EP2211300B1 EP10150771.3A EP10150771A EP2211300B1 EP 2211300 B1 EP2211300 B1 EP 2211300B1 EP 10150771 A EP10150771 A EP 10150771A EP 2211300 B1 EP2211300 B1 EP 2211300B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- forecasting
- electrical production
- photovoltaic device
- production
- photovoltaic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 102
- 238000000034 method Methods 0.000 title claims description 78
- 230000005611 electricity Effects 0.000 title claims description 27
- 238000004364 calculation method Methods 0.000 claims description 49
- 238000005259 measurement Methods 0.000 claims description 22
- 238000012937 correction Methods 0.000 claims description 20
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000007726 management method Methods 0.000 claims description 9
- 230000002159 abnormal effect Effects 0.000 claims description 8
- 238000013277 forecasting method Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 3
- 238000013473 artificial intelligence Methods 0.000 claims description 2
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 238000012545 processing Methods 0.000 claims 1
- 238000005286 illumination Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 24
- 230000006870 function Effects 0.000 description 23
- 230000013016 learning Effects 0.000 description 7
- 238000009434 installation Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000006854 communication Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241000861223 Issus Species 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001965 increasing effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000000051 modifying effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the invention relates to a method for predicting the electrical output of a photovoltaic device. It also relates to a software implementation of such a method and a photovoltaic device implementing such a method. Finally, it relates to a use of this method for diagnosing a photovoltaic device.
- a general object of the invention is to provide a more accurate and reliable solution for predicting the electrical output of a photovoltaic device.
- the invention also relates to a computer medium comprising software capable of implementing the method for predicting the electrical production of a photovoltaic device as described above.
- the invention also relates to a photovoltaic device comprising photovoltaic modules, an element for measuring their actual electrical production, characterized in that it comprises a management unit implementing the electricity production forecasting method as described above. .
- the invention also relates to the use of the method for predicting the electrical output of a photovoltaic device as described above for diagnosing the state of a photovoltaic device.
- the figure 1 schematically represents a photovoltaic device according to an embodiment of the invention.
- This device comprises several photovoltaic modules 1 connected to the traditional electrical network 3 via an inverter 2.
- the modules can of course be connected to an autonomous application via a converter.
- This device further comprises a control unit or management 10 based on a computer comprising software that implements the electric power forecasting method which will be described below.
- the control unit 10 receives the measurement of the actual electricity production of the photovoltaic installation 1, 2 via a link 4.
- this control unit 10 receives as input by a communication means 6 the forecast data. meteorological conditions established by a meteorological forecasting entity 5.
- the control unit 10 thus implements a method for predicting the electrical production of the photovoltaic device, which is based on various blocks represented in FIG. figure 2 .
- This control unit can be located on the site of the photovoltaic device or remote from this site. It may consist of software and / or hardware calculation means (software and / or hardware), one or more storage means for storing the information to be processed and communication means.
- Block 20 implements weather forecasts. This preliminary part is performed by a meteorological entity 5 external to the photovoltaic production device, according to all methods: the invention does not relate specifically to this block.
- the results obtained by this block 20 are transmitted by the communication means 6 to the control unit 10 of the photovoltaic device.
- These data 25, which particularly comprise the irradiation or the illumination and the ambient temperature, represent the essential inputs of the process of estimation of the electrical production which will be implemented by the management unit 10, and which is based on four blocks 30, 40, 50, 60 which will now be described.
- the first block 30 implements the calculation of local meteorological forecasts that are more refined than those transmitted by the meteorological entity 5. For this purpose, it uses interpolation methods and / or statistical correlations and / or data bases. historical prediction and meteorological meteorological data to obtain meteorological forecast quantities, such as illumination in a horizontal plane and temperature, with a finer spatial and temporal pitch than that of meteorological data. received from the block 20. In fact, these forecasts 25 transmitted by the block 20 are generally in a mesh of several kilometers and a time step of several hours, which is insufficient at the scale of a photovoltaic production site . The calculations implemented in this first block 30 are therefore based on a first calculation model.
- the results 45 obtained by the second block 40 are then used by a third block 50 which finally calculates an estimate of the electrical production 55 of the photovoltaic device according to its performances, which are modeled by a coefficient of losses, or by a yield, which can be a function of the temperature and the lighting.
- All the preceding blocks are initially based on various theoretical and / or empirical approaches that may belong to the state of the art.
- the results 35, 45, 55 obtained at each step show some error and uncertainty.
- at least one of the three models, preferably all three, implemented by the blocks 30, 40, 50, respectively, is improved from the direct or indirect comparison between the measurement of the actual electricity production. and the value of production estimated over a given period, and according to the sunny situation or not of the same period.
- Block 60 thus implements an essential first step E1 of the invention which consists in determining whether a past day considered is sunny or not.
- the concept of the invention is to consider that if the day is sunny, the results obtained by the blocks 30 and 40 of the method of the invention are correct, that is to say that the estimated illumination in the plane of photovoltaic modules is right.
- the error noted on the value of the forecast of the electrical production by the method, by its comparison with the real value as measured, is then only caused by the inaccuracy of the third calculation model implemented at the level of the third block 50. This approach amounts to considering that in sunny weather, the error committed by the first two blocks 30, 40 is negligible compared to that made by the third block 50.
- This learning concept has the advantage of allowing the empirical improvement of the calculation models implemented by the method from the sole measurement of the actual production obtained for the photovoltaic device. It does not require several different measures for the separate treatment of the various process blocks, and for example does not require a sunshine sensor such as a pyranometer, which is relatively expensive.
- the first step E1 of determining the type of day, sunny or cloudy will now be described.
- the principle of this determination is based on a comparison between electricity production on the one hand measured, based on a series of measurements E11 for example with a periodicity of between 1 second and 10 minutes, and the same series obtained for the theoretical electricity production on a clear day, making the assumption of clear weather, preferably according to a frequency in phase with the series of measurements.
- a first sub-step consists of determining the E12 illumination forecast series in the plane of the photovoltaic modules on a clear day by any existing model, for example with that set implemented in the management unit 10. This series can also be corrected from weather forecasts.
- a series of ambient temperatures is established E13, either by measurement, or by calculation using models, or from weather forecasts.
- the photovoltaic production in clear weather E14 is then calculated with block 50 of the process of the management unit 10 of the photovoltaic device, from these series of values of illumination and temperature, taking into account the losses or performances. at the level of the photovoltaic modules as evaluated by the model implemented at the level of the management unit 10.
- the day should be considered sunny or cloudy.
- This qualification is implemented by the detection of possible cloudy passages, which is easily detectable since the illumination, and therefore the power output, then decreases by about 80%.
- the day will not be considered cloudy if there is only one short cloudy passage.
- a predefined threshold sets a limit between a day that will be considered a sunny day and a cloudy day.
- This last stage of qualification is complicated by the fact that a shadow zone on the photovoltaic modules can be caused by the environment of the device photovoltaic, like a building shading at a certain time, and not a cloudy passage. The method therefore distinguishes between the passage of a cloud and such shading.
- the method of defining the type of day is based not only on the analysis of the ratio between the measured electrical power and the theoretical electrical power on a clear day E15, but also on the analysis of the derivative of this ratio E16, for take into account the speed of variation of this ratio.
- Two time series are thus obtained, from which anomalous events are detected, defined by a certain predefined threshold. As soon as the amount of abnormal events exceeds a certain threshold E17, the day is considered as not sunny, and otherwise it is sunny.
- the preceding method can be simplified by implementing only one of the two analysis steps E15, E16.
- the method could include a preliminary stage of detection of masks, that is to say natural obstacles such as mountains, buildings, ..., which create shading at the photovoltaic modules, at least some periods of the year.
- the Figures 3 to 5 illustrate a first example of implementation of step E1 described above.
- the figure 3 represents two curves 70, 71 respectively corresponding to the measured and theoretical electrical power on a clear day on a day according to a first scenario.
- the figure 4 represents the ratio 72 between the electric power measured on the theoretical electrical power on a clear day as a function of time for this scenario.
- a rectangular zone 73 corresponds to a threshold beyond which the event is considered abnormal.
- the domain 73 called "sunny day” is defined for a value of the power ratio 72 between 0.5 and 1.
- the figure 5 illustrates the curve 74 of the absolute value of the derivative of the power ratio as a function of time.
- a rectangular zone 75 defined by a value of this ratio between 0 and 0.1 corresponds to a sunny day situation.
- the two curves 72, 74 of the power ratio measured on the theoretical power on a clear day and the absolute value of its derivative very rarely leave the sunny areas 73, 75. The day considered by this scenario is therefore considered like a sunny day.
- the Figures 6 to 8 illustrate a second example of implementation of step E1 described above.
- the figure 6 represents two curves 70 ', 71' respectively corresponding to the electrical power measured and theoretical on a clear day according to a second scenario of one day.
- the figure 7 represents as a function of time the ratio 72 'between the electric power measured on the theoretical electrical power on a clear day for this scenario.
- the rectangular zone 73 ' corresponds to a sunny situation, for a value of the power ratio 72' of between 0.5 and 1.
- the figure 8 illustrates the curve 74 'of the absolute value of the derivative of the power ratio as a function of time.
- the method for predicting the electrical output of the photovoltaic device implements a second step E2 which distinguishes two situations as a function of the result of the first step E1.
- the first part of the calculation of the process implemented by the first two blocks 30, 40 is correct, it is that is, the illumination provided in the plane of the photovoltaic modules has a satisfactory result, the error of which is negligible.
- This illumination is therefore considered as actual illumination, equivalent to that which would be obtained from a measurement.
- the error found between the actual measured electricity production and that predicted by the process depends solely on the third calculation model implemented by the third block 50 of the process.
- This calculation consists in determining the production of the photovoltaic device as a function of the illumination, taking into account power losses as a function of temperature.
- the error observed is used to correct this third model of calculation, by correcting the coefficient of losses used in this third model.
- This correction can be done every sunny day, by immediately modifying the coefficient of losses of the model in order to reuse it immediately for the future implementations of the process.
- the recalculated loss coefficient can be stored in a memory of the management unit 10, and serve as a basis for a periodic recalculation of a new loss coefficient from these stored values, as a simple average of these values for example.
- the new value of the loss coefficient then replaces the previous value for future calculations of electricity production forecasts.
- teaching sunny days allows the learning of the third model used in the electricity production forecasting process, the other calculation models implemented in this process remaining unchanged during these periods of sunny days.
- the Figures 9 to 13 illustrate an example of implementation of this second step E2 in the case of a sunny day.
- the Figures 9 and 10 respectively illustrate the curves 76 and 77 of illumination and temperature obtained as a function of time according to the chosen scenario.
- the figure 11 illustrates the measured production and expected production curves 79 as a function of time during that day.
- the difference between the two preceding curves makes it possible to determine the losses as a function of the ratio of the expected power to the nominal power, which are represented by the curves 80 on the figure 12 .
- These losses are modeled by a polynomial represented by the curve 81 of this same figure.
- These losses thus obtained and modeled make it possible to modify the coefficient of losses of the third model of calculation of the method of provision of the invention.
- a new expected production curve 82 is obtained, much closer than the initial curve 79 of the measured production curve 78, as illustrated in FIG. figure 13 .
- the third model of calculation of the process is correct, that is to say that the electrical production calculated according to the illumination in the plane of the photovoltaic modules presents a satisfactory result, of which the error is negligible.
- the error observed between the actual measured electricity production and that estimated by the method depends solely on the first two calculation models implemented by the method, as described with reference to at least one of the first two blocks 30, 40.
- the actual electrical production is measured then by applying a calculation inverse to the calculation implemented in the third block 50, a "virtual or indirect measure", ie an indirect real value, of the illumination that is received by the photovoltaic modules.
- the first part of the model including the first two calculation models implemented in the blocks 30 and 40 allows on the other hand to calculate an estimated illumination from the weather forecasts. These measured and estimated illuminances are compared and their difference serves as a starting point for a correction of at least one of the two calculation models of the first two blocks 30, 40 of the method.
- This correction can consist of different solutions. First, it can relate to only one of the two calculation models implemented or both. Then, it can be based on a computation of correlations between weather forecasting and local illumination, by a statistical approach or by neural networks.
- the second calculation model implemented in the second block 40 of the method is considered reliable.
- the correction step then consists in improving only the first calculation model implemented in the first block 30 of the method, which consists of an extrapolation of the meteorological data in order to obtain an estimate of the illumination in a horizontal plane.
- the actual illumination in a horizontal plane is virtually known, by an inverse calculation of the second model of computation from the illumination in the plane of the photovoltaic modules which is deduced from the measurement of the real electrical production, as has been made explicit. above. It is therefore an illumination that can be described as a virtual measure, since it is indirectly measured by the measurement of real electricity production. Then, the comparison between this virtual illuminance measured and that estimated by the process serves as a basis for improving the first calculation model of the process.
- the Figures 14 to 17 illustrate an example of implementation of this second step E2 in the case of a cloudy day.
- the figure 14 illustrates the curve 83 of the electricity production measured during the cloudy day.
- the figure 15 shows respectively the curves 84 and 85 of the illuminations in the plane of the photovoltaic modules and in the horizontal plane as a function of time according to the chosen scenario.
- the figure 16 illustrates points 86 representing the illumination as a function of time resulting from the four-point weather forecast around the photovoltaic production device, while the points 87 represent these same virtually measured illuminations. It was chosen here to select the four meteorological data points that are closest to the production site. It is then possible to deduce the illumination on the site for example by applying a weighting of each of the four points obtained by the meteorological data.
- the corresponding weights are determined and improved according to the database of measurements made in cloudy weather. They can be calculated by purely statistical methods, by artificial intelligence, etc. This database is used to recalculate the weights to obtain a more precise result. So, the figure 17 illustrates the evolution over several months of the four weights considered according to the irradiation envisaged in the four points considered.
- the learning mechanism has been described on the basis of a time division at the scale of one day. However, any other temporal division would be possible. For example, it is possible to follow the same principle on the basis of half a day, first determining whether this half-day is sunny or cloudy, then continuing the rest of the process. On the other hand, the learning mechanism can be implemented over all these periods, or only a part of these periods according to predefined criteria, such as only the periods for which measurements of the electrical production of the photovoltaic device are available with sufficient frequency. In addition, it can be chosen to implement this learning mechanism for a limited time, predefined, or this mechanism can be implemented permanently, unlimited.
- the invention preferably makes it possible to improve the three main calculation models of the method, implemented within the three blocks 30, 40, 50. However, its use for any one of these three blocks already makes it possible to improve the processes existing and does not escape the concept of the present invention.
- the invention is advantageous in that it leads to a method for predicting the improved electrical output using the only measurement of actual electricity production.
- this concept of the invention can be combined with any other empirical correction system calculation models, implemented on the basis of other measurements for example, without departing from the concept of the invention.
- the invention has been described using certain important quantities such as illumination, which represents a received power per unit area.
- other neighboring quantities make it possible to implement the same calculations and the same method, such as, for example, irradiation, which represents the energy received per unit area. It is possible to switch from irradiance to irradiation by simple conversion and the use of one or other of these magnitudes in the process represents equivalent solutions.
- the method of the invention has been presented according to an abstract division into different blocks 30, 40, 50, 60 to facilitate its understanding. However, it represents an indissociable whole whose different elements can be nested in a more complex way. In fact, the process is divided into two major parts; the first part groups together the first two blocks 30, 40 and makes it possible to format the meteorological forecasts at the level of the photovoltaic modules of the device whereas the second part consists of a calculation of the projected electrical production of these photovoltaic modules starting precisely from these meteorological forecasts formatted.
- the last block 60 is in fact an element belonging to each of the three preceding models since it participates in the calculation implemented by these models by defining some of the important parameters of these models.
- this last block 60 is an integral part of the method, is a part of at least one of the three main calculation models implemented within the three blocks 30, 40, 50, since essential parameters at least one of these models are determined by this last block 60.
- This invention is suitable for any photovoltaic device, whether it is a large production unit or a small photovoltaic device associated with a device such as a parking meter.
- the invention finally makes it possible to determine a method for predicting the electrical output of a reliable and accurate photovoltaic installation. It thus allows other applications such as the implementation of a diagnosis of a photovoltaic installation. Indeed, by comparing the actual production with that estimated by the model, it is possible to deduce a measure of the performance of the photovoltaic installation, or even if there is a big difference to diagnose its failure.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Photovoltaic Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
L'invention concerne un procédé de prévision de la production électrique d'un dispositif photovoltaïque. Elle concerne aussi un logiciel de mise en oeuvre d'un tel procédé ainsi qu'un dispositif photovoltaïque mettant en oeuvre un tel procédé. Enfin, elle concerne une utilisation de ce procédé pour le diagnostic d'un dispositif photovoltaïque.The invention relates to a method for predicting the electrical output of a photovoltaic device. It also relates to a software implementation of such a method and a photovoltaic device implementing such a method. Finally, it relates to a use of this method for diagnosing a photovoltaic device.
La part de production d'énergie électrique provenant des installations photovoltaïques augmente rapidement. Une particularité de cette production solaire provient du fait qu'elle est très irrégulière puisqu'elle varie fortement en fonction des conditions météorologiques. Or lorsque ces installations sont connectées à un réseau électrique, ce caractère imprévisible induit une difficulté de gestion du réseau entier, puisqu'il devient difficile de garantir un équilibre entre la production et la demande en énergie. Plus généralement, ce caractère imprévisible de la production électrique est pénalisant pour tout dispositif dont la source d'énergie repose au moins en partie sur l'énergie solaire.The share of power generation from photovoltaic installations is increasing rapidly. A particularity of this solar production comes from the fact that it is very irregular since it varies greatly depending on the weather conditions. However, when these installations are connected to an electricity grid, this unpredictability leads to difficulty in managing the entire network, since it becomes difficult to guarantee a balance between production and energy demand. More generally, this unpredictable nature of electricity generation is penalizing for any device whose energy source is based at least partly on solar energy.
Pour pallier à cet inconvénient, il existe des modèles de prévision de la production électrique des installations photovoltaïques, à partir des prévisions météorologiques. Une telle solution est par exemple explicitée dans le document
Le document "
Ainsi, un objet général de l'invention est de proposer une solution plus précise et fiable de prévision de la production électrique d'un dispositif photovoltaïque.Thus, a general object of the invention is to provide a more accurate and reliable solution for predicting the electrical output of a photovoltaic device.
A cet effet, l'invention repose un procédé de prévision de la production électrique d'un dispositif photovoltaïque comprenant des modules photovoltaïques, comprenant une première partie d'estimation de l'éclairement qui sera reçu dans le plan des modules photovoltaïques et une seconde partie d'estimation de la production électrique du dispositif photovoltaïque, caractérisé en ce qu'il comprend la première étape suivante :
- détermination si une période passée considérée est ensoleillée ou nuageuse,
et caractérisé en ce qu'il comprend la seconde étape suivante de mise en oeuvre d'au moins une des deux étapes suivantes :- correction de la seconde partie du procédé de prévision de la production électrique à partir de la mesure de la production électrique réelle des modules photovoltaïques sur la période considérée si cette période considérée est ensoleillée ; et/ou
- correction de la première partie du procédé de prévision de la production électrique à partir de la mesure de la production électrique réelle des modules photovoltaïques sur la période considérée si cette période considérée est nuageuse.
- whether a past period considered is sunny or cloudy,
and characterized in that it comprises the second following step of implementing at least one of the following two steps:- correction of the second part of the electricity production forecasting process from the measurement of the actual electricity production of the photovoltaic modules over the period considered if this period is sunny; and or
- correction of the first part of the electricity production forecasting process from the measurement of the actual electricity production of the photovoltaic modules over the period considered if this period is cloudy.
L'invention porte aussi sur un support informatique comprenant un logiciel apte à mettre en oeuvre le procédé de prévision de la production électrique d'un dispositif photovoltaïque tel que décrit précédemment.The invention also relates to a computer medium comprising software capable of implementing the method for predicting the electrical production of a photovoltaic device as described above.
L'invention porte aussi sur un dispositif photovoltaïque comprenant des modules photovoltaïques, un élément de mesure de leur production électrique réelle, caractérisé en ce qu'il comprend une unité de gestion mettant en oeuvre le procédé de prévision de la production électrique tel que décrit précédemment.The invention also relates to a photovoltaic device comprising photovoltaic modules, an element for measuring their actual electrical production, characterized in that it comprises a management unit implementing the electricity production forecasting method as described above. .
L'invention porte aussi sur l'utilisation du procédé de prévision de la production électrique d'un dispositif photovoltaïque tel que décrit précédemment pour diagnostiquer l'état d'un dispositif photovoltaïque.The invention also relates to the use of the method for predicting the electrical output of a photovoltaic device as described above for diagnosing the state of a photovoltaic device.
L'invention est plus précisément définie par les revendications.The invention is more precisely defined by the claims.
Ces objets, caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivante d'un mode d'exécution particulier fait à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
- La
figure 1 illustre schématiquement un dispositif photovoltaïque selon un mode d'exécution de l'invention. - La
figure 2 illustre schématiquement les différents blocs du procédé de prévision de la production photovoltaïque selon le mode d'exécution de l'invention. - La
figure 3 représente les puissances électriques mesurée et prévue sur une journée selon un premier scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 4 représente le rapport entre la puissance électrique mesurée et la puissance électrique théorique par temps clair en fonction du temps selon le premier scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 5 représente la valeur absolue de la dérivée du rapport entre la puissance électrique mesurée et la puissance électrique théorique par temps clair en fonction du temps selon le premier scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 6 représente les puissances électriques mesurée et théorique par temps clair sur une journée selon un second scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 7 représente le rapport entre la puissance électrique mesurée et la puissance électrique théorique par temps clair en fonction du temps selon le second scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 8 représente la valeur absolue de la dérivée du rapport entre la puissance électrique mesurée et la puissance électrique théorique par temps clair en fonction du temps selon le second scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 9 illustre l'éclairement en fonction du temps selon un autre scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 10 illustre la température en fonction du temps selon cet autre scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 11 illustre les productions mesurée et prévue en fonction du temps selon ce scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 12 représente les pertes de la production photovoltaïque en fonction du rapport de la puissance prévue sur la puissance nominale selon le scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 13 illustre les productions mesurée et prévue après correction en fonction du temps selon le scénario de mise en oeuvre du mode d'exécution de l'invention. - La
figure 14 illustre la production électrique mesurée durant un dernier scénario de journée nuageuse de mise en oeuvre du mode d'exécution de l'invention. - La
figure 15 représente les éclairements calculés dans le plan des modules photovoltaïques et dans le plan horizontal selon ce scénario nuageux. - La
figure 16 illustre des éclairements issus des prévisions météorologiques et des éclairements calculés par le procédé du mode d'exécution de l'invention. - La
figure 17 illustre l'évolution des poids en fonction de l'irradiation prévue apportés à différentes prévisions météorologiques selon le mode d'exécution de l'invention.
- The
figure 1 schematically illustrates a photovoltaic device according to an embodiment of the invention. - The
figure 2 schematically illustrates the different blocks of the photovoltaic production forecasting method according to the embodiment of the invention. - The
figure 3 represents the electric power measured and expected on a day according to a first scenario of implementation of the embodiment of the invention. - The
figure 4 represents the ratio between the measured electrical power and the theoretical electrical power on a clear day as a function of time according to the first scenario of implementation of the embodiment of the invention. - The
figure 5 represents the absolute value of the derivative of the ratio between the measured electrical power and the theoretical electrical power on a clear day as a function of time according to the first scenario of implementation of the embodiment of the invention. - The
figure 6 represents the measured and theoretical electrical power on a clear day over a day according to a second scenario of implementation of the embodiment of the invention. - The
figure 7 represents the ratio between the measured electrical power and the theoretical electrical power on a clear day as a function of time according to the second scenario of implementation of the embodiment of the invention. - The
figure 8 represents the absolute value of the derivative of the ratio between the measured electrical power and the theoretical electrical power on a clear day as a function of time according to the second scenario of implementation of the embodiment of the invention. - The
figure 9 illustrates the illumination as a function of time according to another scenario of implementation of the embodiment of the invention. - The
figure 10 illustrates the temperature as a function of time according to this alternative implementation scenario of the embodiment of the invention. - The
figure 11 illustrates the productions measured and planned as a function of time according to this scenario of implementation of the embodiment of the invention. - The
figure 12 represents the losses of the photovoltaic production as a function of the ratio of the expected power to the nominal power according to the scenario of implementation of the embodiment of the invention. - The
figure 13 illustrates the productions measured and planned after correction as a function of time according to the scenario of implementation of the embodiment of the invention. - The
figure 14 illustrates the measured electricity production during a last cloudy day scenario of implementation of the embodiment of the invention. - The
figure 15 represents the calculated illuminations in the plane of the photovoltaic modules and in the horizontal plane according to this cloudy scenario. - The
figure 16 illustrates illuminations from meteorological forecasts and illuminations calculated by the method of the embodiment of the invention. - The
figure 17 illustrates the evolution of the weights according to the irradiation provided provided for different weather forecasts according to the embodiment of the invention.
La
L'unité de contrôle 10 met donc en oeuvre un procédé de prévision de la production électrique du dispositif photovoltaïque, qui repose sur différents blocs représentés en
Le bloc 20 met en oeuvre des prévisions météorologiques. Cette partie préalable est réalisée par une entité météorologique 5 extérieure au dispositif de production photovoltaïque, selon toutes méthodes : l'invention ne porte pas spécifiquement sur ce bloc. Les résultats 25 obtenus par ce bloc 20 sont transmis par le moyen de communication 6 à l'unité de contrôle 10 du dispositif photovoltaïque. Ces données 25, qui comprennent particulièrement l'irradiation ou l'éclairement et la température ambiante, représentent les entrées essentielles du procédé d'estimation de la production électrique qui va être mis en oeuvre par l'unité de gestion 10, et qui repose sur quatre blocs 30, 40, 50, 60 qui vont maintenant être décrits.
Le premier bloc 30 met en oeuvre le calcul de prévisions météorologiques locales plus affinées que celles transmises par l'entité météorologique 5. Pour cela, il utilise des méthodes d'interpolation et/ou de corrélations statistiques et/ou des bases de données d'historiques de prévision et de mesures par des stations météorologiques, afin d'obtenir comme résultat 35 des grandeurs de prévisions météorologiques, comme l'éclairement dans un plan horizontal et la température, avec un pas spatial et temporel plus fin que celui des données météorologiques 25 reçues depuis le bloc 20. En effet, ces prévisions 25 transmises par le bloc 20 le sont en général selon un maillage de plusieurs kilomètres et un pas temporel de plusieurs heures, ce qui est insuffisant à l'échelle d'un site de production photovoltaïque. Les calculs mis en oeuvre dans ce premier bloc 30 reposent donc sur un premier modèle de calcul.The
Ensuite, ces résultats 35 de prévisions météorologiques locales sont exploités par un second bloc 40 qui va calculer l'éclairement prévisionnel dans le plan des modules photovoltaïques, à l'aide d'un second modèle de calcul.Next, these local weather forecast results are exploited by a
Les résultats 45 obtenus par le second bloc 40 sont ensuite utilisés par un troisième bloc 50 qui calcule finalement une estimation de la production électrique 55 du dispositif photovoltaïque en fonction de ses performances, qui sont modélisées par un coefficient de pertes, ou par un rendement, qui peut être fonction de la température et de l'éclairage.The
Tous les blocs précédents reposent initialement sur des approches théoriques et/ou empiriques diverses, pouvant appartenir à l'état de la technique. Les résultats 35, 45, 55 obtenus à chaque étape présentent une certaine erreur et incertitude. Selon un élément essentiel de l'invention, au moins un des trois modèles, préférentiellement les trois, mis en oeuvre par respectivement les blocs 30, 40, 50 est amélioré à partir de la comparaison directe ou indirecte entre la mesure de la production électrique réelle et la valeur de la production estimée sur une période donnée, et en fonction de la situation ensoleillée ou non de cette même période.All the preceding blocks are initially based on various theoretical and / or empirical approaches that may belong to the state of the art. The
Pour cela, un dernier bloc 60 du procédé d'estimation de la production électrique transmet des données 63, 64, 65 aux blocs 30, 40 et 50 pour améliorer les modèles mis en oeuvre dans ces blocs selon un mécanisme empirique d'apprentissage. Selon le principe de l'invention, cet apprentissage dépend de deux étapes essentielles :
- E1 - la détermination si la journée considérée est ensoleillée ou non ;
- E2 - la correction d'une partie du procédé d'estimation de la production électrique, cette partie étant déterminée en fonction du résultat de l'étape E1, la correction reposant sur la comparaison entre la mesure directe ou indirecte d'une grandeur, cette grandeur étant directement mesurée s'il s'agit de la production électrique ou indirectement déduite de cette production électrique mesurée dans les autres cas, et l'estimation de cette même grandeur obtenue par le procédé mis en oeuvre dans l'unité de gestion 10 du dispositif.
- E1 - whether the day is sunny or not;
- E2 - the correction of a part of the process of estimating the electrical production, this part being determined according to the result of the step E1, the correction being based on the comparison between the direct or indirect measurement of a quantity, this magnitude being directly measured if it is the electrical production or indirectly deduced from this electrical production measured in other cases, and the estimate of this same quantity obtained by the process implemented in the
management unit 10 of the device.
Le bloc 60 met donc en oeuvre une première étape E1 essentielle de l'invention qui consiste à déterminer si une journée passée considérée est ensoleillée ou non. Le concept de l'invention consiste à considérer que si la journée est ensoleillée, les résultats obtenus par les blocs 30 et 40 du procédé de l'invention sont corrects, c'est-à-dire que l'éclairement estimé dans le plan des modules photovoltaïques est juste. L'erreur constatée sur la valeur de la prévision de la production électrique par le procédé, par sa comparaison avec la valeur réelle telle que mesurée, est alors uniquement causée par l'imprécision du troisième modèle de calcul mis en oeuvre au niveau du troisième bloc 50. Cette approche revient à considérer que par temps ensoleillé, l'erreur commise par les deux premiers blocs 30, 40 est négligeable par rapport à celle commise par le troisième bloc 50. Au contraire, si la journée n'est pas ensoleillée, nous la qualifierons simplement de « nuageuse » pour des raisons de simplification de la description, l'erreur finale constatée entre la prévision de la production électrique et la mesure réelle de cette production est attribuée aux deux premiers blocs 20, 30 ou à l'un d'entre eux, l'erreur engendrée par le troisième bloc 50 étant alors considérée comme négligeable.
Ce concept d'apprentissage présente l'avantage de permettre l'amélioration empirique des modèles de calcul mis en oeuvre par le procédé à partir de la seule mesure de la production réelle obtenue pour le dispositif photovoltaïque. Il ne nécessite pas plusieurs mesures différentes pour le traitement séparé des divers blocs du procédé, et par exemple ne nécessite pas de capteur d'ensoleillement comme un pyranomètre, qui est relativement coûteux.This learning concept has the advantage of allowing the empirical improvement of the calculation models implemented by the method from the sole measurement of the actual production obtained for the photovoltaic device. It does not require several different measures for the separate treatment of the various process blocks, and for example does not require a sunshine sensor such as a pyranometer, which is relatively expensive.
La première étape E1 de détermination du type de journée, ensoleillée ou nuageuse, va maintenant être décrite. Le principe de cette détermination repose sur la comparaison entre d'une part la production d'électricité mesurée, reposant sur une série de mesures E11 par exemple avec une périodicité comprise entre 1 seconde et 10 minutes, et la même série obtenue pour la production d'électricité théorique par temps clair, en faisant l'hypothèse de temps clair, de préférence selon une fréquence en phase avec la série de mesures. Pour obtenir cette série de valeurs de production électrique théorique par temps clair, une première sous-étape consiste à déterminer la série de prévision de l'éclairement E12 dans le plan des modules photovoltaïques par temps clair par tout modèle existant, par exemple avec celui mis en oeuvre dans l'unité de gestion 10. Cette série peut aussi être corrigée à partir de prévisions météorologiques. D'autre part, une série de températures ambiantes est établie E13, soit par mesure, soit par calcul à l'aide de modèles, soit à partir des prévisions météorologiques. Enfin, la production photovoltaïque par temps clair E14 est alors calculée avec le bloc 50 du procédé de l'unité de gestion 10 du dispositif photovoltaïque, à partir de ces séries de valeurs d'éclairement et de température, en tenant compte des pertes ou performances au niveau des modules photovoltaïques telles qu'évaluées par le modèle mis en oeuvre au niveau de l'unité de gestion 10.The first step E1 of determining the type of day, sunny or cloudy, will now be described. The principle of this determination is based on a comparison between electricity production on the one hand measured, based on a series of measurements E11 for example with a periodicity of between 1 second and 10 minutes, and the same series obtained for the theoretical electricity production on a clear day, making the assumption of clear weather, preferably according to a frequency in phase with the series of measurements. In order to obtain this series of values of theoretical electricity production on a clear day, a first sub-step consists of determining the E12 illumination forecast series in the plane of the photovoltaic modules on a clear day by any existing model, for example with that set implemented in the
Lorsque les deux séries à comparer sont obtenues, il reste finalement à déterminer si la journée doit être considérée comme ensoleillée ou nuageuse. Cette qualification est mise en oeuvre par la détection d'éventuels passages nuageux, ce qui est aisément détectable puisque l'éclairement, et par conséquent la production électrique, baisse alors d'environ 80%. La journée ne sera pas considérée comme nuageuse s'il n'y a qu'un seul court passage nuageux. Un seuil prédéfini permet de fixer une limite entre une journée qui sera considérée comme une journée ensoleillée et une journée nuageuse. Cette dernière étape de qualification est compliquée par le fait qu'une zone d'ombre sur les modules photovoltaïques peut être provoquée par l'environnement du dispositif photovoltaïque, comme un bâtiment faisant de l'ombre à une certaine heure, et non par un passage nuageux. Le procédé fait donc la distinction entre le passage d'un nuage et un tel ombrage. Pour cela, le procédé de définition du type de journée repose non seulement sur l'analyse du rapport entre la puissance électrique mesurée et la puissance électrique théorique par temps clair E15, mais aussi sur l'analyse de la dérivée de ce rapport E16, pour tenir compte de la vitesse de variation de ce rapport. Deux séries temporelles sont donc obtenues, à partir desquelles on détecte des événements anomaux, définis par un certain seuil prédéfini. Dès que la quantité d'événements anormaux dépasse un certain seuil E17, la journée est considérée comme non ensoleillée, et sinon elle est ensoleillée.When the two series to be compared are obtained, it remains to be determined whether the day should be considered sunny or cloudy. This qualification is implemented by the detection of possible cloudy passages, which is easily detectable since the illumination, and therefore the power output, then decreases by about 80%. The day will not be considered cloudy if there is only one short cloudy passage. A predefined threshold sets a limit between a day that will be considered a sunny day and a cloudy day. This last stage of qualification is complicated by the fact that a shadow zone on the photovoltaic modules can be caused by the environment of the device photovoltaic, like a building shading at a certain time, and not a cloudy passage. The method therefore distinguishes between the passage of a cloud and such shading. For this, the method of defining the type of day is based not only on the analysis of the ratio between the measured electrical power and the theoretical electrical power on a clear day E15, but also on the analysis of the derivative of this ratio E16, for take into account the speed of variation of this ratio. Two time series are thus obtained, from which anomalous events are detected, defined by a certain predefined threshold. As soon as the amount of abnormal events exceeds a certain threshold E17, the day is considered as not sunny, and otherwise it is sunny.
En résumé, la première étape E1 de détermination du type de journée, ensoleillée ou nuageuse, comprend les sous-étapes suivantes :
- E11 - Mesure selon une fréquence prédéfinie de la production d'électricité réelle ;
- E14 - Détermination de la production d'électricité théorique par temps clair à partir d'une estimation de l'éclairement dans le plan des modules photovoltaïques par temps clair E12 et à partir de l'établissement d'une série de températures ambiantes E13 ;
- E15 - analyse du rapport entre la puissance électrique mesurée et la puissance électrique théorique avec l'hypothèse de temps clair, en détectant d'éventuels événements anormaux ;
- E16 - analyse de la dérivée de ce rapport, en détectant d'éventuels événements anormaux ;
- E17 - détermination du type de journée, en comparant la quantité d'événements anormaux détectés par rapport à un seuil prédéfini.
- E11 - Measurement according to a predefined frequency of real electricity production;
- E14 - Determination of the theoretical electricity production on a clear day from an estimate of the illumination in the plane of the photovoltaic modules in clear weather E12 and from the establishment of a series of ambient temperatures E13;
- E15 - analysis of the ratio between the measured electrical power and the theoretical electrical power with the hypothesis of clear weather, by detecting any abnormal events;
- E16 - analysis of the derivative of this report, detecting any abnormal events;
- E17 - determination of the type of day, comparing the amount of abnormal events detected with a predefined threshold.
En variante, le procédé précédent peut être simplifié en ne mettant en oeuvre qu'une seule des deux étapes d'analyse E15, E16. De plus, le procédé pourrait comprendre une étape préalable de détection des masques, c'est-à-dire des obstacles naturels comme les montagnes, les bâtiments,..., qui créent des ombrages au niveau des modules photovoltaïques, au moins à certaines périodes de l'année.In a variant, the preceding method can be simplified by implementing only one of the two analysis steps E15, E16. In addition, the method could include a preliminary stage of detection of masks, that is to say natural obstacles such as mountains, buildings, ..., which create shading at the photovoltaic modules, at least some periods of the year.
Les
Les
Ensuite, le procédé de prévision de la production électrique du dispositif photovoltaïque met en oeuvre une seconde étape E2 qui distingue deux situations en fonction du résultat de la première étape E1.Next, the method for predicting the electrical output of the photovoltaic device implements a second step E2 which distinguishes two situations as a function of the result of the first step E1.
D'abord, si la journée est ensoleillée et que l'entité de prévisions météorologiques l'avait prévu, il est considéré que la première partie du calcul du procédé mise en oeuvre par les deux premiers blocs 30, 40 est correcte, c'est-à-dire que l'éclairement prévu dans le plan des modules photovoltaïques présente un résultat satisfaisant, dont l'erreur est négligeable. Cet éclairement est donc considéré comme l'éclairement réel, équivalent à celui qui serait obtenu à partir d'une mesure. Ainsi, dans une telle situation, l'erreur constatée entre la production d'électricité réelle mesurée et celle qui était prévue par le procédé dépend uniquement du troisième modèle de calcul mis en oeuvre par le troisième bloc 50 du procédé. Ce calcul consiste à déterminer la production du dispositif photovoltaïque en fonction de l'éclairement, en tenant compte de pertes de puissance en fonction de la température. L'erreur constatée est utilisée pour corriger ce troisième modèle de calcul, en corrigeant le coefficient de pertes utilisé dans ce troisième modèle. Cette correction peut se faire chaque jour ensoleillé, en modifiant immédiatement le coefficient de pertes du modèle afin de le réutiliser immédiatement pour les futures mises en oeuvre du procédé. En variante, le coefficient de pertes recalculé peut être stocké dans une mémoire de l'unité de gestion 10, et servir de base à un recalcul périodique d'un nouveau coefficient de pertes à partir de ces valeurs stockées, comme une simple moyenne de ces valeurs par exemple. La nouvelle valeur du coefficient de pertes remplace alors la précédente pour les futurs calculs de prévision de la production électrique. Ainsi, l'enseignement des journées ensoleillées permet l'apprentissage du troisième modèle utilisé dans le procédé de prévision de la production électrique, les autres modèles de calcul mis en oeuvre dans ce procédé restant inchangés durant ces périodes de journées ensoleillées.First, if the day is sunny and the meteorological forecasting entity had planned, it is considered that the first part of the calculation of the process implemented by the first two
Les
Si la journée est nuageuse, il est considéré que le troisième modèle de calcul du procédé est correct, c'est-à-dire que la production électrique calculée en fonction de l'éclairement dans le plan des modules photovoltaïques présente un résultat satisfaisant, dont l'erreur est négligeable. Ainsi, dans une telle situation, l'erreur constatée entre la production d'électricité réelle mesurée et celle qui est estimée par le procédé dépend uniquement des deux premiers modèles de calcul mis en oeuvre par le procédé, tels que décrits en référence avec au moins un des deux premiers blocs 30, 40. La production électrique réelle est mesurée puis en appliquant un calcul inverse du calcul mis en oeuvre dans le troisième bloc 50, on en déduit une « mesure virtuelle ou indirecte », soit une valeur réelle indirecte, de l'éclairement qui est reçu par les modules photovoltaïques. La première partie du modèle incluant les deux premiers modèles de calcul mis en oeuvre au sein des blocs 30 et 40 permet d'autre part de calculer un éclairement estimé à partir des prévisions météorologiques. Ces éclairements mesurés et estimés sont comparés et leur différence sert de point de départ à une correction d'au moins un des deux modèles de calcul des deux premiers blocs 30, 40 du procédé. Cette correction peut consister en différentes solutions. D'abord, elle peut ne porter que sur un des deux modèles de calcul mis en oeuvre ou sur les deux. Ensuite, elle peut reposer sur un calcul de corrélations entre la prévision météorologique et l'éclairement local, par une approche statistique ou par réseaux de neurones.If the day is cloudy, it is considered that the third model of calculation of the process is correct, that is to say that the electrical production calculated according to the illumination in the plane of the photovoltaic modules presents a satisfactory result, of which the error is negligible. Thus, in such a situation, the error observed between the actual measured electricity production and that estimated by the method depends solely on the first two calculation models implemented by the method, as described with reference to at least one of the first two
Selon une variante de mise en oeuvre de cette seconde étape E2 dans une situation de journée nuageuse, le second modèle de calcul mis en oeuvre dans le second bloc 40 du procédé est considéré comme fiable. L'étape de correction consiste alors à améliorer uniquement le premier modèle de calcul mis en oeuvre dans le premier bloc 30 du procédé, qui consiste en une extrapolation des données météorologiques afin d'obtenir une estimation de l'éclairement dans un plan horizontal. L'éclairement réel dans un plan horizontal est virtuellement connu, par un calcul inverse du second modèle de calcul à partir de l'éclairement dans le plan des modules photovoltaïques qui est déduit de la mesure de la production électrique réelle, comme cela a été explicité ci-dessus. Il s'agit donc d'un éclairement qu'on peut qualifier de mesure virtuelle, puisqu'il est indirectement mesuré par la mesure de la production électrique réelle. Ensuite, la comparaison entre cet éclairement virtuel mesuré et celui estimé par le procédé sert de base à l'amélioration du premier modèle de calcul du procédé.According to an alternative embodiment of this second step E2 in a cloudy day situation, the second calculation model implemented in the
Les
Le mécanisme d'apprentissage a été décrit sur la base d'un découpage temporel à l'échelle d'une journée. Toutefois, tout autre découpage temporel serait envisageable. Par exemple, il est possible de suivre le même principe sur la base d'une demi-journée, en déterminant d'abord si cette demi-journée est ensoleillée ou nuageuse, puis en poursuivant le reste du procédé. D'autre part, le mécanisme d'apprentissage peut être mis en oeuvre sur toutes ces périodes, ou sur une partie seulement de ces périodes en fonction de critères prédéfinis, comme uniquement les périodes pour lesquelles des mesures de la production électrique du dispositif photovoltaïque sont disponibles avec une fréquence suffisante. De plus, il peut être choisi de ne mettre en oeuvre ce mécanisme d'apprentissage que sur une durée limitée, prédéfinie, ou ce mécanisme peut être mis en oeuvre de manière permanente, illimitée.The learning mechanism has been described on the basis of a time division at the scale of one day. However, any other temporal division would be possible. For example, it is possible to follow the same principle on the basis of half a day, first determining whether this half-day is sunny or cloudy, then continuing the rest of the process. On the other hand, the learning mechanism can be implemented over all these periods, or only a part of these periods according to predefined criteria, such as only the periods for which measurements of the electrical production of the photovoltaic device are available with sufficient frequency. In addition, it can be chosen to implement this learning mechanism for a limited time, predefined, or this mechanism can be implemented permanently, unlimited.
L'invention permet de préférence d'améliorer les trois modèles de calcul principaux du procédé, mis en oeuvre au sein des trois blocs 30, 40, 50. Toutefois, son utilisation pour un seul quelconque de ces trois blocs permet déjà une amélioration des procédés existants et n'échappe pas au concept de la présente invention.The invention preferably makes it possible to improve the three main calculation models of the method, implemented within the three
D'autre part, l'invention est avantageuse en ce qu'elle permet d'aboutir à un procédé de prévision de la production électrique amélioré à l'aide de la seule mesure de la production électrique réelle. Toutefois, ce concept de l'invention peut être combiné avec tout autre système de correction empirique des modèles de calcul, mis en oeuvre sur la base d'autres mesures par exemple, sans sortir du concept de l'invention.On the other hand, the invention is advantageous in that it leads to a method for predicting the improved electrical output using the only measurement of actual electricity production. However, this concept of the invention can be combined with any other empirical correction system calculation models, implemented on the basis of other measurements for example, without departing from the concept of the invention.
De plus, l'invention a été décrite en utilisant certaines grandeurs importantes comme l'éclairement, qui représente une puissance reçue par unité de surface. En variante, d'autres grandeurs voisines permettent de mettre en oeuvre les mêmes calculs et le même procédé, comme par exemple l'irradiation, qui représente l'énergie reçue par unité de surface. Il est possible de passer de l'éclairement à l'irradiation par une simple conversion et l'utilisation de l'une ou l'autre de ces grandeurs dans le procédé représente des solutions équivalentes.In addition, the invention has been described using certain important quantities such as illumination, which represents a received power per unit area. As a variant, other neighboring quantities make it possible to implement the same calculations and the same method, such as, for example, irradiation, which represents the energy received per unit area. It is possible to switch from irradiance to irradiation by simple conversion and the use of one or other of these magnitudes in the process represents equivalent solutions.
Le procédé de l'invention a été présenté selon un découpage abstrait en différents blocs 30, 40, 50, 60 pour faciliter sa compréhension. Toutefois, il représente un tout indissociable dont les différents éléments peuvent être imbriqués de manière plus complexe. En fait, le procédé se découpe en deux grandes parties principales ; la première partie regroupe les deux premiers blocs 30, 40 et permet de formater les prévisions météorologiques au niveau des modules photovoltaïques du dispositif alors que la seconde partie consiste en un calcul de la production électrique prévisionnelle de ces modules photovoltaïques à partir précisément de ces prévisions météorologiques formatées. Le dernier bloc 60 est en fait un élément appartenant à chacun des trois modèles précédents puisqu'il participe au calcul mis en oeuvre par ces modèles en définissant certains des paramètres importants de ces modèles. Par ce biais, quels que soient les modèles de calcul initiaux servant de point de départ du procédé, des modèles théoriques et/ou empiriques, existants ou non dans l'état de la technique, ces modèles, par leur combinaison avec les étapes mises en oeuvre par le bloc 60 de l'invention deviennent des modèles différents, nouveaux et plus performants. La partie essentielle du procédé décrit précédemment est donc celle mise en oeuvre dans le dernier bloc 60. Cette partie du procédé a été présentée pour des raisons de simplification de la description comme une partie distincte du procédé, mais selon une vision plus juste, comme cela a été explicité ci-dessus, ce dernier bloc 60 est une partie intégrante du procédé, est une partie d'au moins un des trois modèles de calcul principaux mis en oeuvre au sein des trois blocs 30, 40, 50, puisque des paramètres essentiels d'au moins un de ces modèles sont déterminés par ce dernier bloc 60.The method of the invention has been presented according to an abstract division into
Cette invention est adaptée à tout dispositif photovoltaïque, qu'il s'agisse d'une grande unité de production ou d'un petit dispositif photovoltaïque associé à un appareil comme un parcmètre.This invention is suitable for any photovoltaic device, whether it is a large production unit or a small photovoltaic device associated with a device such as a parking meter.
De plus, l'invention permet finalement de déterminer un procédé de prévision de la production électrique d'une installation photovoltaïque fiable et précis. Il permet ainsi d'autres applications comme la mise en oeuvre d'un diagnostic d'une installation photovoltaïque. En effet, en comparant la production réelle avec celle estimée par le modèle, il est possible d'en déduire une mesure de la performance de l'installation photovoltaïque, voire en cas de forte différence de diagnostiquer sa défaillance.In addition, the invention finally makes it possible to determine a method for predicting the electrical output of a reliable and accurate photovoltaic installation. It thus allows other applications such as the implementation of a diagnosis of a photovoltaic installation. Indeed, by comparing the actual production with that estimated by the model, it is possible to deduce a measure of the performance of the photovoltaic installation, or even if there is a big difference to diagnose its failure.
Claims (15)
- Method of forecasting the electrical production of a photovoltaic device comprising photovoltaic modules (1), comprising a first part of estimating the lighting that will be received in the plane of the photovoltaic modules (1) and a second part of estimating the electrical production of the photovoltaic device, characterized in that it comprises the following first step:(E1) - determination of whether a past considered period is sunny or cloudy,
and characterized in that it comprises the following second step (E2) of implementing at least one of the following two steps:(E2) - correction of the second part of the method of forecasting the electrical production based on the measurement of the true electrical production of the photovoltaic modules over the past considered period if this past considered period is sunny; and/or- correction of the first part of the method of forecasting the electrical production based on the measurement of the true electrical production of the photovoltaic modules over the past considered period if this past considered period is cloudy. - Method of forecasting the electrical production of a photovoltaic device according to the previous claim, characterized in that the first step (E1) for determining whether a past considered period is sunny or cloudy comprises the following substeps:(E11) - measurement according to a predefined frequency during the considered period of the true electricity production;(E14) - determination of the theoretical electricity production assuming clear weather;(E15) - analysis of the ratio between the measured electrical power and the theoretical electrical power assuming clear weather, by detecting any abnormal events and/or (E16) analysis of the derivative in this ratio, by detecting any abnormal events;(E17) - determination of the type of day by comparing the quantity of abnormal events detected compared to a predefined threshold, the day being considered to be cloudy beyond this predefined threshold and sunny below this predefined threshold.
- Method of forecasting the electrical production of a photovoltaic device according to the previous claim, characterised in that the determination of the theoretical electricity production in clear weather (E14) is performed based on an estimation of the lighting in the plane of the photovoltaic modules in clear weather (E12) and based on the establishment of a series of ambient temperatures (E13).
- Method of forecasting the electrical production of a photovoltaic device according to claim 2 or 3, characterized in that the analysis (E15) of the ratio between the measured electrical power and the theoretical electrical power assuming clear weather consists in considering any value of this ratio between 0.5 and 1 to be a normal event.
- Method of forecasting the electrical production of a photovoltaic device according to one of claims 2 to 4, characterized in that the analysis (E16) of the derivative of the ratio between the measured electrical power and the theoretical electrical power assuming clear weather consists in considering any event corresponding to an absolute value of the differential coefficient (from the derivative) of between 0 and 0.1 to be a normal event.
- Method of forecasting the electrical production of a photovoltaic device according to one of claims 2 to 5, characterized in that it comprises a preliminary step for detection of natural obstacles such as mountains or buildings, that create shadows at the level of the photovoltaic modules.
- Method of forecasting the electrical production of a photovoltaic device according to one of previous claims, characterized in that the first part of estimating the lighting that will be received in the plane of the photovoltaic modules (1) comprises a first block (30) implementing a first calculation model to determine the horizontal lighting received by the photovoltaic device based on meteorological forecasts and a second block (40) implementing a second calculation model to determine the lighting received in the plane of the photovoltaic devices (1), in that the second part of estimating the electrical production of the photovoltaic device comprises a third block (50) implementing a third calculation model, and in that, if the past considered period is cloudy, then at least one of the first two calculation models implemented by the first (30) and/or the second (40) block is corrected according to the deviation between the true lighting, deduced from the true electrical production measured by an inverse calculation of the third calculation model of the third block (50), and the lighting forecast by the forecasting method, the third calculation model remaining unchanged.
- Method of forecasting the electrical production of a photovoltaic device according to the previous claim, characterized in that, if the past considered period is cloudy, the true lighting in a horizontal plane is deduced from the lighting in the plane of the photovoltaic modules which is deduced from the measurement of the true electrical production by an inverse calculation of the second and third calculation models, and in that this true lighting in the horizontal plane is compared with that forecast by the first calculation model based on meteorological forecasts, this first model being corrected according to the difference between these two lighting values, the second and third calculation models remaining unchanged.
- Method of forecasting the electrical production of a photovoltaic device according to the previous claim, characterized in that the first calculation model comprises weightings of several meteorological forecasts forecast at various points close to the photovoltaic modules, and in that the correction of the first model comprises a phase of evolution of the different weights of the first model.
- Method of forecasting the electrical production of a photovoltaic device according to one of claims 1 to 6, characterized in that the first part of estimating the lighting that will be received in the plane of the photovoltaic modules (1) comprises a first block (30) implementing a first calculation model to determine the horizontal lighting received by the photovoltaic device based on meteorological forecasts and a second block (40) implementing a second calculation model to determine the lighting received in the plane of the photovoltaic devices (1), in that the second part of estimating the electrical production of a photovoltaic device comprises a third block (50) implementing a third calculation model, and in that, if the period is sunny, then the third calculation model is corrected according to the deviation between the measured true electrical production and the electrical production forecast by the method of forecasting the electrical production, the first and second calculation models remaining unchanged.
- Method of forecasting the electrical production of a photovoltaic device according to one of previous claims, characterized in that the correction of the forecasting method according to the value of the measured true electrical production consists in a new calculation of one or more parameter(s) of the method, this or these calculated parameters being immediately modified for the future application of the method or stored before a periodic processing operation making it possible to modify the parameter(s) of the method, this modification relying on statistical calculations and/or based on neural networks and/or artificial intelligence and/or polynomial-type modelling.
- Method of forecasting the electrical production of a photovoltaic device according to one of previous claims, characterized in that the first step (E1) considers a period of a day, and determines whether this day is sunny or cloudy.
- Computer medium comprising a software able to implement the method of forecasting the electrical production of a photovoltaic device according to one of previous claims.
- Photovoltaic device comprising photovoltaic modules (1), and an element for measuring their true electrical production, characterized in that it comprises a management unit (10) implementing the method of forecasting the electrical production according to one of claims 1 to 12.
- Use of the method of forecasting the electrical production of a photovoltaic device according to one of claims 1 to 12 to diagnose the state of a photovoltaic device.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0900223A FR2941328B1 (en) | 2009-01-19 | 2009-01-19 | METHOD FOR PREDICTING THE ELECTRIC PRODUCTION OF A PHOTOVOLTAIC DEVICE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2211300A1 EP2211300A1 (en) | 2010-07-28 |
EP2211300B1 true EP2211300B1 (en) | 2016-11-23 |
Family
ID=40810916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10150771.3A Active EP2211300B1 (en) | 2009-01-19 | 2010-01-14 | Method of forecasting electricity production of photovoltaic means |
Country Status (8)
Country | Link |
---|---|
US (1) | US8396694B2 (en) |
EP (1) | EP2211300B1 (en) |
JP (1) | JP5658881B2 (en) |
CN (1) | CN101795090B (en) |
BR (1) | BRPI1000110A2 (en) |
ES (1) | ES2614607T3 (en) |
FR (1) | FR2941328B1 (en) |
ZA (1) | ZA201000347B (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2010346725B2 (en) * | 2010-02-26 | 2013-11-28 | Kabushiki Kaisha Toshiba | Fault diagnosis device and fault diagnosis method |
US9660576B2 (en) | 2010-05-04 | 2017-05-23 | Solmetric Corporation | Predicting production of photovoltaic systems |
CN102073791A (en) * | 2011-01-12 | 2011-05-25 | 东南大学 | Local solar energy resource abundance evaluating system for design of photovoltaic power station |
FR2975206B1 (en) * | 2011-05-11 | 2014-04-04 | Commissariat Energie Atomique | METHOD FOR PREDICTING THE ENERGY CONSUMPTION OF A BUILDING |
US8395279B2 (en) * | 2011-06-15 | 2013-03-12 | General Electric Company | Shadow detection apparatus using fiber optics for solar-based power generation plants |
JP5752031B2 (en) * | 2011-12-28 | 2015-07-22 | 株式会社富士通アドバンストエンジニアリング | Program, information processing apparatus, information processing method, and information processing system |
JP5985871B2 (en) * | 2012-04-20 | 2016-09-06 | 京セラ株式会社 | Power management apparatus, management server, local weather information generation system, and local weather information generation method |
FR2990509B1 (en) | 2012-05-14 | 2015-09-25 | Commissariat Energie Atomique | ESTIMATING THE DERIVATIVE OF A SOLAR RADIATION SENSOR |
US10962576B2 (en) | 2012-12-28 | 2021-03-30 | Locus Energy, Inc. | Estimation of shading losses for photovoltaic systems from measured and modeled inputs |
US11143680B2 (en) | 2012-12-28 | 2021-10-12 | Locus Energy, Inc. | Estimation of energy losses due to partial equipment failure for photovoltaic systems from measured and modeled inputs |
US20140188410A1 (en) * | 2012-12-28 | 2014-07-03 | Locus Energy, Llc | Methods for Photovoltaic Performance Disaggregation |
US10956629B2 (en) | 2012-12-28 | 2021-03-23 | Locus Energy, Inc. | Estimation of soiling losses for photovoltaic systems from measured and modeled inputs |
US20160162616A1 (en) * | 2014-03-27 | 2016-06-09 | King Fahd University Of Petroleum And Minerals | Performance and life prediction model for photovoltaic module: effect of encapsulant constitutive behavior |
WO2016003861A1 (en) * | 2014-06-30 | 2016-01-07 | Siemens Aktiengesellschaft | Solar power forecasting using mixture of probabilistic principal component analyzers |
FR3038397B1 (en) * | 2015-07-02 | 2019-06-07 | Nextracker Inc. | METHOD FOR CONTROLLING THE ORIENTATION OF A SOLAR FOLLOWER BASED ON MAPPING MODELS |
FR3045850B1 (en) * | 2015-12-21 | 2018-02-02 | Sagemcom Energy & Telecom Sas | METHOD FOR ESTIMATING EXCESS ENERGY |
US10371729B2 (en) | 2016-01-21 | 2019-08-06 | International Business Machines Corporation | Real-time estimation of solar irradiation |
US10508987B2 (en) | 2016-09-12 | 2019-12-17 | Also Energy, Inc. | System and method for remote calibration of irradiance sensors of a solar photovoltaic system |
CN106476976B (en) * | 2016-10-09 | 2022-07-15 | 汉海信息技术(上海)有限公司 | Dish brake lock subassembly, motor and vehicle |
US11545830B2 (en) | 2017-01-18 | 2023-01-03 | Board Of Regents, The University Of Texas System | Systems and methods of hierarchical forecasting of solar photovoltaic energy production |
TWI623890B (en) * | 2017-07-04 | 2018-05-11 | 台灣電力股份有限公司 | System for predicating power generation by utilizing multiple neural networks and method thereof |
FR3069667B1 (en) * | 2017-07-31 | 2022-06-17 | Somfy Activites Sa | COMPATIBILITY TEST PROCEDURE |
CN107545328B (en) * | 2017-08-24 | 2020-09-18 | 许继集团有限公司 | Photovoltaic power station starting capacity prediction method and system |
FR3071319B1 (en) * | 2017-09-18 | 2020-06-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | METHOD FOR MEASURING THE PERFORMANCE OF A RENEWABLE ENERGY POWER PLANT, METHOD FOR DETECTING AN OPERATING FAULT IN A RENEWABLE ENERGY POWER PLANT AND DEVICE IMPLEMENTING SAID METHODS |
FR3074986B1 (en) * | 2017-12-07 | 2021-07-09 | Electricite De France | REMOTE DETECTION OF AN ANOMALY AFFECTING A PHOTOVOLTAIC INSTALLATION |
WO2019187523A1 (en) * | 2018-03-27 | 2019-10-03 | 住友電気工業株式会社 | Determination device, weather information processing device, determination method and weather information processing method |
BE1026424B1 (en) * | 2018-06-29 | 2020-02-03 | L O A D Arch Scprl | Method for pairing a destination and its illumination |
JP7221376B2 (en) | 2019-03-29 | 2023-02-13 | 旭化成株式会社 | Apparatus, method and program |
CN110083190B (en) * | 2019-04-19 | 2020-08-25 | 淮阴工学院 | An Intelligent Monitoring System for Green Pepper Greenhouse Environment Based on Subtractive Clustering Classifier |
CN112801413A (en) * | 2021-03-02 | 2021-05-14 | 国网电子商务有限公司 | Photovoltaic power station generated power prediction method and device |
CN113570126B (en) * | 2021-07-15 | 2024-07-23 | 远景智能国际私人投资有限公司 | Method, device and system for predicting power generation of photovoltaic power station |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0843543A (en) * | 1994-07-29 | 1996-02-16 | Sanyo Electric Co Ltd | Method for judging weather |
JP2972596B2 (en) * | 1996-09-26 | 1999-11-08 | 関西電力株式会社 | Power generation prediction method for photovoltaic power generation system |
JP2000099107A (en) * | 1998-09-25 | 2000-04-07 | Hitachi Ltd | Model predictive control system |
JP2001216287A (en) * | 2000-01-31 | 2001-08-10 | Toshiba Corp | Short term demand prediction device |
JP3743247B2 (en) * | 2000-02-22 | 2006-02-08 | 富士電機システムズ株式会社 | Prediction device using neural network |
JP4169456B2 (en) * | 2000-06-09 | 2008-10-22 | シャープ株式会社 | Photovoltaic power generator and its management system |
US6541754B2 (en) * | 2000-07-05 | 2003-04-01 | Canon Kabushiki Kaisha | Method and apparatus for measuring photoelectric conversion characteristics of photoelectric conversion device |
US7430534B2 (en) * | 2001-06-15 | 2008-09-30 | Abb Ab | System, method and computer program product for risk-minimization and mutual insurance relations in meteorology dependent activities |
JP2004134748A (en) * | 2002-07-26 | 2004-04-30 | Canon Inc | Measuring method and apparatus for photoelectric conversion device, and manufacturing method and apparatus for the photoelectric conversion device |
EP1660917B1 (en) | 2003-08-20 | 2007-11-21 | New Energy Options, Inc. | Method and system for predicting solar energy production |
JP3984604B2 (en) * | 2004-07-12 | 2007-10-03 | 日本電信電話株式会社 | Method, apparatus, and program for predicting power generation amount of solar power generation system |
JP2006268221A (en) * | 2005-03-23 | 2006-10-05 | Toyo Electric Mfg Co Ltd | Predicted-data generation method |
JP4245583B2 (en) * | 2005-04-15 | 2009-03-25 | 日本電信電話株式会社 | Control device, control method, program, and recording medium of distributed energy system |
US7274975B2 (en) * | 2005-06-06 | 2007-09-25 | Gridpoint, Inc. | Optimized energy management system |
JP2007184354A (en) * | 2006-01-05 | 2007-07-19 | Mitsubishi Electric Corp | Solar photovoltaic power generation system |
JP2007281060A (en) * | 2006-04-04 | 2007-10-25 | Nippon Telegr & Teleph Corp <Ntt> | Power generation prediction method for photovoltaic power generation system, device, and program |
JP2008083971A (en) * | 2006-09-27 | 2008-04-10 | Toyohashi Univ Of Technology | Method for simulating a system consisting of solar and wind power generation / cogeneration systems |
US9020650B2 (en) * | 2007-02-13 | 2015-04-28 | General Electric Company | Utility grid, controller, and method for controlling the power generation in a utility grid |
WO2009094226A1 (en) * | 2008-01-24 | 2009-07-30 | Enis Ben M | Method and apparatus for using solar energy to enhance the operation of a compressed air energy storage system |
EP2308197A4 (en) * | 2008-07-31 | 2014-04-16 | Inovus Solar Inc | SOLAR POWER SELF-CONTAINED SELF-CONTAINED EXTERIOR LIGHTING AND ENERGY AND INFORMATION MANAGEMENT NETWORK |
US9422922B2 (en) * | 2009-08-28 | 2016-08-23 | Robert Sant'Anselmo | Systems, methods, and devices including modular, fixed and transportable structures incorporating solar and wind generation technologies for production of electricity |
CA2798827A1 (en) * | 2010-05-07 | 2011-11-10 | Advanced Energy Industries, Inc. | Systems and methods for forecasting solar power |
US8600572B2 (en) * | 2010-05-27 | 2013-12-03 | International Business Machines Corporation | Smarter-grid: method to forecast electric energy production and utilization subject to uncertain environmental variables |
US8165811B2 (en) * | 2011-07-25 | 2012-04-24 | Clean Power Research, L.L.C. | Computer-implemented system and method for determining point-to-point correlation of sky clearness for photovoltaic power generation fleet output estimation |
-
2009
- 2009-01-19 FR FR0900223A patent/FR2941328B1/en not_active Expired - Fee Related
-
2010
- 2010-01-13 US US12/686,793 patent/US8396694B2/en active Active
- 2010-01-14 ES ES10150771.3T patent/ES2614607T3/en active Active
- 2010-01-14 EP EP10150771.3A patent/EP2211300B1/en active Active
- 2010-01-18 ZA ZA201000347A patent/ZA201000347B/en unknown
- 2010-01-18 JP JP2010007844A patent/JP5658881B2/en not_active Expired - Fee Related
- 2010-01-19 BR BRPI1000110-7A patent/BRPI1000110A2/en not_active Application Discontinuation
- 2010-01-19 CN CN201010005408.XA patent/CN101795090B/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
ERBS D G ET AL: "Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation", SOLAR ENERGY, PERGAMON PRESS. OXFORD, GB, vol. 28, no. 4, 1 January 1982 (1982-01-01), pages 293 - 302, XP025416119, ISSN: 0038-092X, [retrieved on 19820101], DOI: 10.1016/0038-092X(82)90302-4 * |
RICHARD PEREZ ET AL: "A NEW SIMPLIFIED VERSION OF THE PEREZ DIFFUSE IRRADIANCE MODEL FOR TILTED SURFACES", SOLAR ENERGY, vol. 39, no. 3, 1 January 1987 (1987-01-01), pages 221 - 231, XP055027209, ISBN: 00384392X/87, Retrieved from the Internet <URL:http://www.physics.arizona.edu/~cronin/Solar/References/Shade effects/sdarticle (24).pdf> [retrieved on 20120515] * |
Also Published As
Publication number | Publication date |
---|---|
CN101795090A (en) | 2010-08-04 |
FR2941328A1 (en) | 2010-07-23 |
US20100185337A1 (en) | 2010-07-22 |
CN101795090B (en) | 2015-05-13 |
ZA201000347B (en) | 2010-09-29 |
EP2211300A1 (en) | 2010-07-28 |
US8396694B2 (en) | 2013-03-12 |
FR2941328B1 (en) | 2012-11-02 |
ES2614607T3 (en) | 2017-06-01 |
JP2010239856A (en) | 2010-10-21 |
JP5658881B2 (en) | 2015-01-28 |
AU2010200174A1 (en) | 2010-08-05 |
BRPI1000110A2 (en) | 2012-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2211300B1 (en) | Method of forecasting electricity production of photovoltaic means | |
JP6193008B2 (en) | Prediction system, prediction device, and prediction method | |
FR3008207A1 (en) | UNIT AND METHOD FOR ENERGY REGULATION OF A SYSTEM FOR PRODUCTION AND ELECTRIC CONSUMPTION | |
FR3135798A1 (en) | Method for predicting power produced by at least one photovoltaic panel | |
EP3648020B1 (en) | Making safe a maintenance operation in a low voltage branch of a power grid | |
EP2976612B1 (en) | Method for producing a thermal diagnosis of a building or of a part of a building | |
FR3131988A1 (en) | Bayesian forecast of individual consumption and balancing of an electricity network | |
EP3499436A1 (en) | System for predicting power consumption over a predetermined period | |
EP2936256B1 (en) | Method of controlling an actuator for a mobile item of equipment in building | |
EP2850402B1 (en) | Estimation of drift in a solar radiation sensor | |
EP3032590A1 (en) | Method and device for detecting a photovoltaic power device in a power distribution network, and related computer programme product | |
FR3083380A1 (en) | AMPACITY OF THE AERIAL LINES BASED ON THE FORECASTS | |
FR3001068A1 (en) | Method for modeling thermal behavior of human being in meeting room of enterprise building, involves modeling living being present in area of building, and cutting model to consider influence of sub-models according to periods of day | |
EP4122074B1 (en) | Method and device for controlling an electrical power station, corresponding computer program and power supply facility | |
EP3721549B1 (en) | Remote detection of an anomaly affecting a photovoltaic installation | |
FR3044128A1 (en) | METHOD AND DEVICE FOR PREDICTING NEBULOSITY BY STATISTICAL TREATMENT OF SELECTED DATA BY SPATIAL ANALYSIS | |
Doornkamp | Dependable Probabilistic Energy Forecasting of Solar Energy for Energy Management Systems | |
WO2015092279A1 (en) | Method for locating an anomaly detected in a tree structure | |
WO2021239581A1 (en) | System and method for monitoring solar energy systems | |
KR20240096139A (en) | Method for detecting anomalies in photovoltaic power generation facilities and predicting generation amount based on energy conversion efficiency coefficient | |
CN118070987A (en) | Pipeline network flow prediction method, device, equipment and storage medium | |
WO2017103393A1 (en) | Method and device for determining a risk of decrease in insolation | |
FR3109646A1 (en) | Method of forecasting the operating time of a connected object | |
CN119558489A (en) | A wind speed data processing method and device | |
WO2015092286A1 (en) | Method for detecting an anomaly in a measurement signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES |
|
17P | Request for examination filed |
Effective date: 20110112 |
|
17Q | First examination report despatched |
Effective date: 20110214 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602010038167 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G06Q0010000000 Ipc: G06Q0010040000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G06Q 50/06 20120101ALI20160419BHEP Ipc: G06Q 10/04 20120101AFI20160419BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160617 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 848516 Country of ref document: AT Kind code of ref document: T Effective date: 20161215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010038167 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161123 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 848516 Country of ref document: AT Kind code of ref document: T Effective date: 20161123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170224 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170223 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170323 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2614607 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010038167 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170223 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
26N | No opposition filed |
Effective date: 20170824 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170114 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170323 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240207 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240115 Year of fee payment: 15 Ref country code: GB Payment date: 20240119 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240110 Year of fee payment: 15 Ref country code: FR Payment date: 20240124 Year of fee payment: 15 |