[go: up one dir, main page]

EP2191200B1 - Vormischstufe für einen gasturbinenbrenner - Google Patents

Vormischstufe für einen gasturbinenbrenner Download PDF

Info

Publication number
EP2191200B1
EP2191200B1 EP08803480A EP08803480A EP2191200B1 EP 2191200 B1 EP2191200 B1 EP 2191200B1 EP 08803480 A EP08803480 A EP 08803480A EP 08803480 A EP08803480 A EP 08803480A EP 2191200 B1 EP2191200 B1 EP 2191200B1
Authority
EP
European Patent Office
Prior art keywords
mass flow
fuel
premixing
combustion
fuel mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08803480A
Other languages
English (en)
French (fr)
Other versions
EP2191200A1 (de
Inventor
Eberhard Deuker
Jürgen MEISL
Bernd Prade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to EP08803480A priority Critical patent/EP2191200B1/de
Publication of EP2191200A1 publication Critical patent/EP2191200A1/de
Application granted granted Critical
Publication of EP2191200B1 publication Critical patent/EP2191200B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices

Definitions

  • the invention relates to a premix stage for a gas turbine combustor, a gas turbine combustor with the premix stage, and a method for adjusting a swirl of a premix stage.
  • a gas turbine has a compressor, a combustion chamber and a turbine.
  • a combustion air-fuel mixture is brought to the ignition, whereby a hot gas stream is formed.
  • the hot gas stream is expanded in the turbine, which drives the compressor and provides a net output.
  • the net power may be, for example, a shaft power for driving a generator in a power plant.
  • both liquid and gaseous fuels can be burned in the combustion chamber.
  • a premix combustion is used in the gas turbine, in which the fuel and the combustion air are passed through a burner as evenly as possible premixed into the combustion chamber.
  • the combustion air-fuel mixture has a large excess of air, whereby the combustion in the combustion chamber is lean.
  • the flame temperature in the combustion chamber is uniformly low, so that the formation of hot spots in the combustion chamber is prevented.
  • the nitrogen oxide formation in the combustion chamber is low.
  • the combustion air-fuel mixture is subjected to a twist in the burner of the combustion chamber, whereby the flow field of the flame and the mixing processes in the flame are improved and thus the stability of the flame in the combustion chamber is increased.
  • the swirl number is known.
  • the swirl number is formed from the ratio of the velocity components in the circumferential direction and in the main flow direction of the combustion air-fuel mixture flow.
  • the operating behavior of the combustion chamber or the burner is highly dependent on the swirl number.
  • a swirl number is desired for full load operation, in which there is good thermoacoustic stability in the combustion chamber.
  • the combustion chamber is operated at the same swirl number in a partial load operation, the combustion takes place in the combustion clamp to form a high CO concentration, so that the outflowing hot gas has a high CO emission.
  • the full load operation with optimal combustion conditions and the partial load operation with only poor combustion conditions are faced.
  • a swirl number is selected for the combustion air-fuel mixture, which represents a compromise in terms of combustion conditions in full load operation and in partial load operation.
  • the swirl number may for example be selected such that a predetermined operating specification in part-load operation, such as a maximum permissible CO emission, is still complied with and in full load operation, the combustion chamber still has a reasonably high performance.
  • this power is lower than the maximum achievable performance of the combustion chamber at full load, whereby the operation of the gas turbine from an energetic point of view is not optimal.
  • the object of the invention is to provide a premixing stage for a gas turbine combustor and a gas turbine combustor with the premix stage, wherein the gas turbine combustor has a high full load capacity and at the same time a further low-emission operating range.
  • Another task is to specify a method for this purpose.
  • the premixing stage according to the invention for a gas turbine burner has a premixing duct, with which a combustion air mass flow can be supplied to the gas turbine burner, at least one first fuel nozzle, which is arranged in the premixing channel such that a first fuel mass flow in the circumferential direction by a first angle and introduced into the Vormischkanal is mixable with the combustion air mass flow, and a fuel mass flow control means for controlling the first fuel mass flow such that the swirl of the combustion air-fuel mixture is adjustable, wherein the premixing channel has an outer wall in which as the first fuel nozzle at least a first hole is provided which at least at the outlet into the interior of the premixing channel in its circumferential direction by the first angle is arranged inclined and the first fuel mass flow from outside the outer wall through the first hole in the interior of the premixing channel with high tangential velocity can be introduced, wherein in the outer wall as a second fuel nozzle at least one zw eites hole is provided which extends at least at the exit into the interior of the
  • the gas turbine burner according to the invention has the premixing stage.
  • the operating behavior of the gas turbine burner is dependent on the swirl, which has the combustion air-fuel mixture.
  • This swirl intensity can be adjusted by means of the premixing stage according to the invention, so that different operating points in the gas turbine burner according to the invention at different predetermined swirl intensities of the combustion air-fuel mixture are operable.
  • predetermined target parameters of the gas turbine combustor such as the thermoacoustic stability and / or the CO emission can be achieved by adjusting the twist of the combustion air-fuel mixture.
  • the premixing stage has at least one second fuel nozzle arranged in the premixing channel such that a second fuel mass flow can be introduced into the premixing channel in its circumferential direction by a second angle, which is a right angle to the circumferential direction of the premixing channel, and can be mixed with the mass flow of combustion air wherein the second angle is different from the first angle, and the fuel mass flow controller is configured to control the first and second fuel mass flow such that with a corresponding split of a given total fuel mass flow to the first fuel nozzle than the first fuel mass flow and to the second fuel nozzle second fuel mass flow of the swirl of the combustion air-fuel mixture is adjustable.
  • the combustion in the gas turbine combustor is further adjusted via the stoichiometric ratio between the total fuel mass flow and the mass air flow of the combustion air.
  • the total fuel mass flow is usually chosen such that in the gas turbine combustion chamber, the combustion proceeds under excess oxygen, so it is lean.
  • the total fuel mass flow is predetermined and controlled to define the combustion conditions in the gas turbine combustor.
  • the swirl of the combustion air-fuel mixture is defined by the magnitude of the first angle.
  • the swirl of the combustion air-fuel mixture is defined by the magnitude of the second angle when the total total fuel mass flow through the second fuel nozzle is added as the second fuel mass flow into the premix channel.
  • the premixing channel has an outer wall in which as the first fuel nozzle at least a first hole is provided, which is arranged inclined at least at the outlet into the interior of the premixing channel in its circumferential direction by the first angle and the first fuel mass flow from outside the outer wall through the first Hole in the interior of the premixing channel high tangential velocity can be introduced.
  • the first angle is determined by the position of the exit of the hole in the interior of the premixing channel.
  • the first fuel mass flow is determined by the narrowest cross section of the first hole and the pressure difference across the first hole.
  • the first fuel mass flow may be controlled by a pressure variation of the fuel from outside the outer wall and / or by a cross-sectional variation of the first hole.
  • the outer wall is provided as the second fuel nozzle at least a second hole, at least at the outlet into the interior of the premixing channel perpendicular to its circumferential direction runs and the second fuel mass flow from outside the outer wall through the second hole in the interior of the premix channel can be introduced.
  • the second fuel mass flow in the premixing channel can be introduced twist-free, so that the swirl of the combustion air-fuel mixture can be at least not increased by increasing the second fuel mass flow. If the combustion air in the premixing duct upstream of the second hole is already flooded, the introduction of the second fuel mass flow leads to a reduction of the twist of the combustion air-fuel mass flow.
  • first and second holes are uniformly distributed over the circumference of the premix channel and arranged alternately.
  • the first fuel mass flow and the second fuel mass flow are distributed evenly distributed in the premixing duct over the circumference, so that the mixing of the first fuel mass flow, the second fuel mass flow and the combustion air is uniform and thus loss.
  • the premixing channel has at least one guide vane with a hollow profile for swirling the mass flow of combustion air, at least one third hole and / or at the pressure side of the vane as a second fuel nozzle at least one fourth hole at the suction side of the vane as a first fuel nozzle are provided, and from within the vane a third fuel mass flow through the third hole and a fourth fuel mass flow through the fourth hole in the interior of the premix channel can be introduced.
  • the combustion air mass flow is deflected, whereby the swirling of the combustion air mass flow can be accomplished.
  • the third fuel mass flow enters the mass air flow through the third hole on the suction side of the vane, so that the third fuel mass flow attenuates the swirl of the mass air flow.
  • the fourth fuel mass flow enters the mass air flow through the fourth hole on the pressure side of the vane, so that the fourth fuel mass flow amplifies the swirl of the mass air flow.
  • the premixing channel has a vane ring which is formed by a plurality of the guide vanes.
  • the swirl impingement of the combustion air mass flow in the premixing duct and thus the swirl influence by the third and the fourth fuel mass flow are evenly distributed over the circumference of the premixing duct.
  • the mixing operations in the premix channel are uniform and low loss.
  • the first and / or the second holes are preferably arranged in the premixing channel downstream of the guide blade.
  • the second holes may also be arranged upstream of the swirl generator or in the swirl generator.
  • the first, second, third and fourth holes can be used as a means for adjusting the twist of the combustion air-fuel mixture.
  • the swirl of the fuel-combustion air mixture is adjustable over a wide range.
  • a gas turbine burner 1 has a premixing stage 2 with a premixing channel 3.
  • the premixing stage 2 has an inner wall 5 and an outer wall 4, which is arranged concentrically around the inner wall 5 and thereby forms the premixing channel 3 together with the inner wall 5.
  • first holes 6 and second holes 7 Distributed over the circumference of the outer wall 4 are provided in this ten pairs of first holes 6 and second holes 7.
  • the first holes 6 and the second holes 7 are each equally spaced over the circumference uniformly distributed and arranged alternately.
  • the first holes 6 are in the in Fig. 1 shown cross section in the outer wall 4 inclined by a first angle 14 to the circumferential direction of the premixing channel 3.
  • the second holes 7 are arranged to extend in the outer wall 4 in the radial direction of the premixing channel 3, so that a second angle 15 to the circumferential direction of the premixing channel 3 is a right angle.
  • the gaseous fuel flows through the first holes 6 as a first fuel mass flow 12 and through the second holes 7 as a second fuel mass flow 13.
  • the first fuel mass flow 12 flows obliquely into the premixing channel 3, so that in Fig. 1 seen the first fuel mass flow 12 with a twist is associated with a clockwise direction of rotation.
  • combustion air which mixes with the first fuel mass flow 12, so that the resulting combustion air-fuel mixture 11 is subjected to the swirl.
  • the second fuel mass flow 13 flows radially into the premixing channel 3, so that the second fuel mass flow 13 does not act on the combustion air-fuel mixture 11 with a twist.
  • the swirl of the combustion air-fuel mixture 11 can be adjusted depending on how large the first fuel mass flow 12 and / or the second fuel mass flow 13 is selected.
  • the premixing stage 2 has a plurality of vanes 8 arranged in the premixing channel 3 as a vane ring.
  • the guide vanes 8 cause a deflection of the combustion air mass flow, so that is acted upon by the guide vanes 8 of the combustion air mass flow with swirl.
  • the guide vanes 8 are designed as hollow profile guide vanes, wherein gaseous fuel is present in the interior of the guide vanes 8.
  • a plurality of third holes 9 is provided through which a third fuel mass flow 12 can escape.
  • a plurality of fourth holes 10 is provided, through which a fourth fuel mass flow 13 can escape.
  • the third fuel mass flow 12 causes an amplification of the swirl of the combustion air-fuel mixture 11, whereas the fourth fuel mass flow 13 causes a reduction in the swirl of the combustion air-fuel mixture 11.
  • the twist of the combustion air-fuel mixture 11 can be adjusted.
  • the first holes 6 and the second holes 7 are located downstream of the trailing edge of the guide vanes 8, so that by an appropriate distribution of the fuel mass flows 12, 13 on the first and / or the second and / or the third and / or the fourth holes 6, 7, 9, 10, the twist of the combustion air-fuel mixture 11 is adjustable.
  • the swirl of the total mass flow of fuel flowing out of the premixing channel 3 can be adjusted when the ratio of the fuel mass flow flowing through the first and second holes 6, 7 and the fuel mass flow flowing through the third and fourth holes 9, 10 is varied, the sum of both fuel mass flows is constant.
  • the method according to the invention thus envisages distributing the fuel mass flow over the guide vanes and via the first and second holes 6, 7 so that the most favorable swirl in the entire fuel / combustion air mixture 11 is set for the respective operating conditions, thus ensuring low emissions to achieve a constant combustion.
  • the fuel mass flow supplied via the holes 6, 7 can be increased (reduced).
  • the control of the fuel mass flows 12, 13 through the first and / or the second and / or the third and / or the fourth holes 6, 7, 9, 10 is accomplished by means of a fuel mass flow control device (not shown) while maintaining a constant total fuel mass flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

  • Die Erfindung betrifft eine Vormischstufe für einen Gasturbinenbrenner, einen Gasturbinenbrenner mit der Vormischstufe und ein Verfahren zum Einstellen eines Dralls einer Vormischstufe.
  • Eine Gasturbine weist einen Verdichter, eine Brennkammer und eine Turbine auf. In der Brennkammer wird ein Brennluft-Brennstoff-Gemisch zur Zündung gebracht, wodurch ein Heißgasstrom entsteht. Der Heißgasstrom wird in der Turbine entspannt, die den Verdichter antreibt und eine Nutzleistung bereitstellt. Die Nutzleistung kann beispielsweise eine Wellenleistung zum Antreiben eines Generators in einem Kraftwerk sein.
  • In der Gasturbine können sowohl flüssige als auch gasförmige Brennstoffe in der Brennkammer verbrannt werden. Herkömmlich wird in der Gasturbine eine Vormischverbrennung angewendet, bei der der Brennstoff und die Brennluft durch einen Brenner möglichst gleichmäßig vorgemischt in die Brennkammer geleitet werden. Dabei weist das Brennluft-Brennstoff-Gemisch einen großen Luftüberschuss auf, wodurch die Verbrennung in der Brennkammer mager ist. Dadurch ist die Flammtemperatur in der Brennkammer gleichmäßig niedrig, so dass die Bildung von heißen Stellen in der Brennkammer unterbunden ist. Somit ist die Stickoxidbildung in der Brennkammer gering.
  • Das Brennluft-Brennstoff-Gemisch wird in dem Brenner der Brennkammer mit einem Drall beaufschlagt, wodurch das Strömungsfeld der Flamme und die Mischungsprozesse in der Flamme verbessert sind und somit die Stabilität der Flamme in der Brennkammer erhöht ist. Als ein Maß für den Drall, mit dem das Brennluft-Brennstoff-Gemisch beaufschlagt ist, ist die Drallzahl bekannt. Die Drallzahl ist gebildet aus dem Verhältnis der Geschwindigkeitskomponenten in Umfangsrichtung und in Hauptströmungsrichtung der Brennluft-Brennstoff-Gemischströmung.
  • Das Betriebsverhalten der Brennkammer bzw. des Brenners ist stark von der Drallzahl abhängig. Beispielsweise ist für den Volllastbetrieb eine Drallzahl angestrebt, bei der eine gute thermoakustische Stabilität in der Brennkammer herrscht. Wird allerdings die Brennkammer bei derselben Drallzahl in einem Teillastbetrieb betrieben, findet die Verbrennung in der Brennklammer unter Ausbilden einer hohen CO-Konzentration statt, so dass das abströmende Heißgas eine hohe CO-Emission hat. Somit stehen sich der Volllastbetrieb bei optimalen Verbrennungsverhältnissen und der Teillastbetrieb bei nur schlechten Verbrennungsverhältnissen gegenüber.
  • Herkömmlich wird für das Brennluft-Brennstoff-Gemisch eine Drallzahl gewählt, die hinsichtlich der Verbrennungsverhältnisse im Volllastbetrieb und im Teillastbetrieb einen Kompromiss darstellt. Die Drallzahl kann beispielsweise derart gewählt sein, dass eine vorherbestimmte Betriebsvorgabe im Teillastbetrieb, wie beispielsweise eine maximal zulässige CO-Emission, noch eingehalten wird und im Volllastbetrieb die Brennkammer dennoch eine vertretbar hohe Leistung hat. Diese Leistung ist allerdings niedriger als die maximal möglich erreichbare Leistung der Brennkammer bei Volllast, wodurch der Betrieb der Gasturbine aus energetischer Sicht nicht optimal ist.
  • Aufgabe der Erfindung ist es, eine Vormischstufe für einen Gasturbinenbrenner und einen Gasturbinenbrenner mit der Vormischstufe zu schaffen, wobei der Gasturbinenbrenner eine hohe Volllastleistung und gleichzeitig einen weiteren emissionsarmen Betriebsbereich hat.
  • Weitere Aufgabe ist es, hierzu ein Verfahren anzugeben.
  • Die erfindungsgemäße Vormischstufe für einen Gasturbinenbrenner weist einen Vormischkanal, mit dem ein Brennluftmassenstrom zu dem Gasturbinenbrenner zuführbar ist, mindestens einer ersten Brennstoffdüse, die in dem Vormischkanal derart angeordnet ist, dass ein erster Brennstoffmassenstrom in den Vormischkanal in dessen Umfangsrichtung um einen ersten Winkel geneigt einbringbar und mit dem Brennluftmassenstrom vermischbar ist, und einer Brennstoffmassenstromsteuerungseinrichtung zum Steuern des ersten Brennstoffmassenstroms derart, dass der Drall des Brennluft-Brennstoff-Gemischs einstellbar ist, wobei der Vormischkanal eine Außenwandung aufweist, in der als die erste Brennstoffdüse mindestens ein erstes Loch vorgesehen ist, das mindestens am Austritt in den Innenraum des Vormischkanals in dessen Umfangsrichtung um den ersten Winkel geneigt angeordnet ist und der erste Brennstoffmassenstrom von außerhalb der Außenwandung durch das erste Loch in das Innere des Vormischkanals mit hoher Tangentialgeschwindigkeit einbringbar ist, wobei in der Außenwandung als eine zweite Brennstoffdüse mindestens ein zweites Loch vorgesehen ist, das mindestens am Austritt in den Innenraum des Vormischkanals senkrecht zu dessen Umfangsrichtung verläuft und der zweite Brennstoffmassenstrom von außerhalb der Außenwandung durch das zweite Loch in das Innere des Vormischkanals einbringbar ist, wodurch der zweite Brennstroffmassenstrom in den Vormischkanal drallfrei eingebracht wird, so dass der zweite Brennstoffmassenstrom das Brennluft-Brennstoff-Gemisch nicht mit einem Drall beaufschlagt.
  • Der erfindungsgemäße Gasturbinenbrenner weist die Vormischstufe auf.
  • Das Betriebsverhalten des Gasturbinenbrenners ist abhängig von dem Drall, den das Brennluft-Brennstoff-Gemisch hat. So ist bei Teillast- und Volllastbetrieb des Gasturbinenbrenners beispielsweise das Erreichen einer guten thermoakustischen Stabilität oder einer niedrigen CO-Emission nur möglich, wenn der Drall des Brennluft-Brennstoff-Gemischs eine entsprechende Stärke hat. Diese Drallstärke ist mittels der erfindungsgemäßen Vormischstufe einstellbar, so dass in dem erfindungsgemäßen Gasturbinenbrenner verschiedene Betriebspunkte bei verschiedenen vorherbestimmten Drallstärken des Brennluft-Brennstoff-Gemischs betreibbar sind. Somit sind entsprechend vorherbestimmte Zielparameter der Gasturbinenbrennkammer, wie beispielsweise die thermoakustische Stabilität und/oder die CO-Emission, durch Einstellen des Dralls des Brennluft-Brennstoff-Gemischs erreichbar.
  • Die Vormischstufe weist mindestens eine zweite Brennstoffdüse auf, die in dem Vormischkanal derart angeordnet ist, dass ein zweiter Brennstoffmassenstrom in den Vormischkanal in dessen Umfangsrichtung um einen zweiten Winkel, welcher zur Umfangsrichtung des Vormischkanals ein rechter Winkel ist, geneigt einbringbar und mit dem Brennluftmassenstrom vermischbar ist, wobei der zweite Winkel von dem ersten Winkel verschieden ist, und die Brennstoffmassenstromsteuerungseinrichtung zum Steuern des ersten und des zweiten Brennstoffmassenstroms derart eingerichtet ist, dass bei einer entsprechenden Aufteilung eines vorgegebenen Gesamtbrennstoffmassenstroms auf die erste Brennstoffdüse als der erste Brennstoffmassenstrom und auf die zweite Brennstoffdüse als ein zweiter Brennstoffmassenstrom der Drall des Brennluft-Brennstoff-Gemischs einstellbar ist.
  • Die Verbrennung in der Gasturbinenbrennkammer wird ferner über das stöchiometrische Verhältnis zwischen dem Gesamtbrennstoffmassenstrom und dem Brennluftmassenstrom eingestellt. Der Gesamtbrennstoffmassenstrom ist in der Regel derart gewählt, dass in der Gasturbinenbrennkammer die Verbrennung unter Sauerstoffüberschuss verläuft, also mager ist. Somit ist neben dem Drall des Brennluft-Brennstoff-Gemischs der Gesamtbrennstoffmassenstrom entsprechend vorgegeben und zu steuern, um die Verbrennungsverhältnisse in der Gasturbinenbrennkammer zu definieren.
  • Wird der gesamte Gesamtbrennstoffmassenstrom durch die erste Brennstoffdüse als der erste Brennstoffmassenstrom in den Vormischkanal gegeben, wird der Drall des Brennluft-Brennstoff-Gemischs durch die Größe des ersten Winkels definiert. In analoger Weise wird der Drall des Brennluft-Brennstoff-Gemischs von der Größe des zweiten Winkels definiert, wenn der gesamte Gesamtbrennstoffmassenstrom durch die zweite Brennstoffdüse als der zweite Brennstoffmassenstrom in den Vormischkanal gegeben wird. Durch den ersten und den zweiten Winkel ist der Drallbereich vorgegeben, der zum Einstellen des Dralls des Brennluft-Brennstoff-Gemischs zur Verfügung steht. Je nach dem, wie der Gesamtbrennstoffmassenstrom auf die erste Brennstoffdüse als der erste Brennstoffmassenstrom und auf die zweite Brennstoffdüse als der zweite Brennstoffmassenstrom aufgeteilt wird, ist der Drall innerhalb des über den ersten und den zweiten Winkel vorgegebenen Bereichs einstellbar. Dadurch sind sowohl der Drall des Brennluft-Brennstoff-Gemischs als auch das stöchiometrische Verhältnis zwischen dem Brennstoff und der Brennluft in dem Brennluft-Brennstoff-Gemisch einstellbar.
  • Der Vormischkanal weist eine Außenwandung auf, in der als die erste Brennstoffdüse mindestens ein erstes Loch vorgesehen ist, das mindestens am Austritt in den Innenraum des Vormischkanals in dessen Umfangsrichtung um den ersten Winkel geneigt angeordnet ist und der erste Brennstoffmassenstrom von außerhalb der Außenwandung durch das erste Loch in das Innere des Vormischkanals hoher Tangentialgeschwindigkeit einbringbar ist.
  • Dadurch ist der erste Winkel durch die Lage des Austritts des Lochs in den Innenraum des Vormischkanals festgelegt. Ferner ist der erste Brennstoffmassenstrom von dem engsten Querschnitt des ersten Lochs und dem Druckunterschied über das erste Loch bestimmt. Somit kann der erste Brennstoffmassenstrom durch eine Druckvariation des Brennstoffs von außerhalb der Außenwandung und/oder durch eine Querschnittsvariation des ersten Lochs gesteuert werden.
  • In der Außenwandung ist als die zweite Brennstoffdüse mindestens ein zweites Loch vorgesehen, das mindestens am Austritt in den Innenraum des Vormischkanals senkrecht zu dessen Umfangsrichtung verläuft und der zweite Brennstoffmassenstrom von außerhalb der Außenwandung durch das zweite Loch in das Innere des Vormischkanals einbringbar ist.
  • Somit ist der zweite Brennstoffmassenstrom in den Vormischkanal drallfrei einbringbar, so dass der Drall des Brennluft-Brennstoff-Gemischs durch eine Erhöhung des zweiten Brennstoffmassenstroms zumindest nicht verstärkt werden kann. Ist die Brennluft in dem Vormischkanal stromauf des zweiten Lochs bereits drallbeaufschlagt, so führt das Einbringen des zweiten Brennstoffmassenstroms zu einer Reduzierung des Dralls des Brennluft-Brennstoff-Massenstroms.
  • Bevorzugt ist, dass die ersten und die zweiten Löcher gleichmäßig über den Umfang des Vormischkanals verteilt und sich abwechselnd angeordnet sind.
  • Dadurch werden der erste Brennstoffmassenstrom und der zweite Brennstoffmassenstrom in den Vormischkanal gleichmäßig über dessen Umfang verteilt eingebracht, so dass das Vermischen von dem ersten Brennstoffmassenstrom, dem zweiten Brennstoffmassenstrom und der Brennluft gleichmäßig und dadurch verlustarm ist.
  • Weiterhin ist es bevorzugt, dass der Vormischkanal mindestens eine Leitschaufel mit einem Hohlprofil zur Drallbeaufschlagung des Brennluftmassenstroms aufweist, wobei an der Saugseite der Leitschaufel als eine erste Brennstoffdüse mindestens ein drittes Loch und/oder an der Druckseite der Leitschaufel als eine zweite Brennstoffdüse mindestens ein viertes Loch vorgesehen sind, sowie von innerhalb der Leitschaufel ein dritter Brennstoffmassenstrom durch das dritte Loch und ein vierter Brennstoffmassenstrom durch das vierte Loch in das Innere des Vormischkanals einbringbar ist.
  • Mittels der Leitschaufel wird der Brennluftmassenstrom umgelenkt, wodurch die Drallbeaufschlagung des Brennluftmassenstroms bewerkstelligbar ist. Der dritte Brennstoffmassenstrom tritt durch das dritte Loch an der Saugseite der Leitschaufel in den Brennluftmassenstrom ein, so dass der dritte Brennstoffmassenstrom den Drall des Brennluftmassenstroms abschwächt. Der vierte Brennstoffmassenstrom tritt durch das vierte Loch an der Druckseite der Leitschaufel in den Brennluftmassenstrom ein, so dass der vierte Brennstoffmassenstrom den Drall des Brennluftmassenstroms verstärkt. Somit kann mittels einer vorherbestimmten Festlegung des Verhältnisses zwischen dem dritten Brennstoffmassenstrom und dem vierten Brennstoffmassenstrom der Einfluss der beiden Brennstoffmassenströme auf den Drall des Brennluft-Brennstoff-Gemischs eingestellt werden.
  • Bevorzugt weist der Vormischkanal einen Leitschaufelkranz auf, der von einer Mehrzahl von den Leitschaufeln gebildet ist.
  • Dadurch ist die Drallbeaufschlagung des Brennluftmassenstroms in dem Vormischkanal und somit die Drallbeeinflussung durch den dritten und den vierten Brennstoffmassenstrom über den Umfang des Vormischkanals gleichmäßig verteilt. Somit sind die Mischvorgänge in dem Vormischkanal gleichmäßig und verlustarm.
  • Bevorzugt sind die ersten und/oder die zweiten Löcher im Vormischkanal stromab der Leitschaufel angeordnet. Die zweiten Löcher können auch stromauf des Drallerzeugers oder in dem Drallerzeuger angeordnet sein.
  • Dadurch sind in Kombination die ersten, zweiten, dritten und vierten Löcher als Mittel zur Einstellung des Dralls des Brennluft-Brennstoff-Gemischs einsetzbar. Somit ist der Drall des Brennstoff-Brennluft-Gemischs über einen weiten Bereich einstellbar.
  • Im Folgenden wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels einer erfindungsgemäßen Gasturbinenbrennkammer anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigt:
  • Fig. 1
    einen Querschnitt durch eine Vormischstufe eines erfindungsgemäßen Gasturbinenbrenners,
    Fig. 2
    einen Längsschnitt der Vormischstufe der Gastur- binenbrennkammer und
    Fig. 3
    eine perspektivische Darstellung der Vormischstufe der Gasturbinenbrennkammer.
  • Wie es aus Fig. 1 bis 3 ersichtlich ist, weist ein Gasturbinenbrenner 1 eine Vormischstufe 2 mit einem Vormischkanal 3 auf. Die Vormischstufe 2 weist eine Innenwandung 5 und eine Außenwandung 4 auf, die konzentrisch um die Innenwandung 5 angeordnet ist und dadurch den Vormischkanal 3 zusammen mit der Innenwandung 5 bildet.
  • Über den Umfang der Außenwandung 4 verteilt sind in dieser zehn Paare von ersten Löchern 6 und zweiten Löchern 7 vorgesehen. Die ersten Löcher 6 und die zweiten Löcher 7 sind jeweils in gleichem Abstand zueinander über den Umfang gleichmäßig verteilt und sich abwechselnd angeordnet. Die ersten Löcher 6 sind in dem in Fig. 1 gezeigten Querschnitt in der Außenwandung 4 um einen ersten Winkel 14 zur Umfangsrichtung des Vormischkanals 3 geneigt angeordnet. Die zweiten Löcher 7 sind in der Außenwandung 4 in der Radialrichtung des Vormischkanals 3 verlaufend angeordnet, so dass ein zweiter Winkel 15 zur Umfangsrichtung des Vormischkanals 3 ein rechter Winkel ist.
  • An der Außenseite der Außenwandung 4 liegt gasförmiger Brennstoff mit einem Überdruck verglichen mit dem Druck im Vormischkanal 3 an. Dadurch strömt der gasförmige Brennstoff durch die ersten Löcher 6 als ein erster Brennstoffmassenstrom 12 und durch die zweiten Löcher 7 als ein zweiter Brennstoffmassenstrom 13. Der erste Brennstoffmassenstrom 12 strömt schräg in den Vormischkanal 3 ein, so dass in Fig. 1 gesehen der erste Brennstoffmassenstrom 12 mit einem Drall mit einer Drehrichtung im Uhrzeigersinn behaftet ist. Im Vormischkanal 3 befindet sich Brennluft, die sich mit dem ersten Brennstoffmassenstrom 12 vermischt, so dass das daraus entstehende Brennluft-Brennstoff-Gemisch 11 mit dem Drall beaufschlagt wird. Der zweite Brennstoffmassenstrom 13 strömt radial in den Vormischkanal 3 ein, so dass der zweite Brennstoffmassenstrom 13 das Brennluft-Brennstoff-Gemisch 11 nicht mit einem Drall beaufschlagt.
  • Somit kann, je nach dem wie groß der erste Brennstoffmassenstrom 12 und/oder der zweite Brennstoffmassenstrom 13 gewählt ist, der Drall des Brennluft-Brennstoff-Gemischs 11 eingestellt werden.
  • Ferner weist die Vormischstufe 2 eine Mehrzahl von Leitschaufeln 8 auf, die in dem Vormischkanal 3 als ein Leitschaufelkranz angeordnet sind. Die Leitschaufeln 8 bewirken eine Umlenkung des Brennluftmassenstroms, so dass durch die Leitschaufeln 8 der Brennluftmassenstrom mit Drall beaufschlagt wird. Die Leitschaufeln 8 sind als Hohlprofilleitschaufeln ausgeführt, wobei im Inneren der Leitschaufeln 8 gasförmiger Brennstoff ansteht.
  • An der Saugseite der Leitschaufeln 8 ist eine Mehrzahl von dritten Löchern 9 vorgesehen, durch die ein dritter Brennstoffmassenstrom 12 austreten kann. An der Druckseite der Leitschaufeln 8 ist eine Mehrzahl von vierten Löchern 10 vorgesehen, durch die ein vierter Brennstoffmassenstrom 13 austreten kann. Die Brennstoffmassenströme 12, 13, die durch die dritten und/oder vierten Löcher 9, 10 in den Brennluftmassenstrom eintritt, vermischen sich mit diesem und bildet das Brennluft-Brennstoff-Gemisch. Der dritte Brennstoffmassenstrom 12 bewirkt eine Verstärkung des Dralls des Brennluft-Brennstoff-Gemischs 11, wohingegen der vierte Brennstoffmassenstrom 13 eine Absenkung des Dralls des Brennluft-Brennstoff-Gemischs 11 bewirkt. Somit kann je nach Stärke des dritten Brennstoffmassenstroms 12 und des vierten Brennstoffmassenstroms 13 der Drall des Brennluft-Brennstoff-Gemischs 11 eingestellt werden.
  • Die ersten Löcher 6 und die zweiten Löcher 7 sind stromab der Hinterkante der Leitschaufeln 8 angesiedelt, so dass durch eine entsprechende Verteilung der Brennstoffmassenströme 12, 13 auf die ersten und/oder die zweiten und/oder die dritten und/oder die vierten Löcher 6, 7, 9, 10 der Drall des Brennluft-Brennstoff-Gemischs 11 einstellbar ist.
  • Insbesondere kann der Drall des aus dem Vormischkanal 3 insgesamt ausströmende Brennluftmassenstrom eingestellt werden, wenn das Verhältnis von durch die ersten und zweiten Löcher 6, 7 ausströmenden Brennstoffmassenstrom und dem durch die dritten und vierten Löcher 9, 10 ausströmenden Brennstoffmassenstrom variiert wird, die Summe beider Brennstoffmassenströme konstant ist.
  • Das erfindungsgemäße Verfahren sieht somit vor die Zuführung des Brennstoffmassenstroms über die Leitschaufeln und über die ersten und zweiten Löcher 6, 7 so aufzuteilen, das jeweils für die entsprechenden Betriebsbedingungen der günstigste Drall im gesamten Brennstoff-Brennluft-Gemisch 11 eingestellt wird, um so geringe Emissionen bei einer konstanten Verbrennung zu erzielen. Für eine Verstärkung (Abschwächung) des von den Leitschaufeln aufgeprägten Dralls kann der über die Löcher 6, 7 zugeführte Brennstoffmassenstrom vergrößert (verkleinert) werden.
  • Die Steuerung der Brennstoffmassenströme 12, 13 durch die ersten und/oder die zweiten und/oder die dritten und/oder die vierten Löcher 6, 7, 9, 10 ist mittels einer Brennstoffmassenstromsteuerungseinrichtung (nicht gezeigt) unter Beibehaltung eines konstanten Gesamtbrennstoffmassenstroms bewerkstelligbar.

Claims (9)

  1. Vormischstufe für einen Gasturbinenbrenner (1), mit einem Vormischkanal (3), mit dem ein Brennluftmassenstrom zu dem Gasturbinenbrenner (1) zuführbar ist, mindestens einer ersten Brennstoffdüse (6, 9), die in dem Vormischkanal (3) derart angeordnet ist, dass ein erster Brennstoffmassenstrom (12) in den Vormischkanal (3) in dessen Umfangsrichtung um einen ersten Winkel (14) geneigt einbringbar und mit dem Brennluftmassenstrom vermischbar ist, und einer Brennstoffmassenstromsteuerungseinrichtung zum Steuern des ersten Brennstoffmassenstroms (12) derart, dass der Drall des daraus entstehenden Brennluft-Brennstoff-Gemischs (11) einstellbar ist, wobei der Vormischkanal (3) eine Außenwandung (4) aufweist, in der als die erste Brennstoffdüse mindestens ein erstes Loch (6) vorgesehen ist, das mindestens am Austritt in den Innenraum des Vormischkanals (3) in dessen Umfangsrichtung um den ersten Winkel (14) geneigt angeordnet ist und der erste Brennstoffmassenstrom von außerhalb der Außenwandung (4) durch das erste Loch (6) in das Innere des Vormischkanals (3) mit hoher Tangentialgeschwindigkeit einbringbar ist, dadurch gekennzeichnet, dass
    in der Außenwandung (4) als eine zweite Brennstoffdüse mindestens ein zweites Loch (7) vorgesehen ist, das mindestens am Austritt in den Innenraum des Vormischkanals (3) senkrecht zu dessen Umfangsrichtung verläuft und der zweite Brennstoffmassenstrom (13) von außerhalb der Außenwandung (4) durch das zweite Loch in das Innere des Vormischkanals (3) einbringbar ist, wodurch der zweite Brennstroffmassenstrom (13) in den Vormischkanal (3) drallfrei eingebracht wird, so dass der zweite Brennstoffmassenstrom (13) das Brennluft-Brennstoff-Gemisch (11) nicht mit einem Drall beaufschlagt.
  2. Vormischstufe gemäß Anspruch 1,
    wobei die ersten und die zweiten Löcher (6, 7) gleichmäßig über den Umfang des Vormischkanals (3) verteilt und sich abwechselnd angeordnet sind.
  3. Vormischstufe gemäß Anspruch 2,
    wobei der Vormischkanal (3) mindestens eine Leitschaufel (8) mit einem Hohlprofil zur Drallbeaufschlagung des Brennluftmassenstroms aufweist,
    wobei an der Saugseite der Leitschaufel (8) als eine erste Brennstoffdüse mindestens ein drittes Loch (9) und/oder an der Druckseite der Leitschaufel (8) als eine zweite Brennstoffdüse mindestens ein viertes Loch (10) vorgesehen sind, sowie von innerhalb der Leitschaufel (8) ein dritter Brennstoffmassenstrom (12) durch das dritte Loch (9) und ein vierter Brennstoffmassenstrom (13) durch das vierte Loch (10) in das Innere des Vormischkanals (3) einbringbar ist.
  4. Vormischstufe gemäß Anspruch 3,
    wobei der Vormischkanal (3) einen Leitschaufelkranz aufweist, der von einer Mehrzahl von den Leitschaufeln (8) gebildet ist.
  5. Vormischstufe gemäß einem der Ansprüche 1 bis 4,
    wobei die ersten und/oder die zweiten Löcher (6, 7) im Vormischkanal (3) stromab der Leitschaufel (8) angeordnet sind.
  6. Vormischstufe gemäß Anspruch 1,
    wobei der Vormischkanal (3) einen Kranz von hohlen Leitschaufeln (8) zur Drallbeaufschlagung des Brennluftmassenstroms aufweist.
  7. Gasturbinenbrenner mit einer Vormischstufe gemäß einem der Ansprüche 1 bis 6.
  8. Gasturbinenbrennkammer mit einem Gasturbinenbrenner gemäß Anspruch 7.
  9. Verfahren zum Einstellen des Dralls eines Brennluft-Brennstoff-Gemischs (11) einer Vormischstufe gemäß einem der Ansprüche 1 bis 8,bei dem zur Veränderung des im Brennluft-Brennstoff-Gemisch vorhandenen Dralls ein Brennstoffmassenstrom in Umfangsrichtung in das Brennluft-Brennstoff-Gemisch zusätzlich einbringbar ist.
EP08803480A 2007-09-25 2008-09-01 Vormischstufe für einen gasturbinenbrenner Not-in-force EP2191200B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08803480A EP2191200B1 (de) 2007-09-25 2008-09-01 Vormischstufe für einen gasturbinenbrenner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07018857A EP2042807A1 (de) 2007-09-25 2007-09-25 Vormischstufe für einen Gasturbinenbrenner
PCT/EP2008/061499 WO2009040218A1 (de) 2007-09-25 2008-09-01 Vormischstufe für einen gasturbinenbrenner
EP08803480A EP2191200B1 (de) 2007-09-25 2008-09-01 Vormischstufe für einen gasturbinenbrenner

Publications (2)

Publication Number Publication Date
EP2191200A1 EP2191200A1 (de) 2010-06-02
EP2191200B1 true EP2191200B1 (de) 2011-06-22

Family

ID=39356539

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07018857A Withdrawn EP2042807A1 (de) 2007-09-25 2007-09-25 Vormischstufe für einen Gasturbinenbrenner
EP08803480A Not-in-force EP2191200B1 (de) 2007-09-25 2008-09-01 Vormischstufe für einen gasturbinenbrenner

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07018857A Withdrawn EP2042807A1 (de) 2007-09-25 2007-09-25 Vormischstufe für einen Gasturbinenbrenner

Country Status (3)

Country Link
EP (2) EP2042807A1 (de)
AT (1) ATE514039T1 (de)
WO (1) WO2009040218A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187408B2 (en) * 2019-04-25 2021-11-30 Fives North American Combustion, Inc. Apparatus and method for variable mode mixing of combustion reactants
CN116221777A (zh) * 2023-02-20 2023-06-06 中国船舶重工集团公司第七0三研究所 一种流道可调节的燃烧室头部结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613363A (en) * 1994-09-26 1997-03-25 General Electric Company Air fuel mixer for gas turbine combustor
AU2003238524A1 (en) * 2002-05-16 2003-12-02 Alstom Technology Ltd Premix burner
GB0219458D0 (en) * 2002-08-21 2002-09-25 Rolls Royce Plc Fuel injection apparatus
EP1394471A1 (de) * 2002-09-02 2004-03-03 Siemens Aktiengesellschaft Brenner
US6623267B1 (en) * 2002-12-31 2003-09-23 Tibbs M. Golladay, Jr. Industrial burner
EP1568942A1 (de) * 2004-02-24 2005-08-31 Siemens Aktiengesellschaft Vormischbrenner sowie Verfahren zur Verbrennung eines niederkalorischen Brenngases
JP4486549B2 (ja) * 2005-06-06 2010-06-23 三菱重工業株式会社 ガスタービンの燃焼器
EP1892469B1 (de) * 2006-08-16 2011-10-05 Siemens Aktiengesellschaft Drallerzeugerkanal und Brenner für eine Gasturbine
US7631500B2 (en) * 2006-09-29 2009-12-15 General Electric Company Methods and apparatus to facilitate decreasing combustor acoustics

Also Published As

Publication number Publication date
WO2009040218A1 (de) 2009-04-02
EP2042807A1 (de) 2009-04-01
ATE514039T1 (de) 2011-07-15
EP2191200A1 (de) 2010-06-02

Similar Documents

Publication Publication Date Title
EP1064498B1 (de) Gasturbinenbrenner
DE19615910B4 (de) Brenneranordnung
DE102009003639B4 (de) Verfahren und Systeme zur Verminderung von Verbrennungsdynamik
EP1654496B1 (de) Brenner und verfahren zum betrieb einer gasturbine
EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
EP0576697B1 (de) Brennkammer einer Gasturbine
EP0924470B1 (de) Vormischbrennkammer für eine Gasturbine
DE102010061639B4 (de) Verfahren zum Betreiben einer sekundären Brennstoffdüse für eine Brennkammer einer Turbomaschine
DE102009025934A1 (de) Diffusionsspitze für magere Direkteinspritzung und zugehöriges Verfahren
DE69010973T2 (de) Brenner.
DE10104695B4 (de) Vormischbrenner für eine Gasturbine
EP1217297A1 (de) Brenner mit hoher Flammenstabilität
EP1235033B1 (de) Verfahren zum Betrieb einer Ringbrennkammer sowie eine Ringbrennkammer
DE4446842A1 (de) Verfahren und Vorrichtung zum Zuleiten eines gasförmigen Brennstoffs in einen Vormischbrenner
DE102008037381A1 (de) Vormischeinrichtung zur verbesserten Flammenhaltung und Rückschlagfestigkeit
EP2601447A2 (de) Gasturbinenbrennkammer
EP2703720A2 (de) Verfahren zum Betrieb eines Magervormischbrenners einer Fluggasturbine sowie Vorrichtung zur Durchführung des Verfahrens
WO2005121649A2 (de) Injektor für flüssigbrennstoff sowie gestufter vormischbrenner mit diesem injektor
WO2005095864A1 (de) Mehrfachbrenneranordnung zum betrieb einer brennkammer sowie verfahren zum betreiben der mehrfachbrenneranordnung
EP2587158A1 (de) Brennkammer für eine Gasturbine und Brenneranordnung
EP1062461B1 (de) Brennkammer und verfahren zum betrieb einer brennkammer
EP2191200B1 (de) Vormischstufe für einen gasturbinenbrenner
EP2288852B1 (de) Verfahren zum betreiben eines vormischbrenners und ein vormischbrenner zur durchführung des verfahrens
WO2009003729A1 (de) Brenner und verfahren zum betreiben eines brenners
EP2407715B1 (de) Brenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003977

Country of ref document: DE

Effective date: 20110804

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110922

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111022

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111024

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

26N No opposition filed

Effective date: 20120323

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008003977

Country of ref document: DE

Effective date: 20120323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111003

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110622

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 514039

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151120

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008003977

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901