EP2190082B1 - Surface emitting semi-conductor laser diode and method for manufacturing the same - Google Patents
Surface emitting semi-conductor laser diode and method for manufacturing the same Download PDFInfo
- Publication number
- EP2190082B1 EP2190082B1 EP09175845A EP09175845A EP2190082B1 EP 2190082 B1 EP2190082 B1 EP 2190082B1 EP 09175845 A EP09175845 A EP 09175845A EP 09175845 A EP09175845 A EP 09175845A EP 2190082 B1 EP2190082 B1 EP 2190082B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- laser diode
- layer
- semiconductor laser
- semiconductor
- bragg reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/11—Comprising a photonic bandgap structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18355—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18361—Structure of the reflectors, e.g. hybrid mirrors
- H01S5/18369—Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3095—Tunnel junction
Definitions
- the present invention relates to a surface emitting semiconductor laser diode according to the preamble of claim 1 and a method for producing such a surface emitting semiconductor laser diode.
- Surface-emitting laser diodes are semiconductor lasers in which the light emission takes place perpendicular to the surface of the semiconductor chip. Compared to conventional edge-emitting laser diodes, the surface-emitting laser diodes have several advantages, such as low electrical power consumption, the ability to directly inspect the laser diode on the wafer, ease of coupling to a fiber, longitudinal single-mode spectra, and the ability to interface the surface-emitting laser diodes to a two-dimensional one Matrix.
- Generic surface emitting semiconductor laser diodes with an emission wavelength ⁇ have a resonator comprising at least a first Bragg reflector layer sequence (DBR), an active zone having a pn junction, and a second Bragg reflector layer sequence.
- DBR first Bragg reflector layer sequence
- Such laser diodes As a rule, they have a cylindrically symmetrical structure and, because of their design and their production processes, have no preferred direction for the polarization direction of the radiated wave. There are therefore two orthogonal states with respect to the polarization direction of the radiated wave. In an ideal laser structure, these two states are energetically degenerate and on an equal footing for laser operation.
- Another approach involves applying dielectric or metallic grating structures having periods in the wavelength range to the coupling-out mirror. This is for example in the publication " Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings ", Appl. Phys. Lett., 66, 2769 (1995 ) or the DE 103 53 951 A1 described.
- the dielectric grids used lead to interference effects, whereby the total reflection is polarization-dependent amplified or attenuated by the grid.
- the period of the corresponding grating structures must therefore be more than half a vacuum wavelength.
- metal / dielectric or metal / semiconductor structures with periods smaller than the wavelength of the VCSEL to one of the two Bragg reflector layer sequences in order to generate a birefringence polarization.
- This is for example in the publication " Polarization control of vertical-cavity surface emitting lasers using a birefringent Bragg Reflector ", IEEE J. Sel. Top. Quantum. Electron. 1, 667 (1995 ) or the JP 80 56 049 (A ) disclosed.
- metal-dielectric gratings are used to generate birefringence in the laser resonator.
- JP 2005 039102 A a structure in which the periodic grating is located between the two Bragg reflector sequences.
- this structure consists of two separate and independent components, with the periodic lattice not being in direct contact with either of the two Bragg reflector lobe sequences. Problems that are typical in the production of one-piece or monolithic diodes, such as diffusion, therefore, do not occur in this embodiment.
- FIG US 2003/0048827 A1 Another embodiment of a periodic grating is shown in FIG US 2003/0048827 A1 described.
- a monolithic structure is used in which the grid is epitaxially integrated into one of the two semiconductor Bragg reflector layer sequences.
- the alternating layer system is based primarily on a different doping. However, only comparatively small refractive index differences can be produced hereby, which does not result in sufficient polarization mode splitting.
- the object is thus to improve the polarization orientation and polarization stability in surface-emitting semiconductor laser diodes.
- the present invention presents a polarization stable VCSEL.
- the invention includes the integration of a periodic structure with a defined orientation, geometry and a defined refractive index profile within the monolithic VCSEL resonator in the form of a subwavelength grating: SWG).
- SWG subwavelength grating
- the structure enables deterministic and stable polarization behavior with high polarization mode side-mode rejection and insensitivity to feedback.
- the laser diode according to the invention also prefers the lateral basic mode, even at relatively large apertures, which results in a higher total Achieve single-mode performance as compared to conventional VCSELs.
- the grating structure is mounted on the outside of the Auskoppelspiegel, whereby the quality of the reflection and polarization properties to be achieved is limited.
- a periodic structure of semiconducting material on the one hand and dielectric material on the other hand is suitable for being arranged inside the resonator.
- the structure has a sufficiently large refractive index contrast in order to predetermine a preferred polarization direction by means of birefringence.
- the period of the periodic structure is at most one, preferably at most half an emission wavelength.
- emission wavelength is always understood to mean the vacuum wavelength.
- the period of the structure is at most ⁇ / n, preferably at most ⁇ / 2n, where n is a function of the refractive index of the semiconducting material and / or the refractive index of the dielectric material.
- n corresponds to a so-called effective refractive index, which is calculated in particular as the average of the two refractive indices, preferably arithmetically weighted. It is likewise preferred if n is the larger of the two refractive indices equivalent. In such an embodiment, the polarization-dependent averaging of the refractive index is particularly pronounced.
- the land and pit widths could each be 200 nm. It is expected that the smaller the period length, the better the polarization stability.
- the periodic structure directly adjoins the second Bragg reflector layer sequence.
- the present embodiment thus teaches, in particular, to produce an effective birefringence by arranging a semiconductor / dielectric structure within the resonator, wherein the structure is placed in front of a metallic, dielectric or hybrid metallic-dielectric mirror.
- the dielectric material of the periodic structure is equal to the material of the adjacent layer of the second Bragg reflector layer sequence.
- a mask is first defined. This is done by relevant nanostructure techniques such as electron beam lithography, nanoimprint, holography, etc.
- the previously defined structure is transferred into the semiconductor.
- the etching depth is chosen so that there is a stable preferred direction of polarization.
- the etching depth is, for example, ⁇ 200 nm for a long-wave InP-based VCSEL.
- the etching depth may be in particular between 0.1 and 2, preferably between 0.5 and 1, preferably about 0.5, period lengths.
- the exposed structure is vapor-deposited with a dielectric material which immediately transitions into a Bragg-mirror layer sequence, for example of ZnS / CaF 2 or a-Si / CaF 2 .
- a dielectric material which immediately transitions into a Bragg-mirror layer sequence, for example of ZnS / CaF 2 or a-Si / CaF 2 .
- both the thickness of the semiconductive layer and the thickness of the first dielectric mirror layer should be modified to achieve maximum polarization stability.
- the reflection within the Bragg mirror should be in phase for reflection at the interface between structure and Bragg mirror.
- the second Bragg reflector layer sequence comprises a number of amorphous dielectric layers.
- the production can be simplified.
- a final layer for example of gold, be applied.
- the second Bragg reflector layer sequence is usually the back mirror of the VCSEL.
- the coupling-out mirror of the VCSEL is usually applied directly to the substrate during production as an epitaxial layer sequence.
- the resonator further comprises a tunnel contact layer on the p-side of the active zone.
- a tunnel contact layer on the p-side of the active zone.
- a dimension for example, a length or a diameter, or the area of the projection of the periodic structure on the tunnel contact layer corresponds to at least one dimension or the area of an aperture of the tunnel contact layer.
- the generation of the laser radiation takes place essentially in the area defined horizontally by the aperture of the tunnel contact layer. In order to obtain a good polarization stability, should the periodic structure extending at least on this surface.
- the tunnel contact layer adjoins an n-doped semiconductor layer.
- This semiconductor layer can serve to supply power and contacting the BTJ.
- this semiconductor layer may adjoin or include the semiconducting material for the periodic structure so that the semiconductor layer directly merges into the periodic structure.
- a resonator comprising at least a first Bragg reflector layer sequence, an active zone having a pn junction and a second Bragg reflector layer sequence are applied to a substrate. Furthermore, a periodic structure of semiconducting material, on the one hand, and dielectric material, on the other hand, is applied within the resonator, the main extension plane of which is arranged essentially perpendicular to the emission direction. With the method according to the invention, a laser diode according to the invention can be produced particularly reliably or reproducibly and with high quality.
- the n-doped epitaxial Bragg mirror formed first Bragg reflector layer sequence first the n-doped epitaxial Bragg mirror formed first Bragg reflector layer sequence, then an n-doped confinement layer, then the pn junction having an active zone, then applied a p-doped confinement layer and then a tunnel contact layer. After that, the Tunnel contact layer structured to produce an aperture. Subsequently, a semiconductor layer is deposited, which is patterned to define the periodic structure. Subsequently, the second Bragg reflector layer sequence is applied. This preferred manufacturing process results in high quality laser diodes with good beam power and polarization stability.
- FIGS. 1 and 2 cross-described characters, with the same elements are provided with the same reference numerals.
- FIGS. 1 and 2 a first and second preferred embodiment of a laser diode according to the invention is shown schematically in a sectional view and designated 100 and 200 in total.
- the laser radiation occurs in both FIGS. 1 and 2 in the direction designated A from.
- a first Bragg reflector layer sequence formed here as an n-doped epitaxial Bragg mirror 20, an n-doped confinement layer 30, an active zone 40 and a p-doped confinement layer 50 are successively applied in a first epitaxial growth process .
- the Bragg mirror 20 consists of an epitaxial DBR with a reflectivity> 99%. % results.
- the structure is completed by the growth of a tunnel contact layer 60 consisting, for example, of a highly p + and n + -doped InGaAs layer, which is located in a node (minimum) of the longitudinal field.
- a free-dimensional aperture D1 is generated in the layer 60, which extends either to the layer 50 or within the p-doped portion of layer 60 ends. Typical etch depths are 20 nm here.
- an upper n-doped current supply layer 70 preferably made of InP
- an optional n-contact layer 75 preferably made of highly n-doped InGaAs
- a periodic structure 80 is generated.
- a mask is defined on the exposed semiconductor layer 70, for which, for example, nanostructure techniques such as electron beam lithography, nanoimprint or holography are suitable.
- the previously defined structure is transferred into the semiconductor layer 70.
- the etching depth is, for example, ⁇ 200 nm for a long-wave InP-based VCSEL.
- the exposed grating is subsequently vapor-deposited with a second Bragg reflector layer sequence formed here as dielectric Bragg mirror 90, for example of ZnS / CaF 2 or a-Si / CaF 2 ,
- the periodic structure 80 is thus composed of portions of the semiconductor layer 70 and portions of the first and adjacent dielectric layers 90a, respectively.
- the main extension plane of the structure 80 is arranged substantially perpendicular to the emission direction A of the semiconductor laser diode 100.
- second preferred embodiment 200 differs from the laser diode 100 in that there is a reversal of the layer sequence.
- this is terminated by a gold layer 210, resulting in a reflectivity of almost 99.9%.
- the substrate becomes (Substrate 10 acc. FIG. 1 ), for example, by known etching techniques removed.
- a, for example, annular, contact layer 220 is applied for contacting the laser diode 200.
- D1 denotes a dimension (aperture) of the tunnel contact layer 60
- D2 denotes a dimension of the periodic structure 80.
- FIG. 3 shows a vertical view of the lattice plane.
- a lacquer layer 300 is first applied to the exposed semiconductor layer 70 and the structure to be produced is transferred into it.
- known nanostructure techniques such as electron beam lithography, nanoimprint or holography are suitable. After the development of the paint, the predefined structure is obtained.
- the predefined structure is transferred into the semiconductor layer 70 by an etching process, and the resist layer 300 is subsequently removed.
- a diffraction grating-type periodic structure having a period length P and a duty ratio of 1: 1 is obtained, so that the land widths L2 correspond to the pit widths L1.
- the etching depth H is chosen so that a stable preferred direction of the polarization results. In the present example, the etch depth corresponds to about 0.5 P.
- the period P of the structure ⁇ / n where ⁇ is the emission wavelength of the laser and n is the larger of the two refractive indices involved.
- ⁇ 1310 nm
- InP refractive index n 3.2
- the ridge widths L2, the pit widths L1 and the etching depth H are approximately 200 nm each.
- the resist mask 300 is removed and covers the exposed structure with a dielectric layer 90a, which simultaneously represents the first layer of a dielectric Bragg mirror 90, for example, from ZnS / CaF 2, or a-Si / CaF. 2
- the lateral extent D2 of the grating 80 should correspond at least to the extent D1 of the buried tunnel contact 60.
- inventive structure can be applied to (BTJ) VCSEL in various material systems. These include u.a. GaAs, InP or GaSb based devices.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
Die vorliegende Erfindung betrifft eine oberflächenemittierende Halbleiterlaserdiode nach dem Oberbegriff des Patentanspruchs 1 und ein Verfahren zur Herstellung einer solchen oberflächenemittierenden Halbleiterlaserdiode.The present invention relates to a surface emitting semiconductor laser diode according to the preamble of claim 1 and a method for producing such a surface emitting semiconductor laser diode.
Oberflächenemittierende Laserdioden (engl.: Vertical-Cavity Surface-Emitting Laser - VCSEL) stellen Halbleiterlaser dar, bei denen die Lichtemission senkrecht zur Oberfläche des Halbleiterchips stattfindet. Verglichen mit konventionellen, kantenemittierenden Laserdioden weisen die oberflächenemittierenden Laserdioden mehrere Vorteile auf, wie einen geringen elektrischen Leistungsverbrauch, die Möglichkeit der unmittelbaren Überprüfung der Laserdiode auf dem Wafer, einfache Ankopplungsmöglichkeiten an eine Glasfaser, longitudinale Einmodenspektren und die Möglichkeit der Zusammenschaltung der oberflächenemittierenden Laserdioden zu einer zweidimensionalen Matrix.Surface-emitting laser diodes (Vertical Cavity Surface-Emitting Lasers - VCSEL) are semiconductor lasers in which the light emission takes place perpendicular to the surface of the semiconductor chip. Compared to conventional edge-emitting laser diodes, the surface-emitting laser diodes have several advantages, such as low electrical power consumption, the ability to directly inspect the laser diode on the wafer, ease of coupling to a fiber, longitudinal single-mode spectra, and the ability to interface the surface-emitting laser diodes to a two-dimensional one Matrix.
Gattungsgemäße oberflächenemittierende Halbleiterlaserdioden mit einer Emissionswellenlänge λ (=Vakuumwellenlänge) weisen einen Resonator auf, der zumindest eine erste Bragg-Reflektorschichtenfolge (engl.: Distributed Bragg Reflector - DBR), eine einen pn-Übergang aufweisende aktive Zone und eine zweite Bragg-Reflektorschichtenfolge umfasst. Derartige Laserdioden besitzen in der Regel eine zylindersymmetrische Struktur und weisen aufgrund ihres Designs sowie ihrer Herstellungsverfahren keine Vorzugsrichtung für die Polarisationsrichtung der abgestrahlten Welle auf. Es existieren daher zwei orthogonale Zustände bzgl. der Polarisationsrichtung der abgestrahlten Welle. In einer idealen Laserstruktur sind diese beiden Zustände energetisch entartet und für den Laserbetrieb gleichberechtigt. Aufgrund des elektrooptischen Effektes und von Anisotropien im Bauelementedesign sowie Asymmetrien und Fluktuationen des Herstellungsprozesses wird diese Entartung jedoch aufgehoben und der VCSEL schwingt dominant nur auf der jeweils bevorzugten Polarisationsmode. In den meisten Fällen ist der zur Bevorzugung einer bestimmten Mode führende Mechanismus schwer kontrollierbar bzw. nicht offensichtlich, womit sich insgesamt ein statistischer Charakter des Polarisationsverhaltens ergibt. Die Polarisationssprünge limitieren generell den Einsatz in polarisationsabhängigen optischen Systemen. Beispielsweise führen solche Sprünge in der optischen Datenübertragung zu einem erhöhten Rauschen. Da viele Anwendungen auf polarisationsstabile Laser als Lichtquellen angewiesen sind, bedeutet dies eine signifikante Reduktion der Produktionsausbeute. In manchen Fällen ist zwar eine Vorzugsrichtung definierbar, doch ist die Aufhebung der Entartung nicht stark genug, um Polarisationsstabilität bei veränderlichen Umgebungs- und Betriebsbedingungen zu gewährleisten. In diesem Fall können selbst leichte Veränderungen dieser Parameter einen Wechsel zwischen den beiden Zuständen (Polflip) bewirken.Generic surface emitting semiconductor laser diodes with an emission wavelength λ (= vacuum wavelength) have a resonator comprising at least a first Bragg reflector layer sequence (DBR), an active zone having a pn junction, and a second Bragg reflector layer sequence. Such laser diodes As a rule, they have a cylindrically symmetrical structure and, because of their design and their production processes, have no preferred direction for the polarization direction of the radiated wave. There are therefore two orthogonal states with respect to the polarization direction of the radiated wave. In an ideal laser structure, these two states are energetically degenerate and on an equal footing for laser operation. However, due to the electro-optic effect and anisotropies in the device design as well as asymmetries and fluctuations of the manufacturing process, this degeneracy is abolished and the VCSEL oscillates dominant only on the respectively preferred polarization mode. In most cases, the mechanism leading to a preference for a particular mode is difficult to control or obscure, resulting in an overall statistical character of the polarization behavior. The polarization jumps generally limit the use in polarization-dependent optical systems. For example, such jumps in the optical data transmission lead to increased noise. Since many applications rely on polarization-stable lasers as light sources, this means a significant reduction of the production yield. Although a preferred direction may be definable in some cases, degeneracy cancellation is not strong enough to ensure polarization stability under varying environmental and operating conditions. In this case, even slight changes of these parameters can cause a change between the two states (pole flip).
In der Vergangenheit wurden verschiedene Möglichkeiten zur Stabilisierung der Polarisation studiert. Zur Erreichung von Polarisationsstabilität von GaAs-basierten VCSEL wurde das Wachstum auf höher indizierten [311]-Substraten erfolgreich nachgewiesen, vgl. hierzu "
Ein anderer Ansatz beinhaltet das Aufbringen von dielektrischen oder metallischen Gitterstrukturen mit Perioden im Wellenlängenbereich auf den Auskoppel-Spiegel. Dies wird bspw. in der Veröffentlichung "
Daneben ist auch bekannt, Metall/Dielektrikum- oder Metall/Halbleiter-Strukturen mit Perioden kleiner als die Wellenlänge des VCSEL auf eine der beiden Bragg-Reflektorschichtenfolgen aufzubringen, um eine Polarisation durch Doppelbrechung zu erzeugen. Dies wird bspw. in der Veröffentlichung "
Während die oben beschriebenen Ausführungsformen eine periodische Struktur zur Polarisationskontrolle außerhalb des inneren Resonatorbereiches (letzterer entspricht dem Bereich zwischen den beiden Braggreflektorschichten), aufweisen, beschreibt
Eine weitere Ausführungsform eines periodischen Gitters wird in
Einen anderen Ansatz zur Polarisationsstabilisierung verfolgt die
Ausgehend von diesem Stand der Technik stellt sich somit die Aufgabe, die Polarisationsausrichtung und Polarisationsstabilität in oberflächenemittierenden Halbleiterlaserdioden zu verbessern.Starting from this prior art, the object is thus to improve the polarization orientation and polarization stability in surface-emitting semiconductor laser diodes.
Zur Lösung dieser Aufgabe werden eine oberflächenemittierende Halbleiterlaserdiode und ein Verfahren zu deren Herstellung mit den Merkmalen der unabhängigen Patentansprüche vorgeschlagen. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung.To achieve this object, a surface emitting semiconductor laser diode and a method for their preparation with the features of the independent claims are proposed. Advantageous embodiments are the subject of the dependent claims and the following description.
Die vorliegende Erfindung präsentiert einen polarisationsstabilen VCSEL. Die Erfindung beinhaltet dabei insbesondere die Integration einer periodischen Struktur mit definierter Orientierung, Geometrie und einem definierten Brechzahlprofil innerhalb des monolithischen VCSEL-Resonators in Form eines Subwellenlängengitters (engl. Subwavelength grating: SWG). Die Struktur ermöglicht ein deterministisches und stabiles Polarisationsverhalten bei hoher Polarisationsmoden-Seitenmodenunterdrückung sowie Unempfindlichkeit gegenüber Rückkopplung. Zudem bevorzugt die erfindungsgemäße Laserdiode den lateralen Grundmodus auch bei größeren Aperturen, wodurch sich insgesamt höhere Einmodenleistungen als bei herkömmlichen VCSELn erreichen lassen.The present invention presents a polarization stable VCSEL. In particular, the invention includes the integration of a periodic structure with a defined orientation, geometry and a defined refractive index profile within the monolithic VCSEL resonator in the form of a subwavelength grating: SWG). The structure enables deterministic and stable polarization behavior with high polarization mode side-mode rejection and insensitivity to feedback. In addition, the laser diode according to the invention also prefers the lateral basic mode, even at relatively large apertures, which results in a higher total Achieve single-mode performance as compared to conventional VCSELs.
Bei den bekannten Lösungen, die ein Gitter bzw. eine periodische Struktur zur Polarisation verwenden, wird die Gitterstruktur außen auf dem Auskoppelspiegel angebracht, wodurch die zu erreichende Qualität der Reflexions- und Polarisationseigenschaften begrenzt wird.In the known solutions using a grating or a periodic structure for polarization, the grating structure is mounted on the outside of the Auskoppelspiegel, whereby the quality of the reflection and polarization properties to be achieved is limited.
Erfindungsgemäß wurde erkannt, dass eine periodische Struktur aus halbleitendem Material einerseits und dielektrischem Material andererseits geeignet ist, innerhalb des Resonators angeordnet zu werden. Die Struktur weist einen genügend großen Brechzahlkontrast auf, um mittels Doppelbrechung eine bevorzugte Polarisationsrichtung vorzugeben.According to the invention, it has been recognized that a periodic structure of semiconducting material on the one hand and dielectric material on the other hand is suitable for being arranged inside the resonator. The structure has a sufficiently large refractive index contrast in order to predetermine a preferred polarization direction by means of birefringence.
Vorteilhafterweise beträgt die Periode der periodischen Struktur höchstens eine, vorzugsweise höchstens eine halbe Emissionswellenlänge. Somit können Interferenzeffekte unterdrückt werden, welche bei der vorliegenden Anwendung nicht erwünscht sind. In dieser Anmeldung wird unter dem Begriff "Emissionswellenlänge" immer die Vakuumwellenlänge verstanden.Advantageously, the period of the periodic structure is at most one, preferably at most half an emission wavelength. Thus, interference effects which are not desired in the present application can be suppressed. In this application, the term "emission wavelength" is always understood to mean the vacuum wavelength.
In Ausgestaltung beträgt die Periode der Struktur höchstens λ/n, vorzugsweise höchstens λ/2n, wobei n eine Funktion der Brechzahl des halbleitenden Materials und/oder der Brechzahl des dieelektrischen Materials ist. Beispielsweise entspricht n einer sog. effektiven Brechzahl, die sich insbesondere als, vorzugsweise arithmetisch gewichteter, Mittelwert der beiden Brechzahlen berechnet. Ebenso ist bevorzugt, wenn n der größeren der beiden Brechzahlen entspricht. Bei einer derartigen Ausgestaltung ist die polarisationsabhängige Mittelung der Brechzahl besonders ausgeprägt. Bei einer Emissionswellenlänge von 1310 nm und einer (größeren) Brechzahl von z.B. n=3,2 für InP als Halbleiter ergibt dies eine Periodenlänge von höchstens ∼400 nm. Im Falle einer beugungsgitterartigen Struktur (d.h. ein Gitter aus regelmäßig beabstandeten Längsstrukturen) kann das Tastverhältnis (Verhältnis von Steg- und Grubenbreite) 1:1 betragen oder davon abweichende Werte besitzen. Bei dem obigen Beispiel könnten die Steg- und Grubenbreiten jeweils 200 nm betragen. Es wird erwartet, dass die Polarisationsstabilität umso besser ist, je kleiner die Periodenlänge ist.In an embodiment, the period of the structure is at most λ / n, preferably at most λ / 2n, where n is a function of the refractive index of the semiconducting material and / or the refractive index of the dielectric material. For example, n corresponds to a so-called effective refractive index, which is calculated in particular as the average of the two refractive indices, preferably arithmetically weighted. It is likewise preferred if n is the larger of the two refractive indices equivalent. In such an embodiment, the polarization-dependent averaging of the refractive index is particularly pronounced. At an emission wavelength of 1310 nm and a (larger) refractive index of, for example, n = 3.2 for InP as a semiconductor, this results in a period length of at most ~400 nm. In the case of a diffraction grating-like structure (ie a grid of regularly spaced longitudinal structures), the duty cycle (Ratio of bar and pit width) 1: 1 or have deviating values. In the above example, the land and pit widths could each be 200 nm. It is expected that the smaller the period length, the better the polarization stability.
Im Gegensatz zu den im Stand der Technik beschriebenen Gitterstrukturen werden somit vorzugsweise deutlich kleinere Perioden im Subwellenlängenbereich verwendet (typischerweise kleiner als die halbe Emissionswellenlänge), da es auf die Erzeugung einer polarisationsabhängigen effektiven Brechzahl ankommt und nicht auf die polarisationsabhängige Erhöhung der Spiegelreflektivität mit größerperiodischen Gittern.In contrast to the lattice structures described in the prior art, significantly smaller periods in the sub-wavelength range are therefore preferably used (typically less than half the emission wavelength), since it depends on the generation of a polarization-dependent effective refractive index and not on the polarization-dependent increase of the mirror reflectivity with larger periodic gratings.
Gemäß einer bevorzugten Ausgestaltung grenzt die periodische Struktur unmittelbar an die zweite Bragg-Reflektorschichtenfolge. Die vorliegende Ausgestaltung lehrt somit insbesondere, eine effektive Doppelbrechung durch Anordnung einer Halbleiter/Dielektrikum-Struktur innerhalb des Resonators zu erzeugen, wobei die Struktur vor einem metallischen, dielektrischen oder hybriden metallisch-dielektrischen Spiegel platziert wird.According to a preferred embodiment, the periodic structure directly adjoins the second Bragg reflector layer sequence. The present embodiment thus teaches, in particular, to produce an effective birefringence by arranging a semiconductor / dielectric structure within the resonator, wherein the structure is placed in front of a metallic, dielectric or hybrid metallic-dielectric mirror.
Vorzugsweise ist das dielektrische Material der periodischen Struktur gleich dem Material der angrenzenden Schicht der zweiten Bragg-Reflektorschichtenfolge. Auf diese Weise ist eine einfache Herstellung möglich, wobei vorzugsweise auf einer Halbleiterschicht, welche den halbleitenden Bestandteil der periodischen Struktur umfassen soll, zunächst eine Maske definiert wird. Dies erfolgt durch einschlägige Nanostrukturtechniken wie Elektronenstrahllithografie, Nanoimprint, Holographie usw. Anschließend wird, bspw. durch eine trockenchemische Ätzung, die zuvor definierte Struktur in den Halbleiter übertragen. Die Ätztiefe wird dabei so gewählt, dass sich eine stabile Vorzugsrichtung der Polarisation ergibt. Die Ätztiefe beträgt für einen langwelligen InP-basierten VCSEL z.B. ∼200 nm. Die Ätztiefe kann insbesondere zwischen 0,1 und 2, vorzugsweise zwischen 0,5 und 1, vorzugsweise ca. 0,5 Periodenlängen betragen. Nach Entfernung der Lackmaske wird die freiliegende Struktur mit einem dielektrischen Material bedampft, das unmittelbar in eine Braggspiegel-Schichtenfolge, z.B. aus ZnS/CaF2 oder a-Si/CaF2, übergeht. Im Unterschied zu einem konventionellen VCSEL ohne Gitter sollte sowohl die Dicke der halbleitenden Schicht als auch die Dicke der ersten dielektrischen Spiegelschicht so modifiziert werden, dass eine maximale Polarisationsstabilität erzielt wird. Dazu sollte die Reflexion innerhalb des Braggspiegels in Phase zur Reflexion an der Grenzfläche zwischen Struktur und Braggspiegel sein.Preferably, the dielectric material of the periodic structure is equal to the material of the adjacent layer of the second Bragg reflector layer sequence. In this way, a simple production is possible, wherein preferably on a semiconductor layer which is to comprise the semiconductive component of the periodic structure, a mask is first defined. This is done by relevant nanostructure techniques such as electron beam lithography, nanoimprint, holography, etc. Subsequently, for example, by a dry chemical etching, the previously defined structure is transferred into the semiconductor. The etching depth is chosen so that there is a stable preferred direction of polarization. The etching depth is, for example, ~200 nm for a long-wave InP-based VCSEL. The etching depth may be in particular between 0.1 and 2, preferably between 0.5 and 1, preferably about 0.5, period lengths. After removal of the resist mask, the exposed structure is vapor-deposited with a dielectric material which immediately transitions into a Bragg-mirror layer sequence, for example of ZnS / CaF 2 or a-Si / CaF 2 . Unlike a conventional lattice-less VCSEL, both the thickness of the semiconductive layer and the thickness of the first dielectric mirror layer should be modified to achieve maximum polarization stability. For this purpose, the reflection within the Bragg mirror should be in phase for reflection at the interface between structure and Bragg mirror.
Zweckmäßigerweise umfasst die zweite Bragg-Reflektorschichtenfolge eine Anzahl von amorphen dielektrischen Schichten. Dadurch kann die Herstellung vereinfacht werden. Zur Erhöhung der Reflektivität kann noch eine abschließende Schicht, bspw. aus Gold, aufgebracht werden. Bei der zweiten Bragg-Reflektorschichtenfolge handelt es sich üblicherweise um den rückwärtigen Spiegel des VCSELs. Der Auskoppelspiegel des VCSEL wird bei der Herstellung üblicherweise als epitaktische Schichtenfolge direkt auf das Substrat aufgebracht.Conveniently, the second Bragg reflector layer sequence comprises a number of amorphous dielectric layers. As a result, the production can be simplified. To increase the reflectivity can a final layer, for example of gold, be applied. The second Bragg reflector layer sequence is usually the back mirror of the VCSEL. The coupling-out mirror of the VCSEL is usually applied directly to the substrate during production as an epitaxial layer sequence.
Gemäß einer bevorzugten Ausgestaltung weist der Resonator weiterhin eine Tunnelkontaktschicht auf der p-Seite der aktiven Zone auf. Die mit Abstand besten Resultate für langwellige VCSELs im Wellenlängenbereich oberhalb 1,3 µm hinsichtlich Leistung, Betriebstemperatur, Einmodenleistung sowie Modulationsbandbreite weisen, insbesondere InP-basierte, BTJ-VCSEL auf (engl.: Buried Tunnel Junction, BTJ), da durch Verwendung eines BTJ u.a. der Stromfluss auf den eigentlichen Bereich der aktiven Zone beschränkt werden kann. Zweckmäßigerweise ist zwischen aktiver Zone und BTJ eine p-Confinementschicht angeordnet. Ebenso zweckmäßig ist auf der vom BTJ abgewandten Seite (n-Seite) der aktiven Zone eine n-Confinementschicht angeordnet. Diese Confinement-Schichten sollen für die im Betrieb injizierten Ladungsträger Barrieren bilden, um die Aufenthaltsdauer der Ladungsträger in der aktiven Zone zu erhöhen.According to a preferred embodiment, the resonator further comprises a tunnel contact layer on the p-side of the active zone. By far the best results for long-wavelength VCSELs in the wavelength range above 1.3 μm in terms of power, operating temperature, single-mode power and modulation bandwidth have, in particular InP-based, BTJ-VCSEL (Buried Tunnel Junction, BTJ), because by using a BTJ among others the current flow can be limited to the actual area of the active zone. Conveniently, a p-confinement layer is arranged between the active zone and BTJ. It is likewise expedient to arrange an n-confinement layer on the side (n-side) of the active zone facing away from the BTJ. These confinement layers are to form barriers for the charge carriers injected during operation in order to increase the residence time of the charge carriers in the active zone.
Zweckmäßigerweise entspricht eine Abmessung, bspw. eine Länge oder ein Durchmesser, oder die Fläche der Projektion der periodischen Struktur auf die Tunnelkontaktschicht zumindest einer Abmessung bzw. der Fläche einer Apertur der Tunnelkontaktschicht. Die Erzeugung der Laserstrahlung findet im wesentlichen in der von der Apertur der Tunnelkontaktschicht horizontal definierten Fläche statt. Um eine gute Polarisationsstabilität zu erhalten, sollte sich die periodische Struktur zumindest auf diese Fläche erstrecken.Suitably, a dimension, for example, a length or a diameter, or the area of the projection of the periodic structure on the tunnel contact layer corresponds to at least one dimension or the area of an aperture of the tunnel contact layer. The generation of the laser radiation takes place essentially in the area defined horizontally by the aperture of the tunnel contact layer. In order to obtain a good polarization stability, should the periodic structure extending at least on this surface.
Es ist von Vorteil, wenn die Tunnelkontaktschicht an eine n-dotierte Halbleiterschicht grenzt. Diese Halbleiterschicht kann zur Stromzuführung und Kontaktierung des BTJ dienen. Gleichzeitig kann diese Halbleiterschicht an das halbleitende Material für die periodische Struktur grenzen oder dieses umfassen, so dass die Halbleiterschicht unmittelbar in die periodische Struktur übergeht. An dieser Stelle sei auch auf die obigen Ausführungen zu einer Dickenanpassung der Halbleiterschicht verwiesen.It is advantageous if the tunnel contact layer adjoins an n-doped semiconductor layer. This semiconductor layer can serve to supply power and contacting the BTJ. At the same time, this semiconductor layer may adjoin or include the semiconducting material for the periodic structure so that the semiconductor layer directly merges into the periodic structure. Reference should also be made to the above statements on a thickness adaptation of the semiconductor layer.
Erfindungsgemäß wird ein Resonator umfassend zumindest eine erste Bragg-Reflektorschichtenfolge, eine einen pn-Übergang aufweisende aktive Zone und eine zweite Bragg-Reflektorschichtenfolge auf ein Substrat aufgebracht. Es wird weiterhin eine periodische Struktur aus halbleitendem Material einerseits und dielektrischem Material andererseits innerhalb des Resonators aufgebracht, deren Haupterstreckungsebene im wesentlichen senkrecht zur Abstrahlrichtung angeordnet ist. Mit dem erfindungsgemäßen Verfahren lässt sich eine erfindungsgemäße Laserdiode besonders zuverlässig bzw. reproduzierbar und mit hoher Qualität herstellen.According to the invention, a resonator comprising at least a first Bragg reflector layer sequence, an active zone having a pn junction and a second Bragg reflector layer sequence are applied to a substrate. Furthermore, a periodic structure of semiconducting material, on the one hand, and dielectric material, on the other hand, is applied within the resonator, the main extension plane of which is arranged essentially perpendicular to the emission direction. With the method according to the invention, a laser diode according to the invention can be produced particularly reliably or reproducibly and with high quality.
In bevorzugter Ausgestaltung wird zunächst die als n-dotierter epitaktischer Bragg-Spiegel ausgebildete erste Bragg-Reflektorschichtenfolge, anschließend eine n-dotierte Confinementschicht, anschließend die einen pn-Übergang aufweisende aktive Zone, anschließend eine p-dotierte Confinementschicht und anschließend eine Tunnelkontaktschicht aufgebracht. Danach wird die Tunnelkontaktschicht strukturiert, um eine Apertur zu erzeugen. Daraufhin wird eine Halbleiterschicht aufgebracht, die strukturiert wird, um die periodische Struktur zu definieren. Anschließend wird die zweite Bragg-Reflektorschichtenfolge aufgebracht. Dieses bevorzugte Herstellungsverfahren führt zu qualitativ hochwertigen Laserdioden mit guter Strahlleistung und Polarisationsstabilität.In a preferred embodiment, first the n-doped epitaxial Bragg mirror formed first Bragg reflector layer sequence, then an n-doped confinement layer, then the pn junction having an active zone, then applied a p-doped confinement layer and then a tunnel contact layer. After that, the Tunnel contact layer structured to produce an aperture. Subsequently, a semiconductor layer is deposited, which is patterned to define the periodic structure. Subsequently, the second Bragg reflector layer sequence is applied. This preferred manufacturing process results in high quality laser diodes with good beam power and polarization stability.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.
Die Erfindung ist anhand eines Ausführungsbeispiels in der Zeichnung schematisch dargestellt und wird im folgenden unter Bezugnahme auf die Zeichnung ausführlich beschrieben.The invention is illustrated schematically with reference to an embodiment in the drawing and will be described below in detail with reference to the drawings.
- Figur 1FIG. 1
- zeigt schematisch den Schichtaufbau einer ersten bevorzugten Ausführungsform einer erfindungsgemäßen Laserdiode.schematically shows the layer structure of a first preferred embodiment of a laser diode according to the invention.
- Figur 2FIG. 2
- zeigt schematisch den Schichtaufbau einer zweiten bevorzugten Ausführungsform einer erfindungsgemäßen Laserdiode.schematically shows the layer structure of a second preferred embodiment of a laser diode according to the invention.
- Figur 3FIG. 3
- zeigt die zeitliche Abfolge der einzelnen Schritte zur Herstellung einer für die Erfindung geeigneten periodischen Struktur.shows the time sequence of the individual steps for producing a periodic structure suitable for the invention.
- Figur 4FIG. 4
-
zeigt die periodische Struktur gemäß
Figur 3 schematisch von oben.shows the periodic structure according toFIG. 3 schematically from above.
Nachfolgend werden zunächst die
In den
Im folgenden wird insbesondere der Aufbau des Resonators, welcher durch zwei Bragg-Spiegel 20 und 90 begrenzt wird, näher erläutert.In the following, in particular, the structure of the resonator, which is limited by two Bragg mirrors 20 and 90, explained in more detail.
Ausgehend von einem InP-Substrat 10 werden in einem ersten epitaktischen Wachstumsprozess nacheinander eine hier als n-dotierter epitaktischer Bragg-Spiegel 20 ausgebildete erste Bragg-Reflektorschichtenfolge, eine n-dotierte Confinementschicht 30, eine aktive Zone 40 sowie eine p-dotierte Confinementschicht 50 aufgebracht. Der Bragg-Spiegel 20 besteht aus einem epitaktischen DBR mit einer Reflektivität > 99%. % ergibt. Die Struktur wird abgeschlossen durch das Wachstum einer Tunnelkontaktschicht 60, bestehend z.B. aus jeweils einer hoch p+- und n+-dotierten InGaAs-Schicht, welche sich in einem Knoten (Minimum) des longitudinalen Feldes befindet. Im nachfolgenden Lithographie- und Ätzprozess wird eine freidimensionierbare Apertur D1 in der Schicht 60 erzeugt, die entweder bis zur Schicht 50 reicht oder innerhalb des p-dotierten Teils von Schicht 60 endet. Typische Ätztiefen liegen hier bei 20 nm.Starting from an
In einem zweiten Epitaxieschritt wird eine obere n-dotierte Stromzuführungsschicht 70, bestehend vorzugsweise aus InP, und eine optionale n-Kontaktschicht 75, bestehend vorzugsweise aus hoch n-dotiertem InGaAs, aufgebracht. Anschließend wird eine periodische Struktur 80 erzeugt. Dazu wird auf der freiliegenden Halbleiterschicht 70 eine Maske definiert, wofür bspw. Nanostrukturtechniken wie Elektronenstrahllithografie, Nanoimprint oder Holographie geeignet sind. Anschließend wird, bspw. durch eine trockenchemische Ätzung die zuvor definierte Struktur in die Halbleiterschicht 70 übertragen. Die Ätztiefe beträgt für einen langwelligen InP-basierten VCSEL z.B. ∼200 nm. Nach Entfernung der Lackmaske wird das freiliegende Gitter anschließend mit einer hier als dielektrischen Braggspiegel 90 ausgebildeten zweiten Bragg-Reflektorschichtenfolge z.B. aus ZnS/CaF2 oder a-Si/CaF2 bedampft. Die periodische Struktur 80 setzt sich somit aus Anteilen der Halbleiterschicht 70 und Anteilen der ersten bzw. angrenzenden dielektrischen Schicht 90a zusammen. Die Haupterstreckungsebene der Struktur 80 ist im wesentlichen senkrecht zur Abstrahlrichtung A der Halbleiterlaserdiode 100 angeordnet.In a second epitaxy step, an upper n-doped
Die in
Die Herstellung und die Form einer bevorzugten Ausgestaltung der periodischen Struktur 80 wird nachfolgend unter Bezugnahme auf die
Auf der freiliegenden Halbleiterschicht 70 wird zunächst eine Lackschicht 300 aufgebracht und die zu erzeugende Struktur in diese übertragen. Dazu eignen sich bekannte Nanostrukturtechniken wie Elektronenstrahllithografie, Nanoimprint oder Holographie. Nach der Entwicklung des Lacks wird die vordefinierte Struktur erhalten.A
Anschließend wird durch ein Ätzverfahren die vordefinierte Struktur in die Halbleiterschicht 70 übertragen und die Lackschicht 300 danach entfernt. Im Beispiel wird eine beugungsgitterartige periodische Struktur mit einer Periodenlänge P und einem Tastverhältnis von 1:1 erhalten, so dass die Stegbreiten L2 den Grubenbreiten L1 entsprechen. Die Ätztiefe H wird so gewählt, dass sich eine stabile Vorzugsrichtung der Polarisation ergibt. Im vorliegenden Beispiel entspricht die Ätztiefe ca. 0,5 P.Subsequently, the predefined structure is transferred into the
Im dargestellten Beispiel beträgt die Periode P der Struktur λ/n, wobei λ die Emissionswellenlänge des Lasers und n die größere der beiden beteiligten Brechzahlen ist. Bei einer Emissionswellenlänge λ = 1310 nm und einer InP-Brechzahl n = 3,2 ergibt dies eine Periodenlänge von höchstens ∼400 nm. Somit betragen die Stegbreiten L2, die Grubenbreiten L1 sowie die Ätztiefe H jeweils ca. 200nm.In the example shown, the period P of the structure λ / n, where λ is the emission wavelength of the laser and n is the larger of the two refractive indices involved. With an emission wavelength λ = 1310 nm and an InP refractive index n = 3.2, this results in a period length of at most ~400 nm. Thus, the ridge widths L2, the pit widths L1 and the etching depth H are approximately 200 nm each.
Nach dem Ätzvorgang wird die Lackmaske 300 entfernt und die freiliegende Struktur mit einer dielektrischen Schicht 90a bedeckt, die gleichzeitig die erste Schicht eines dielektrischen Braggspiegels 90 z.B. aus ZnS/CaF2 oder a-Si/CaF2 darstellt. Die laterale Ausdehnung D2 des Gitters 80 sollte mindestens der Ausdehnung D1 des vergrabenen Tunnelkontaktes 60 entsprechen.After etching, the resist
Es versteht sich, dass in den dargestellten Figuren nur besonders bevorzugte Ausführungsformen der Erfindung dargestellt sind. Daneben ist jede andere Ausführungsform, insbesondere durch eine andere Anordnung oder einen anderen Aufbau der Schichten usw. denkbar, ohne den Rahmen dieser Erfindung zu verlassen. Die erfindungsgemäße Struktur kann auf (BTJ-)VCSEL in verschiedenen Materialsystemen angewendet werden. Hierzu zählen u.a. GaAs-, InP- oder GaSb-basierte Bauelemente.It is understood that in the illustrated figures, only particularly preferred embodiments of the invention are shown. In addition, any other embodiment, in particular by a different arrangement or a different structure of the layers, etc. conceivable, without departing from the scope of this invention. The inventive structure can be applied to (BTJ) VCSEL in various material systems. These include u.a. GaAs, InP or GaSb based devices.
Claims (15)
- Surface-emitting semiconductor laser diode comprising a resonator with a first Bragg reflector layer sequence (20), an active zone (40) comprising a pn transition, said zone (40) being embedded in a semiconductor layer sequence (30, 50, 60, 70), and with a second Bragg reflector layer sequence (90), the semiconductor laser diode (100; 200) having an emission wavelength λ,
characterised by
a periodic structure (80) of semiconducting material (70) and dielectric material (90a) arranged inside the resonator, embodied as a sub-wavelength grating, the main plane of extent of which is disposed substantially perpendicularly to the direction of radiation (A) of the semiconductor laser diode (100; 200) and which is in direct contact with at least one of the semiconductor layers (30, 70) embedding the active zone (40) and with at least one of the two Bragg reflector layer sequences (20, 90). - Semiconductor laser diode according to claim 1, wherein the periodic structure consists of at least one material of the semiconductor layers (30, 70) and at least one material of one of the two Bragg reflector layer sequences (20, 90).
- Semiconductor laser diode according to claim 1 or 2, wherein the period (P) of the periodic structure (80) is at most λ/2.
- Semiconductor laser diode according to claim 1, 2 or 3, wherein the period (P) of the periodic structure (80) is at most λ/n, preferably at most λ/2n, where n is a function of the refractive index of the semiconducting material (70) and/or of the refractive index of the dielectric material (90a).
- Semiconductor laser diode according to claim 4, wherein n is the greater of the two refractive indices.
- Semiconductor laser diode according to one of the preceding claims, wherein the periodic structure (80) is immediately adjacent to the second Bragg reflector layer sequence (90).
- Semiconductor laser diode according to claim 6, wherein a material of the periodic structure (80), particularly the dielectric material, is identical to the material of the adjacent layer (90a) of the second Bragg reflector layer sequence (90).
- Semiconductor laser diode according to one of the preceding claims, wherein the second Bragg reflector layer sequence (90) is an alternating layer system consisting of at least two materials with different refractive indices.
- Semiconductor laser diode according to one of the preceding claims, wherein the resonator further comprises a tunnel contact layer (60) on the p side of the active zone (40).
- Semiconductor laser diode according to claim 9, wherein a dimension (D2) or the area of the projection of the periodic structure (80) on the tunnel contact layer (60) corresponds at least to a dimension (D2) or the area of an aperture of the tunnel contact layer (60).
- Semiconductor laser diode according to claim 9 or 10, wherein the tunnel contact layer (60) is adjacent to an n-doped semiconductor layer (70).
- Semiconductor laser diode according to claim 11, wherein the periodic structure (80) is directly adjacent to the n-doped semiconductor layer (70).
- Semiconductor laser diode according to claim 12, wherein the semiconductor material of the periodic structure (80) is identical to the material of the adjacent n-doped semiconductor layer (70).
- Method of producing a semiconductor laser diode (100; 200) comprising the following steps:applying a resonator comprising at least one first Bragg reflector layer sequence (20), an active zone (40) comprising a pn transition, said zone (40) being embedded in a semiconductor layer sequence (30, 50, 60, 70), and a second Bragg reflector layer sequence (90) to a substrate (10),applying a sub-wavelength grating (80) as a periodic structure (80) of semiconducting (70) and dielectric material (90a), the main plane of extent of which is disposed substantially perpendicularly to the direction of radiation (A) of the semiconductor laser diode (100; 200), within the resonator in direct contact with at least one of the semiconductor layers (30, 70) embedding the active zone (40), and with at least one of the two Bragg reflector layer sequences (20, 90).
- Method according to claim 15 comprising the following steps:applying the first Bragg reflector layer sequence embodied as an n-doped epitaxial Bragg mirror (20),subsequently applying an n-doped confinement layer (30),subsequently applying the active zone (40) comprising a pn transition,subsequently applying a p-doped confinement layer (50),subsequently applying a tunnel contact layer (60),subsequently structuring the tunnel contact layer (60) in order to produce an aperture,subsequently applying a semiconductor layer (70),subsequently structuring the semiconductor layer (70) in order to define the periodic structure (80),subsequently applying the second Bragg reflector layer sequence (90).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008058402 | 2008-11-21 | ||
DE102009001505A DE102009001505A1 (en) | 2008-11-21 | 2009-03-12 | Surface emitting semiconductor laser diode and method of making the same |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2190082A2 EP2190082A2 (en) | 2010-05-26 |
EP2190082A3 EP2190082A3 (en) | 2011-04-20 |
EP2190082B1 true EP2190082B1 (en) | 2013-01-09 |
Family
ID=42045320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09175845A Active EP2190082B1 (en) | 2008-11-21 | 2009-11-12 | Surface emitting semi-conductor laser diode and method for manufacturing the same |
Country Status (3)
Country | Link |
---|---|
US (1) | US8331412B2 (en) |
EP (1) | EP2190082B1 (en) |
DE (1) | DE102009001505A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9911946B2 (en) | 2013-10-28 | 2018-03-06 | Infineon Technologies Dresden Gmbh | Optoelectronic component, a method for manufacturing an optoelectronic component, and a method for processing a carrier |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2454619A4 (en) | 2009-07-17 | 2016-01-06 | Hewlett Packard Development Co | Non-periodic grating reflectors with focusing power and methods for fabricatting the same |
WO2011037563A1 (en) | 2009-09-23 | 2011-03-31 | Hewlett-Packard Development Company, L.P. | Optical devices based on diffraction gratings |
CN102714395B (en) | 2010-01-29 | 2015-06-10 | 惠普发展公司,有限责任合伙企业 | vertical-cavity surface-emitting lasers with non-periodic gratings |
US8842363B2 (en) * | 2010-01-29 | 2014-09-23 | Hewlett-Packard Development Company, L.P. | Dynamically varying an optical characteristic of light by a sub-wavelength grating |
WO2011093893A1 (en) | 2010-01-29 | 2011-08-04 | Hewlett-Packard Development Company, L.P. | Optical devices based on non-periodic sub-wavelength gratings |
JP5777722B2 (en) | 2010-10-29 | 2015-09-09 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Small-mode volume vertical cavity surface emitting laser |
WO2013039503A1 (en) * | 2011-09-15 | 2013-03-21 | Hewlett-Packard Development Company, L.P. | Vertical-cavity surface-emitting lasers |
WO2013110004A1 (en) * | 2012-01-20 | 2013-07-25 | The Regents Of The University Of California | Short cavity surface emitting laser with double high contrast gratings with and without airgap |
CN102664347A (en) * | 2012-05-04 | 2012-09-12 | 中国科学院长春光学精密机械与物理研究所 | High-power electrically pumped vertical external cavity surface emitting laser with mode control structure |
CN102916071B (en) * | 2012-08-23 | 2015-04-08 | 华为技术有限公司 | Photodiode and manufacturing method thereof |
US9937124B2 (en) | 2014-09-11 | 2018-04-10 | International Business Machines Corporation | Microchip substance delivery devices having low-power electromechanical release mechanisms |
JP6331997B2 (en) * | 2014-11-28 | 2018-05-30 | 三菱電機株式会社 | Semiconductor optical device |
US9755701B2 (en) | 2015-03-31 | 2017-09-05 | International Business Machines Corporation | Hybrid tag for radio frequency identification system |
US9734371B2 (en) | 2015-03-31 | 2017-08-15 | International Business Machines Corporation | Hybrid tag for radio frequency identification system |
US10881788B2 (en) | 2015-10-30 | 2021-01-05 | International Business Machines Corporation | Delivery device including reactive material for programmable discrete delivery of a substance |
CN105742958A (en) * | 2016-02-23 | 2016-07-06 | 中山大学 | III-nitride luminescent device with DBR mask and preparation method |
WO2017151846A1 (en) * | 2016-03-04 | 2017-09-08 | Princeton Optronics, Inc. | High-speed vcsel device |
US10286198B2 (en) | 2016-04-08 | 2019-05-14 | International Business Machines Corporation | Microchip medical substance delivery devices |
US10033158B1 (en) | 2016-12-19 | 2018-07-24 | Osram Opto Semiconductors Gmbh | Semiconductor laser, laser assembly and method of making a semiconductor laser |
TWI676327B (en) * | 2017-07-26 | 2019-11-01 | 國立交通大學 | Vertical cavity surface emitting laser with hybrid mirrors |
CN109038216B (en) * | 2018-10-29 | 2023-10-31 | 厦门乾照半导体科技有限公司 | Multi-beam vertical cavity surface emitting laser chip and manufacturing method thereof |
CN110289552A (en) * | 2019-06-26 | 2019-09-27 | 北京工业大学 | High beam quality vertical cavity surface laser array and fabrication method based on subwavelength grating waveguide |
GB2585069B (en) * | 2019-06-27 | 2022-06-01 | Camlin Tech Limited | Vertical surface emitting laser with improved polarization stability |
DE102019212944A1 (en) * | 2019-08-28 | 2021-03-04 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | SEMICONDUCTOR COMPONENT, DEVICE WITH A SEMICONDUCTOR COMPONENT AND A METHOD FOR MANUFACTURING SEMICONDUCTOR COMPONENTS |
US11876350B2 (en) * | 2020-11-13 | 2024-01-16 | Ii-Vi Delaware, Inc. | Multi-wavelength VCSEL array and method of fabrication |
EP4285183A1 (en) * | 2021-01-28 | 2023-12-06 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Polarization alteration device and method for adjusting the polarization of an optical wave |
US20220352693A1 (en) * | 2021-04-30 | 2022-11-03 | Lumentum Operations Llc | Methods for incorporating a control structure within a vertical cavity surface emitting laser device cavity |
CN113422291B (en) * | 2021-06-21 | 2022-06-07 | 常州纵慧芯光半导体科技有限公司 | Laser device and manufacturing method and application thereof |
JP2023022627A (en) * | 2021-08-03 | 2023-02-15 | スタンレー電気株式会社 | Vertical cavity light emitting device |
CN114336286B (en) * | 2022-01-11 | 2024-01-02 | 范鑫烨 | Vertical cavity surface emitting laser based on two-dimensional super surface and manufacturing method thereof |
US20250047071A1 (en) * | 2022-08-31 | 2025-02-06 | Bandwidth10, LTD. | Apparatus for facial recognition |
US20240429684A1 (en) * | 2022-08-31 | 2024-12-26 | Bandwidth10, LTD. | Digital camera with vcsels |
US20250038481A1 (en) * | 2022-08-31 | 2025-01-30 | Bandwidth 10, LTD. | Systems using (3d) maps of at least a part of a body of a user |
US20250007615A1 (en) * | 2022-08-31 | 2025-01-02 | Bandwidth10, LTD. | Systems for detecting gestures |
US20240186766A1 (en) * | 2022-10-19 | 2024-06-06 | Ii-Vi Delaware, Inc. | Polarized/lensed back-side emitting (bse) vertical-cavity surface-emitting laser (vcsel) |
US20240235161A9 (en) | 2022-10-19 | 2024-07-11 | Ii-Vi Delaware, Inc. | Vcsel polarization control with structural birefringent cavity |
US20250023325A1 (en) * | 2022-12-12 | 2025-01-16 | Bandwidth10, LTD. | Hcg tunable vcsel system with asic for processing information and firmware |
WO2025040299A1 (en) * | 2023-08-23 | 2025-02-27 | Ams-Osram International Gmbh | HYBRID METAL-DIELECTRIC GRATING AS INTRA-CAVITY CONTACT FOR InGaN VCSEL |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10353951A1 (en) | 2003-11-18 | 2005-06-16 | U-L-M Photonics Gmbh | Polarization control of vertical diode lasers by a monolithically integrated surface grid |
JPH0856049A (en) | 1994-08-15 | 1996-02-27 | Tokyo Inst Of Technol | Polarization control method for surface emitting lasers |
BE1010069A6 (en) * | 1996-03-29 | 1997-12-02 | Imec Inter Uni Micro Electr | Optical system with high reflectivity grid |
US6031243A (en) * | 1996-10-16 | 2000-02-29 | Geoff W. Taylor | Grating coupled vertical cavity optoelectronic devices |
US6282219B1 (en) * | 1998-08-12 | 2001-08-28 | Texas Instruments Incorporated | Substrate stack construction for enhanced coupling efficiency of optical couplers |
US6560265B2 (en) * | 2001-09-11 | 2003-05-06 | Applied Optoelectronics, Inc. | Method and apparatus for polarizing light in a VCSEL |
JP2005039102A (en) * | 2003-07-17 | 2005-02-10 | Yokogawa Electric Corp | Surface emitting laser |
US7242705B2 (en) * | 2003-12-17 | 2007-07-10 | Palo Alto Research Center, Incorporated | Grating-outcoupled cavity resonator having uni-directional emission |
WO2005089098A2 (en) * | 2004-01-14 | 2005-09-29 | The Regents Of The University Of California | Ultra broadband mirror using subwavelength grating |
US7483466B2 (en) * | 2005-04-28 | 2009-01-27 | Canon Kabushiki Kaisha | Vertical cavity surface emitting laser device |
US20070030873A1 (en) * | 2005-08-03 | 2007-02-08 | Finisar Corporation | Polarization control in VCSELs using photonics crystals |
US20070242715A1 (en) * | 2006-04-18 | 2007-10-18 | Johan Gustavsson | Mode and polarization control in vcsels using sub-wavelength structure |
US7339969B2 (en) * | 2006-05-05 | 2008-03-04 | Optical Communication Products, Inc. | Refined mirror structure for reducing the effect of feedback on a VCSEL |
JP4350774B2 (en) * | 2007-07-31 | 2009-10-21 | キヤノン株式会社 | Surface emitting laser |
-
2009
- 2009-03-12 DE DE102009001505A patent/DE102009001505A1/en not_active Withdrawn
- 2009-11-12 EP EP09175845A patent/EP2190082B1/en active Active
- 2009-11-20 US US12/623,247 patent/US8331412B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9911946B2 (en) | 2013-10-28 | 2018-03-06 | Infineon Technologies Dresden Gmbh | Optoelectronic component, a method for manufacturing an optoelectronic component, and a method for processing a carrier |
Also Published As
Publication number | Publication date |
---|---|
US20100128749A1 (en) | 2010-05-27 |
EP2190082A2 (en) | 2010-05-26 |
DE102009001505A1 (en) | 2010-05-27 |
US8331412B2 (en) | 2012-12-11 |
EP2190082A3 (en) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2190082B1 (en) | Surface emitting semi-conductor laser diode and method for manufacturing the same | |
DE69209016T2 (en) | Subject which contains a DFB semiconductor laser | |
DE69404760T2 (en) | Monolithically integrated laser modulator arrangement with multi-quantum well structure | |
DE69806895T2 (en) | Monolithic multiple arrangement of surface emitting semiconductor lasers with vertical resonators and different wavelengths | |
EP0829121B1 (en) | Dfb laser diode structure with complex optical grating coupling | |
EP2467909B1 (en) | Diode laser and laser resonator for a diode laser having improved lateral beam quality | |
DE69024064T2 (en) | Distributed feedback laser. | |
DE112006003384B4 (en) | Surface grid on VCSELs for polarization pinning | |
DE3781931T2 (en) | SEMICONDUCTOR LASER WITH DISTRIBUTED FEEDBACK AND CONTINUOUSLY TUNABLE WAVELENGTH. | |
EP2427937B1 (en) | High output dfb laserdiode with lateral coupling | |
DE69902421T2 (en) | Semiconductor laser with increased output power | |
DE69027368T2 (en) | Semiconductor laser and method of manufacturing the same | |
DE68913934T2 (en) | Detunable semiconductor diode laser with distributed reflection and method for producing such a semiconductor diode laser. | |
DE69028734T2 (en) | Optical semiconductor device | |
DE3586934T2 (en) | SEMICONDUCTOR LASER. | |
DE69031415T2 (en) | Semiconductor laser elements and process for their manufacture | |
DE69220303T2 (en) | Process for the production of a semiconductor laser with distributed feedback | |
DE69500371T2 (en) | Multi-quantum well semiconductor laser | |
WO2009143813A1 (en) | Edge-emitting semiconductor laser having a phase structure | |
DE69203784T2 (en) | Gain-coupled semiconductor laser with distributed feedback. | |
DE69029207T2 (en) | Optical semiconductor device | |
DE102021214910A1 (en) | DESIGN AND FABRICATION OF A LOW COSTS LONG WAVELENGTH VCSEL WITH OPTICAL INTEGRATION CONTROL | |
EP2218153B1 (en) | Method for producing a radiation-emitting component and radiation-emitting component | |
DE69521556T2 (en) | Manufacturing method for an optical semiconductor device | |
EP0671640A2 (en) | Method for fabricating a grating for an opto-electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20110801 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 593223 Country of ref document: AT Kind code of ref document: T Effective date: 20130115 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOHEST AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009005950 Country of ref document: DE Effective date: 20130307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130109 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130509 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130409 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130420 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130409 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130410 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130509 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
26N | No opposition filed |
Effective date: 20131010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009005950 Country of ref document: DE Effective date: 20131010 |
|
BERE | Be: lapsed |
Owner name: VERTILAS G.M.B.H. Effective date: 20131130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: HOLBEINSTRASSE 36-38, 4051 BASEL (CH) |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20091112 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130109 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 593223 Country of ref document: AT Kind code of ref document: T Effective date: 20141112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141112 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502009005950 Country of ref document: DE Representative=s name: DEHNS GERMANY PARTNERSCHAFT MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502009005950 Country of ref document: DE Representative=s name: DEHNSGERMANY PARTNERSCHAFT VON PATENTANWAELTEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241122 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241121 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241118 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20241201 Year of fee payment: 16 |