EP2186871A1 - Schmierzusammensetzung - Google Patents
Schmierzusammensetzung Download PDFInfo
- Publication number
- EP2186871A1 EP2186871A1 EP09152596A EP09152596A EP2186871A1 EP 2186871 A1 EP2186871 A1 EP 2186871A1 EP 09152596 A EP09152596 A EP 09152596A EP 09152596 A EP09152596 A EP 09152596A EP 2186871 A1 EP2186871 A1 EP 2186871A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- base oil
- less
- lubricating composition
- composition
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/02—Specified values of viscosity or viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/04—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/54—Fuel economy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/68—Shear stability
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/044—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/045—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
Definitions
- the present invention relates to a lubricating composition
- a lubricating composition comprising a base oil and one or more additives for particular use as (but not limited to) a transmission fluid.
- Transmission fluids are well known in the art and are used in for example an automatic transmission (ATF), a manual transmission (MTF), a dual clutch transmission (DCT), a continuously variable transmission (CVT), transfer cases (TC), axles, hydraulic and power steering systems in the automotive industry. Transmission fluids may also be used for lubrication, power transfer and other purposes in various industrial applications.
- transmission fluids typically contain a base oil (usually consisting of a mixture of base oils), a Viscosity Index (VI) improver (such as a thickener) and a performance additive package containing one or more performance additives for providing protection against e.g. oxidation, rust, corrosion, wear, (micro-)pitting, scuffing, foaming etc. as well as for improving properties such as contamination handling, rheological properties, smell and colour.
- a base oil usually consisting of a mixture of base oils
- VI Viscosity Index
- performance additive package containing one or more performance additives for providing protection against e.g. oxidation, rust, corrosion, wear, (micro-)pitting, scuffing, foaming etc.
- properties such as contamination handling, rheological properties, smell and colour.
- the VI improver may be a polyisoalkylene component having a relatively high molecular weight, or an alternative thickening agent such as olefin copolymers, polyalkylmethacrylates and styrene-maleic esters.
- an alternative thickening agent such as olefin copolymers, polyalkylmethacrylates and styrene-maleic esters.
- the use of 6.5 to 8.0 wt.% VI improver results in an increase in kinematic viscosity (at 100°C) from 4.01 cSt to 5.2 cSt or above.
- VI-improvers or thickeners
- the use of these components leads to a reduced shear stability of the fluid, i.e. a permanent viscosity decrease of the fluid during operation.
- a reduced shear stability is also observed for those VI improvers that are added to the composition as a pour point depressant. Examples of the latter VI improvers include (but are not limited to) polyalkylmethacrylates.
- Brookfield viscosity at -40°C of 17,000 mPas would perceive the value for the Brookfield viscosity at -40°C of 17,000 mPas to be unfavourably high for e.g. a modern automatic transmission fluid, a modern dual wet clutch fluid, a modern CVT fluid or a modern transfer case fluid.
- a lubricating composition comprising a base oil and one or more additives, wherein the base oil comprises a Fischer-Tropsch derived base oil and wherein the lubricating composition has:
- An important advantage of the present invention is that - in addition to improved shear stability properties - desirable fuel economy properties can be obtained.
- the latter is a result of the relatively low kinematic viscosity (in the range from 40°C to 100°C) of the lubricating composition according to the present invention.
- a further advantage of the present invention is that it is possible to formulate such lubricating composition without the need to use Group IV base oils (PAOs; poly-alpha olefin base oils); a disadvantage of using such PAOs is the high cost of manufacture thereof and the relatively high CO 2 footprint of PAOs.
- PAOs Group IV base oils
- PAOs poly-alpha olefin base oils
- the base oil used in lubricating composition according to the present invention comprises at least a Fischer-Tropsch derived base oil and provided that the requirements in respect of the lubricant composition according to the present invention are met
- various conventional mineral oils, synthetic oils as well as naturally derived esters such as vegetable oils may be conveniently used.
- the base oil used in the present invention may - in addition to the Fischer-Tropsch derived base oil - conveniently comprise mixtures of one or more mineral oils and/or one or more synthetic oils; thus, according to the present invention, the term "base oil” may refer to a mixture containing more than one base oil, including at least one Fischer-Tropsch derived base oil.
- Mineral oils include liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oil of the paraffinic, naphthenic, or mixed paraffinic/naphthenic type which may be further refined by hydrofinishing processes and/or dewaxing.
- Suitable base oils for use in the lubricating oil composition of the present invention are Group I-III mineral base oils, Group IV poly-alpha olefins (PAOs), Group I-III Fischer-Tropsch derived base oils and mixtures thereof.
- the base oil or base oil mixture if more than one base oil is used) meets the requirements (in particular with respect to VI, sulphur content and content of saturated hydrocarbons) of a Group II or Group III base oil, preferably of a Group III base oil.
- Group I By “Group I”, “Group II”, “Group III” and “Group IV” base oils in the present invention are meant lubricating oil base oils according to the definitions of American Petroleum Institute (API) for category I, II, III and IV. These API categories are defined in API Publication 1509, 15th Edition, Appendix E, April 2002.
- API American Petroleum Institute
- Fischer-Tropsch derived base oils are known in the art.
- Fischer-Tropsch derived is meant that a base oil is, or is derived from, a synthesis product of a Fischer-Tropsch process.
- a Fischer-Tropsch derived base oil may also be referred to as a GTL (Gas-To-Liquids) base oil.
- Suitable Fischer-Tropsch derived base oils that may be conveniently used as the base oil in the lubricating composition of the present invention are those as for example disclosed in EP 0 776 959 , EP 0 668 342 , WO 97/21788 , WO 00/15736 , WO 00/14188 , WO 00/14187 , WO 00/14183 , WO 00/14179 , WO 00/08115 , WO 99/41332 , EP 1 029 029 , WO 01/18156 and WO 01/57166 .
- Synthetic oils include hydrocarbon oils such as olefin oligomers (including polyalphaolefin base oils; PAOs), dibasic acid esters, polyol esters, polyalkylene glycols (PAGs), alkyl naphthalenes and dewaxed waxy isomerates.
- hydrocarbon oils such as olefin oligomers (including polyalphaolefin base oils; PAOs), dibasic acid esters, polyol esters, polyalkylene glycols (PAGs), alkyl naphthalenes and dewaxed waxy isomerates.
- Synthetic hydrocarbon base oils sold by the Shell Group under the designation "Shell XHVI" (trade mark) may be conveniently used.
- Poly-alpha olefin base oils PAOs
- Preferred poly-alpha olefin base oils that may be used in the lubricating compositions of the present invention may be derived from linear C 2 to C 32 , preferably C 6 to C 16 , alpha olefins.
- Particularly preferred feedstocks for said poly-alpha olefins are 1-octene, 1-decene, 1-dodecene and 1-tetradecene.
- the base oil contains more than 50 wt.%, preferably more than 60 wt.%, more preferably more than 70 wt.%, even more preferably more than 80 wt.%. most preferably more than 90 wt.% Fischer-Tropsch derived base oil.
- not more than 5 wet.%, preferably not more than 2 wt.%, of the base oil is not a Fischer-Tropsch derived base oil. It is even more preferred that 100 wt% of the base oil is based on one or more Fischer-Tropsch derived base oils.
- the composition comprises less than 20 wt.% of a Group IV base oil, preferably less than 10, more preferably less than 5, even more preferably less than 3, especially preferred less than 2, even more preferred less than 1 and most preferred 0 wt.% of a Group IV base oil.
- the total amount of base oil incorporated in the lubricating composition of the present invention is preferably present in an amount in the range of from 60 to 99.5 wt.%, more preferably in an amount in the range of from 65 to 98 wt.% and most preferably in an amount in the range of from 70 to 96 wt.%, with respect to the total weight of the lubricating composition.
- the base oil preferably has a kinematic viscosity at 100°C of at least 3.0 cSt (according to ASTM D445), preferably at least 4.0 cSt.
- the base oil has a kinematic viscosity at 100°C below 10.0, preferably below 8.5, more preferably below 7.0 cSt, or even below 5.5 cSt.
- the base oil contains a blend of two or more base oils, it is preferred that the total contribution of the base oil to this kinematic viscosity is as indicated (preferably at least 3.0 cSt and typically below 10,0 cSt, etc.).
- composition according to the present invention meets certain specific requirements for the kinematic viscosity at 100°C and the Brookfield Viscosity at -40°C.
- the kinematic viscosity at 100°C (according to ASTM D 445) of the composition is between 3.6 and 6.0 cSt, more typically below 5.5 cSt.
- the kinematic viscosity at 100°C of the composition is at least 3.7, preferably at least 3.9, more preferably at least 4.1, even more preferably at least 4.2, most preferably at least 4.5 cSt.
- the Brookfield Viscosity at -40°C of the composition is between 2000 and 10,000 mPas and more typically above 4000 mPas.
- the Brookfield Viscosity at -40°C of the composition is below 9000 mPas, preferably below 8000 mPas, more preferably below 7000 mPas, even more preferably below 6000 mPas.
- the lubricating composition according to the present invention comprises less than 1.0 wt.% of a VI (Viscosity Index) improver, based on the total weight of the composition.
- VI Viscosity Index
- the lubricating composition according to the present invention comprises less than 1.0 wt.% of a VI (Viscosity Index) improver having a molecular weight of at least 300 average molecular weight (as determined by Gel Permeation Chromatography, in particular according to DIN 55672-1) and is selected from the group consisting of a polyisoalkylene component olefin copolymers, polyalkylmethacrylates, styrene-maleic esters and a combination thereof.
- VI improvers such as polyalkylmethacrylates also may have an effect on dispercancy.
- EP-A-1 583 158 the teaching of which is hereby incorporated by reference.
- the VI improver has an average molecular weight of above 1000, more preferably above 2500, even more preferably above 5000.
- the composition comprises less than 0.5 wt.%, preferably less than 0.1 wt.%, more preferably less than 0.05 wt.% of a VI improver, based on the total weight of the composition, most preferably no VI improver at all.
- the composition comprises less than 0.3 wt.%, preferably less than 0.1 wt.% of a pour point depressant, based on the total weight of the composition, more preferably no pour point depressant at all.
- the composition has a shear loss of less than 5%, preferably less than 2%, more preferably less than 1%, most preferably less than 0.5% as evaluated in a 20 hours KRL test according to CEC-L-45-A-99.
- the CEC L-45-A-99 measures the viscosity shear stability of transmission lubricants (on a Taper Roller Bearing Rig, which is also referred to with the German abbreviation "KLR").
- the lubricating composition according to the present invention further comprises one or more additives such as anti-oxidants, anti-wear additives, (preferably ashless) dispersants, detergents, extreme-pressure additives, friction modifiers, metal deactivators, corrosion inhibitors, demulsifiers, anti-foam agents, seal compatibility agents and additive diluent base oils, etc.
- additives such as anti-oxidants, anti-wear additives, (preferably ashless) dispersants, detergents, extreme-pressure additives, friction modifiers, metal deactivators, corrosion inhibitors, demulsifiers, anti-foam agents, seal compatibility agents and additive diluent base oils, etc.
- the lubricating compositions of the present invention may be conveniently prepared by admixing the one or more additives with the base oil(s).
- the above-mentioned additives are typically present in an amount in the range of from 0.01 to 35.0 wt.%, based on the total weight of the lubricating composition, preferably in an amount in the range of from 0.05 to 25.0 wt.%, more preferably from 1.0 to 20.0 wt.%, based on the total weight of the lubricating composition.
- the present invention provides the use of a lubricating composition according to the present invention, in particular as a transmission fluid, in order to improve one or more of shear stability (in particular according to CEC-L-45-A-99) and fuel economy.
- a favourable shear stability results in a limited shear loss (decrease in the kinematic viscosity at 100°C (determined by ASTM D445).
- the shear loss for the compositions according to the present invention will be less than 5%, preferably less than 2%, more preferably less than 1.5%, even more preferably less than 1% or even less than 0.5%. Most preferably, no shear loss will be measured within the reproducibility of the viscosity measurement by ASTM D445.
- Tables 1 and 2 indicate the compositions and properties of the fully formulated transmission fluid formulations (Examples 1-5 and Comparative Examples 1-13) that were tested; the amounts of the components are given in wt.%, based on the total weight of the fully formulated formulations.
- All tested transmission fluid formulations contained a combination of a base oil (or base oil mixture), an additive package (which additive package was the same in all tested compositions) and an anti-foam agent.
- Comparative Examples 12 and 13 also contained a VI improver.
- the “Additive package” was a special performance package for transmission fluids and contained a combination of performance additives including a friction modifier, an anti-oxidant, an anti-rust agent, an anti-wear agent, a dispersant, and a detergent.
- VI improver 1 and VI improver 2 were conventional VI improvers, commercially available from e.g. Evonik RohMax Additives GmbH (Darmstadt, Germany) (under the trade designation “Viscoplex 12-410" and “Viscoplex 0-050", respectively).
- Base oil 1 was a Fischer-Tropsch derived base oil (“GTL 4”) having a kinematic viscosity at 100°C (ASTM D445) of approx. 4 cSt (1 cSt corresponds to 1 mm 2 s -1 ).
- Base oil 2 was a Fischer-Tropsch derived base oil (“GTL 5”) having a kinematic viscosity at 100°C (ASTM D445) of approx. 5 cSt.
- GTL 4 and GTL 5 base oils meet Group III requirements and may be conveniently manufactured by or similar to the process described in e.g. WO-A-02/070631 , the teaching of which is hereby incorporated by reference.
- Base oil 3 and “Base oil 4" were commercially available Group II base oils.
- Base oils 3 and 4 are commercially available from e.g. Neste Oil B.V (Beringen, Belgium) (under the trade designation “Nexbase 3020", and “Nexbase 3030", respectively).
- Base oil 5" was a commercially available Group III base oil.
- Base oil 5 is commercially available from e.g. Neste Oil B.V (Beringen, Belgium) (under the trade designation “Nexbase 3043").
- Base oil 6 and “Base oil 7” were commercially available Group II base oils. Base oils 6 and 7 are commercially available from e.g. SK Energy (Ulsan, South Korea) (under the trade designation “Yubase 3", and “Yubase 3L”, respectively).
- Base oil 8 was a commercially available Group III base oil.
- Base oil 8 is commercially available from e.g. SK Energy (Ulsan, South Korea) (under the trade designation "Yubase 4").
- Base oil 9 was a commercially available Group II base oil. Base oil 9 is commercially available from e.g. S-Oil Corporation (Onsan, South Korea) (under the trade designation “S-Oil Ultra 3").
- Base oil 10 was a commercially available Group III base oil.
- Base oil 10 is commercially available from e.g. S-Oil Corporation (Onsan, South Korea) (under the trade designation "S-Oil Ultra 4").
- Base oil 11 and “Base oil 12” were commercially available Group III base oils.
- Base oil 11 is commercially available from e.g. Petro-Canada (Canada) (under the trade designation "VHVI4"), and Base oil 12 is commercially available from e.g. Shell (under the trade designation "XHVI4.0").
- Example 1 The compositions of Examples 1-5 and Comparative Examples 1-13 were obtained by mixing the base oils with the additive package using conventional lubricant blending procedures.
- Table 1 Component [wt.%] Examples 1 Example 2 Example 3
- Example 4 Example 5 Base oil 1 (Group III, GTL) 93.1 70.1 73.6 53.6 68.1 Base oil 2 (Group III, GTL) - 23.0 19.5 39.5 - Base oil 4 (Group II) - - - - - 25.0
- Additive package 1 6.85 6.85 6.85 6.85 6.85 6.85 VI improver - - - - - - - Anti-foam agent Remainder Remainder Remainder Remainder Remainder Remainder TOTAL 100 100 100 100 100 100 100 100 100 100 Kinematic Viscosity at 40°C 1 [cSt] V [cSt] 18.79 20.84 20.51 22.53 17.30 Kinematic viscosity at 100°C 1 [cSt] 4.25 4.56 4.51 4.83 3.
- the shear stability of the composition is improved.
- this improved shear stability reduces or even eliminates the need to overcompensate shear losses by higher capacity pumps, consequently reducing costs and weight what eventually contributes to fuel economy.
- compositions according to the present invention exhibit not only improved shear stability properties, but at the same time desirable fuel economy properties, especially when compared with a similar lubricating composition using a Group II and/or Group III mineral oil.
- compositions according to the present invention resulted in desirable flashpoint properties (according to DIN ISO 2592) and Noack volatility values (according to CEC-L-40-93B).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09152596A EP2186871A1 (de) | 2009-02-11 | 2009-02-11 | Schmierzusammensetzung |
JP2010027225A JP2010189639A (ja) | 2009-02-11 | 2010-02-10 | 潤滑組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09152596A EP2186871A1 (de) | 2009-02-11 | 2009-02-11 | Schmierzusammensetzung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2186871A1 true EP2186871A1 (de) | 2010-05-19 |
Family
ID=40756767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09152596A Withdrawn EP2186871A1 (de) | 2009-02-11 | 2009-02-11 | Schmierzusammensetzung |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2186871A1 (de) |
JP (1) | JP2010189639A (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129732A1 (ja) | 2014-02-25 | 2015-09-03 | 三洋化成工業株式会社 | 粘度指数向上剤及び潤滑油組成物 |
CN105969555A (zh) * | 2016-05-12 | 2016-09-28 | 鲁东大学 | 一种液压助力转向系统不解体清洗剂 |
WO2017114838A1 (en) * | 2015-12-28 | 2017-07-06 | Shell Internationale Research Maatschappij B.V. | Lubricating oil composition for automatic transmissions |
CN111094525A (zh) * | 2017-09-28 | 2020-05-01 | 国际壳牌研究有限公司 | 用于内燃机的润滑油组合物 |
US11008528B2 (en) | 2017-03-23 | 2021-05-18 | Sanyo Chemical Industries, Ltd. | Viscosity index improver and lubricating oil composition |
US11753600B2 (en) | 2019-06-26 | 2023-09-12 | Sanyo Chemical Industries, Ltd. | Viscosity index-improving composition and lubricating oil composition |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0668342A1 (de) | 1994-02-08 | 1995-08-23 | Shell Internationale Researchmaatschappij B.V. | Verfahren zur Herstellung von Basisschmieröl |
EP0776959A2 (de) | 1995-11-28 | 1997-06-04 | Shell Internationale Researchmaatschappij B.V. | Verfahren zur Herstellung von Schmierölen |
WO1997021788A1 (en) | 1995-12-08 | 1997-06-19 | Exxon Research And Engineering Company | Biodegradable high performance hydrocarbon base oils |
WO1999041332A1 (en) | 1998-02-13 | 1999-08-19 | Exxon Research And Engineering Company | Low viscosity lube basestock |
WO2000008115A1 (en) | 1998-08-04 | 2000-02-17 | Exxon Research And Engineering Company | A lubricant base oil having improved oxidative stability |
WO2000014187A2 (en) | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Premium synthetic lubricants |
WO2000014183A1 (en) | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Production on synthetic lubricant and lubricant base stock without dewaxing |
WO2000014179A1 (en) | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Premium synthetic lubricant base stock |
WO2000014188A2 (en) | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Premium wear resistant lubricant |
WO2000015736A2 (en) | 1998-09-11 | 2000-03-23 | Exxon Research And Engineering Company | Wide-cut synthetic isoparaffinic lubricating oils |
EP1029029A1 (de) | 1997-10-20 | 2000-08-23 | Mobil Oil Corporation | Iso-parafine schmieröl-grundzusammensetzung |
WO2001018156A1 (fr) | 1999-09-08 | 2001-03-15 | Total Raffinage Distribution S.A. | Nouvelle huile de base hydrocarbonee pour lubrifiants a indice de viscosite tres eleve |
WO2001057166A1 (en) | 2000-02-04 | 2001-08-09 | Mobil Oil Corporation | Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons |
WO2002070631A2 (en) | 2001-03-05 | 2002-09-12 | Shell Internationale Research Maatschappij B.V. | Process to prepare a lubricating base oil |
US20050133407A1 (en) * | 2003-12-23 | 2005-06-23 | Chevron U.S.A. Inc. | Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins |
EP1553158A1 (de) | 2004-01-07 | 2005-07-13 | Afton Chemical Corporation | Kraftübertragungsflüssigkeiten mit verbesserten schwingungsdämpfenden Eigenschaften |
EP1583158A1 (de) | 2004-03-29 | 2005-10-05 | Aiptek International Inc. | Lichtsammeleinheit für eine Leuchtdiodenanordnung |
US20080029431A1 (en) * | 2002-12-11 | 2008-02-07 | Alexander Albert G | Functional fluids having low brookfield viscosity using high viscosity-index base stocks, base oils and lubricant compositions, and methods for their production and use |
US20080153721A1 (en) * | 2006-12-20 | 2008-06-26 | Chevron U.S.A. Inc. | Light base oil fraction and lubricant having low wt% noack volatility |
US20080242564A1 (en) * | 2007-03-30 | 2008-10-02 | Chinn Kevin A | Method for improving the cooling efficiency of a functional fluid |
US20080255012A1 (en) * | 2007-02-08 | 2008-10-16 | Chevron U.S.A. Inc. | Automatic transmission fluid |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR032930A1 (es) * | 2001-03-05 | 2003-12-03 | Shell Int Research | Procedimiento para preparar un aceite de base lubricante y gas oil |
US20040154958A1 (en) * | 2002-12-11 | 2004-08-12 | Alexander Albert Gordon | Functional fluids having low brookfield viscosity using high viscosity-index base stocks, base oils and lubricant compositions, and methods for their production and use |
-
2009
- 2009-02-11 EP EP09152596A patent/EP2186871A1/de not_active Withdrawn
-
2010
- 2010-02-10 JP JP2010027225A patent/JP2010189639A/ja active Pending
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0668342A1 (de) | 1994-02-08 | 1995-08-23 | Shell Internationale Researchmaatschappij B.V. | Verfahren zur Herstellung von Basisschmieröl |
EP0776959A2 (de) | 1995-11-28 | 1997-06-04 | Shell Internationale Researchmaatschappij B.V. | Verfahren zur Herstellung von Schmierölen |
WO1997021788A1 (en) | 1995-12-08 | 1997-06-19 | Exxon Research And Engineering Company | Biodegradable high performance hydrocarbon base oils |
EP1029029A1 (de) | 1997-10-20 | 2000-08-23 | Mobil Oil Corporation | Iso-parafine schmieröl-grundzusammensetzung |
WO1999041332A1 (en) | 1998-02-13 | 1999-08-19 | Exxon Research And Engineering Company | Low viscosity lube basestock |
WO2000008115A1 (en) | 1998-08-04 | 2000-02-17 | Exxon Research And Engineering Company | A lubricant base oil having improved oxidative stability |
WO2000014187A2 (en) | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Premium synthetic lubricants |
WO2000014179A1 (en) | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Premium synthetic lubricant base stock |
WO2000014188A2 (en) | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Premium wear resistant lubricant |
WO2000014183A1 (en) | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Production on synthetic lubricant and lubricant base stock without dewaxing |
WO2000015736A2 (en) | 1998-09-11 | 2000-03-23 | Exxon Research And Engineering Company | Wide-cut synthetic isoparaffinic lubricating oils |
WO2001018156A1 (fr) | 1999-09-08 | 2001-03-15 | Total Raffinage Distribution S.A. | Nouvelle huile de base hydrocarbonee pour lubrifiants a indice de viscosite tres eleve |
WO2001057166A1 (en) | 2000-02-04 | 2001-08-09 | Mobil Oil Corporation | Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons |
WO2002070631A2 (en) | 2001-03-05 | 2002-09-12 | Shell Internationale Research Maatschappij B.V. | Process to prepare a lubricating base oil |
US20080029431A1 (en) * | 2002-12-11 | 2008-02-07 | Alexander Albert G | Functional fluids having low brookfield viscosity using high viscosity-index base stocks, base oils and lubricant compositions, and methods for their production and use |
US20050133407A1 (en) * | 2003-12-23 | 2005-06-23 | Chevron U.S.A. Inc. | Finished lubricating comprising lubricating base oil with high monocycloparaffins and low multicycloparaffins |
EP1553158A1 (de) | 2004-01-07 | 2005-07-13 | Afton Chemical Corporation | Kraftübertragungsflüssigkeiten mit verbesserten schwingungsdämpfenden Eigenschaften |
EP1583158A1 (de) | 2004-03-29 | 2005-10-05 | Aiptek International Inc. | Lichtsammeleinheit für eine Leuchtdiodenanordnung |
US20080153721A1 (en) * | 2006-12-20 | 2008-06-26 | Chevron U.S.A. Inc. | Light base oil fraction and lubricant having low wt% noack volatility |
US20080255012A1 (en) * | 2007-02-08 | 2008-10-16 | Chevron U.S.A. Inc. | Automatic transmission fluid |
US20080242564A1 (en) * | 2007-03-30 | 2008-10-02 | Chinn Kevin A | Method for improving the cooling efficiency of a functional fluid |
Non-Patent Citations (1)
Title |
---|
KIRK-OTHMER: "Encyclopedia of Chemical Technology", vol. 14, pages: 477 - 526 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015129732A1 (ja) | 2014-02-25 | 2015-09-03 | 三洋化成工業株式会社 | 粘度指数向上剤及び潤滑油組成物 |
WO2017114838A1 (en) * | 2015-12-28 | 2017-07-06 | Shell Internationale Research Maatschappij B.V. | Lubricating oil composition for automatic transmissions |
CN108431187A (zh) * | 2015-12-28 | 2018-08-21 | 国际壳牌研究有限公司 | 用于自动变速器的润滑油组合物 |
US11130926B2 (en) | 2015-12-28 | 2021-09-28 | Shell Oil Company | Lubricating oil composition for automatic transmissions |
CN105969555A (zh) * | 2016-05-12 | 2016-09-28 | 鲁东大学 | 一种液压助力转向系统不解体清洗剂 |
US11008528B2 (en) | 2017-03-23 | 2021-05-18 | Sanyo Chemical Industries, Ltd. | Viscosity index improver and lubricating oil composition |
CN111094525A (zh) * | 2017-09-28 | 2020-05-01 | 国际壳牌研究有限公司 | 用于内燃机的润滑油组合物 |
CN111094525B (zh) * | 2017-09-28 | 2022-06-10 | 国际壳牌研究有限公司 | 用于内燃机的润滑油组合物 |
US11753600B2 (en) | 2019-06-26 | 2023-09-12 | Sanyo Chemical Industries, Ltd. | Viscosity index-improving composition and lubricating oil composition |
Also Published As
Publication number | Publication date |
---|---|
JP2010189639A (ja) | 2010-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006266482B2 (en) | HVI-PAO in industrial lubricant and grease compositions | |
JP2009500489A5 (de) | ||
CN105112139A (zh) | 润滑油组合物 | |
JP5452297B2 (ja) | 潤滑油組成物 | |
US11111455B2 (en) | Lubricating oil composition for automatic transmissions | |
JP2009511728A (ja) | 潤滑油組成物 | |
JP2004010894A (ja) | エネルギー保存型動力伝達装置用流体 | |
EP2186871A1 (de) | Schmierzusammensetzung | |
EP2683802B1 (de) | Hochviskose schmiermittelzusammensetzungen | |
EP2714865A1 (de) | Hocheffiziente schmiermittelzusammensetzung | |
EP3491108B1 (de) | Antriebsstrangflüssigkeiten mit api-gruppe-ii-basisöl | |
EP3174964B1 (de) | Additive zur verbesserung des viskositätsindexes von alkylbeschichtetem öllöslichem polymer für grundöle in automotiven anwendungen | |
JP5898691B2 (ja) | 潤滑組成物 | |
JP5865907B2 (ja) | 潤滑組成物 | |
CN102639683B (zh) | 功能性流体组合物 | |
WO2014157201A1 (ja) | 油圧作動油組成物 | |
US20120302480A1 (en) | Additive concentrate | |
WO2009024610A1 (en) | Use of a lubricating oil composition | |
WO2014208549A1 (ja) | 油圧作動油組成物 | |
EP2385097A1 (de) | Schmiermittelzusammensetzung | |
WO2014157200A1 (ja) | 油圧作動油組成物 | |
WO2024229068A1 (en) | High performance gear oil and related methods | |
JP2023003675A (ja) | 潤滑油組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: FROBOESE, ERIC |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20101117 |