EP2161525B1 - Modular heat exchanger - Google Patents
Modular heat exchanger Download PDFInfo
- Publication number
- EP2161525B1 EP2161525B1 EP08015786.0A EP08015786A EP2161525B1 EP 2161525 B1 EP2161525 B1 EP 2161525B1 EP 08015786 A EP08015786 A EP 08015786A EP 2161525 B1 EP2161525 B1 EP 2161525B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- heat
- pipes
- inlet
- external shell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/163—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
- F28D7/1638—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
- F28D7/1646—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0061—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
- F28D2021/0064—Vaporizers, e.g. evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F2009/0285—Other particular headers or end plates
Definitions
- the invention relates to a heat exchanger in modular design for plants in which large load and / or temperature fluctuations occur, in particular solar power plants.
- a heat exchanger according to the preamble of claims 1 and 2 is made GB 653 540 A known.
- the invention is based on the object DE 29510720 U1 known heat exchanger to improve and specify a heat exchanger, which allows a more compact design, so that even less space is required for the heat exchanger. It is another object of the invention to allow in addition to the reduction of production costs a flexible design.
- the heat exchanger according to the invention is modular.
- the heat exchanger modules which are at least one preheater, at least one evaporator and at least one superheater module, are arranged in a common outer jacket, in which a heat-emitting medium flows around the heat exchanger modules with the meandering tube bundles:
- the heat exchanger combines at least three different apparatuses in one ,
- the heat exchange takes place according to the counter or cross flow principle.
- the meandering tubes are flowed through by a heat-absorbing medium, for example water.
- the meandering arrangement of the tube bundles reduces the size of the heat exchanger, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermo-elasticity of the structure.
- the invention is based inter alia on the finding that the size of the heat exchanger is significantly reduced by the arrangement of the individual heat exchanger modules in a common outer shell with the same or even increased performance of the heat exchanger.
- Another advantage of the modular design is the possibility of flexible adaptation of individual heat exchanger modules depending on the requirements. Thus, for example, individual modules can be added as needed or only individual modules can be modified, for example, by changing the tube bundle lengths. This eliminates the effort for a comprehensive overall design of the heat exchanger.
- production costs can be reduced because common parts or identical modules can be used instead of the cost-intensive individual production of heat exchanger components.
- By saving additional pipe connections between the individual modules and by the compact design not only material costs are reduced but also increases the efficiency of the heat exchanger, since the heat loss to the environment is effectively reduced thanks to the decrease in the surface, which is in contact with the environment ,
- the parallel connection of several evaporator modules by means of a steam drum further increases flexibility and efficiency.
- faster start-up can be achieved with higher temperature gradients, which is of enormous importance with changing load and temperature conditions of, for example, solar power plants.
- the tubes through which the heat-absorbing medium flows from the outlet header of the respective evaporator module to the steam drum are connected to one another, that they have only one common entry into the steam drum. This will continue to reduce material costs and heat loss to the environment.
- the tubes, through which the heat-absorbing medium flows from the steam drum to the inlet header of the respective evaporator module be interconnected so that they have a single common outlet from the steam drum.
- the heat exchanger can be set up either horizontally or vertically.
- the vertical installation allows even better land use.
- several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area.
- the space conditions are unfavorable because the parabolic trough collectors take up a lot of space.
- the space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner.
- the temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.
- the horizontal heat exchanger module has a number of horizontal pipe layers, each pipe layer is formed from an equal number of tubes, and that the tube layers are arranged so that the tubes of the individual tube layers in the vertical direction exactly superimposed are aligned, wherein the flow directions of the heat-absorbing medium in the vertically adjacent, arranged transversely to the central axis of the outer shell pipe sections are opposite.
- the design of the tube bundles in individual tube layers allows an extremely compact design.
- the fact that the tubes lie vertically exactly above each other, conventional spacers between the tubes can be used.
- the opposite flow in the vertically adjacent pipe sections, which are arranged transversely to the central axis of the outer shell favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis.
- the pipe layers are compared to the horizontal lineup rotated by 90 °, vertically next to each other, expediently the preheater module is the lowest in the common outer jacket.
- the inlet and outlet collectors preferably have a circular cross section.
- the tubes of a tube layer are on a circumferential plane of the respective inlet and outlet collector offset from each other by an equal angle with the respective inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.
- the tubes of the adjacent tube layers are connected to the respective inlet and outlet header, that the tubes of a tube layer with respect to the tubes of the adjacent tube layer are arranged offset by an angle on an adjacent circumferential plane of the respective inlet and outlet collector.
- the peripheral surfaces of the input or. Outlet collectors are optimally utilized, so that the arrangement of the tube layers can be made compact. There is still enough space for welding, machining or other work on the collectors.
- the tubes of the heat exchanger modules are arranged in a common inner housing, which is arranged concentrically within the outer shell and has an inlet and an outlet opening for the heat-emitting medium.
- the cross-sectional profile of the inner housing is preferably rectangular, so that the raw bundles are as closely as possible enclosed by this inner housing.
- the additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment.
- the space between the outer shell and the inner housing can be used as an additional flow channel for the heat-emitting medium. In this way, the residence time of the heat-emitting medium is extended in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved.
- FIG. 1 shows a first embodiment.
- the heat exchanger 1 is placed vertically in a space-saving manner.
- the outer jacket 70 is an inner housing 80, which has a rectangular cross-sectional profile.
- the meandering tubes 120 of the individual heat exchanger modules 10, 20, 30, 40, 50 are arranged in the inner housing.
- the heat-absorbing medium for example water, enters the inlet header 11 of the preheater module 10 via the pipeline 91. After flowing through the tubes 120 of the preheater module 10, it passes through the outlet header 12 of the preheater module 10 and via the pipe 92 in the steam drum 60. From the steam drum 60, the heated water passes through the pipes 93, 94, 95 in the parallel-connected evaporator modules 20th , 30, 40.
- the water-vapor mixture from the evaporator modules 20, 30, 40 flows back into the steam drum 60.
- the steam drum 60 has means (not shown here) for separating the water from the water vapor Mixture, so that the dry steam for overheating via the pipe 97 into the inlet header 51 of the superheater module 50 passes.
- the now superheated in the superheater module 50 steam passes through the pipe 98 from the heat exchanger and passes, for example, to generate electricity in the downstream turbine.
- FIG. 2 shows the same embodiment Fig. 1 , but here the flow path of the heat-emitting medium is shown in more detail.
- the heat-emitting medium which in this case is a thermal oil heated by solar energy, enters via the inlet connection 71 of the outer jacket 70 at a temperature of approximately 400 ° C.
- the thermal oil enters the inner housing 80, in which the thermal oil, the tubes 120 of the superheater module 50, the three evaporator modules 40, 30, 20 and the preheater module 10 of Flows around in rows and thereby gives off the heat to water. Subsequently, the cooled thermal oil flows through the outlet nozzle 72 from the heat exchanger. 1
- FIG. 3 shows a further embodiment of the invention, wherein the heat exchanger 1 is set up horizontally.
- FIG. 4 the sectional view along the line BB Fig. 3 , the modular design of the heat exchanger 1 is best visible.
- the preheater module 10 with the inlet header 11 and the outlet header 12 has meandering tubes 120.
- the construction of the others Heat exchanger modules, namely the evaporator modules 20, 30, 40 and the superheater module 50 is identical. They only differ in their dimensions.
- the evaporator modules 20, 30, 40 are exactly the same.
- the number of evaporator modules 20, 30, 40 can be adjusted as needed. Since exactly the same parts are used, this results in advantages in terms of manufacturing costs.
- one or more defective heat exchanger modules can be easily removed and replaced by new ones in case of faults.
- FIG. 5 an inventive collector is shown enlarged. These are the outlet header 42 of the third evaporator module 40. Essentially, the inlet and outlet header of the various heat exchanger modules differ only slightly from each other. Again, advantages of the modular design can be seen. According to a preferred embodiment, the tubes 101, 102, 103, 104 of a first layer 100 open in a horizontal plane offset by an equal angle ⁇ in the collector 42. Likewise open the tubes 111, 112, 113, 114 of a second layer 110 around the same angle ⁇ offset in the collector 42nd
- FIG. 6 shows a plan view of the collector 42.
- the angle ⁇ by which a tube of a layer is offset from the next tube of the same position, in this case is in each case 45 °.
- FIG. 7 shows the enlarged detail view "X" Fig. 3 , All tubes of different layers are arranged so that they lie vertically exactly above each other. Due to the horizontal and vertical exact alignment, simple spacers 130 can be uniformly arranged.
- a further advantage in the arrangement of the tubes 120 in layers is that the flow directions in the vertically adjacent tube sections 210, which are arranged transversely to the central axis 200 of the outer jacket 70, are opposite.
- FIG. 8 shows a further advantage of the invention. Due to the adjacent arrangement of the inlet and outlet headers 42, 51 of adjacent heat exchanger modules 40, 50, the overall length of the heat exchanger 1 can be further reduced. Conventionally, the collectors were arranged centrally on the central axis 200 of the heat carrier 1.
- FIGS. 9 and 10 show the structure of the individual pipe layers 100 and 110.
- each tube with respect to its vertically adjacent tube in a horizontal position or with respect to its horizontally adjacent tube in a vertical position an opposite direction the pipe flow on.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Description
Die Erfindung betrifft einen Wärmetauscher in Modulbauweise für Anlagen, in denen große Last- und/oder Temperaturschwankungen auftreten, insbesondere Solarkraftwerke. Ein Wärmetauscher nach dem Oberbegriff des Ansprüche 1 und 2 ist aus
Aus
Mit Hilfe des aus
Daher liegt der Erfindung die Aufgabe zugrunde, den aus
Die Aufgabe wird gelöst durch einen Wärmetauscher gemäß den unabhängigen Ansprüchen 1 und 2. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen wiedergegeben.The object is achieved by a heat exchanger according to the
Der erfindungsgemäße Wärmetauscher ist modular aufgebaut. Die Wärmetauschermodule, welche mindestens ein Vorwärmer-, mindestens ein Verdampfer- und mindestens ein Überhitzermodul sind, werden in einem gemeinsamen Außenmantel angeordnet, in welchem ein wärmeabgebendes Medium die Wärmetauschermodule mit den mäanderförmig verlaufenden Rohrbündeln umströmt: Der Wärmetauscher vereint also mindestens drei verschiedene Apparate in einem. Der Wärmeaustausch erfolgt nach dem Gegen- bzw. Kreuzstromprinzip. Die mäanderförmigen Rohre werden von einem wärmeaufnehmenden Medium, beispielsweise Wasser, durchströmt. Durch die mäanderförmige Anordnung der Rohrbündel wird die Baugröße des Wärmetauschers verringert, die Wärmeübertragung vom wärmeabgebenden zum wärmeaufnehmenden Medium verbessert und ferner die Thermoelastizität des Aufbaus erhöht.The heat exchanger according to the invention is modular. The heat exchanger modules, which are at least one preheater, at least one evaporator and at least one superheater module, are arranged in a common outer jacket, in which a heat-emitting medium flows around the heat exchanger modules with the meandering tube bundles: Thus, the heat exchanger combines at least three different apparatuses in one , The heat exchange takes place according to the counter or cross flow principle. The meandering tubes are flowed through by a heat-absorbing medium, for example water. The meandering arrangement of the tube bundles reduces the size of the heat exchanger, improves the heat transfer from the heat-emitting to the heat-absorbing medium and also increases the thermo-elasticity of the structure.
Die Erfindung beruht unter anderem auf der Erkenntnis, dass durch die Anordnung der einzelnen Wärmetauschermodule in einem gemeinsamen Außenmantel die Baugröße des Wärmetauschers bei gleicher oder gar erhöhter Leistungsfähigkeit des Wärmetauschers deutlich verringert wird. Ein weiterer Vorteil der modularen Bauweise besteht in der Möglichkeit der flexiblen Anpassung einzelner Wärmetauschermodule je nach den Anforderungen. So können beispielsweise je nach Bedarf einzelne Module hinzugefügt werden oder nur einzelne Module beispielsweise durch Änderung der Rohrbündellängen modifiziert werden. Dadurch entfällt der Aufwand für eine umfangreiche Gesamtauslegung des Wärmetauschers. Außerdem können Produktionskosten gesenkt werden, da anstelle der kostenintensiven Einzelanfertigung von Wärmetauscherkomponenten Gleichteile bzw. gleiche Module verwendet werden können. Durch die Einsparung von zusätzlichen Rohrverbindungen zwischen den Einzelmodulen und durch die kompakte Bauweise werden nicht nur Materialkosten gesenkt sondern auch der Wirkungsgrad des Wärmetauschers erhöht, da der Wärmeverlust an die Umgebung dank der Abnahme der Oberfläche, welche mit der Umgebung in Kontakt steht, effektiv verringert wird.The invention is based inter alia on the finding that the size of the heat exchanger is significantly reduced by the arrangement of the individual heat exchanger modules in a common outer shell with the same or even increased performance of the heat exchanger. Another advantage of the modular design is the possibility of flexible adaptation of individual heat exchanger modules depending on the requirements. Thus, for example, individual modules can be added as needed or only individual modules can be modified, for example, by changing the tube bundle lengths. This eliminates the effort for a comprehensive overall design of the heat exchanger. In addition, production costs can be reduced because common parts or identical modules can be used instead of the cost-intensive individual production of heat exchanger components. By saving additional pipe connections between the individual modules and by the compact design not only material costs are reduced but also increases the efficiency of the heat exchanger, since the heat loss to the environment is effectively reduced thanks to the decrease in the surface, which is in contact with the environment ,
Durch die Parallelschaltung mehrerer Verdampfermodule mittels einer Dampftrommel wird die Flexibiltät und die Effizienz weiter gesteigert. Zudem kann schnelleres Anfahren mit höheren Temperaturgradienten erreicht werden, was bei wechselnden Last- und Temperaturbedingungen von beispielsweise Solarkraftwerken von enormer Bedeutung ist. Gemäß einer bevorzugten Ausführungsvariante der Erfindung sind die Rohre, durch die das wärmeaufnehmende Medium vom Austrittssammler des jeweiligen Verdampfermoduls zur Dampftrommel strömt, so miteinander verbunden, dass sie nur einen einzigen gemeinsamen Eintritt in die Dampftrommel aufweisen. Dadurch werden weiterhin Materialkosten und auch der Wärmeverlust an die Umgebung verringert.The parallel connection of several evaporator modules by means of a steam drum further increases flexibility and efficiency. In addition, faster start-up can be achieved with higher temperature gradients, which is of enormous importance with changing load and temperature conditions of, for example, solar power plants. According to a preferred embodiment of the invention, the tubes through which the heat-absorbing medium flows from the outlet header of the respective evaporator module to the steam drum are connected to one another, that they have only one common entry into the steam drum. This will continue to reduce material costs and heat loss to the environment.
Ebenso können gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung die Rohre, durch die das wärmeaufnehmende Medium von der Dampftrommel zum Eintrittssammler des jeweiligen Verdampfermoduls strömt, so miteinander verbunden sein, dass sie einen einzigen gemeinsamen Austritt aus der Dampftrommel aufweisen.Likewise, according to a further advantageous embodiment of the invention, the tubes, through which the heat-absorbing medium flows from the steam drum to the inlet header of the respective evaporator module, be interconnected so that they have a single common outlet from the steam drum.
Gemäß der Erfindung kann der Wärmetauscher entweder horizontal oder vertikal aufgestellt werden. Die vertikale Aufstellung erlaubt eine noch bessere Flächennutzung. Dabei können mehrere der erfindungsgemäßen Wärmetauscher nebeneinander parallel auf einer relativ kleinen Fläche betrieben werden. Bei insbesondere Solarkraftanlagen sind die Platzverhältnisse ungünstig, da die Parabolrinnenkollektoren sehr viel Platz einnehmen. Die platzsparende Bauweise der erfindungsgemäßen Wärmetauscher erlaubt eine fast ortsungebundene Aufstellung, so dass die Strömungswege der aufgeheizten Medien zum Wärmetauscher zweckmäßiger Weise verkürzt werden können. Die Temperaturen des wärmeabgebenden Mediums bei Eintritt in den Wärmetauscher sind höher, so dass die Wärmeausbeute besser wird.According to the invention, the heat exchanger can be set up either horizontally or vertically. The vertical installation allows even better land use. In this case, several of the heat exchangers according to the invention can be operated side by side in parallel on a relatively small area. In particular solar power plants, the space conditions are unfavorable because the parabolic trough collectors take up a lot of space. The space-saving design of the heat exchanger according to the invention allows an almost location-independent installation, so that the flow paths of the heated media can be shortened to the heat exchanger expedient manner. The temperatures of the heat-emitting medium when entering the heat exchanger are higher, so that the heat yield is better.
Die Erfindung sieht vor, dass das Wärmetauschermodul bei horizontaler Aufstellung eine Anzahl von horizontalen Rohrlagen aufweist, wobei jede Rohrlage aus einer gleichen Anzahl von Rohren gebildet wird, und dass die Rohrlagen so angeordnet sind, dass die Rohre der einzelnen Rohrlagen in vertikaler Richtung genau übereinander liegend ausgerichtet sind, wobei die Strömungsrichtungen des wärmeaufnehmenden Mediums in den vertikal benachbarten, quer zur Mittelachse des Außenmantels angeordneten Rohrabschnitten entgegengesetzt sind. Die Ausführung der Rohrbündel in einzelnen Rohrlagen ermöglicht eine extrem kompakte Bauweise. Dadurch dass die Rohre vertikal genau übereinanderliegen, können herkömmliche Abstandhalter zwischen den Rohren verwendet werden. Die entgegengesetzte Strömung in den vertikal benachbarten Rohrabschnitten, die quer zur Mittelachse des Außenmantels angeordnet sind, begünstigt die symmetrische Temperaturverteilung im Wärmetauscher in Bezug auf die Mittelachse. Entsprechendes gilt auch bei der vertikalen Aufstellung des Wärmetauschers. In diesem Fall liegen dann die Rohrlagen gegenüber der horizontalen Aufstellung um 90° verdreht, vertikal nebeneinander, wobei zweckmäßigerweise das Vorwärmermodul im gemeinsamen Außenmantel am tiefsten ist.The invention provides that the horizontal heat exchanger module has a number of horizontal pipe layers, each pipe layer is formed from an equal number of tubes, and that the tube layers are arranged so that the tubes of the individual tube layers in the vertical direction exactly superimposed are aligned, wherein the flow directions of the heat-absorbing medium in the vertically adjacent, arranged transversely to the central axis of the outer shell pipe sections are opposite. The design of the tube bundles in individual tube layers allows an extremely compact design. The fact that the tubes lie vertically exactly above each other, conventional spacers between the tubes can be used. The opposite flow in the vertically adjacent pipe sections, which are arranged transversely to the central axis of the outer shell, favors the symmetrical temperature distribution in the heat exchanger with respect to the central axis. The same applies to the vertical installation of the heat exchanger. In this case, then the pipe layers are compared to the horizontal lineup rotated by 90 °, vertically next to each other, expediently the preheater module is the lowest in the common outer jacket.
Vorzugsweise weisen die Ein- und Austrittssammler einen kreisförmigen Querschnitt auf. Dabei sind die Rohre einer Rohrlage auf einer Umfangsebene des jeweiligen Ein- und Austrittssammlers voneinander um einen gleichen Winkel versetzt mit dem jeweiligen Ein- und Austrittssammler verbunden. Auf diese Weise wird das Herstellungsverfahren erleichtert, da genug Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern geboten wird.The inlet and outlet collectors preferably have a circular cross section. The tubes of a tube layer are on a circumferential plane of the respective inlet and outlet collector offset from each other by an equal angle with the respective inlet and outlet collector. In this way, the manufacturing process is facilitated because there is enough space for welding, machining or other work on the collectors.
Weiterhin bevorzugt, sind die Rohre der benachbarten Rohrlagen so mit dem jeweiligen Ein- und Austrittssammler verbunden, dass die Rohre der einen Rohrlage bezüglich der Rohre der benachbarten Rohrlage um einen Winkel versetzt auf einer benachbarten Umfangsebene des jeweiligen Ein- und Austrittssammlers angeordnet sind. Hierdurch können die Umfangsflächen der Ein-bzw. Austrittssammler optimal ausgenutzt werden, so dass die Anordnung der Rohriagen kompakt gestaltet werden kann. Es bleibt immer noch genügend Platz für Schweißarbeiten, spanende Fertigung oder sonstige Arbeiten an den Sammlern.Further preferably, the tubes of the adjacent tube layers are connected to the respective inlet and outlet header, that the tubes of a tube layer with respect to the tubes of the adjacent tube layer are arranged offset by an angle on an adjacent circumferential plane of the respective inlet and outlet collector. As a result, the peripheral surfaces of the input or. Outlet collectors are optimally utilized, so that the arrangement of the tube layers can be made compact. There is still enough space for welding, machining or other work on the collectors.
Gemäß einer bevorzugten Weiterbildung der Erfindung sind die Rohre der Wärmetauschermodule in einem gemeinsamen Innengehäuse angeordnet, welcher konzentrisch innerhalb des Außenmantels angeordnet ist und eine Ein- und eine Austrittsöffnung für das wärmeabgebende Medium aufweist. Das Querschnittsprofil des Innengehäuses ist vorzugsweise rechteckig, so dass die Rohbündel möglichst eng von diesem Innengehäuse umschlossen werden. Durch die zusätzliche Umschließung der wärmeaustauschenden Komponenten wird eine weitere Isolierung zwischen den Wärmetauschermodulen und der Umgebung geschaffen. Alternativ kann der Raum zwischen dem Außenmantel und dem Innengehäuse als zusätzlicher Strömungskanal für das wärmeabgebende Medium genutzt werden. Auf diese Weise wird die Verweilzeit des wärmeabgebenden Mediums im Wärmetauscher verlängert, so dass die Wärmeübertragung zum wärmeaufnehmenden Medium verbessert wird.According to a preferred embodiment of the invention, the tubes of the heat exchanger modules are arranged in a common inner housing, which is arranged concentrically within the outer shell and has an inlet and an outlet opening for the heat-emitting medium. The cross-sectional profile of the inner housing is preferably rectangular, so that the raw bundles are as closely as possible enclosed by this inner housing. The additional enclosure of the heat exchanging components provides further insulation between the heat exchanger modules and the environment. Alternatively, the space between the outer shell and the inner housing can be used as an additional flow channel for the heat-emitting medium. In this way, the residence time of the heat-emitting medium is extended in the heat exchanger, so that the heat transfer to the heat-absorbing medium is improved.
Nachfolgend wird die Erfindung anhand von Figuren näher beschrieben. Es zeigen schematisch:
-
Fig. 1 einen Längsschnitt durch eine erste Ausführungsvariante mit Darstellung der rohrseitigen Strömungswege bei vertikaler Aufstellung; -
Fig. 2 einen Längsschnitt wieFig. 1 , allerdings mit Darstellung der mantelseitigen Strömungswege; -
Fig. 3 einen Längsschnitt durch eine zweite Ausführungsvariante bei horizontaler Aufstellung; -
Fig. 4 eine Schnittansicht entlang der Linie B-B ausFig. 3 ; -
Fig. 5 eine vergrößerte Detailansicht ausFig. 8 ; -
Fig. 6 eine Draufsicht vonFig. 5 ; -
Fig. 7 eine vergrößerte Detailansicht ausFig. 3 ; -
Fig. 8 eine Schnittansicht entlang der Linie A-A ausFig. 3 .
-
Fig. 1 a longitudinal section through a first embodiment variant showing the pipe-side flow paths in vertical installation; -
Fig. 2 a longitudinal section likeFig. 1 , but with representation of the shell-side flow paths; -
Fig. 3 a longitudinal section through a second embodiment of a horizontal installation; -
Fig. 4 a sectional view taken along the line BBFig. 3 ; -
Fig. 5 an enlarged detail viewFig. 8 ; -
Fig. 6 a top view ofFig. 5 ; -
Fig. 7 an enlarged detail viewFig. 3 ; -
Fig. 8 a sectional view taken along the line AAFig. 3 ,
In
In
Die
Claims (7)
- A heat exchanger (1) in modular construction, in particular for facilities operated using large load and/or temperature changes, having an external shell (70) and a number of heat exchanger modules, each heat exchanger module, being either a preheater (10), an evaporator (20, 30, 40), or a superheater module (50), comprising an inlet header (11, 21, 31, 41, 51), an outlet header (12, 22, 32, 42, 52), and meandering pipes (120), through which the heat-absorbing medium, in particular water, flows from the inlet header (11, 21, 31, 41, 51) to the outlet header (12, 22, 32, 42, 52), and the heat exchanger modules further being situated inside the shared external shell (70), so that they have the same heat-dissipating medium flowing around them, the evaporator modules (20, 30, 40) being connected in parallel via a steam-collecting drum (60) situated outside the external shell (70), and the heat exchanger (1) being suitable to be set up horizontally or vertically,
characterized in that
the heat exchanger module, upon horizontal setup, comprises a number of horizontal pipe layers (100, 110), each pipe layer (100, 110) being formed by an equal number of pipes, and that the pipes of the pipe layers (100, 110) are oriented lying precisely one over another in the vertical direction, the flow directions of the heat-absorbing medium in vertically adjacent pipe sections (210) of adjacent pipe layers (100, 110) situated transversely to the central axis (200) of the external shell (70) being opposite. - A heat exchanger (1) in modular construction, in particular for facilities operated using large load and/or temperature changes, having an external shell (70) and a number of heat exchanger modules, each heat exchanger module, being either a preheater (10), an evaporator (20, 30, 40), or a superheater module (50), comprising an inlet header (11, 21, 31, 41, 51), an outlet header (12, 22, 32, 42, 52), and meandering pipes (120), through which the heat-absorbing medium, in particular water, flows from the inlet header (11, 21, 31, 41, 51) to the outlet header (12, 22, 32, 42, 52), and the heat exchanger modules further being situated inside the shared external shell (70), so that they have the same heat-dissipating medium flowing around them, the evaporator modules (20, 30, 40) being connected in parallel via a steam-collecting drum (60) situated outside the external shell (70), and the heat exchanger (1) being suitable to be set up horizontally or vertically,
characterized in that
the heat exchanger module, upon vertical setup, comprises a number of vertical pipe layers (100, 110), each pipe layer (100, 110) being formed by an equal number of pipes, and that the pipes of the pipe layers (100, 110) are oriented lying precisely adjacent to one another in the horizontal direction, the flow directions of the heat-absorbing medium in horizontally adjacent pipe sections (210) of adjacent pipe layers (100, 110) situated transversely to the central axis (200) of the external shell (70) being opposite. - The heat exchanger according to any one of the preceding claims,
characterized in that
the inlet (11, 21, 31, 41, 51) and outlet headers (12, 22, 32, 42, 52) have a circular cross-section, and the pipes (101, 102, 103, 104) of a pipe layer (100) are connected to the respective inlet (41) and outlet header (42) offset to one another by an equal angle (α) on a peripheral plane of the respective inlet (41) and outlet header (42). - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the pipes (101, 102, 103, 104, 111, 112, 113, 114) of the adjacent pipe layers (100, 110) are connected to the respective inlet (41) and outlet header (42) in such a way that the pipes (111, 112, 113, 114) of one pipe layer (110) are situated offset by an angle (β) on an adjacent peripheral plane of the respective inlet (41) and outlet header (42) in relation to the pipes (101, 102, 103, 104) of the adjacent pipe layer (100). - The heat exchanger according to any one of the preceding claims,
characterized in that
the pipes (120) of the heat exchanger modules are situated in a shared internal housing (80) which is situated concentrically inside the external shell (70), and has an inlet and an outlet opening for the heat-dissipating medium. - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the pipes (96a, 96b, 96c) through which the heat-absorbing medium flows from the outlet header (22, 32, 42) of the respective evaporator module (20, 30, 40) to the steam-collecting drum (60) are connected to one another in such a way that they have a single shared inlet (96) into the steam-collecting drum (60). - The heat exchanger (1) according to any one of the preceding claims,
characterized in that
the pipes (93, 94, 95) through which the heat-absorbing medium flows from the steam-collecting drum (60) to the inlet header (21, 31, 41) of the respective evaporator module (20, 30, 40) are connected to one another in such a way that they have a single shared outlet from the steam-collecting drum (60).
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08015786.0A EP2161525B8 (en) | 2008-09-08 | 2008-09-08 | Modular heat exchanger |
PT80157860T PT2161525T (en) | 2008-09-08 | 2008-09-08 | Modular heat exchanger |
ES08015786.0T ES2582657T3 (en) | 2008-09-08 | 2008-09-08 | Heat exchanger in modular construction mode |
US12/327,144 US8708035B2 (en) | 2008-09-08 | 2008-12-03 | Heat exchanger in a modular construction |
PCT/EP2009/006512 WO2010025960A2 (en) | 2008-09-08 | 2009-09-08 | Heat exchanger in modular design |
CN200980135138.XA CN102149999B (en) | 2008-09-08 | 2009-09-08 | Heat exchanger in modular design |
KR1020117008093A KR20110069804A (en) | 2008-09-08 | 2009-09-08 | Modular structure heat exchanger |
AU2009289762A AU2009289762B2 (en) | 2008-09-08 | 2009-09-08 | Heat exchanger in modular design |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08015786.0A EP2161525B8 (en) | 2008-09-08 | 2008-09-08 | Modular heat exchanger |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2161525A1 EP2161525A1 (en) | 2010-03-10 |
EP2161525B1 true EP2161525B1 (en) | 2016-04-20 |
EP2161525B8 EP2161525B8 (en) | 2016-06-08 |
Family
ID=40347858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08015786.0A Not-in-force EP2161525B8 (en) | 2008-09-08 | 2008-09-08 | Modular heat exchanger |
Country Status (8)
Country | Link |
---|---|
US (1) | US8708035B2 (en) |
EP (1) | EP2161525B8 (en) |
KR (1) | KR20110069804A (en) |
CN (1) | CN102149999B (en) |
AU (1) | AU2009289762B2 (en) |
ES (1) | ES2582657T3 (en) |
PT (1) | PT2161525T (en) |
WO (1) | WO2010025960A2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29608991U1 (en) | 1996-05-20 | 1997-06-19 | Siemens AG, 80333 München | Actuator, in particular electric motor-gear actuator, for a motor vehicle |
KR100798701B1 (en) * | 2007-05-29 | 2008-01-28 | 서동숭 | Prefabricated oil cooler for hydraulic oil |
CA2730159A1 (en) * | 2008-07-07 | 2010-01-14 | John E. Okonski, Jr. | High-efficiency enhanced boiler |
PT2322854E (en) * | 2009-11-17 | 2013-09-12 | Balcke Duerr Gmbh | Heat exchanger for creating steam for solar power plants |
US9273865B2 (en) * | 2010-03-31 | 2016-03-01 | Alstom Technology Ltd | Once-through vertical evaporators for wide range of operating temperatures |
DE102010028681A1 (en) * | 2010-05-06 | 2011-11-10 | Siemens Aktiengesellschaft | Solar thermal forced circulation steam generator with internally ribbed pipes |
WO2011156968A1 (en) * | 2010-06-18 | 2011-12-22 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Heat exchanger unit |
DE102010041903B4 (en) * | 2010-10-04 | 2017-03-09 | Siemens Aktiengesellschaft | Continuous steam generator with integrated reheater |
ITMI20110465A1 (en) * | 2011-03-24 | 2012-09-25 | Rosella Rizzonelli | HEAT EXCHANGER DEVICE. |
DE102011075930A1 (en) * | 2011-05-16 | 2012-11-22 | Siemens Aktiengesellschaft | Steam generator, in particular for a solar thermal power plant |
DE102011075932A1 (en) * | 2011-05-16 | 2012-11-22 | Siemens Aktiengesellschaft | Steam generator for solar-thermal power plant, has heating surface pipe arranged in meander form, where free cross section of heating surface pipe is increased in flow direction of medium to be evaporated |
CZ305869B6 (en) * | 2015-03-10 | 2016-04-13 | Zdeněk Adámek | Modular condensation recuperator |
US10711653B2 (en) | 2015-12-28 | 2020-07-14 | Boundary Turbines Inc | Process and system for extracting useful work or electricity from thermal sources |
WO2017180910A1 (en) * | 2016-04-13 | 2017-10-19 | Siluria Technologies, Inc. | Oxidative coupling of methane for olefin production |
EP3444529A1 (en) * | 2017-08-18 | 2019-02-20 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Heat recovery method and system |
WO2019035714A1 (en) * | 2017-08-18 | 2019-02-21 | Nederlandse Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek Tno | Method and system for heat recovery |
WO2020023062A1 (en) | 2018-07-27 | 2020-01-30 | Cleaver-Brooks, Inc. | Modular heat recovery steam generator system for rapid installation |
WO2020069704A1 (en) | 2018-10-01 | 2020-04-09 | Aalborg Csp A/S | Heat exchanger, such as for a solar power plant |
US11316216B2 (en) | 2018-10-24 | 2022-04-26 | Dana Canada Corporation | Modular heat exchangers for battery thermal modulation |
CN110454854B (en) * | 2019-09-12 | 2024-10-15 | 上海电气集团股份有限公司 | Heat storage system and heat storage and supply system |
EP4042082B8 (en) * | 2019-10-08 | 2024-12-04 | Hercules Project Company LLC | Heat exchange system and method of assembly |
CN111912260A (en) * | 2020-06-24 | 2020-11-10 | 哈尔滨汽轮机厂辅机工程有限公司 | Heat exchange equipment integrating preheating, evaporation and overheating |
CN112577348B (en) * | 2020-12-17 | 2022-08-02 | 南通润中石墨设备有限公司 | Sleeved shell of round block hole type graphite heat exchanger and production process thereof |
EP4290161A1 (en) | 2022-06-06 | 2023-12-13 | IGLOO Spolka z ograniczona odpowiedzialnoscia | Method for shaping of set of capillaries of collector of heat exchanger, collector of heat exchanger of heat engines with set of capillaries, set of capillaries of collector of heat exchanger |
CN117109180B (en) * | 2023-10-24 | 2024-01-02 | 耐尔能源装备有限公司 | Heat conduction oil heater |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2199216A (en) * | 1937-12-22 | 1940-04-30 | Conti Piero Ginori | Vaporizer |
GB653540A (en) * | 1947-07-02 | 1951-05-16 | Comb Eng Superheater Inc | Improvements in steam boilers and like heat exchangers |
US2916263A (en) * | 1955-12-21 | 1959-12-08 | Babcock & Wilcox Co | Fluid heat exchange apparatus |
DE1199281B (en) * | 1956-03-22 | 1965-08-26 | Vorkauf Heinrich | Steam generator, in particular waste heat boiler, with a pressure-resistant, cylindrical jacket |
US3110288A (en) * | 1958-06-26 | 1963-11-12 | Babcock & Wilcox Ltd | Heat exchanger construction |
DE1776011A1 (en) * | 1968-09-03 | 1971-06-03 | Buckau Wolf Maschf R | Masonry-free waste heat boiler for high gas inlet temperatures |
DE3248096C2 (en) * | 1982-12-24 | 1985-01-31 | M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen | Standing device for cooling gases under high pressure with a high proportion of dust |
US4753773A (en) * | 1985-05-09 | 1988-06-28 | Stone & Webster Engineering Corporation | Double tube steam generator |
ES2136267T3 (en) * | 1995-05-31 | 1999-11-16 | Asea Brown Boveri | STEAM GENERATOR. |
DE29510720U1 (en) | 1995-07-01 | 1995-09-07 | BDAG Balcke-Dürr AG, 40882 Ratingen | Heat exchanger |
DE19545308A1 (en) * | 1995-12-05 | 1997-06-12 | Asea Brown Boveri | Convective counterflow heat transmitter |
US6019070A (en) * | 1998-12-03 | 2000-02-01 | Duffy; Thomas E. | Circuit assembly for once-through steam generators |
DE10127830B4 (en) * | 2001-06-08 | 2007-01-11 | Siemens Ag | steam generator |
DE10222974B4 (en) * | 2002-05-23 | 2004-07-08 | Enginion Ag | Heat exchanger |
DE10328746A1 (en) | 2003-06-25 | 2005-01-13 | Behr Gmbh & Co. Kg | Multi-stage heat exchange apparatus and method of making such apparatus |
DE10346255A1 (en) * | 2003-09-25 | 2005-04-28 | Deutsch Zentr Luft & Raumfahrt | Process for generating superheated steam, steam generation stage for a power plant and power plant |
-
2008
- 2008-09-08 ES ES08015786.0T patent/ES2582657T3/en active Active
- 2008-09-08 EP EP08015786.0A patent/EP2161525B8/en not_active Not-in-force
- 2008-09-08 PT PT80157860T patent/PT2161525T/en unknown
- 2008-12-03 US US12/327,144 patent/US8708035B2/en not_active Expired - Fee Related
-
2009
- 2009-09-08 WO PCT/EP2009/006512 patent/WO2010025960A2/en active Application Filing
- 2009-09-08 AU AU2009289762A patent/AU2009289762B2/en not_active Ceased
- 2009-09-08 CN CN200980135138.XA patent/CN102149999B/en not_active Expired - Fee Related
- 2009-09-08 KR KR1020117008093A patent/KR20110069804A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2010025960A2 (en) | 2010-03-11 |
PT2161525T (en) | 2016-07-26 |
ES2582657T3 (en) | 2016-09-14 |
EP2161525A1 (en) | 2010-03-10 |
US8708035B2 (en) | 2014-04-29 |
AU2009289762A1 (en) | 2010-03-11 |
EP2161525B8 (en) | 2016-06-08 |
WO2010025960A3 (en) | 2010-06-17 |
KR20110069804A (en) | 2011-06-23 |
CN102149999A (en) | 2011-08-10 |
US20100059216A1 (en) | 2010-03-11 |
AU2009289762B2 (en) | 2015-09-17 |
CN102149999B (en) | 2012-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2161525B1 (en) | Modular heat exchanger | |
EP2322854B1 (en) | Heat exchanger for creating steam for solar power plants | |
EP1279805B1 (en) | Air-cooled intake air cooler | |
DE112007002824T5 (en) | Two-dimensional multi-fluid heat exchanger | |
DE2820734A1 (en) | WASTE STORAGE | |
DE102012024722A1 (en) | Evaporator and process for air treatment | |
EP2230701A2 (en) | Thermoelectric device | |
EP2825832B1 (en) | Heat exchanger | |
EP2710318A1 (en) | Multiplate heat exchanger | |
DE102017127005A1 (en) | Easy passage-cross-flow heat exchanger | |
EP3516179B1 (en) | Method and arrangement for heat energy recovery in systems comprising at least one reformer | |
DE10020797A1 (en) | Flexible tube radiator for motor vehicle has angled rows of tubes extending between offset rows of ports in manifolds | |
DE10333463C5 (en) | Tube heat exchanger | |
EP3102903B1 (en) | Heat exchanging device | |
EP2369148A2 (en) | Cooling device | |
DE102008038658A1 (en) | Tube heat exchanger | |
DE69102879T2 (en) | GAS COOLER FOR HEAT TRANSFER BY CONVECTION. | |
DE202015103710U1 (en) | Gas-fluid counterflow heat exchanger | |
DE2711545C2 (en) | Heat exchangers with a large number of straight tube bundles | |
WO2015028052A1 (en) | Recuperator, micro gas turbine and use of the recuperator | |
EP1538415A1 (en) | Flow duct | |
DE102015003465B4 (en) | Heat exchanger and use of a heat exchanger | |
EP1008803B1 (en) | Feedwater preheater for steam power plants | |
DE3009532A1 (en) | HEAT EXCHANGER | |
DE102022201290A1 (en) | heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20100825 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20101022 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502008014110 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F28D0007080000 Ipc: F22B0021000000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28D 7/08 20060101ALI20151117BHEP Ipc: F28D 7/16 20060101ALI20151117BHEP Ipc: F28F 9/02 20060101ALN20151117BHEP Ipc: F22B 21/00 20060101AFI20151117BHEP Ipc: F28F 9/00 20060101ALI20151117BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151201 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BALCKE-DUERR GMBH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 792876 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008014110 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2161525 Country of ref document: PT Date of ref document: 20160726 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20160715 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2582657 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160914 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160720 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008014110 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20160401634 Country of ref document: GR Effective date: 20161020 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 |
|
26N | No opposition filed |
Effective date: 20170123 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008014110 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160908 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170401 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160930 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160908 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 792876 Country of ref document: AT Kind code of ref document: T Effective date: 20160908 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20160930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080908 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160420 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180920 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20180928 Year of fee payment: 11 Ref country code: TR Payment date: 20180831 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20180906 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20181001 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190908 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190908 |