[go: up one dir, main page]

EP2147270B1 - Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation - Google Patents

Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation Download PDF

Info

Publication number
EP2147270B1
EP2147270B1 EP08805696.5A EP08805696A EP2147270B1 EP 2147270 B1 EP2147270 B1 EP 2147270B1 EP 08805696 A EP08805696 A EP 08805696A EP 2147270 B1 EP2147270 B1 EP 2147270B1
Authority
EP
European Patent Office
Prior art keywords
column
liquid
methane
head
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08805696.5A
Other languages
German (de)
French (fr)
Other versions
EP2147270A2 (en
Inventor
Jean Billy
Antoine Hernandez
Marie-Khuny Khy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2147270A2 publication Critical patent/EP2147270A2/en
Application granted granted Critical
Publication of EP2147270B1 publication Critical patent/EP2147270B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0271Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/CO mixtures, i.e. of synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/20Quasi-closed internal or closed external hydrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/24Quasi-closed internal or closed external carbon monoxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/30Quasi-closed internal or closed external helium refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/50Quasi-closed internal or closed external oxygen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/58Quasi-closed internal or closed external argon refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Definitions

  • the synthesis gas comprises a mixture at high pressure (between 15 and 60 bar) containing the following compounds: H 2 , CO, CH 4 , N 2 , Ar.
  • methane washing allows the production of pressurized hydrogen with good purity, whose CO content can range from 0.5% mol to a few ppm.
  • the residual content of CH 4 can not generally fall below 1 mol%.
  • US Patent 4488890 and US Patent 6098424 propose processes with a liquid carbon monoxide scrubbing column in which substantially all the frigories are produced by a carbon monoxide cycle.
  • the idea is to cool the synthesis gas to a similar temperature level. of -167 ° C (thus 20 ° warmer than in a partial condensation scheme), the vapor phase being treated in a CO washing column where liquid CO is injected at the top of the column.
  • WO2008 / 113494 form part of the state of the art with respect to novelty and discloses a process according to claim 1 except that the refrigeration cycle does not include two vaporization steps at different pressures.
  • synthesis gas 1 available under high pressure (generally between 15 and 60 bar) is cooled in the main exchanger 3 and partially condensed in the exchange line to a temperature level of the order of -167 ° vs.
  • the vapor phase is sent to the bottom of a washing column 5 where it is washed with liquid CO 51 injected at the top of the column 5. This makes it possible to lower the CH 4 content in the steam 7 produced at the top of the column 5. washing column 5 to less than 1 mol% to be able to treat after heating in the exchange line in a unit of MeOH for example.
  • the liquid phase 11, in the liquid CO column 5, is very rich in CH 4 and also contains CO and dissolved hydrogen.
  • This liquid 11 is sent to the top of a depletion column 13, having a bottom reboiler 15, to separate hydrogen and lower its content in the flash column tank liquid 17 to reduce the amount of hydrogen. incondensable hydrogen during CO and CH 4 separation in column 33.
  • the leading gas 21 of the exhaustion column heats up in the line exchange 3 and serves as fuel.
  • the bottom liquid 17 of the depletion column 13 is subcooled by the exchanger 19 and is then sent to a two-part CO / CH 4 separation column.
  • a portion 27 is expanded in the valve 31 and sent to the top of the column 33.
  • the remainder 23 is expanded in the valve 29, then heated by the heater 25 and then sent to the bottom of the column 33.
  • the CO is produced in liquid form 47 at the head and is sent to pumps 49 to raise its pressure up to the pressure level of the CO 5 washing column.
  • a portion of the liquid CO 55 may be passed through the overhead gas valve 57 of the washing column 5 to form a mixed flow rate 9. This allows the CO / H 2 ratio of the gas to be adjusted.
  • CH 4 39 is produced in a CO / CH 4 33 column vat in liquid form.
  • the column CO / CH 4 has a bottom reboiler 37 and a top condenser 35.
  • This CH 4 liquid 39 output tank CO / CH 4 column will be subcooled in the exchange line 41 before sending it to storage to limit the production of vaporized liquid said boil off.
  • a valve 43 makes it possible to short-circuit the line 41.
  • overhead gas 59 of column CO / CO 4 33 is compressed in a compressor 61 to form flow 63, condensed in the exchange line and sent to the top of the washing column 5 in place of or in addition to the pumped flow from the pump 49.
  • the separation energy is provided by a closed external cycle. This cycle will also bring the liquefaction energy of this CH 4 39.
  • the gas used for the cycle can be chosen from the list N 2 , CH 4 , O 2 , Ar, He, H2 ....
  • the gas 65 serves to reboil the CO / CH 4 column and then forms the liquid 67 which is divided in two.
  • a portion 71 passes through the valve 73 and is sent to the head condenser 35.
  • the vaporized flow rate in the condenser is sent as flow 81, 83 to the series compressor 85, 87, 89.
  • the flow 91 compressed in the compressor 89 is divided into two portions 93, 95 which are compressed into two compressors 97, 99 in parallel.
  • the compressed flow rates 95, 101 are combined to form a flow 103 which is divided in two.
  • Part 105 is partially cooled in the exchange line 3 before being divided into two.
  • a fraction 109 is expanded to an intermediate temperature in the turbine 111 and the expanded flow rate 113 is returned to the flow 81 at an intermediate temperature level of the exchange line 3.
  • the other fraction is sent to the turbine 115 at a level of temperature lower than the cooling temperature of the 109 of the exchange line 3 and reaches the flow 81 upstream of the exchange line 3.
  • the flow 107 cools completely in the exchange line 3 and is sent in as debit 65 reboil CO / CH4 column.
  • Spraying flow rates 77, 81 in the exchanger 3 at two different pressures optimizes the heat exchange.
  • synthesis gas 1 available under high pressure contains 15 mol%. of methane. It is divided in two, a part 1A being cooled in the main heat exchanger 3 and the rest 1B bypassing the main heat exchanger before being remixed with the flow 1A and sent to the bottom reboiler 37 of the column CO / CH 4 33 like the flow 3 circled.
  • the encircled flow rate 4 cooled in the bottom reboiler is returned to an intermediate level of the main exchanger 3 and partially condensed in the exchange line to a temperature level of the order of -167 ° C. It is sent to the bottom of a washing column 5 where it is washed with liquid CO 51 injected at the top of the column 5. This makes it possible to lower the CH 4 content in the steam 7 produced at the top of the washing column. 5 to less than 1 mol%. to be able to treat it after heating in the exchange line in a unit of MeOH for example.
  • the liquid phase 11, in the liquid CO column 5, is very rich in CH 4 and also contains CO and dissolved hydrogen.
  • This liquid 11 is sent to the top of a depletion column 13, having a bottom reboiler 15, to separate hydrogen and lower its content in the flash column tank liquid 17 to reduce the amount of hydrogen. incondensable hydrogen during CO and CH 4 separation in column 33.
  • the overhead gas 21 of the depletion column heats up in the exchange line 3 and serves as fuel.
  • the bottom liquid 17 of the depletion column 13 is subcooled by the exchanger 19 and is then sent to a two-part CO / CH 4 separation column.
  • a portion 27 is expanded in the valve 31 and sent to the top of the column 33.
  • the remainder 23 is expanded in the valve 29, and then heated by heating 25 and then sent to the lower part of column 33.
  • the CO is produced in liquid form at the top and is sent to pumps 49 to raise its pressure up to the pressure level of the CO 5 scrubbing column. therefore an internal loop of liquid CO through at least one cryogenic pump 49 and a valve 53 between the CO / CH 4 column head 33 and the CO 5 scrub head.
  • a portion of the liquid CO 55 can be passed through the valve 55 to the overhead gas 7 of the washing column 5 to form a mixed flow 9. This allows to adjust the CO / H 2 ratio of the gas.
  • CH 4 39 is produced in a CO / CH 4 33 column vat in liquid form.
  • the column CO / CH 4 has a bottom reboiler 37 and a top condenser 35.
  • This CH 4 liquid 39 outlet column CO / CH 4 will be subcooled in the exchange line 41 before sending it to storage to limit the production of vaporized liquid called boa off.
  • a valve 43 makes it possible to short-circuit the line 41.
  • the overhead gas 59 of the CO / CO 4 33 column is compressed in a compressor 61 to form the flow 63, condensed in the exchange line 3 and sent to the top of the washing column 5 in addition to the pumped flow from pump 49.
  • the separation energy is provided by a closed external cycle. This cycle will also bring the liquefaction energy of this CH 4 39.
  • the gas used for the cycle can be chosen from the list N 2 , CH 4 , O 2 , Ar, He, H 2
  • the reboiling of the depletion column 13 is ensured by a cycle gas flow rate 169.
  • the cooled flow rate 171 is expanded in a valve 173 and sent to the head condenser 35 of the CO / CH 4 column 33 as the flow rate.
  • the flow 175 is divided to form the flow rates 177 and 179.
  • the flow 177 cools the condenser 35.
  • the flow 179 is passed through the valve 181 to the exchanger 3 where it heats up.
  • the flow 180 heated in the reboiler 35 is mixed with the flow rates 167 and 194 to become the flow 183. This flow 183, when slightly warmed mixes with the flow 179.
  • the mixed flow 185 at 10-bar is sent to the compressors cycle 85,87 in series and then in part of the compressor 89.
  • a portion 169 of the 89 compressed flow rate is sent to 39 bars at the reboiling of the column 13 and the remainder 191 is compressed in the compressor 197 at 50 bar to form the flow 201.
  • Debit 201 is divided into two to form the flow 203 which goes through the valve 205 to the turbine 211 to become the expanded flow rate 167.
  • the flow 202 passes entirely through the exchanger 3 and is divided into three.
  • the flow 190 is sent to the turbine 211 too, the flow 174 is mixed with the flow 171 and the flow 186 is heated in the exchanger 3 before being mixed with the flow 192 from the compressor 87 to form a mixed flow 189.
  • the flow 189 is sent to the compressor 199, cools partially in the exchanger 3 and is expanded in the turbine 215 to form the expanded flow 194.
  • the compressor 197 is coupled to the turbine 211 and the compressor 199 is coupled to the turbine 215.
  • top of column includes positions ranging from the head of the column stricto sensu to a position at most 10 theoretical plateaux below this position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

La présente invention est relative à un procédé et à un appareil de séparation d'un mélange d'hydrogène, de méthane et de monoxyde de carbone par distillation cryogénique. En particulier elle concerne un procédé pour la production d'un mélange de H2/CO contenant une faible teneur de CH4, avec production combinée de CH4 sous forme liquide.
Les unités de production de monoxyde de carbone et d'hydrogène peuvent être séparées en deux parties :

  • génération du gaz de synthèse (mélange contenant H2, CO, CH4, CO2, Ar et N2 essentiellement). Parmi les diverses voies industrielles de production de gaz de synthèse, le reformage à la vapeur d'eau est la plus importante. La conception de cette unité, qui comprend un four, est basée sur les productions en CO et hydrogène requises.
The present invention relates to a process and apparatus for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation. In particular, it relates to a process for producing a mixture of H 2 / CO containing a low CH 4 content, with combined production of CH 4 in liquid form.
The production units for carbon monoxide and hydrogen can be separated into two parts:
  • generation of the synthesis gas (mixture containing H 2 , CO, CH 4 , CO 2 , Ar and N 2 essentially). Of the various industrial streams of syngas production, steam reforming is the most important. The design of this unit, which includes an oven, is based on the required CO and hydrogen production.

Cependant celle à base de gazéification de charbon peut présenter de nombreux avantages quant à ces coûts opératoires et semble se développer de plus en plus notamment dans un pays comme la Chine. La conception de cette unité qui comprend un réacteur de gazéification du charbon avec de l'oxygène est basée sur les productions en CO et hydrogène requises.

  • purification du gaz de synthèse. On retrouve :
  • une unité de lavage à un solvant liquide pour éliminer la plus grande partie des gaz acides contenus dans le gaz de synthèse
  • une unité d'épuration sur lit d'adsorbants.
  • une unité de séparation par voie cryogénique dite boite froide pour la production de CO et/ou hydrogène et/ou d'un mélange de monoxyde de carbone et d'hydrogène dit oxogaz avec un rapport défini de H2/CO.
However that based on coal gasification can have many advantages as for these operating costs and seems to develop more and more particularly in a country like China. The design of this unit, which includes a coal gasification reactor with oxygen, is based on the required CO and hydrogen production.
  • purification of the synthesis gas. We find :
  • a washing unit with a liquid solvent to eliminate most of the acid gases contained in the synthesis gas
  • an adsorbent bed purification unit.
  • a cryogenic separation unit called cold box for the production of CO and / or hydrogen and / or a mixture of carbon monoxide and hydrogen called oxogaz with a defined ratio of H 2 / CO.

Généralement le gaz de synthèse comprend un mélange à haute pression (entre 15 et 60 bar) contenant les composés suivants : H2, CO, CH4, N2, Ar.Generally the synthesis gas comprises a mixture at high pressure (between 15 and 60 bar) containing the following compounds: H 2 , CO, CH 4 , N 2 , Ar.

Pour la séparation par voie cryogénique d'un mélange contenant de l'hydrogène, du monoxyde de carbone et du méthane, deux grandes familles de procédés sont connues : le lavage au méthane et la condensation partielle.For the cryogenic separation of a mixture containing hydrogen, carbon monoxide and methane, two main families of processes are known: methane washing and partial condensation.

Un des avantages du lavage au méthane est qu'il permet la production d'hydrogène sous pression avec une bonne pureté, dont la teneur en CO peut aller de 0.5% mol à quelques ppm. Cependant par ce type de procédé au lavage au méthane, la teneur résiduaire en CH4 ne peut descendre en dessous généralement de 1% mol.One of the advantages of methane washing is that it allows the production of pressurized hydrogen with good purity, whose CO content can range from 0.5% mol to a few ppm. However, by this type of methane scrubbing process, the residual content of CH 4 can not generally fall below 1 mol%.

Dans certains cas où l'on souhaite produire de l'hydrogène ou un mélange de H2/C0 contenant moins de 1% mol de CH4 (notamment pour la production de MeOH), la seule alternative est un procédé par condensation partielle où le gaz de synthèse est refroidie jusqu'à un niveau de température de l'ordre de -186°C afin d'atteindre un équilibre thermodynamique qui permette d'abaisser la teneur en CH4 dans le mélange gazeux Hz/CO en dessous de 1% mol.In some cases where it is desired to produce hydrogen or a mixture of H 2 / CO containing less than 1 mol% of CH 4 (especially for the production of MeOH), the only alternative is a partial condensation process where the synthesis gas is cooled to a temperature level of the order of -186 ° C to achieve a thermodynamic equilibrium that allows to lower the content of CH 4 in the gas mixture Hz / CO below 1% mol.

Atteindre ce niveau de température est coûteuse en énergie au niveau du compresseur de cycle.Reaching this temperature level is costly in energy at the cycle compressor.

L'idée mise en avant dans cette proposition d'invention permettrait d'abaisser l'énergie de séparation (donc l'énergie à fournir au niveau du compresseur de cycle) de façon conséquente.The idea put forward in this proposal for an invention would make it possible to lower the separation energy (and therefore the energy to be supplied at the level of the cycle compressor) accordingly.

US-A-4488890 et US-A-6098424 proposent des procédés avec une colonne de lavage au monoxyde de carbone liquide dans lesquels substantiellement toutes les frigories sont produites par un cycle de monoxyde de carbone. US Patent 4488890 and US Patent 6098424 propose processes with a liquid carbon monoxide scrubbing column in which substantially all the frigories are produced by a carbon monoxide cycle.

Dans le cadre d'une production d'un mélange d'hydrogène et de CO contenant une faible teneur en CH4 (généralement inférieure à 1 % mol.), l'idée est de refroidir le gaz de synthèse à un niveau de température proche de -167°C (donc 20° plus chaud que dans un schéma à condensation partielle), la phase vapeur étant traitée dans une colonne de lavage au CO où on injecte du CO liquide en tête de colonne.In the context of producing a mixture of hydrogen and CO containing a low CH 4 content (generally less than 1 mol%), the idea is to cool the synthesis gas to a similar temperature level. of -167 ° C (thus 20 ° warmer than in a partial condensation scheme), the vapor phase being treated in a CO washing column where liquid CO is injected at the top of the column.

WO2008/113494 forme partie de l'état de l'art pour ce qui concerne la nouveauté et divulgue un procédé selon la revendication 1 sauf que le cycle de réfrigération ne comprend pas deux étapes de vaporisation à des pressions différentes. WO2008 / 113494 form part of the state of the art with respect to novelty and discloses a process according to claim 1 except that the refrigeration cycle does not include two vaporization steps at different pressures.

Selon un objet de l'invention, il est prévu un procédé de séparation selon la revendication 1.According to one object of the invention, there is provided a separation method according to claim 1.

Selon d'autres aspects facultatifs :

  • le gaz prélevé en tête de la colonne de lavage est un mélange de H2 et de CO contenant moins de 1 % mol/ de CH4 ;
    • le cycle fermé assure la condensation de tête de la colonne CO/CH4 ;
  • le cycle fermé assure le rebouillage de cuve de la colonne CO/CH4 et/ou d'une colonne d'épuisement ;
  • le cycle fermé apporte au moins une partie de l'énergie de liquéfaction de ce CH4 ;
  • on pressurise au moins une partie du liquide riche en monoxyde de carbone soutiré de la colonne CO/CH4 au moyen d'une pompe et on envoie au moins une partie du liquide pompé à la colonne de lavage
  • au moins deux des températures de la liste suivante diffèrent au plus de 5°C :
    • la température d'entrée du mélange dans la colonne de lavage
    • la température du liquide riche en CO provenant de la colonne CO/CH4
    • la température du méthane liquide sous-refroidi
Selon un autre aspect de l'invention, il est prévu un appareil de séparation selon la revendication 9.According to other optional aspects:
  • the gas taken at the top of the washing column is a mixture of H 2 and CO containing less than 1 mol% / CH 4;
    • the closed cycle ensures the top condensation of the CO / CH 4 column;
  • the closed cycle ensures the reboiling of the CO / CH 4 column and / or a depletion column;
  • the closed cycle provides at least part of the liquefaction energy of this CH 4 ;
  • at least a portion of the carbon monoxide rich liquid withdrawn from the CO / CH 4 column is pressurized by means of a pump and at least a portion of the pumped liquid is sent to the washing column
  • at least two of the temperatures in the following list differ by no more than 5 ° C:
    • the inlet temperature of the mixture in the washing column
    • the temperature of the CO-rich liquid from the CO / CH 4 column
    • the temperature of the sub-cooled liquid methane
According to another aspect of the invention, there is provided a separation apparatus according to claim 9.

Selon d'autres aspects facultatifs, l'appareil comprend :

  • des moyens pour soutirer du CH4 sous forme liquide comme produit final ;
  • un cycle fermé apportant au moins une partie de l'énergie de liquéfaction de ce CH4 ;
  • une colonne d'épuisement pour épurer le liquide de cuve de la colonne de lavage en amont de la colonne de séparation CO/CH4.
  • une pompe reliée à la tête de la colonne CO/CH4 et à la tête de la colonne de lavage
According to other optional aspects, the apparatus comprises:
  • means for withdrawing CH 4 in liquid form as final product;
  • a closed cycle providing at least a portion of the liquefaction energy of this CH 4 ;
  • a depletion column for purifying the tank liquid from the washing column upstream of the CO / CH4 separation column.
  • a pump connected to the head of the CO / CH 4 column and at the top of the washing column

L'invention sera décrite en plus de détail en se référant aux figures qui montrent des appareils selon l'invention.The invention will be described in more detail with reference to the figures which show apparatus according to the invention.

Dans la Figure 1, le gaz de synthèse 1 disponible sous haute pression (généralement entre 15 et 60 bars) est refroidi dans l'échangeur principal 3 et partiellement condensé dans la ligne d'échange jusqu'à un niveau de température de l'ordre de -167°C. La phase vapeur est envoyée en cuve d'une colonne de lavage 5 où elle est lavée par du CO liquide 51 injectée en tête de la colonne 5. Ceci qui permet d'abaisser la teneur en CH4 dans la vapeur 7 produite en tête de colonne de lavage 5 à moins de 1% mol pour pouvoir la traiter après réchauffement dans la ligne d'échange dans une unité de MeOH par exemple.In the Figure 1 , synthesis gas 1 available under high pressure (generally between 15 and 60 bar) is cooled in the main exchanger 3 and partially condensed in the exchange line to a temperature level of the order of -167 ° vs. The vapor phase is sent to the bottom of a washing column 5 where it is washed with liquid CO 51 injected at the top of the column 5. This makes it possible to lower the CH 4 content in the steam 7 produced at the top of the column 5. washing column 5 to less than 1 mol% to be able to treat after heating in the exchange line in a unit of MeOH for example.

La phase liquide 11, en cuve de colonne de lavage au CO liquide 5, est très riche en CH4 et contient également du CO et de l'hydrogène dissous. Ce liquide 11 est envoyé vers la tête d'une colonne d'épuisement 13, ayant un rebouilleur de cuve 15, pour séparer de l'hydrogène et abaisser sa teneur dans le liquide de cuve de colonne de flash 17 afin de réduire la quantité d'hydrogène incondensable lors de la séparation CO et CH4 dans la colonne 33.The liquid phase 11, in the liquid CO column 5, is very rich in CH 4 and also contains CO and dissolved hydrogen. This liquid 11 is sent to the top of a depletion column 13, having a bottom reboiler 15, to separate hydrogen and lower its content in the flash column tank liquid 17 to reduce the amount of hydrogen. incondensable hydrogen during CO and CH 4 separation in column 33.

Le gaz de tête 21 de la colonne d'épuisement se réchauffe dans la ligne d'échange 3 et sert de carburant.The leading gas 21 of the exhaustion column heats up in the line exchange 3 and serves as fuel.

Le liquide de cuve 17 de colonne d'épuisement 13 est sous-refroidi par l'échangeur 19 puis est envoyé vers une colonne de séparation CO/CH4 en deux parties. Une partie 27 est détendue dans la vanne 31 et envoyée dans la partie supérieure de la colonne 33. Le reste 23 est détendu dans la vanne 29, puis chauffé par le chauffage 25 et ensuite envoyé à la partie inférieure de la colonne 33. Le CO est produit sous forme liquide 47 en tête et est envoyée vers des pompes 49 pour remonter sa pression jusqu'au niveau de pression de la colonne de lavage au CO 5. On a donc une boucle interne de CO liquide à travers au moins une pompe cryogénique 49 et une vanne 53 entre la tête de colonne CO/CH4 33 et la tête de colonne de lavage au CO 5.The bottom liquid 17 of the depletion column 13 is subcooled by the exchanger 19 and is then sent to a two-part CO / CH 4 separation column. A portion 27 is expanded in the valve 31 and sent to the top of the column 33. The remainder 23 is expanded in the valve 29, then heated by the heater 25 and then sent to the bottom of the column 33. The CO is produced in liquid form 47 at the head and is sent to pumps 49 to raise its pressure up to the pressure level of the CO 5 washing column. There is therefore an internal loop of liquid CO through at least one cryogenic pump 49 and a valve 53 between the CO / CH 4 33 column head and the CO 5 scrub head.

Eventuellement une partie du CO liquide 55 peut être envoyé à travers la vanne 57 au gaz de tête 7 de la colonne de lavage 5 pour former un débit mélangé 9. Ceci permet d'ajuster le rapport CO/H2 du gaz.Optionally a portion of the liquid CO 55 may be passed through the overhead gas valve 57 of the washing column 5 to form a mixed flow rate 9. This allows the CO / H 2 ratio of the gas to be adjusted.

Le CH4 39 est produit en cuve de colonne CO/CH4 33 sous forme liquide. La colonne CO/CH4 a un rebouilleur de cuve 37 et un condenseur de tête 35.CH 4 39 is produced in a CO / CH 4 33 column vat in liquid form. The column CO / CH 4 has a bottom reboiler 37 and a top condenser 35.

Une des possibilités de ce schéma est produire en complément de ce mélange H2/C0 7 contenant une faible teneur en CH4, un méthane pur contenant de faibles traces de CO pour pouvoir le commercialiser sous forme de LNG 45.One of the possibilities of this scheme is to produce in addition to this H 2 / CO 7 mixture containing a low content of CH 4 , a pure methane containing small traces of CO in order to market it in the form of LNG 45.

Ce CH4 liquide 39 sortie en cuve de colonne CO/CH4 sera sous-refroidi dans la ligne d'échange 41 avant de l'envoyer vers des stockages pour limiter la production de liquide vaporisé dit 'boil off'. Une vanne 43 permet de court-circuiter la ligne 41.This CH 4 liquid 39 output tank CO / CH 4 column will be subcooled in the exchange line 41 before sending it to storage to limit the production of vaporized liquid said boil off. A valve 43 makes it possible to short-circuit the line 41.

Eventuellement du gaz de tête 59 de la colonne CO/C04 33 est comprimé dans un compresseur 61 pour former le débit 63, condensé dans la ligne d'échange et envoyé en tête de la colonne de lavage 5 à la place de ou en plus du débit pompé provenant de la pompe 49.Optionally, overhead gas 59 of column CO / CO 4 33 is compressed in a compressor 61 to form flow 63, condensed in the exchange line and sent to the top of the washing column 5 in place of or in addition to the pumped flow from the pump 49.

L'énergie de séparation est apportée par un cycle externe fermé. Ce cycle permettra d'apporter également l'énergie de liquéfaction de ce CH4 39.The separation energy is provided by a closed external cycle. This cycle will also bring the liquefaction energy of this CH 4 39.

Le gaz utilisé pour le cycle peut être choisi dans la liste N2, CH4, O2, Ar, He, H2.... Le gaz 65 sert à rebouillir la colonne CO/CH4 et ensuite forme le liquide 67 qui est divisé en deux. Une partie 71 passe à travers la vanne 73 et est envoyée au condenseur de tête 35. Le débit vaporisé dans le condenseur est envoyé en tant que débit 81, 83 au compresseur en série 85, 87, 89. Le débit 91 comprimé dans le compresseur 89 est divisé en deux portions 93, 95 qui sont comprimées en deux compresseurs 97, 99 en parallèle. Les débits comprimés 95, 101 sont réunis pour former un débit 103 qui est divisé en deux. Une partie 105 est partiellement refroidie dans la ligne d'échange 3 avant d'être divisée en deux. Une fraction 109 est détendue à une température intermédiaire dans la turbine 111 et le débit détendu 113 est renvoyé au débit 81 à un niveau de température intermédiaire de la ligne d'échange 3. L'autre fraction est envoyée à la turbine 115 à un niveau de température plus bas que la température de refroidissement du 109 de la ligne d'échange 3 et rejoint le débit 81 en amont de la ligne d'échange 3. Le débit 107 se refroidit complètement dans la ligne d'échange 3 et est envoyé en tant que débit 65 rebouillir la colonne CO/CH4.The gas used for the cycle can be chosen from the list N 2 , CH 4 , O 2 , Ar, He, H2 .... The gas 65 serves to reboil the CO / CH 4 column and then forms the liquid 67 which is divided in two. A portion 71 passes through the valve 73 and is sent to the head condenser 35. The vaporized flow rate in the condenser is sent as flow 81, 83 to the series compressor 85, 87, 89. The flow 91 compressed in the compressor 89 is divided into two portions 93, 95 which are compressed into two compressors 97, 99 in parallel. The compressed flow rates 95, 101 are combined to form a flow 103 which is divided in two. Part 105 is partially cooled in the exchange line 3 before being divided into two. A fraction 109 is expanded to an intermediate temperature in the turbine 111 and the expanded flow rate 113 is returned to the flow 81 at an intermediate temperature level of the exchange line 3. The other fraction is sent to the turbine 115 at a level of temperature lower than the cooling temperature of the 109 of the exchange line 3 and reaches the flow 81 upstream of the exchange line 3. The flow 107 cools completely in the exchange line 3 and is sent in as debit 65 reboil CO / CH4 column.

La vaporisation des débits 77, 81 dans l'échangeur 3 à deux pressions différentes permet d'optimiser l'échange de chaleur.Spraying flow rates 77, 81 in the exchanger 3 at two different pressures optimizes the heat exchange.

Dans la Figure 2, le gaz de synthèse 1 disponible sous haute pression (généralement entre 15 et 60 bars) contient 15% mol. de méthane. Il est divisé en deux, une partie lA étant refroidie dans l'échangeur principal 3 et le reste 1B contournant l'échangeur principal avant d'être remélangé avec le débit lA et envoyé au rebouilleur de cuve 37 de la colonne CO/CH4 33 comme le débit 3 encerclé. Le débit 4 encerclé refroidi dans le rebouilleur de cuve est renvoyé à un niveau intermédiaire de l'échangeur principal 3 et partiellement condensé dans la ligne d'échange jusqu'à un niveau de température de l'ordre de -167°C. Il est envoyé en cuve d'une colonne de lavage 5 où il est lavé par du CO liquide 51 injectée en tête de la colonne 5. Ceci permet d'abaisser la teneur en CH4 dans la vapeur 7 produite en tête de colonne de lavage 5 à moins de 1% mol. pour pouvoir la traiter après réchauffement dans la ligne d'échange dans une unité de Me0H par exemple.In the Figure 2 , synthesis gas 1 available under high pressure (generally between 15 and 60 bar) contains 15 mol%. of methane. It is divided in two, a part 1A being cooled in the main heat exchanger 3 and the rest 1B bypassing the main heat exchanger before being remixed with the flow 1A and sent to the bottom reboiler 37 of the column CO / CH 4 33 like the flow 3 circled. The encircled flow rate 4 cooled in the bottom reboiler is returned to an intermediate level of the main exchanger 3 and partially condensed in the exchange line to a temperature level of the order of -167 ° C. It is sent to the bottom of a washing column 5 where it is washed with liquid CO 51 injected at the top of the column 5. This makes it possible to lower the CH 4 content in the steam 7 produced at the top of the washing column. 5 to less than 1 mol%. to be able to treat it after heating in the exchange line in a unit of MeOH for example.

La phase liquide 11, en cuve de colonne de lavage au CO liquide 5, est très riche en CH4 et contient également du CO et de l'hydrogène dissous. Ce liquide 11 est envoyé vers la tête d'une colonne d'épuisement 13, ayant un rebouilleur de cuve 15, pour séparer de l'hydrogène et abaisser sa teneur dans le liquide de cuve de colonne de flash 17 afin de réduire la quantité d'hydrogène incondensable lors de la séparation CO et CH4 dans la colonne 33.The liquid phase 11, in the liquid CO column 5, is very rich in CH 4 and also contains CO and dissolved hydrogen. This liquid 11 is sent to the top of a depletion column 13, having a bottom reboiler 15, to separate hydrogen and lower its content in the flash column tank liquid 17 to reduce the amount of hydrogen. incondensable hydrogen during CO and CH 4 separation in column 33.

Le gaz de tête 21 de la colonne d'épuisement se réchauffe dans la ligne d'échange 3 et sert de carburant.The overhead gas 21 of the depletion column heats up in the exchange line 3 and serves as fuel.

Le liquide de cuve 17 de colonne d'épuisement 13 est sous-refroidi par l'échangeur 19 puis est envoyé vers une colonne de séparation CO/CH4 en deux parties. Une partie 27 est détendue dans la vanne 31 et envoyée dans la partie supérieure de la colonne 33. Le reste 23 est détendu dans la vanne 29, puis chauffé par le chauffage 25 et ensuite envoyé à la partie inférieure de la colonne 33. Le CO est produit sous forme liquide 47 en tête et est envoyée vers des pompes 49 pour remonter sa pression jusqu'au niveau de pression de la colonne de lavage au CO 5. On a donc une boucle interne de CO liquide à travers au moins une pompe cryogénique 49 et une vanne 53 entre la tête de colonne CO/CH4 33 et la tête de colonne de lavage au CO 5.The bottom liquid 17 of the depletion column 13 is subcooled by the exchanger 19 and is then sent to a two-part CO / CH 4 separation column. A portion 27 is expanded in the valve 31 and sent to the top of the column 33. The remainder 23 is expanded in the valve 29, and then heated by heating 25 and then sent to the lower part of column 33. The CO is produced in liquid form at the top and is sent to pumps 49 to raise its pressure up to the pressure level of the CO 5 scrubbing column. therefore an internal loop of liquid CO through at least one cryogenic pump 49 and a valve 53 between the CO / CH 4 column head 33 and the CO 5 scrub head.

Eventuellement une partie du CO liquide 55 peut être envoyée à travers la vanne 55 au gaz de tête 7 de la colonne de lavage 5 pour former un débit mélangé 9. Ceci permet d'ajuster le rapport CO/H2 du gaz.Possibly a portion of the liquid CO 55 can be passed through the valve 55 to the overhead gas 7 of the washing column 5 to form a mixed flow 9. This allows to adjust the CO / H 2 ratio of the gas.

Le CH4 39 est produit en cuve de colonne CO/CH4 33 sous forme liquide. La colonne CO/CH4 a un rebouilleur de cuve 37 et un condenseur de tête 35.CH 4 39 is produced in a CO / CH 4 33 column vat in liquid form. The column CO / CH 4 has a bottom reboiler 37 and a top condenser 35.

Une des possibilités de ce schéma est produire en complément de ce mélange H2/C0 7 contenant une faible teneur en CH4, un méthane pur contenant de faibles traces de CO pour pouvoir le commercialiser sous forme de LNG 45.One of the possibilities of this scheme is to produce in addition to this H 2 / CO 7 mixture containing a low content of CH 4 , a pure methane containing small traces of CO in order to market it in the form of LNG 45.

Ce CH4 liquide 39 sortie en cuve de colonne CO/CH4 sera sous-refroidi dans la ligne d'échange 41 avant de l'envoyer vers des stockages pour limiter la production de liquide vaporisé dit 'boa off'. Une vanne 43 permet de court-circuiter la ligne 41.This CH 4 liquid 39 outlet column CO / CH 4 will be subcooled in the exchange line 41 before sending it to storage to limit the production of vaporized liquid called boa off. A valve 43 makes it possible to short-circuit the line 41.

Eventuellement du gaz de tête 59 de la colonne CO/C04 33 est comprimé dans un compresseur 61 pour former le débit 63, condensé dans la ligne d'échange 3 et envoyé en tête de la colonne de lavage 5 en plus du débit pompé provenant de la pompe 49.Optionally, the overhead gas 59 of the CO / CO 4 33 column is compressed in a compressor 61 to form the flow 63, condensed in the exchange line 3 and sent to the top of the washing column 5 in addition to the pumped flow from pump 49.

L'énergie de séparation est apportée par un cycle externe fermé. Ce cycle permettra d'apporter également l'énergie de liquéfaction de ce CH4 39.The separation energy is provided by a closed external cycle. This cycle will also bring the liquefaction energy of this CH 4 39.

Le gaz utilisé pour le cycle peut être choisi dans la liste N2, CH4, 02, Ar, He, H2 The gas used for the cycle can be chosen from the list N 2 , CH 4 , O 2 , Ar, He, H 2

Le rebouillage de la colonne d'épuisement 13 est assuré par un débit de gaz de cycle 169. Le débit refroidi 171 est détendu dans une vanne 173 et envoyé au condenseur de tête 35 de la colonne CO/CH4 33 en tant que débit 177. Le débit 175 est divisé pour former les débits 177 et 179. Le débit 177 refroidit le condenseur 35. Le débit 179 est envoyé à travers la vanne 181 à l'échangeur 3 où il se réchauffe. Le débit 180 chauffé dans le rebouilleur 35 est mélangé avec les débits 167 et 194 pour devenir le débit 183. Ce débit 183, une fois légèrement réchauffé se mélange avec le débit 179. Le débit mélangé 185 à 10-bars est envoyé aux compresseurs de cycle 85,87 en série et ensuite en partie du compresseur 89. Une partie 169 du débit comprimé en 89 est envoyé à 39 bars au rebouillage de la colonne 13 et le reste 191 est comprimé dans le compresseur 197 à 50 bars pour former le débit 201. Le débit 201 est divisé en deux pour former le débit 203 qui va à travers la vanne 205 à la turbine 211 pour devenir le débit détendu 167. Le débit 202 traverse entièrement l'échangeur 3 et est divisé en trois. Le débit 190 est envoyé à la turbine 211 aussi, le débit 174 est mélangé avec le débit 171 et le débit 186 se réchauffe dans l'échangeur 3 avant d'être mélangé au débit 192 provenant du compresseur 87 pour former un débit mélangé 189. Le débit 189 est envoyé au compresseur 199, se refroidit partiellement dans l'échangeur 3 et est détendu dans la turbine 215 pour former le débit détendu 194.The reboiling of the depletion column 13 is ensured by a cycle gas flow rate 169. The cooled flow rate 171 is expanded in a valve 173 and sent to the head condenser 35 of the CO / CH 4 column 33 as the flow rate. The flow 175 is divided to form the flow rates 177 and 179. The flow 177 cools the condenser 35. The flow 179 is passed through the valve 181 to the exchanger 3 where it heats up. The flow 180 heated in the reboiler 35 is mixed with the flow rates 167 and 194 to become the flow 183. This flow 183, when slightly warmed mixes with the flow 179. The mixed flow 185 at 10-bar is sent to the compressors cycle 85,87 in series and then in part of the compressor 89. A portion 169 of the 89 compressed flow rate is sent to 39 bars at the reboiling of the column 13 and the remainder 191 is compressed in the compressor 197 at 50 bar to form the flow 201. Debit 201 is divided into two to form the flow 203 which goes through the valve 205 to the turbine 211 to become the expanded flow rate 167. The flow 202 passes entirely through the exchanger 3 and is divided into three. The flow 190 is sent to the turbine 211 too, the flow 174 is mixed with the flow 171 and the flow 186 is heated in the exchanger 3 before being mixed with the flow 192 from the compressor 87 to form a mixed flow 189. The flow 189 is sent to the compressor 199, cools partially in the exchanger 3 and is expanded in the turbine 215 to form the expanded flow 194.

Le compresseur 197 est couplé à la turbine 211 et le compresseur 199 est couplé à la turbine 215.The compressor 197 is coupled to the turbine 211 and the compressor 199 is coupled to the turbine 215.

La vaporisation des débits 179,186 dans l'échangeur 3 à deux pressions différentes permet d'optimiser l'échange de chaleur.The vaporization of the flows 179,186 in the exchanger 3 at two different pressures makes it possible to optimize the heat exchange.

Dans tout ce document, le terme « en tête de colonne » comprend des positions allant de la tête de la colonne stricto sensu à une position au plus 10 plateaux théoriques en dessous de cette position.Throughout this document, the term "top of column" includes positions ranging from the head of the column stricto sensu to a position at most 10 theoretical plateaux below this position.

Claims (12)

  1. Method for separating by cryogenic distillation of a hydrogen, carbon monoxide and methane mixture wherein the mixture is cooled in an exchange line (3) and at least one portion is sent into a liquid CO washing column (5), a gas (7) is removed at the head of the washing column, the sump liquid (11) is sent from the washing column, possibly after purification, to a CO/CH4 separation column (33), a liquid rich in CO (47) is withdrawn at the head of the CO/CH4 separation column, it is at least partially pressurised and at least one portion is sent to the head of the washing column and a liquid rich in methane is withdrawn from the sump of the CO/CH4 separation column (33) as an end product, at least some of the separation energy being rendered by a closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 192, 194, 201, 203) with, as a cycle fluid of nitrogen, methane, oxygen, argon, helium or hydrogen, at least two liquids (77, 81; 179, 186) of the closed cycle being vaporised at at least two different pressures in the exchange line.
  2. Method according to claim 1, wherein the gas (7) removed at the head of the washing column (5) is an H2 and CO mixture containing less than 1% mol. of CH4.
  3. Method according to claim 1 or 2, wherein the closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 192, 194, 201, 203) ensures condensation at the head of the CO/CH4 column.
  4. Method according to claim 1, 2 or 3, wherein the closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 192, 194, 201, 203) ensures re-boiling in the sump of the CO/CH4 column and/or of a stripping column.
  5. Method according to any of the preceding claims, wherein the closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 192, 194, 201, 203) renders at least partially the liquefaction energy from this CH4.
  6. Method according to any of the preceding claims, wherein at least two of the temperatures from the following list differ by 5°C at most:
    - the input temperature of the mixture in the washing column (5)
    - the temperature of the liquid rich in CO (47, 51) coming from the CO/CH4 column
    - the temperature of the subcooled liquid methane (45).
  7. Method according to any of the preceding claims, wherein the cycle fluid is methane.
  8. Method according to any of claims 1 to 6, wherein the cycle fluid is nitrogen.
  9. Device for separating by cryogenic distillation of a hydrogen, carbon monoxide and methane mixture comprising a liquid CO washing column (5), a CO/CH4 separation column (33), an exchange line (3) where the mixture is cooled and means to send at least some of the cooled mixture to the washing column, means to remove a gas at the head of the washing column, means to send the sump liquid from the washing column, possibly after purification, to the CO/CH4 separation column, means to withdraw a liquid rich in CO from the CO/CH4 separation column, means (49) to pressurise at least some of the liquid withdrawn and means to send at least some of the pressurised liquid at the head of the washing column and means to withdraw a liquid rich in methane in the sump of the CO/CH4 separation column as an end product and a closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 192, 194, 201, 203) using, as a cycle fluid, nitrogen, methane, oxygen, argon, helium or hydrogen to render at least some of the separation energy, and capable of operating with at least two liquids (77, 81; 179, 186) of the closed cycle being vaporised at at least two different pressures in the exchange line.
  10. Device according to claim 9 comprising a pump connected to the head of the CO/CH4 column and to the head of the washing column.
  11. Device according to claims 9 or 10, wherein the closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 192, 194, 201, 203) renders at least some of the liquefaction energy from this CH4.
  12. Device according to any of claims 9 to 11, comprising a stripper column (13) to purify the sump liquid of the washing column (5) upstream of the CO/CH4 separation column (33).
EP08805696.5A 2007-05-04 2008-04-23 Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation Active EP2147270B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754859A FR2915791B1 (en) 2007-05-04 2007-05-04 METHOD AND APPARATUS FOR SEPARATING A MIXTURE OF HYDROGEN, METHANE AND CARBON MONOXIDE BY CRYOGENIC DISTILLATION
PCT/FR2008/050742 WO2008148971A2 (en) 2007-05-04 2008-04-23 Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation

Publications (2)

Publication Number Publication Date
EP2147270A2 EP2147270A2 (en) 2010-01-27
EP2147270B1 true EP2147270B1 (en) 2019-11-06

Family

ID=39057273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08805696.5A Active EP2147270B1 (en) 2007-05-04 2008-04-23 Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation

Country Status (6)

Country Link
US (1) US20100162754A1 (en)
EP (1) EP2147270B1 (en)
JP (1) JP5551063B2 (en)
CN (1) CN101688753B (en)
FR (1) FR2915791B1 (en)
WO (1) WO2008148971A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353233B (en) * 2011-08-03 2014-05-07 成都蜀远煤基能源科技有限公司 Process method and device for cryogenically separating and liquefying gas obtained after coal gas methanation
CN102288008B (en) * 2011-08-04 2013-06-12 成都蜀远煤基能源科技有限公司 Method and device for extracting carbonic oxide (CO) of coal gas feed gas
CN102674347A (en) * 2012-05-17 2012-09-19 四川亚连科技有限责任公司 Method for preparing carbon monoxide (CO) through low-temperature distillation
FR3018599B1 (en) * 2014-03-17 2019-06-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS CONTAINING CARBON MONOXIDE, METHANE AND HYDROGEN
FR3052159B1 (en) * 2016-06-06 2018-05-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PROCESS AND PLANT FOR THE COMBINED PRODUCTION OF A MIXTURE OF HYDROGEN AND NITROGEN AND CARBON MONOXIDE BY CRYOGENIC DISTILLATION AND WASH
FR3057056B1 (en) * 2016-10-03 2020-01-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR RECOVERING ARGON IN A UNIT FOR SEPARATING A GAS FROM PURGE OF AMMONIA SYNTHESIS
CN107417495A (en) * 2017-05-27 2017-12-01 李大鹏 A kind of ammonia from coal, LNG, the Poly-generation method and device of liquid fuel
FR3084453B1 (en) * 2018-07-25 2020-11-27 Air Liquide METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF A MIXTURE OF CARBON MONOXIDE, HYDROGEN AND METHANE FOR THE PRODUCTION OF CH4
FR3097951B1 (en) 2019-06-26 2022-05-13 Air Liquide METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF SYNTHESIS GAS FOR THE PRODUCTION OF CH4

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2030740B2 (en) * 1970-06-23 1978-05-11 Basf Ag, 6700 Ludwigshafen Process for the production of methane-free synthesis gas from the cracked gas of the immersion flame process
DE3247782A1 (en) * 1982-12-23 1984-06-28 Linde Ag, 6200 Wiesbaden METHOD FOR DISASSEMBLING A GAS MIXTURE TO BE USED IN A METHANOL SYNTHESIS GAS SYSTEM AT LOW TEMPERATURES
US4727723A (en) * 1987-06-24 1988-03-01 The M. W. Kellogg Company Method for sub-cooling a normally gaseous hydrocarbon mixture
FR2664263B1 (en) * 1990-07-04 1992-09-18 Air Liquide PROCESS AND PLANT FOR THE SIMULTANEOUS PRODUCTION OF METHANE AND CARBON MONOXIDE.
JP3044564B2 (en) * 1990-09-28 2000-05-22 日本酸素株式会社 Gas separation method and apparatus
FR2681131A1 (en) * 1991-09-11 1993-03-12 Air Liquide METHOD AND PLANT FOR PRODUCING CARBON MONOXIDE AND HYDROGEN
FR2775276B1 (en) * 1998-02-20 2002-05-24 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF CARBON MONOXIDE AND HYDROGEN
MY122625A (en) * 1999-12-17 2006-04-29 Exxonmobil Upstream Res Co Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
EA200800297A1 (en) * 2005-07-28 2008-08-29 Инеос Ю-Эс-Ей Ллк EXTRACTING A PRODUCT FLOW WITH HIGH CONCENTRATION FROM MIXED GAS CONTAINING HEAVY HYDROCARBONS
DE102007013325A1 (en) * 2007-03-20 2008-09-25 Linde Ag Process and apparatus for recovering gas products and liquid methane from synthesis gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2147270A2 (en) 2010-01-27
CN101688753A (en) 2010-03-31
JP5551063B2 (en) 2014-07-16
WO2008148971A3 (en) 2010-01-07
FR2915791B1 (en) 2009-08-21
CN101688753B (en) 2013-08-14
JP2010526271A (en) 2010-07-29
US20100162754A1 (en) 2010-07-01
WO2008148971A2 (en) 2008-12-11
FR2915791A1 (en) 2008-11-07

Similar Documents

Publication Publication Date Title
EP2147270B1 (en) Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation
EP2268989B1 (en) Method and device for cryogenically separating a mixture of hydrogen and carbon monoxide
EP3724573A1 (en) Method and apparatus for the cryogenic separation of a synthesis gas containing a nitrogen separation step
WO2015140460A2 (en) Method and device for cryogenically separating a synthesis gas containing carbon monoxide, methane and hydrogen
CA2899564C (en) Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant
EP2137474B1 (en) Method and apparatus for producing carbon monoxide by cryogenic distillation
WO2017212136A1 (en) Method and facility for combined production of a mixture of hydrogen and nitrogen as well as carbon monoxide by cryogenic distillation and scrubbing
EP2504646B1 (en) Method and apparatus for cryogenically separating a mixture of nitrogen and carbon monoxide
EP3350119B1 (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
EP3599438A1 (en) Method and device for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane for the production of ch4
EP3252408B1 (en) Method for purifying natural gas and for liquefying carbon dioxide
WO2018020091A1 (en) Method and apparatus for scrubbing at cryogenic temperature in order to produce a mixture of hydrogen and nitrogen
WO2022175204A1 (en) Method and apparatus for liquefying hydrogen
FR3013106A1 (en) CRYOGENIC SEPARATION PROCESS FOR THE PRODUCTION OF A MIXTURE OF HYDROGEN AND NITROGEN CONTAINING LOW CO AND CH4 CONTENT
WO2013064765A1 (en) Process and apparatus for separating a gas rich in carbon dioxide by distillation
FR3118144A3 (en) METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF A MIXTURE OF HYDROGEN, METHANE, NITROGEN AND CARBON MONOXIDE
FR3057942A1 (en) METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS BY PARTIAL CONDENSATION
FR3097951A1 (en) METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF SYNTHESIS GAS FOR THE PRODUCTION OF CH4
FR2903766A1 (en) Producing carbon monoxide and hydrogen from a mixture of methane and nitrogen by cryogenic distillation, comprises washing an initial gas mixture with a liquid methane in a first column to provide gaseous hydrogen and a washing liquid
FR3058996A1 (en) METHOD AND INSTALLATION FOR CRYOGENIC SEPARATION OF A METHANE WASH MIXTURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

R17D Deferred search report published (corrected)

Effective date: 20100107

17P Request for examination filed

Effective date: 20100707

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151203

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190531

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20190912

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1199301

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008061587

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200420

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008061587

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1199301

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008061587

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20250418

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20250418

Year of fee payment: 18