[go: up one dir, main page]

EP2047235A1 - Procédé et dispositif pour la surveillance d'un processus de combustion - Google Patents

Procédé et dispositif pour la surveillance d'un processus de combustion

Info

Publication number
EP2047235A1
EP2047235A1 EP07788262A EP07788262A EP2047235A1 EP 2047235 A1 EP2047235 A1 EP 2047235A1 EP 07788262 A EP07788262 A EP 07788262A EP 07788262 A EP07788262 A EP 07788262A EP 2047235 A1 EP2047235 A1 EP 2047235A1
Authority
EP
European Patent Office
Prior art keywords
flame
laser light
combustion process
detected
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07788262A
Other languages
German (de)
English (en)
Inventor
Wilfried Hangauer
Hans Link
Rainer Lochschmied
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies HVAC Products GmbH
Original Assignee
Siemens Building Technologies HVAC Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies HVAC Products GmbH filed Critical Siemens Building Technologies HVAC Products GmbH
Publication of EP2047235A1 publication Critical patent/EP2047235A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • F23M11/045Means for supervising combustion, e.g. windows by observing the flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/11041Means for observing or monitoring flames using photoelectric devices, e.g. phototransistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for

Definitions

  • the invention relates to a method for monitoring a combustion process in the infrared wavelength range using a laser which emits a laser light beam along a measuring path in a specific wavelength range, which is chosen so that in this a gas to be detected in the combustion process has an absorption line and that the emission wavelength of Lasers sweeps in the selected wavelength range, the absorption line of the gas to be detected, wherein the concentration of the gas is determined in dependence on the absorbed energy of the laser light beam.
  • a method of the type mentioned is known for example from WO 01/33200 Al.
  • This discloses a laser diode which emits a collimated light beam in the near infrared wavelength range along a measurement path, wherein the light beam strikes a arranged in the beam path of the laser diode photodetector.
  • the occurring absorption of the energy of the laser light beam is spectrally evaluated to determine the concentrations of the gases present in the combustion process. For example, the gas concentrations of oxygen, carbon dioxide, carbon monoxide, etc. occurring in a combustion process can be detected.
  • DE 103 04 455 B4 discloses a method for analyzing a gas mixture, in which a gas mixture is analyzed by means of laser spectroscopy. Laser spectroscopy methods are also used for calorific value determination of natural gases. From EP 1 174 705 Bl, for example, a method for calorific value determination of natural gas by means of absorption spectroscopy in the infrared wavelength range using a laser diode is known.
  • EP 0 838 636 A2 discloses a method of controlling a natural gas powered thermal energy device in which a light beam generated by a diode laser is introduced into the supplied fuel gas and the degree of energy absorption changing with changing gas compositions is detected. Depending on the respectively detected absorption values, the reaction conditions of the thermal energy device are then regulated.
  • the methods known from the prior art show that the gas molecules occurring in a combustion process can be qualitatively and quantitatively determined by means of absorption spectroscopy.
  • photons from the incident light beam are absorbed in the gas molecules in the infrared spectral range.
  • the absorption of photons is manifested by absorption lines.
  • Different gas molecules show individual spectral or absorption lines, both in terms of their strength and their position in the spectrum.
  • gas molecules can be detected by their characteristic spectrum. This radiation sources are used with a small line width, so that the absorption lines are as good as possible resolvable.
  • lasers are used as light sources, which are tunable with their monochromatic emission spectra on the spectral lines or absorption lines of the gas molecules to be detected.
  • the methods currently used in heating systems for monitoring the combustion process are usually Various monitoring sensors are required to ensure that the quantities of air and gas required for combustion are available and that the combustion process is running correctly.
  • the gas pressure, air pressure and the air flow for example during commissioning of the burner are monitored.
  • overpressure and vacuum detectors are used. These ensure that the network pressure of the fuel gas neither exceeds nor exceeds the permitted limits.
  • pressure cans are used, which are installed in the supply air duct of the burner.
  • the monitoring sensors access in case of error, z. B. failure of the fan motor to avoid grossly inadmissible combustion conditions. The error is z. B. an automatic burner, which then causes a shutdown of the burner of the heating system.
  • a monitoring of the flame for example when the ignition of the fuel and during the burner operation is necessary.
  • To monitor the flame z.
  • Another known method for monitoring the flame is to detect the ionization current of the flame with an ionization electrode protruding into the flame and to evaluate it for determining the existence of the flame.
  • combustion quality is also monitored more frequently. This manifests itself for example in the composition of the gases occurring in the combustion process, such as, for example, oxygen, carbon dioxide, carbon monoxide.
  • gases occurring in the combustion process which indicate, among other things, the measured gas concentrations, for example, as volume percent of oxygen or carbon dioxide.
  • the mixing ratio fuel / air can be readjusted, as a result of which the quality of the combustion process can be continuously optimized.
  • the different sensors used to monitor the combustion process serve the purpose of keeping the combustion in the hygienic or non-hazardous state, with a flame failure to be recognized immediately during the combustion process. Furthermore, the efficiency should be optimized.
  • the invention has for its object to provide a method and apparatus for monitoring a combustion process, the safe and reliable and with little technical effort monitoring the for the
  • the invention is based on an infrared measurement based on laser spectroscopy, wherein a laser light source, in particular a VCSEL laser, emits a laser light beam along a measuring path in order to detect at least one gas present in the combustion process.
  • the laser light beam strikes a photodetector arranged at the end of the measuring path, which detects the intensity of the received light beam.
  • the existence and / or quality of the flame is then determined.
  • the laser light beam traverses the flame to be monitored in the burn-out of the flame, and in addition, the light radiation emanating from the flame can be optically detected and evaluated to determine the existence and / or quality of the flame. Since the measurement is preferably carried out in-situ and almost inertia-free, a flame failure or a demolition of the flame can be detected immediately.
  • the respectively measured gas concentrations are evaluated to determine the quality of the flame.
  • the invention has the advantage that it is possible to dispense with the previously customary UV, infrared sensors for flame monitoring. In addition, can also be applied to load cells for the
  • the flames usually have propagation speeds of a few meters per second, means z. B. a measuring distance from the flame of one meter already a second dead time based on the state of the flame. So that a change of state of the flame can be detected sufficiently quickly in the sense of the relevant standards, the measurement is preferably carried out in-situ, ie in the vicinity of the flame or in the flame, for. B. in the burnout of the flame.
  • the dead time is negligible and it is ensured that in case of flame failure during burner operation, a shutdown of the fuel supply within the time required by the safety standard period is possible.
  • temperatures of more than 1000 ° C. occur in the flame, measurement in the flame region requires protection of the sensors used in this case; in particular, the laser and the photodetector must be protected from the high temperatures in the flame region.
  • this is achieved in that the laser light beam is guided by optical fibers, for example by quartz glass rods from the laser to the photodetector, whereby the laser beam emitting the laser light beam and the laser light beam receiving photodetector can be positioned away from the flame. Since the laser light beam is optically unaffected by the quartz glass rod, the measurement result is unaffected by the length of the quartz glass rod. This has the advantage that the laser used for the measurement and the photodetector can be positioned away from the flame, which also offers advantages in constructing the device.
  • the invention is used for monitoring of different phases of a burner cycle of a heating system and in particular for monitoring the occurring gas concentrations, for example of oxygen, carbon dioxide, etc.
  • a further object of the invention is to prepare the measured values obtained by means of laser spectroscopy for monitoring in such a way that they can also be used for controlling a burner.
  • the absolute measured values obtained during the monitoring are converted into relative measured values using the temperature recorded in the measuring section.
  • a temperature sensor for. B. a thermocouple, integrated into the measuring section.
  • the temperature sensor preferably measures in the region of the flame, which has the advantage that the temperature signal can also be evaluated to determine the existence and / or the quality of the flame. The fact that the evaluation of the temperature signal is independent of the optical flame evaluation, thereby the reliability of the flame evaluation can be additionally increased.
  • the regulation of the individual phases of a burner cycle is preferably carried out on the basis of the measured oxygen concentrations, wherein the following nominal values can be used.
  • the desired value can be greater than 19% by volume O 2 .
  • the set point may be greater than 20.5% by volume O 2 .
  • the setpoint z. B. be less than 10 percent by volume O 2 .
  • the setpoint may be less than or equal to 6 volume percent O 2 .
  • a setpoint of greater than or equal to 18 volume percent 0 can be selected.
  • other setpoints depending on the type of burner and type of fuel, can be used as a basis for the regulation.
  • the invention also makes it possible to determine the water or steam content on the basis of the measured temperature. With the aid of the measured temperature, it is possible to specify, for example, the moisture content and the gas concentration with respect to a dry exhaust gas, if the fuel is known.
  • FIG. 1 shows a first embodiment of a device for monitoring a gas combustion process
  • FIG. 2 shows a modified embodiment compared to FIG. 1,
  • FIG. 3 shows a second embodiment of a device for monitoring a gas combustion process
  • FIG. 1 shows, in the form of a block diagram, the device for monitoring a gas combustion process.
  • the device comprises a laser light source 1, for example a vertical cavity surface emitting laser, called VCSEL laser for short.
  • VCSEL laser vertical cavity surface emitting laser
  • This does not require any external optics, this eliminates critical to be adjusted parts such as Einkoppler what the VCSEL laser insensitive to makes mechanical shocks. Due to its robustness, the VCSEL laser is well suited for monitoring a combustion process.
  • the narrow band of the laser light beam and its high spectral power are particularly advantageous.
  • the absorption lines for detecting oxygen or carbon dioxide are, for example, 760 and 1570 nanometers. Part of the energy of the emitted laser light beam 2 is absorbed by absorption of the corresponding gas molecules. Consequently, the light beam 2 emitted by the laser light source 1 strikes a reduced intensity on a photodetector 3 arranged at the end of the measuring path.
  • the laser light source 1 is selected such that the laser light beam 2 emitted along a measuring path has a specific wavelength range in the infrared, in which the gas to be detected has a characteristic spectral or absorption line.
  • a flame 5 generated by a burner 10 extends, for example, at its end into the measuring path, wherein the light radiation emanating from the flame 5 also impinges on the photodetector 3.
  • a broadband photodetector 3 is used, which detects the laser light radiation 2 and originating from the flame 5 light radiation.
  • the photodetector preferably provides a proportional to the received light intensity measurement signal, z. B. a photocurrent, which is evaluated by a signal evaluation device 4.
  • the evaluation device 4 has For example, a transimpedance amplifier that converts the photocurrent into a voltage. Also, the evaluation device 4 may have a lock-in amplifier, which filters the voltage obtained from the transimpedance amplifier.
  • the detected light radiation of the flame can also be evaluated spectrally by the evaluation device 4.
  • the evaluation device 4 may for example be part of an automatic burner control of a burner 10.
  • the temperature signal is supplied to the evaluation device 4, which can then evaluate this together with the optical measurement signals to determine the existence and / or the quality of the flame.
  • the gas density With the aid of the measured temperature, it is also possible to convert the gas density and, on the basis of this, the absolutely measured gas concentration can be converted into a relative gas concentration.
  • the conversion has the advantage that the relative gas concentration, e.g. B. Volume percent of oxygen can be used directly to control the burner 10.
  • FIGS. 2 to 4 each show a modified embodiment of the invention shown in FIG. The same elements are provided with the same reference numerals, so that reference may be made to the preceding description in conjunction with Figure 1 accordingly.
  • the embodiment according to FIG. 2 additionally has the light guides 7.
  • the light beam 2 emitted by the laser light source 1 passes via the light guides 7 to the photodetector 3.
  • the light guides 7 are quartz glass rods, for example, which are heat-resistant even at the temperatures of more than 1000 ° C.
  • the laser 1 and the photodetector 3 can be positioned away from the flame 5. Since the laser light beam 2 is not optically influenced by the quartz glass rods 7, the measurement is independent of the length of the quartz glass rods.
  • the laser 1 and the photodetector 3 can be positioned away from the flame 5, whereby they are protected against the heat of the flame 5.
  • the shape of the light guides 7 may also be bent or angled, which simplifies the positioning of the laser and the photodetector in the device.
  • FIG. 3 shows a further exemplary embodiment of a device for monitoring the combustion process, which additionally has a reflector 8.
  • the reflector 8 reflects the light radiation 2 emitted by the laser light source 1 such that it impinges on the photodetector 3, which is then evaluated by the evaluation device 4.
  • This arrangement of laser 1 and photodetector 3 offers the advantage that they can be accommodated in a sensor housing 9.
  • FIG. 4 shows a modified embodiment of FIG. 3.
  • the embodiment according to FIG. 4 requires only one optical waveguide 7.
  • the one of the laser light source 1 emitted light beam 2 passes through the light guide 7 to the reflector 8.
  • the reflected light from the reflector 8 then passes through the light guide 7 to the photodetector 3.
  • the transmitter 1 and receiver 3 can be accommodated in a sensor housing 9, where only one light guide 7 is needed.
  • the light guide 7 may have any shape, whereby the laser housing 1 and the photodetector 3 receiving sensor housing 9 can be positioned at the desired location in the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Procédé pour la surveillance d'un processus de combustion dans la plage de longueur d'onde de l'infrarouge, moyennant l'utilisation d'un laser qui émet un rayon de lumière laser le long d'un trajet de mesure dans une plage de longueur d'onde déterminée, qui est choisie de telle sorte que dans celle-ci, un gaz à détecter dans le processus de combustion présente une raie d'absorption et que, lors de l'accord dans la plage de longueur d'onde choisie, la longueur d'onde d'émission du laser balaye la raie d'absorption du gaz à détecter, la concentration du gaz étant déterminée en fonction de l'énergie absorbée du rayon de lumière laser. Ledit procédé est caractérisé par le fait que l'intensité du rayon de lumière laser est détectée et en ce que celle-ci est évaluée pour la détermination de l'existence d'une flamme et/ou de la qualité de la flamme.
EP07788262A 2006-08-04 2007-08-06 Procédé et dispositif pour la surveillance d'un processus de combustion Withdrawn EP2047235A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006036563A DE102006036563A1 (de) 2006-08-04 2006-08-04 Überwachung von Verbrennungsvorgängen an einem Ort durch schnellen Sauerstoffsensor
PCT/EP2007/058151 WO2008015292A1 (fr) 2006-08-04 2007-08-06 Procédé et dispositif pour la surveillance d'un processus de combustion

Publications (1)

Publication Number Publication Date
EP2047235A1 true EP2047235A1 (fr) 2009-04-15

Family

ID=38650174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07788262A Withdrawn EP2047235A1 (fr) 2006-08-04 2007-08-06 Procédé et dispositif pour la surveillance d'un processus de combustion

Country Status (5)

Country Link
US (1) US20100157285A1 (fr)
EP (1) EP2047235A1 (fr)
CN (1) CN101501473A (fr)
DE (1) DE102006036563A1 (fr)
WO (1) WO2008015292A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009314A1 (de) * 2008-07-09 2010-01-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Regelung oder Überwachung von Feuerungsanlagen sowie zur Überwachung von Gebäuden mit Gasbrennern
DE102008056676A1 (de) * 2008-11-11 2010-05-12 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Überwachen der Verbrennung eines Kraftwerks mittels einer realen Konzentrationsverteilung
US20110045420A1 (en) * 2009-08-21 2011-02-24 Alstom Technology Ltd Burner monitor and control
US8151571B2 (en) 2009-09-18 2012-04-10 General Electric Company Systems and methods for closed loop emissions control
SE535798C2 (sv) * 2011-03-08 2012-12-27 Vattenfall Ab Förfarande och system för gasmätning i förbränningskammare
CN105424609A (zh) * 2015-11-05 2016-03-23 国网山西省电力公司大同供电公司 一种废气排放强制监控系统
CN106442246B (zh) * 2016-10-21 2023-05-23 上海齐耀科技集团有限公司 高架火炬筒体在线监测和控制系统及其控制方法
CN106781417A (zh) * 2016-12-30 2017-05-31 武汉六九传感科技有限公司 一种基于vcsel激光器的气体传感器
CN108717193B (zh) * 2018-06-12 2024-08-27 武汉米字能源科技有限公司 一种基于激光雷达的炉膛燃烧测温系统
CN108717051B (zh) * 2018-06-12 2023-09-22 武汉米字能源科技有限公司 一种tdlas与光声光谱结合测天然气热值的装置与方法
HUE055228T2 (hu) 2018-12-06 2021-11-29 Siemens Ag Lángfigyelõ vezérlõrendszer
CN111795829A (zh) * 2020-07-07 2020-10-20 西安热工研究院有限公司 一种基于tdlas技术燃气轮机燃烧状态参数监测系统
CN113848189B (zh) * 2021-09-23 2023-12-15 桂林理工大学 空、地协同火焰监测平台
CN117825328B (zh) * 2024-01-02 2024-11-22 哈尔滨工业大学 基于多源光协同的燃烧场多物理量场层析测量方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568525A (en) * 1978-11-20 1980-05-23 Babcock Hitachi Kk Flame detector using laser beam

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435149A (en) * 1981-12-07 1984-03-06 Barnes Engineering Company Method and apparatus for monitoring the burning efficiency of a furnace
GB8925460D0 (en) * 1989-11-10 1989-12-28 Smiths Industries Plc Flame detection
IT1251246B (it) * 1991-08-27 1995-05-05 Sie Systems Spa Dispositivo per a rivelazione della presenza e della qualita' della fiamma attraverso la captazione e l'analisi di radiazioni elettromagnetiche di diversa lunghezza d'onda
GB2259763B (en) * 1991-09-20 1995-05-31 Hochiki Co Fire alarm system
US5178002A (en) * 1991-10-18 1993-01-12 The Board Of Trustees Of The Leland Stanford Jr. University Spectroscopy-based thrust sensor for high-speed gaseous flows
US5252060A (en) * 1992-03-27 1993-10-12 Mckinnon J Thomas Infrared laser fault detection method for hazardous waste incineration
EP0766080A1 (fr) * 1995-09-29 1997-04-02 FINMECCANICA S.p.A. AZIENDA ANSALDO Système et procédé pour surveiller une combustion et des polluants à l'aide de diodes laser
DE19644240A1 (de) * 1996-10-24 1998-04-30 Fev Motorentech Gmbh & Co Kg Verfahren zur Regelung einer mit Brenngas wechselnder Zusammensetzung betriebener Wärmeenergieeinrichtung und Vorrichtung zur Durchführung des Verfahrens
US6091504A (en) * 1998-05-21 2000-07-18 Square One Technology, Inc. Method and apparatus for measuring gas concentration using a semiconductor laser
US6468069B2 (en) * 1999-10-25 2002-10-22 Jerome H. Lemelson Automatically optimized combustion control
AU1751701A (en) * 1999-11-04 2001-05-14 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for continuously monitoring chemical species and temperature in hot process gases
DE10031674A1 (de) * 2000-06-29 2002-01-17 Siemens Ag Verfahren zur Brennwertbestimmung von Erdgas
AT411298B (de) * 2001-09-18 2003-11-25 Gerhard Mag Totschnig Verfahren zur laser-absorptionsspektroskopie und einrichtungen zur durchführung dieses verfahrens
DE10304455B4 (de) * 2003-02-04 2005-04-14 Siemens Ag Verfahren zur Analyse eines Gasgemisches

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568525A (en) * 1978-11-20 1980-05-23 Babcock Hitachi Kk Flame detector using laser beam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008015292A1 *

Also Published As

Publication number Publication date
US20100157285A1 (en) 2010-06-24
CN101501473A (zh) 2009-08-05
WO2008015292A1 (fr) 2008-02-07
DE102006036563A1 (de) 2008-02-07

Similar Documents

Publication Publication Date Title
WO2008015292A1 (fr) Procédé et dispositif pour la surveillance d'un processus de combustion
DE19717145C2 (de) Verfahren zur selektiven Detektion von Gasen und Gassensor zu dessen Durchführung
DE102010017286B4 (de) Optische Abfragesensoren zum Regeln/Steuern einer Verbrennung
DE102019101329A1 (de) Verfahren und Vorrichtung zur Regelung des Mischungsverhältnisses von Verbrennungsluft und Brenngas bei einem Verbrennungsprozess
KR910006273B1 (ko) 화로시스템
EP3663648B1 (fr) Dispositif de régulation du rapport de mélange de l'air de combustion et de gaz de combustion dans un processus de combustion
EP2307876B1 (fr) Procédé de détection spectroscopique laser de gaz
DE102010037620A1 (de) Systeme und Verfahren zur Regelung von Emissionen
DE19847832C1 (de) Verfahren zum Überwachen eines optischen Systems mit einer unmittelbar an einem Verbrennungsraum angeordneten Frontlinse und Überwachungsmodul
DE19710206A1 (de) Verfahren und Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum
DE102011119700A1 (de) Verfahren zum Analysieren und Regeln eines Verbrennungsvorgangs in einer Gasturbine und Vorrichtung zum Ausführen des Verfahrens
WO2010003890A2 (fr) Procédé et dispositif de régulation ou de contrôle d'installations de chauffage et de contrôle de bâtiments contenant des brûleurs à gaz
DE102011056546A1 (de) System und Verfahren zur Echtzeitmessung des Äquivalenzverhältnisses eines Gas-Brennstoff-Gemisches
WO1998007013A1 (fr) Procede de mesure de la temperature
DE112020003132B4 (de) Mehrkanalgassensor
DE102016108267B4 (de) Vorrichtung und Verfahren zum Ermitteln einer Konzentration von wenigstens einer Gaskomponente eines Gasgemischs
EP3762704A1 (fr) Capteur de particules fonctionnant par incandescence induite par laser muni d'un ensemble confocal d'un point laser et d'un point de rayonnement thermique
AT411298B (de) Verfahren zur laser-absorptionsspektroskopie und einrichtungen zur durchführung dieses verfahrens
EP3995817B1 (fr) Procédé et agencement de détection de l'hydrogène dans un appareil de chauffage pouvant fonctionner avec de l'hydrogène ou du gaz combustible contenant de l'hydrogène
DE19541516C2 (de) Vorrichtung zur optischen Bestimmung der Sauerstoffkonzentration und deren Änderung im Abgas eines Verbrennungssystems zur Kontrolle und/oder Regelung des Verbrennungsprozesses
DE3032641A1 (de) Elektrooptischer rauchgasanalysator.
EP4050260B1 (fr) Procédé et agencement de surveillance d'un processus de combustion dans un appareil de chauffage
DE102023102141A1 (de) Lasergasanalysator
DE102019119916A1 (de) Vorrichtung und Verfahren zur Spektralanalyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121015

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130226