EP2039939A1 - Method for monitoring an energy conversion device - Google Patents
Method for monitoring an energy conversion device Download PDFInfo
- Publication number
- EP2039939A1 EP2039939A1 EP07018530A EP07018530A EP2039939A1 EP 2039939 A1 EP2039939 A1 EP 2039939A1 EP 07018530 A EP07018530 A EP 07018530A EP 07018530 A EP07018530 A EP 07018530A EP 2039939 A1 EP2039939 A1 EP 2039939A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- variables
- unit
- power
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 13
- 238000012544 monitoring process Methods 0.000 title claims description 39
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000006073 displacement reaction Methods 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 230000001419 dependent effect Effects 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 6
- 238000005265 energy consumption Methods 0.000 claims description 4
- 230000004087 circulation Effects 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 6
- 230000008439 repair process Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/001—Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B51/00—Testing machines, pumps, or pumping installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0088—Testing machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/335—Output power or torque
Definitions
- the invention relates to a method for monitoring an energy conversion device, which consists of several functionally linked functional units.
- energy conversion devices in the context of the invention may be, for example, electric motor driven centrifugal pump units, electric motor driven compressors, equipment equipped therewith or the like. They consist of several functionally linked functional units, such as electric motor and centrifugal pump or electric motor and positive displacement pump or combustion engine and electric generator.
- Such energy conversion devices are used today in almost all technical but also domestic applications.
- the solution according to the invention provides for a method for monitoring an energy conversion device, which consists of a plurality of functionally linked functional units, in which power-dependent variables of at least one functional unit are automatically detected and / or calculated at time intervals and with each other or with them derived values and / or are compared with predetermined values and a corresponding signal is generated depending on this comparison. Based on this signal can then be determined whether the device is still working with the desired effectiveness, possibly provide one or more functional units insufficient performance or work with a reduced efficiency and thus determined whether the device is repair or replace.
- the basic idea of the method according to the invention is to monitor at least one functional unit at intervals with regard to its efficiency and to display the result by means of a signal or to make it automatically evaluable.
- power-dependent variables of a functional unit are automatically detected at intervals over time and compared with predetermined values determined beforehand or derived therefrom.
- predetermined values determined beforehand or derived therefrom.
- an energy conversion device ie in particular an aggregate, a machine or a system can self-learning determine and display its individual performance characteristics, the resulting operating behavior, life expectancy and the like.
- Performance-dependent variables in the sense of the present invention are those which stand in some connection with the performance characteristic of a functional unit.
- discontinuously operating units such as the compressor of a refrigerator, and the timing of the switching on and off a performance-dependent size in the sense of the present invention.
- performance-dependent variables of at least two functionally linked functional units are automatically recorded and / or calculated at intervals, wherein the power-dependent output variables or variables derived therefrom of one functional unit form the power-dependent input variables of the function unit downstream of this functionally.
- the efficiency monitoring according to the invention of the device or at least individual functional units of the device can be carried out comparatively easily if the functional units always run at the same operating point, since then typically one measured value is sufficient to determine the intended or degraded power / efficiency of the respective unit.
- an energy conversion device such as a heating circulation pump is to be monitored.
- Such aggregates typically consist of the functional units engine and centrifugal pump, wherein the centrifugal pump typically constantly changes its operating point, since the pipe network resistance of the heating system changes due to external influences.
- the determination can also take place in that two hydraulic variables of the pump, typically the flow rate and the delivery head, are determined and equated with the mechanical output delivered by the engine via a corresponding model calculation.
- the method according to the invention is carried out during the normal operation of the device, ie in a pump unit during the intended conveying operation, the time interval for detecting the quasi-simultaneous operating points for determining the course of the area being in the range of, for example, minutes, whereas the time interval after a comparative measurement is performed, may be in the daily, weekly or monthly range, depending on the device type. Comparatively long intervals are z. As result in heating circulation pumps, whereas short intervals in compressors, especially for cooling systems may be appropriate because with such a monitoring method not only a deterioration in efficiency, but also a possible expected failure of the device can be detected.
- the time interval in which the performance-dependent variables to be compared are thus determined depends both on the type of machine and on the intended use. However, the comparison is expediently made on the basis of the variables previously recorded or predetermined values, the latter method having the advantage has that thus already a malfunction is detectable at startup.
- the method according to the invention can be carried out when first an electrical motor size determining the power consumption of the motor and at least one size determining the hydraulic operating point of the pump are recorded and stored and is maintained for the later comparison measurement, until the previously detected hydraulic operating point is reached again and then the power consumption of the engine determining quantities of the engine are detected and compared with the first stored. Then, a direct comparison can be made without operating point deviations and thus the aforementioned surface curves must be determined.
- the variables acquired later for comparison measurement can also be detected at any operating point of the installation if the acquired variables are transferred based on a mathematical electrical motor model and / or a mathematical-hydraulic pump model, i. be converted to operating point independent variables and then compared with the stored variables or vice versa, so that a comparison of the power-determining variables is possible regardless of the operating point.
- the method is used only after a predetermined time has elapsed, this predetermined time corresponding at least to the running-in time of the unit, in particular of the pump unit.
- this predetermined time corresponding at least to the running-in time of the unit, in particular of the pump unit.
- the break-in time automatically detected at least one operating profile and determines the expected energy consumption taking into account the possibly determined efficiency change and displayed by suitable means.
- a surface course having a multidimensional model character and dependent on the performance of a functional unit can be determined and stored again at temporal intervals and stored and compared with the or a previously determined one, in which case the spacing of the surface curves in FIG a predetermined operating point or operating range or the volume spanned between the surface curves are used as a measure of the change in efficiency.
- Such an evaluation is particularly advantageous because it can be done during continuous operation without any intervention in the performance of the machine.
- Such a method is particularly advantageous in centrifugal pump units, as used for example as heating circulation pumps, which usually run on constantly changing operating points.
- a Kálmán filter is advantageously used used. This iteration method makes it possible to determine the course of the area sufficiently accurately with only a comparatively small number of measured operating points in order to be able to detect the deviations in question and to be able to determine them quantitatively.
- the method according to the invention can be used for monitoring any energy conversion devices that consist of a plurality of functionally linked functional units.
- Particularly advantageous is the use of centrifugal pump units, compressors, heating systems, refrigerators, freezers and the like, which are typically operated over years and decades, without a decrease in efficiency would notice or announces a failure.
- the monitoring method according to the invention is both suitable for detecting and displaying a poor running, ie a deterioration in efficiency, which makes early replacement of the unit or at least one functional unit of the unit appear economically sensible, as well as, for example, in freezers or freezers of particular advantage to be able to display the anticipated failure of the unit to provide timely replacement.
- the inventive method can be used effectively to indicate an imminent failure in advance. It goes without saying that corresponding characteristic values are then suitably specified which were previously determined in the laboratory test, so that the downtime can at least roughly be determined on the basis of the change in efficiency or the change in performance of the machine.
- inventive method can advantageously in the form of a software program in the case of modern units anyway digital control electronics are implemented.
- control and regulating electronics can be provided both in the unit itself and in the terminal or terminal box of the unit.
- the method according to the invention is applied to a centrifugal pump assembly with an electric motor and a centrifugal pump driven therefrom in a device provided therein for monitoring the power characteristic of at least one functional unit of the unit.
- a compressor unit with an electric motor and a positive displacement pump driven therefrom
- a cooling unit can be provided with an electric motor, with a positive displacement pump driven therefrom, with an evaporator and with a capacitor with a device for monitoring the performance, which operates according to the inventive method, wherein the monitoring of the performance characteristics not only on engine and Positive displacement pump limited, but advantageous evaporator and condenser includes.
- a reduction in the efficiency is determined by the fact that the duration of the compressor is monitored after installation of the device. This can be done, for example, by determining the running time within 24 hours and then comparing it later, for example after six months, with the resulting runtime within 24 hours. It can be assumed in the simplest form that due to constant environmental conditions and user behavior an increasing duty cycle by a deterioration in efficiency the system is conditional. More precise conclusions can be determined by an analysis of the time course of the compressor runtime.
- a device for monitoring the performance of the burner and at least one of these heated water cycle may be provided in order to detect in this way, for example, combustion residues on the primary heat exchanger and concomitant efficiency deterioration.
- a corresponding signal lamp thus also an indication of the required cleaning service will be given, which can thus be determined as needed.
- the device is designed so that it automatically starts after a predetermined time after commissioning of the unit or the system with the detection and storage for monitoring the performance characteristics, in particular for determining the effectiveness and monitoring sizes and at appropriate intervals again these sizes recorded and compared with the pre-stored and / or the originally stored variables and displays a possibly impermissibly high deviation.
- the device therefore advantageously has a measured value memory in which at least the variables detected at the beginning of the measurement or variables derived therefrom are stored.
- the machine is monitored as far as possible in its entirety by the method according to the invention. However, it may also be sufficient to monitor only one functional unit of the machine. This will be particularly useful if the machine has a functional unit, which typically significantly before all other functional units due to wear or otherwise fails.
- Fig. 1 is an energy conversion device consisting of the functional units 1 and 2 shown by way of example for a variety of machines, systems and units.
- the functional units 1 and 2 are monitored independently.
- first of all the power P 1 received by the functional unit 1 is dependent on one or more variables x 1 recorded and stored, as in Fig. 1 represented by 3.
- the variables x 1 are through u 1 and y 1 , so that the area shown in FIG. 3 corresponds to the energy balance of the functional unit 1 at the entrance.
- a power P 2 sets in at the output, which in turn depends on the variables x 1 is.
- This area is shown in FIG.
- the functional units 1 and 2 are functional, z. B.
- the representation 4 of the representation 5 corresponds to the power P 2 here in dependence on x 2 defined according to the energy balance at the input of the functional unit 2, depending on the variables u 2 and y 2 .
- a power P 3 At the output of the functional unit 2 is a power P 3 , as shown in FIG. 6 and dependent on x 2 is 2.
- the surfaces marked by hatching in FIGS. 3 to 6 are determined at the beginning of the method. This can be factory-made or only after some time in operation. This can be done as an initialization process or during operation. In any case, it takes place at a time t 1 , which, if several operating points are to be detected, can also represent a time range.
- an energy balance at the input of the functional unit 1, at the output of the functional unit 1, at the input of the functional unit 2 and at the output of the functional unit 2 is then created in the same way.
- the corresponding representations are marked 3 ', 4', 5 'and 6'.
- determined sizes or areas with the determined and stored at time t 1 sizes or areas efficiency reductions of individual functional units 1, 2 can be detected wherein the distance of the hatched areas in 3 and 3 'or 4 and 4' or 5 and 5 'or 6 and 6' is determined at a predetermined operating point or the volume spanned between these surfaces is determined and a signal is generated which is identified to the user when a predetermined value is exceeded makes a deterioration in efficiency take place in the machine which makes replacement or repair or immediate replacement or repair appear expedient.
- different signals may be generated, for example, a first warning signal indicative of a certain level of reduced efficiency and a second warning signal indicative of such a reduction in efficiency requiring replacement or repair. Since the functional units 1 and 2 are monitored separately from one another, it can furthermore be determined which of the functional units is wholly or partially responsible for the reduction in efficiency.
- FIG. 2 a, b and c Shown there is a device consisting of an electric motor 1a and a pump 2a, which feeds a consumer 7.
- the electrical power absorbed by the motor 1a is indicated by P 1 .
- the motor converts the electric power into a torque T e at a rotational speed ⁇ r .
- This am Output of the motor 1a pending mechanical power P 2 also represents the pending at the entrance of the pump 2a mechanical power P 2 , which is converted within the pump into a hydraulic power P 3 , by the pressure difference generated by the pump between the suction and discharge side ⁇ p and the flow rate through the pump q is determined.
- R s stator resistance
- L I s inductive losses of the stator
- L m magnetic induction
- L Ir inductive losses of the rotor
- R r rotor resistance
- J matrix ⁇ 0 - 1 1 0 are the constants of the engine.
- the constants are ⁇ p2 , ⁇ p1 , ⁇ p0 and p offset .
- Fig. 2a illustrated three-dimensional areas, which describe the power at the interfaces before, between and behind the functional units 1a and 2a, respectively, are detected and stored at a time t 1 .
- the detection typically occurs during normal operation for a short period of time which is negligibly small with respect to the monitoring interval (time from T 1 to t 2 ), after which, after a longer period of time, namely at time t 2, this process is repeated so that the surfaces according to the representations 8 ', 9' and 10 'result.
- Fig. 2a In monitoring as they are based on Fig. 2a is shown, there is a performance monitoring in front of and behind each functional unit 1a, 2a. However, this can be dispensable depending on the application. Also, it is not absolutely necessary to determine the surface curves having the multi-dimensional and model character representing the input or output power, as defined by equations 8, 9 and 10, but rather, like the embodiment according to FIG Fig. 2b clarified, for example, in place of the power P 3 as shown in Figure 10 in Fig. 2a Alternatively, the hydraulic power characteristic can be determined, that is, the differential pressure applied by the pump 2a as a function of the drive speed ⁇ r and the flow rate q. Which is detected and stored at time t 1 .
- Fig. 2c is another way of monitoring such a pump unit consisting of the functional units 1a and 2a shown.
- the power P 1 is detected there as a function of ⁇ e and Q as shown in FIG. 8 a and is compared with the corresponding power as shown in FIG. 8 a 'at a time interval between t 1 and t 2 .
- the power P 2 is determined there as a function of ⁇ p and ⁇ r , as the illustration according to 9a or 9a 'illustrates.
- the efficiency of the motor ⁇ m is the quotient of P 2 and P 1 and is dependent on ⁇ e (the supply frequency) and s , the slip of the motor.
- the motor efficiency is in Fig. 2c in the representation 11 a represented by the area in the diagram in each operating point.
- the illustration 9a shows the power P 2 in response to ⁇ p and q is shown.
- the power P 1 of the motor 1a is also represented in the form of a surface as a function of the supply frequency and the flow rate of the pump. Analogous to Fig.
- k ⁇ V n / ( n -1) / (2 ⁇ )
- n is a non-1 constant that describes heat flow during compression. If the process runs under constant temperature, then n can also be assumed to be constant.
- the engine power P 1 can be monitored in an analogous manner as indicated above by equation (8).
- Fig. 4 is the inventive method for a refrigerator shown consisting of a motor 1 c, a positive displacement pump 2 c, the output of which acts on an evaporator 3 c, which is connected via a throttle 4 c with a capacitor 5 c, the output of which is line connected to the input of the pump 2 c.
- the refrigerator is marked 7c.
- Equation 15 describes the power P 2 at the input of the compressor whereas equation 17 describes the power at the output of the compressor.
- the areas to be determined here for determining the power at the interfaces of the functional units may be two-dimensional or multi-dimensional.
- the area according to illustration 17 is two-dimensional, ie a line.
- the other surfaces shown here are all three-dimensional. It is understood that these surfaces may possibly be more than three-dimensional, depending on the type of machine to be monitored and the underlying mathematical physical relationships.
- the monitoring is carried out in an analogous manner by determining the power at the interfaces of the functional units surfaces according to representations 14, 15 and 17 at time t 1 and after a time interval at time t 2 (then resulting in the surfaces according to the Representations 14 '15' and 17 '), to then determine by determining the distance of the surfaces or the volume spanned therebetween, which of the functional units 1 c, 2 c, by which degree have fallen in their efficiency.
- ⁇ w is the density of the water and C pw is the specific heat capacity of the water.
- the inventive method can be used in a variety of devices such as aggregates, machines and equipment, which advantageously always the multi-dimensional surfaces are determined, each defining the power at the interfaces of the functional units to each other in any operating point and thus a reliable Measure for the performance characteristics of the functional units and with appropriate evaluation of the entire device, if they are compared at different times (eg, t 1 and t 2 ).
- times t 1 and t 2 are here to be understood as examples only, expediently the values determined at time t 1 always remain stored in order to be able to compare them with later ones, which however does not rule out that intermediate values are also stored if necessary, also to record the speed of the change. This too can be evaluated in a corresponding evaluation device.
- EP 1 564 411 A1 where comparable evaluations are described in detail.
- two-dimensional or more-dimensional surfaces have always been used to determine the power balance at the interfaces of the functional units, since this allows an evaluation virtually independent of the respective operating point. At substantially constant operating points, these evaluations can also take place in a simplified manner by comparing individual variables with one another over the time interval, indirectly or directly Conclusions about the efficiency can be made.
- the two- or multi-dimensional surfaces in question are advantageously determined during operation, whereby it is attempted by suitable iteration methods to achieve a high accuracy of the surfaces on the basis of as few as possible different operating points. This can be achieved in particular by using the Kálmánfilters, as has already been described above. However, other suitable iteration methods may be used. It is also conceivable that, for example, in a pump unit, certain operating points are approached targeted to capture the power balance representing surface area with the highest possible accuracy or to dispense with targeted detection of defined operating points on the determination of such areas.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Überwachung einer Energieumwandlungseinrichtung, die aus mehreren funktionell miteinander verknüpften Funktionseinheiten besteht. Solche Energieumwandlungseinrichtungen im Sinne der Erfindung können beispielsweise elektromotorisch angetriebene Kreiselpumpenaggregate, elektromotorisch angetriebene Kompressoren, damit bestückte Anlagen oder dergleichen sein. Sie bestehen aus mehreren funktionell miteinander verknüpften Funktionseinheiten, wie beispielsweise Elektromotor und Kreiselpumpe oder Elektromotor und Verdrängerpumpe oder Verbrennungsmotor und elektrischer Generator. Derartige Energieumwandlungseinrichtungen finden heutzutage in nahezu allen technischen, aber auch häuslichen Bereichen Anwendung.The invention relates to a method for monitoring an energy conversion device, which consists of several functionally linked functional units. Such energy conversion devices in the context of the invention may be, for example, electric motor driven centrifugal pump units, electric motor driven compressors, equipment equipped therewith or the like. They consist of several functionally linked functional units, such as electric motor and centrifugal pump or electric motor and positive displacement pump or combustion engine and electric generator. Such energy conversion devices are used today in almost all technical but also domestic applications.
Zwar ist man im Zuge der knapper werdenden Ressourcen stets bemüht, Maschinen, Anlagen oder sonstige Energieumwandlungseinrichtungen so aufzubauen, dass diese mit möglichst hohem Wirkungsgrad über lange Zeit arbeiten, doch stellt sich in der Praxis häufig das Problem, dass die anfänglich hohen Wirkungsgrade nachlassen und die Einrichtung weiterbetrieben wird, obwohl sie schon lange nicht mehr den gewünschten Wirkungsgrad aufweist. Dieses Phänomen ist beispielsweise bei Heizungsumwälzpumpen oder bei Kühlschränken zu beobachten. Ein Austausch erfolgt typischerweise nur dann, wenn ein Defekt offenkundig ist oder die Einrichtung den bestimmungsgemäßen Dienst vollständig versagt.Although, in the course of dwindling resources, efforts are always made to build machinery, equipment or other energy conversion facilities so that they work with the highest possible efficiency for a long time, but in practice often poses the problem that the initial high efficiencies diminish and the Device continues to operate, although it no longer has the desired efficiency for a long time. This phenomenon can be observed, for example, in heating circulation pumps or in refrigerators. An exchange typically only occurs if a defect is evident or if the device completely fails the designated service.
In vielen solcher Fälle wäre es jedoch wirtschaftlich sinnvoll, die Einrichtung vorher auszutauschen oder zumindest die defekte oder mangelhaft arbeitende Funktionseinheit zu ersetzen oder instandzusetzen.In many such cases, however, it would make economic sense to replace the device beforehand or at least to replace or repair the defective or defective functional unit.
Vor diesem Hintergrund sieht die erfindungsgemäße Lösung vor, ein Verfahren zur Überwachung einer Energieumwandlungseinrichtung, die aus mehreren funktionell miteinander verknüpften Funktionseinheiten besteht, zu schaffen, bei dem leistungsabhängige Größen mindestens einer Funktionseinheit in zeitlichen Abständen selbsttätig erfasst und/oder errechnet werden und miteinander oder mit davon abgeleiteten Werten und/oder mit vorgegebenen Werten verglichen werden und in Abhängigkeit dieses Vergleichs ein entsprechendes Signal erzeugt wird. Anhand dieses Signals kann dann festgestellt werden, ob die Einrichtung noch mit der gewünschten Effektivität arbeitet, ggf. eine oder auch mehrere Funktionseinheiten ungenügende Leistung erbringen bzw. mit einem verringerten Wirkungsgrad arbeiten und somit ermittelt werden, ob die Einrichtung instandzusetzen oder auszutauschen ist.Against this background, the solution according to the invention provides for a method for monitoring an energy conversion device, which consists of a plurality of functionally linked functional units, in which power-dependent variables of at least one functional unit are automatically detected and / or calculated at time intervals and with each other or with them derived values and / or are compared with predetermined values and a corresponding signal is generated depending on this comparison. Based on this signal can then be determined whether the device is still working with the desired effectiveness, possibly provide one or more functional units insufficient performance or work with a reduced efficiency and thus determined whether the device is repair or replace.
Der Grundgedanke des erfindungsgemäßen Verfahrens liegt darin, mindestens eine Funktionseinheit in zeitlichen Abständen hinsichtlich ihres Wirkungsgrades zu überwachen und das Ergebnis mittels eines Signals anzuzeigen oder automatisch auswertbar zu machen. Dabei werden in einfachster Form in zeitlichen Abständen leistungsabhängige Größen einer Funktionseinheit selbsttätig erfasst und mit vorgegebenen, mit zuvor ermittelten oder davon abgeleiteten Werten verglichen. So kann beispielsweise durch Vergleich einer unmittelbar nach Inbetriebnahme der Einrichtung ermittelten leistungsabhängigen Größe einer ihrer Funktionseinheiten und Vergleich mit vorgegebenen Werten ermittelt werden, ob überhaupt die fabrikmäßig vorgesehene Performance erbracht wird oder nicht. Es kann dann in weiteren, vorzugsweise größeren zeitlichen Abständen durch Vergleich mindestens einer leistungsabhängigen Größe ermittelt werden, ob und in welchem Maße sich der Wirkungsgrad der Funktionseinheit verschlechtert hat. Dabei wird vorteilhaft gemäß der Erfindung nicht nur eine, sondern es werden zweckmäßigerweise sämtliche den Wirkungsgrad der Einrichtung wesentlich bestimmende Funktionseinheiten in der vorbeschriebenen Weise überwacht. Durch die Überwachung des Leistungsverhaltens und entsprechende Signalverarbeitung kann eine Energieumwandlungseinrichtung, also insbesondere ein Aggregat, eine Maschine oder eine Anlage selbstlernend seine individuellen Leistungseigenschaften, das daraus resultierende Betriebsverhalten, die Lebenserwartung und dergleichen ermitteln und anzeigen.The basic idea of the method according to the invention is to monitor at least one functional unit at intervals with regard to its efficiency and to display the result by means of a signal or to make it automatically evaluable. In the simplest form, power-dependent variables of a functional unit are automatically detected at intervals over time and compared with predetermined values determined beforehand or derived therefrom. Thus, for example, by comparing a performance-dependent variable of one of its functional units determined immediately after the device has been put into operation and comparing it with predetermined values, it can be determined whether the factory-provided performance is actually provided or not. It can then in further, preferably larger time intervals by comparing at least one performance-dependent Size are determined whether and to what extent the efficiency of the functional unit has deteriorated. It is advantageous according to the invention, not only one, but it is suitably monitored all the efficiency of the device substantially determining functional units in the manner described above. By monitoring the performance and corresponding signal processing, an energy conversion device, ie in particular an aggregate, a machine or a system can self-learning determine and display its individual performance characteristics, the resulting operating behavior, life expectancy and the like.
Leistungsabhängige Größen im Sinne der vorliegenden Erfindung sind solche, welche in irgendeinem Zusammenhang mit der Leistungscharakteristik einer Funktionseinheit stehen. So kann beispielsweise bei diskontinuierlich arbeitenden Aggregaten, wie beispielsweise dem Kompressor eines Kühlschrankes, auch der zeitliche Verlauf der Ein- und Ausschaltvorgänge eine leistungsabhängige Größe im Sinne der vorliegenden Erfindung sein.Performance-dependent variables in the sense of the present invention are those which stand in some connection with the performance characteristic of a functional unit. Thus, for example, in discontinuously operating units, such as the compressor of a refrigerator, and the timing of the switching on and off a performance-dependent size in the sense of the present invention.
Vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sowie nach dem erfindungsgemäßen Verfahren arbeitende Einrichtungen sind in den weiteren Ansprüchen sowie der nachfolgenden Beschreibung und Zeichnung angegeben.Advantageous embodiments of the method according to the invention as well as devices operating according to the method of the invention are specified in the further claims and the following description and drawing.
Gemäß einer vorteilhaften Weiterbildung der Erfindung werden leistungsabhängige Größen mindestens zweier funktionell miteinander verknüpfter Funktionseinheiten, vorzugsweise sämtlicher Funktionseinheiten in zeitlichen Abständen selbsttätig erfasst und/oder errechnet, wobei die leistungsabhängigen Ausgangsgrößen oder davon abgeleitete Größen der einen Funktionseinheit die leistungsabhängigen Eingangsgrößen des dieser funktionell nachgeschalteten Funktionseinheit bilden.According to an advantageous development of the invention, performance-dependent variables of at least two functionally linked functional units, preferably of all functional units, are automatically recorded and / or calculated at intervals, wherein the power-dependent output variables or variables derived therefrom of one functional unit form the power-dependent input variables of the function unit downstream of this functionally.
Durch diese Verknüpfung können bei der Berechnung mathematische Modelle eingesetzt werden und die vorgenannten Überwachungsaufgaben unter Zugrundelegung nur vergleichsweise weniger zu messender Größen zuverlässig gewährleistet werden.By means of this combination mathematical models can be used in the calculation and the above-mentioned monitoring tasks can be reliably ensured on the basis of only comparatively less measurable variables.
Vergleichsweise einfach kann die erfindungsgemäße Wirkungsgradüberwachung der Einrichtung oder zumindest einzelner Funktionseinheiten der Einrichtung erfolgen, wenn die Funktionseinheiten stets im gleichen Betriebspunkt laufen, da dann typischerweise ein Messwert ausreicht, um die bestimmungsgemäße oder abgefallene Leistung/Wirkungsgrad der jeweiligen Einheit zu bestimmen. Komplizierter ist dies jedoch, wenn eine Energieumwandlungseinrichtung wie beispielsweise eine Heizungsumwälzpumpe zu überwachen ist. Derartige Aggregate bestehen typischerweise aus den Funktionseinheiten Motor und Kreiselpumpe, wobei die Kreiselpumpe typischerweise ständig ihren Betriebspunkt ändert, da sich der Rohrnetzwiderstand der Heizungsanlage aufgrund äußerer Einflüsse ändert. Um hier vergleichbare leistungsabhängige Größen zu haben, ist es zweckmäßig, die sich anhand eines elektrisch-mechanischen Motormodells sowie die sich aufgrund eines mechanisch-hydraulischen Pumpenmodells ergebenden Größen an der Schnittstelle zwischen Motor und Pumpe anzuwenden, um auf diese Weise den Leistungsstand des Pumpenaggregats zu ermitteln. Alternativ kann die Ermittlung auch dadurch erfolgen, dass zwei hydraulische Größen der Pumpe, typischerweise die Fördermenge und die Förderhöhe ermittelt werden und über eine entsprechende Modellrechnung mit der vom Motor abgegebenen mechanischen Leistung gleichgesetzt werden.The efficiency monitoring according to the invention of the device or at least individual functional units of the device can be carried out comparatively easily if the functional units always run at the same operating point, since then typically one measured value is sufficient to determine the intended or degraded power / efficiency of the respective unit. However, this is more complicated if an energy conversion device such as a heating circulation pump is to be monitored. Such aggregates typically consist of the functional units engine and centrifugal pump, wherein the centrifugal pump typically constantly changes its operating point, since the pipe network resistance of the heating system changes due to external influences. In order to have comparable performance-dependent variables here, it is expedient to use the variables resulting from a mechanical-mechanical model of the motor and the parameters resulting from a mechanical-hydraulic pump model at the interface between the motor and the pump in order to determine the power level of the pump unit in this manner , Alternatively, the determination can also take place in that two hydraulic variables of the pump, typically the flow rate and the delivery head, are determined and equated with the mechanical output delivered by the engine via a corresponding model calculation.
Besonders vorteilhaft ist es, bei derartigen Einrichtungen, bei denen die Betriebspunkte ständig wechseln und somit davon auszugehen ist, dass bei zeitlich mit Abstand erfolgenden Messungen aller Voraussicht nach nicht derselbe Betriebspunkt wieder erreicht wird, in zeitlich kurzem Abstand mehrere Messungen durchzuführen und anhand der so ermittelten Betriebspunkte leistungsabhängige, ggf. mehrdimensionale Flächenverläufe an den Schnittstellen der Funktionseinheiten zueinander zu ermitteln und mit zuvor ermittelten zu vergleichen. Dabei werden diese rechnerisch ermittelten Flächen vorteilhaft unter Verwendung eines Kálmán-Filters angenähert, so dass schon mit vergleichsweise wenigen Messungen die jeweilige leistungsbestimmende Fläche hinreichend genau bestimmt werden kann. Es kann dann der Abstand solcher in längerem zeitlichen Abstand ermittelten Flächen in einem bestimmten Betriebspunkt oder das zwischen den Flächen aufgespannte Volumen als Maß für die Wirkungsgradänderung, typischerweise den Wirkungsgradabfall herangezogen werden.It is particularly advantageous in such facilities, in which the operating points change constantly and is therefore assumed that in temporally spaced measurements of all probability not the same operating point is reached again, in short time distance perform several measurements and determine based on the operating points thus determined performance-dependent, possibly multi-dimensional surface curves at the interfaces of the functional units to each other and to compare with previously determined. In this case, these calculated surfaces are advantageously approximated using a Kálmán filter, so that even with comparatively few measurements, the respective performance-determining surface can be determined with sufficient accuracy. It can then be used as a measure of the change in efficiency, typically the efficiency drop, the distance of such surfaces determined at a longer time interval at a certain operating point or the volume spanned between the surfaces.
Vorteilhaft wird das erfindungsgemäße Verfahren während des normalen Betriebs der Einrichtung, also bei einem Pumpenaggregat während des bestimmungsgemäßen Förderbetriebs durchgeführt, wobei der zeitliche Abstand zum Erfassen der quasi zeitgleichen Betriebspunkte zur Bestimmung des Flächenverlaufs im Bereich von beispielsweise Minuten liegen kann, wohingegen das Zeitintervall, nach dem eine Vergleichsmessung durchgeführt wird, im Tages-, Wochen- oder Monatsbereich liegen kann, je nach Gerätetyp. Vergleichsweise lange Intervalle werden sich z. B. bei Heizungsumwälzpumpen ergeben, wohingegen kurze Intervalle bei Kompressoren, insbesondere für Kühlanlagen zweckmäßig sein können, da mit einem solchen Überwachungsverfahren nicht nur eine Wirkungsgradverschlechterung, sondern auch ein möglicherweise zu erwartender Ausfall der Einrichtung detektiert werden kann.Advantageously, the method according to the invention is carried out during the normal operation of the device, ie in a pump unit during the intended conveying operation, the time interval for detecting the quasi-simultaneous operating points for determining the course of the area being in the range of, for example, minutes, whereas the time interval after a comparative measurement is performed, may be in the daily, weekly or monthly range, depending on the device type. Comparatively long intervals are z. As result in heating circulation pumps, whereas short intervals in compressors, especially for cooling systems may be appropriate because with such a monitoring method not only a deterioration in efficiency, but also a possible expected failure of the device can be detected.
Der zeitliche Abstand, in welchem die zum Vergleich anstehenden leistungsabhängigen Größen ermittelt werden, hängt also sowohl vom Maschinentyp, als auch vom Einsatzzweck ab. Der Vergleich erfolgt jedoch zweckmäßigerweise unter Zugrundelegung der zuvor erfassten Größen oder vorgegebener Werte, wobei letzteres Verfahren den Vorteil hat, dass damit auch bereits eine Schlechtfunktion bei Inbetriebnahme detektierbar ist.The time interval in which the performance-dependent variables to be compared are thus determined depends both on the type of machine and on the intended use. However, the comparison is expediently made on the basis of the variables previously recorded or predetermined values, the latter method having the advantage has that thus already a malfunction is detectable at startup.
Mit deutlich geringerem messtechnischen und rechnerischen Aufwand kann das erfindungsgemäße Verfahren durchgeführt werden, wenn zunächst eine die Leistungsaufnahme des Motors bestimmende elektrische Größe des Motors und mindestens eine den hydraulischen Betriebspunkt der Pumpe bestimmende Größe erfasst und gespeichert werden und für die spätere Vergleichsmessung so lange gewartet wird, bis der zuvor erfasste hydraulische Betriebspunkt erneut erreicht ist und dann die Leistungsaufnahme des Motors bestimmende Größen des Motors erfasst und mit den zunächst gespeicherten verglichen werden. Dann kann ein direkter Vergleich erfolgen, ohne dass Betriebspunktabweichungen und damit die vorgenannten Flächenverläufe ermittelt werden müssen.With significantly lower metrological and computational effort, the method according to the invention can be carried out when first an electrical motor size determining the power consumption of the motor and at least one size determining the hydraulic operating point of the pump are recorded and stored and is maintained for the later comparison measurement, until the previously detected hydraulic operating point is reached again and then the power consumption of the engine determining quantities of the engine are detected and compared with the first stored. Then, a direct comparison can be made without operating point deviations and thus the aforementioned surface curves must be determined.
Alternativ können auch die später zur Vergleichsmessung erfassten Größen in einem beliebigen Betriebspunkt der Anlage erfasst werden, wenn die erfassten Größen unter Zugrundelegung eines mathematischen, elektrischen Motormodells und/oder eines mathematischhydraulischen Pumpenmodells transferiert, d.h. auf betriebspunktunabhängige Größen umgerechnet werden und dann mit den gespeicherten Größen verglichen werden oder umgekehrt, so dass auch unabhängig vom Betriebspunkt ein Vergleich der leistungsbestimmenden Größen möglich ist.Alternatively, the variables acquired later for comparison measurement can also be detected at any operating point of the installation if the acquired variables are transferred based on a mathematical electrical motor model and / or a mathematical-hydraulic pump model, i. be converted to operating point independent variables and then compared with the stored variables or vice versa, so that a comparison of the power-determining variables is possible regardless of the operating point.
Vorteilhaft wird gemäß der Erfindung das Verfahren erst nach Ablauf einer vorbestimmten Zeit angewendet, wobei diese vorbestimmte Zeit mindestens der Einfahrzeit des Aggregats, insbesondere des Pumpenaggregats entspricht. Dies ist sinnvoll, damit sich die mechanischen Teile des Aggregats einstellen, etwaige Einfahrwiderstände in den Lagern überwunden werden und dann nach der Einfahrzeit ein zunächst quasi stationärer Betriebszustand erreicht werden kann, der eine Basis für die normalen leistungsbestimmenden Eigenschaften des Gerätes bildet, so dass nur Abweichungen von diesem Zustand später detektiert werden.Advantageously, according to the invention, the method is used only after a predetermined time has elapsed, this predetermined time corresponding at least to the running-in time of the unit, in particular of the pump unit. This is useful so that the mechanical parts of the unit set, any Einfahrwiderstände be overcome in the camps and then after the break-in a first quasi stationary operating state can be achieved, which forms a basis for the normal performance-determining properties of the device, so that only deviations from this state are detected later.
Hierbei ist es besonders vorteilhaft, wenn nach Ablauf der vorbestimmten Zeit, also typischerweise der Einfahrzeit selbsttätig mindestens ein Betriebsprofil erfasst und der zu erwartende Energieverbrauch unter Berücksichtigung der ggf. ermittelten Wirkungsgradänderung bestimmt und durch geeignete Mittel angezeigt wird. Mit diesem Verfahren ist es möglich, nach der Einfahrzeit selbsttätig zu ermitteln, ob das Aggregat die hinsichtlich Leistung/Wirkungsgrad angegebenen Werte erfüllt bzw. welcher darüber hinausgehende veränderte Energieverbrauch aufgrund einer Wirkungsgradverschlechterung zu erwarten sein wird.It is particularly advantageous if after expiry of the predetermined time, ie typically the break-in time automatically detected at least one operating profile and determines the expected energy consumption taking into account the possibly determined efficiency change and displayed by suitable means. With this method, it is possible to automatically determine after the break-in period whether the unit will meet the values specified in terms of performance / efficiency or what additional changes in energy consumption will be expected due to a deterioration in efficiency.
Gemäß einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens ist es für eine Vergleichsmessung nicht erforderlich, denselben Betriebspunkt anzufahren. Es kann vielmehr anhand mehrerer Betriebspunkte ein von der Leistung einer Funktionseinheit abhängiger, mehrdimensionaler Modellcharakter aufweisender Flächenverlauf ermittelt und gespeichert werden und in zeitlichen Abständen erneut ein solcher Flächenverlauf ermittelt und gespeichert und mit dem oder einem zuvor ermittelten verglichen werden, wobei dann der Abstand der Flächenverläufe in einem vorbestimmten Betriebspunkt oder Betriebsbereich oder das zwischen den Flächenverläufen aufgespannte Volumen als Maß für die Wirkungsgradänderung herangezogen werden. Eine solche Auswertung ist besonders vorteilhaft, da sie während des kontinuierlichen Betriebs ohne jeglichen Eingriff in das Betriebsverhalten der Maschine erfolgen kann. Ein solches Verfahren ist insbesondere bei Kreiselpumpenaggregaten, wie sie beispielsweise als Heizungsumwälzpumpen eingesetzt werden, von Vorteil, die üblicherweise auf sich ständig ändernden Betriebspunkten laufen. Zur Ermittlung des Flächenverlaufs anhand der Betriebspunkte wird vorteilhaft ein Kálmán-Filter verwendet. Dieses Iterationsverfahren erlaubt es, mit nur einer vergleichsweise kleinen Anzahl von gemessenen Betriebspunkten den Flächenverlauf hinreichend genau zu bestimmen, um die hier in Rede stehenden Abweichungen zu detektieren und quantitativ bestimmen zu können.According to an advantageous development of the method according to the invention, it is not necessary for a comparison measurement to approach the same operating point. On the basis of several operating points, a surface course having a multidimensional model character and dependent on the performance of a functional unit can be determined and stored again at temporal intervals and stored and compared with the or a previously determined one, in which case the spacing of the surface curves in FIG a predetermined operating point or operating range or the volume spanned between the surface curves are used as a measure of the change in efficiency. Such an evaluation is particularly advantageous because it can be done during continuous operation without any intervention in the performance of the machine. Such a method is particularly advantageous in centrifugal pump units, as used for example as heating circulation pumps, which usually run on constantly changing operating points. To determine the course of the surface on the basis of the operating points, a Kálmán filter is advantageously used used. This iteration method makes it possible to determine the course of the area sufficiently accurately with only a comparatively small number of measured operating points in order to be able to detect the deviations in question and to be able to determine them quantitatively.
Das erfindungsgemäße Verfahren kann prinzipiell bei beliebigen Energieumwandlungseinrichtungen, die aus mehreren funktionell miteinander verknüpften Funktionseinheiten bestehen, zur Überwachung eingesetzt werden. Besonders vorteilhaft ist der Einsatz bei Kreiselpumpenaggregaten, bei Kompressoren, bei Heizungsanlagen, bei Kühlschränken, Gefriertruhen und dergleichen, die typischerweise über Jahre und Jahrzehnte betrieben werden, ohne dass eine Wirkungsgradverschlechterung auffallen würde oder sich ein Ausfall ankündigt. So ist das erfindungsgemäße Überwachungsverfahren sowohl geeignet, einen Schlechtlauf, also eine Wirkungsgradverschlechterung zu detektieren und anzuzeigen, der einen vorzeitigen Austausch des Aggregats oder zumindest einer Funktionseinheit des Aggregats wirtschaftlich sinnvoll erscheinen lässt, als auch, wie dies beispielsweise bei Gefriertruhen oder Gefrierschränken von besonderem Vorteil ist, den zu erwartenden Ausfall des Aggregates anzeigen zu können, um rechtzeitig für Ersatz zu sorgen. Auch bei größeren Maschinen, deren Stillstand wirtschaftliche Konsequenzen nach sich zieht, kann das erfindungsgemäße Verfahren wirksam eingesetzt werden, um einen bevorstehenden Ausfall rechtzeitig vorher anzuzeigen. Es versteht sich, dass dann zweckmäßigerweise entsprechende Kennwerte vorgegeben werden, welche im Laborversuch zuvor ermittelt wurden, so dass anhand der Wirkungsgradänderung bzw. des Leistungsänderungsverlaufs der Maschine die Ausfallzeit zumindest grob bestimmt werden kann.In principle, the method according to the invention can be used for monitoring any energy conversion devices that consist of a plurality of functionally linked functional units. Particularly advantageous is the use of centrifugal pump units, compressors, heating systems, refrigerators, freezers and the like, which are typically operated over years and decades, without a decrease in efficiency would notice or announces a failure. Thus, the monitoring method according to the invention is both suitable for detecting and displaying a poor running, ie a deterioration in efficiency, which makes early replacement of the unit or at least one functional unit of the unit appear economically sensible, as well as, for example, in freezers or freezers of particular advantage to be able to display the anticipated failure of the unit to provide timely replacement. Even with larger machines whose stoppage entails economic consequences, the inventive method can be used effectively to indicate an imminent failure in advance. It goes without saying that corresponding characteristic values are then suitably specified which were previously determined in the laboratory test, so that the downtime can at least roughly be determined on the basis of the change in efficiency or the change in performance of the machine.
Das erfindungsgemäße Verfahren kann vorteilhaft in Form eines Softwareprogramms in die bei modernen Aggregaten ohnehin vorhandene digitale Steuer- und Regelelektronik implementiert werden. Bei Pumpenaggregaten und Kompressoren kann eine solche Steuer- und Regelelektronik sowohl im Aggregat selbst als auch in dem Klemmen- oder Anschlusskasten des Aggregats vorgesehen sein.The inventive method can advantageously in the form of a software program in the case of modern units anyway digital control electronics are implemented. In pump units and compressors, such control and regulating electronics can be provided both in the unit itself and in the terminal or terminal box of the unit.
Vorteilhaft wird das erfindungsgemäße Verfahren bei einem Kreiselpumpenaggregat mit einem elektrischen Motor und einer davon angetriebenen Kreiselpumpe in einer dort vorgesehenen Einrichtung zur Überwachung der Leistungscharakteristik von mindestens einer Funktionseinheit des Aggregats angewandt. Auch bei einem Kompressoraggregat mit einem elektrischen Motor und einer davon angetriebenen Verdrängerpumpe kann eine solche nach dem erfindungsgemäßen Verfahren arbeitende Einrichtung zur Überwachung der Leistungscharakteristik, insbesondere zur Wirkungsgraderfassung und -überwachung vorgesehen sein. Vorteilhaft kann ein Kühlaggregat mit einem elektrischen Motor, mit einer davon angetriebenen Verdrängerpumpe, mit einem Verdampfer und mit einem Kondensator mit einer Einrichtung zur Überwachung der Leistungscharakteristik versehen sein, die nach dem erfindungsgemäßen Verfahren arbeitet, wobei die Überwachung der Leistungscharakteristik sich nicht nur auf Motor und Verdrängerpumpe beschränkt, sondern vorteilhaft Verdampfer und Kondensator mitumfasst.Advantageously, the method according to the invention is applied to a centrifugal pump assembly with an electric motor and a centrifugal pump driven therefrom in a device provided therein for monitoring the power characteristic of at least one functional unit of the unit. Even with a compressor unit with an electric motor and a positive displacement pump driven therefrom, such a device according to the invention for monitoring the power characteristic, in particular for the efficiency detection and monitoring can be provided. Advantageously, a cooling unit can be provided with an electric motor, with a positive displacement pump driven therefrom, with an evaporator and with a capacitor with a device for monitoring the performance, which operates according to the inventive method, wherein the monitoring of the performance characteristics not only on engine and Positive displacement pump limited, but advantageous evaporator and condenser includes.
Insbesondere bei Kühlschränken ist eine Verminderung des Wirkungsgrades dadurch zu ermitteln, dass die Laufzeit des Kompressors nach der Installation der Einrichtung überwacht wird. Dies kann beispielsweise dadurch erfolgen, dass die Laufzeit innerhalb von 24 Stunden ermittelt wird und dann später, beispielsweise nach sechs Monaten mit der sich dann ergebenden Laufzeit innerhalb von 24 Stunden verglichen wird. Es ist in einfachster Form davon auszugehen, dass aufgrund von gleichbleibenden Umgebungsverhältnissen und Benutzerverhalten eine zunehmende Einschaltdauer durch eine Wirkungsgradverschlechterung der Anlage bedingt ist. Genauere Rückschlüsse lassen sich durch eine Analyse des zeitlichen Verlaufs der Kompressorlaufzeit ermitteln.In particular, in refrigerators, a reduction in the efficiency is determined by the fact that the duration of the compressor is monitored after installation of the device. This can be done, for example, by determining the running time within 24 hours and then comparing it later, for example after six months, with the resulting runtime within 24 hours. It can be assumed in the simplest form that due to constant environmental conditions and user behavior an increasing duty cycle by a deterioration in efficiency the system is conditional. More precise conclusions can be determined by an analysis of the time course of the compressor runtime.
In analoger Weise kann bei einer Heizanlage eine Einrichtung zur Überwachung der Leistungscharakteristik vom Brenner und mindestens einem von diesem beheizbaren Wasserkreislauf vorgesehen sein, um auf diese Weise beispielsweise Verbrennungsrückstände am Primärwärmetauscher und damit einhergehende Wirkungsgradverschlechterungen erfassen zu können. Hier kann durch Anbringung einer entsprechenden Signallampe somit auch ein Hinweis auf den erforderlichen Reinigungsservice gegeben werden, der damit bedarfsabhängig bestimmt werden kann.In an analogous manner, in a heating system, a device for monitoring the performance of the burner and at least one of these heated water cycle may be provided in order to detect in this way, for example, combustion residues on the primary heat exchanger and concomitant efficiency deterioration. Here, by attaching a corresponding signal lamp thus also an indication of the required cleaning service will be given, which can thus be determined as needed.
Zweckmäßigerweise ist die Einrichtung so ausgebildet, dass sie selbsttätig nach einer vorbestimmten Zeit nach Inbetriebnahme des Aggregats bzw. der Anlage mit der Erfassung und Speicherung der zur Überwachung der Leistungscharakteristik, insbesondere zur Wirkungsgradermittlung und -überwachung relevanten Größen beginnt und in angemessenen zeitlichen Abständen diese Größen erneut erfasst und mit den vorgespeicherten und/oder den ursprünglich gespeicherten Größen vergleicht und eine ggf. unzulässig hohe Abweichung anzeigt. Die Einrichtung weist daher gemäß einer Weiterbildung der Erfindung vorteilhaft einen Messwertspeicher auf, in dem zumindest die zu Beginn der Messung erfassten Größen oder davon abgeleitete Größen abgespeichert sind.Appropriately, the device is designed so that it automatically starts after a predetermined time after commissioning of the unit or the system with the detection and storage for monitoring the performance characteristics, in particular for determining the effectiveness and monitoring sizes and at appropriate intervals again these sizes recorded and compared with the pre-stored and / or the originally stored variables and displays a possibly impermissibly high deviation. According to an embodiment of the invention, the device therefore advantageously has a measured value memory in which at least the variables detected at the beginning of the measurement or variables derived therefrom are stored.
Zweckmäßigerweise wird mit dem erfindungsgemäßen Verfahren die Maschine nach Möglichkeit in ihrer Gesamtheit überwacht. Es kann jedoch auch ausreichend sein, nur eine Funktionseinheit der Maschine zu überwachen. Dies wird insbesondere dann sinnvoll sein, wenn die Maschine eine Funktionseinheit aufweist, die typischerweise deutlich vor allen anderen Funktionseinheiten durch Verschleiß oder auch anderweitig ausfällt.Appropriately, the machine is monitored as far as possible in its entirety by the method according to the invention. However, it may also be sufficient to monitor only one functional unit of the machine. This will be particularly useful if the machine has a functional unit, which typically significantly before all other functional units due to wear or otherwise fails.
Besonders vorteilhaft ist es, wenn mehrere oder bevorzugt sämtliche Funktionseinheiten einer Energieumwandlungseinrichtung, also einer Maschine, eines Aggregats oder einer Anlage erfasst werden, um im Falle einer Wirkungsgradverschlechterung diese dann gezielt einer oder mehreren Funktionseinheiten zuordnen zu können, um dann gezielt nur diese Funktionseinheit oder Funktionseinheiten instandzusetzen oder auszutauschen. Dies wird insbesondere bei größeren Maschinen wirtschaftlich sinnvoll sein.It is particularly advantageous if several or preferably all functional units of an energy conversion device, ie a machine, an aggregate or a system, are detected in order to be able to allocate these selectively to one or more functional units in the event of a deterioration in efficiency, and then selectively only this functional unit or functional units repair or replace. This will be economically viable, especially for larger machines.
Die Erfindung ist nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
- Fig. 1
- anhand eines Schaubilds das grundlegende Prinzip eines mit Leistungsflächen arbeitenden erfindungsgemäßen Überwachungsverfahrens,
- Fig. 2 a
- das Überwachungsverfahren nach
Fig. 1 , dargestellt anhand eines Kreiselpumpenaggregates, - Fig. 2 b
- ein alternatives Überwachungsverfahren für eine Kreiselpumpe,
- Fig. 2 c
- eine weitere Variante eines Überwachungsverfahrens für eine Kreiselpumpe,
- Fig.3
- ein Überwachungsverfahren, dargestellt anhand eines Kompressors,
- Fig. 4
- ein Überwachungsverfahren, dargestellt anhand eines Kühlgeräts und
- Fig. 5
- ein Überwachungsverfahren, dargestellt anhand einer Heizungsanlage.
- Fig. 1
- on the basis of a diagram, the basic principle of a monitoring system operating according to the invention with power surfaces,
- Fig. 2 a
- the monitoring process
Fig. 1 represented by a centrifugal pump assembly, - Fig. 2 b
- an alternative monitoring method for a centrifugal pump,
- Fig. 2 c
- a further variant of a monitoring method for a centrifugal pump,
- Figure 3
- a monitoring method, represented by a compressor,
- Fig. 4
- a monitoring method, illustrated by means of a refrigerator and
- Fig. 5
- a monitoring procedure, represented by a heating system.
In
Die in den Darstellungen 3 bis 6 durch Schraffur gekennzeichnete Flächen werden zu Beginn des Verfahrens ermittelt. Dies kann fabrikmäßig erfolgen oder aber auch erst nach einiger gewissen Zeit im Betrieb. Dies kann als Initialisierungsvorgang erfolgen oder auch während des Betriebs. In jedem Fall erfolgt es zu einem Zeitpunkt t1, der, wenn mehrere Betriebspunkte zu erfassen sind, auch einen Zeitbereich darstellen kann.The surfaces marked by hatching in FIGS. 3 to 6 are determined at the beginning of the method. This can be factory-made or only after some time in operation. This can be done as an initialization process or during operation. In any case, it takes place at a time t 1 , which, if several operating points are to be detected, can also represent a time range.
Zu einem Zeitpunkt t2 wird dann in gleicher Weise eine Energiebilanz am Eingang der Funktionseinheit 1, am Ausgang der Funktionseinheit 1, am Eingang der Funktionseinheit 2 und am Ausgang der Funktionseinheit 2 erstellt. Die entsprechenden Darstellungen sind mit 3', 4', 5' und 6' gekennzeichnet. Durch Vergleich dieser zum Zeitpunkt t2, der ebenfalls ein Zeitbereich sein kann, ermittelten Größen bzw. Flächen mit den zum Zeitpunkt t1 ermittelten und gespeicherten Größen bzw. Flächen können Wirkungsgradabsenkungen einzelner Funktionseinheiten 1, 2 erfasst werden wobei der Abstand der schraffierten Flächen in 3 und 3' bzw. 4 und 4' bzw. 5 und 5' bzw. 6 und 6' in einem vorbestimmten Betriebspunkt ermittelt oder das zwischen diesen Flächen aufgespannte Volumen ermittelt wird und beim Überschreiten eines vorbestimmten Wertes ein Signal erzeugt wird, welches dem Benutzer kenntlich macht, dass in der Maschine eine Wirkungsgradverschlechterung stattgefunden hat, welche einen Austausch oder eine Reparatur oder einen alsbaldigen Austausch oder eine alsbaldige Reparatur zweckmäßig erscheinen lassen. Hier können durch Abstufung der Werte unterschiedliche Signale erzeugt werden, beispielsweise ein erstes Warnsignal, welches auf einen über einen gewissen Wert verminderten Wirkungsgrad hinweist und ein zweites Warnsignal, das auf eine solche Verminderung des Wirkungsgrades hinweist, die einen Austausch oder eine Reparatur erfordert. Da die Funktionseinheiten 1 und 2 gesondert voneinander überwacht werden, kann weiterhin festgestellt werden, welche der Funktionseinheiten für die Wirkungsgradverminderung ganz oder teilweise verantwortlich ist.At a time t 2 , an energy balance at the input of the
Wie dies bei einer konkreten Anwendung aussehen kann, ist beispielsweise anhand von
Der formelmäßige Zusammenhang stellt sich dabei wie folgt dar:How this can look like in a specific application is, for example, based on
The formulaic relationship is as follows:
- q ∼ Volumenstrom durch die Pumpe [m3/h] q ~ Flow rate through the pump [m 3 / h]
- Δp ∼ von der Pumpe aufgebauter Differenzdruck [bar]Δ p ~ differential pressure built up by the pump [bar]
- ωr ∼ Geschwindigkeit der die Pumpe antreibenden Welle [U/sec]ω r ~ speed of the shaft driving the pump [rev / sec]
- Te ∼ Drehmoment der Welle [Nm] T e ~ Torque of the shaft [Nm]
- V ∼ Versorgungsspannung [V] V ~ supply voltage [V]
- I ∼ Versorgungsstrom [A] I ~ supply current [A]
- φ ∼ Winkel zwischen der Versorgungsspannung V und dem Motorstrom l [U]φ ~ angle between the supply voltage V and the motor current l [U]
- ωe ∼ Versorgungsfrequenz [U/sec]ω e ~ supply frequency [U / sec]
- P1 ∼ dem Motor zugeführte elektrische Leistung [W] P 1 ~ electric power supplied to the motor [W]
- P2 ∼ mechanische Leistung an der Motorwelle [W]. Die Leistung P2 ist proportional zum Schlupf s des Motors. Dies ist P2 ∝ s. P 2 ~ mechanical power at the motor shaft [W]. The power P 2 is proportional to the slip s of the motor. This is P 2 α s .
- P3 ∼ hydraulische Leistung der Pumpe [W] P 3 ~ hydraulic power of the pump [W]
- η m ∼ Motorwirkungsgradη m ~ motor efficiency
- η p ∼ Pumpenwirkungsgradη p ~ pump efficiency
Diese Variablen sind wie folgt miteinander verknüpft:
Die mathematische Beschreibung der die Leistung des Motors in allen Betriebspunkten definierenden Fläche gemäß Darstellung 8 ergibt sich somit aus folgenden Gleichung:
wobei vorausgesetzt wird, dass die Versorgungsspannung durch den Vektor
assuming that the supply voltage through the vector
Die Leistung am Eingang der Pumpe 2a gemäß Darstellung 9 kann bekanntermaßen durch die Pumpengleichung
Die am Ausgang der Pumpe 2a anstehende Leistung gemäß Darstellung 10 kann durch folgende Gleichung beschrieben werden:
In dieser Gleichung lauten die Konstanten α p2 , α p1 , α p0 und poffset. In this equation, the constants are α p2 , α p1 , α p0 and p offset .
Die anhand der Darstellungen 8, 9 und 10 in
Bei der Überwachung wie sie anhand von
Anhand von
Der Wirkungsgrad des Motors η m ist der Quotient aus P2 und P1 und ist abhängig von ωe (der Versorgungsfrequenz) und s , dem Schlupf des Motors. Der Motorwirkungsgrad ist in
Anhand von
- pin ∼ Eingangsdruck am Kompressor [bar]
- pout ∼ Ausgangsdruck am Kompressor [bar]
- Tin ∼ Eingangstemperatur am Kompressor [°K]
- Tout ∼ Ausgangstemperatur am Kompressor [°K]
- ωr ∼ Drehzahl der den Kompressor antreibenden Welle [U/sec]
- P1 ∼ vom Motor aufgenommene elektrische Leistung [W]
- P2 ~ Leistung an der Antriebswelle [W]. Die Leistung P2 ist proportional zum Schlupf des Motors s. Dies ist P2 ∝ s.
- p in ~ inlet pressure at the compressor [bar]
- p out ~ outlet pressure at the compressor [bar]
- T in ~ inlet temperature at the compressor [° K ]
- T out ~ Output temperature at the compressor [° K ]
- ω r ~ speed of the shaft driving the compressor [rev / sec]
- P 1 ~ electric power absorbed by the motor [W]
- P 2 ~ Power at the drive shaft [W]. The power P 2 is proportional to the slip of the motor s. This is P 2 α s .
Weiterhin gelten die folgenden mathematischen Beziehungen:
Bei einem adiabaten Kompressionszyklus ergibt sich somit die Leistung P2 wie folgt:
wobei k = ΔV/(2π) ist.For an adiabatic compression cycle, the power P 2 is thus as follows:
wherein k = Δ V / (2π).
Für den Fall, dass im Kompressorkreislauf kein adiabater Prozess abläuft, kann die Leistung wie folgt angegeben werden:
wobei k = ΔV n/(n-1) /(2π), wobei n eine Konstante ungleich 1 ist, die den Wärmefluss während der Kompression beschreibt. Wenn der Prozess unter konstanter Temperatur abläuft, kann somit n ebenfalls als konstant angenommen werden. Der Ausdruck n/(n-1) ergibt sich aus folgender Gleichung:
where k = ΔV n / ( n -1) / (2π), where n is a non-1 constant that describes heat flow during compression. If the process runs under constant temperature, then n can also be assumed to be constant. The expression n / ( n -1) is given by the following equation:
Das bedeutet, dass dieser Ausdruck anhand der Temperaturen Tin und Tout sowie der Drücke Pout und Pin wie folgt ermittelt werden kann:
Die Motorleistung P1 kann in analoger Weise wie oben durch die Gleichung (8) angeben überwacht werden.The engine power P 1 can be monitored in an analogous manner as indicated above by equation (8).
Anhand von
In diesem System ergeben sich folgende Variablen:
- T1 ~ Temperatur am Austritt des Verdampfers 3c
- Th ~ Temperatur am
Eintritt des Kondensators 5c - Tbox ∼
Temperatur im Kühlraum 7c - Tamb ~ Umgebungstemperatur
- Q 1 ∼ Kühlleistung
- Q 2 ~ an die Umgebung abgegebene Leistung
- W ~ von der Pumpe 2c abgegebene Leistung
- ω r ~ Geschwindigkeit der Motorwelle [U/sec]
- Te ~ Drehmoment [Nm]
- P2 ~ vom Motor abgegebene mechanische Leistung
- T 1 ~ temperature at the outlet of the evaporator 3c
- T h ~ temperature at the inlet of the
condenser 5c - T box ~ temperature in the
refrigerator 7c - T amb ~ ambient temperature
- Q 1 ~ cooling capacity
- Q 2 ~ Power delivered to the environment
- W ~ output from the pump 2c
- ω r ~ motor shaft speed [rev / sec]
- T e ~ torque [Nm]
- P 2 ~ mechanical power output by the engine
Diese stehen in folgendem mathematischen Zusammenhang:
Die die Leistung des Motors 1 c beschreibende Fläche gemäß Darstellung 14 entspricht der gemäß Darstellung 12 in
Die Gleichung 15 beschreibt dabei die Leistung P2 am Eingang des Kompressors wohingegen die Gleichung 17 die Leistung am Ausgang des Kompressors beschreibt. Wie insbesondere die Darstellung 17 verdeutlicht, können die hier zur Ermittlung der Leistung an den Schnittstellen der Funktionseinheiten zu ermittelnden Flächen zwei- oder mehrdimensional sein. Die Fläche gemäß Darstellung 17 ist zweidimensional, also eine Linie. Die übrigen hier dargestellten Flächen sind sämtlichst dreidimensional. Es versteht sich, dass diese Flächen ggf. auch mehr als dreidimensional sein können, je nach Art der zu überwachenden Maschine und der dahinter stehenden mathematisch physikalischen Zusammenhänge.
Auch hier erfolgt die Überwachung in analoger Weise, indem die die Leistung an den Schnittstellen der Funktionseinheiten angebenden Flächen gemäß Darstellungen 14, 15 und 17 zum Zeitpunkt t1 sowie nach zeitlichem Abstand zum Zeitpunkt t2 ermittelt werden (es ergeben sich dann die Flächen gemäß den Darstellungen 14' 15' und 17'), um dann durch Ermittlung des Abstandes der Flächen bzw. das dazwischen aufgespannte Volumen zu ermitteln, welche der Funktionseinheiten 1 c, 2c, um welches Maß in ihrem Wirkungsgrad abgefallen sind.Again, the monitoring is carried out in an analogous manner by determining the power at the interfaces of the functional units surfaces according to
Schließlich ist anhand von
- q ~ Volumenstrom des durch die Leitung 22 strömenden Wassers
- ṁg ~ Abgasmasse
- Tw,out ∼ die Temperatur des aus der Leitung 22 austretenden Wassers
- Tw,in ~ die Temperatur des in die Leitung 22 eintretenden Wassers
- Tg,out ∼ die Temperatur des Abgases am Austritt
- Tg,in ~ die Verbrennungstemperatur
- Tamb ~ die Umgebungstemperatur
- P1 ~ die durch den Brennstoff in das System eingebrachte Leistung
- P2 ∼ die durch das Wasser aus dem System abgeführte Leistung
- q ~ volume flow of the water flowing through the conduit 22
- ṁ g ~ exhaust mass
- T w, out ~ the temperature of the emerging from the line 22 water
- T w, in ~ the temperature of entering the line 22 water
- T g, out ~ the temperature of the exhaust gas at the outlet
- T g, in ~ the combustion temperature
- T amb ~ the ambient temperature
- P 1 ~ the power introduced into the system by the fuel
- P 2 ~ the power dissipated by the water from the system
Hierbei ergeben sich folgende Zusammenhänge:
in der ρw die Dichte des Wassers und Cpw die spezifische Wärmekapazität des Wassers darstellen. Die zu berechnenden Flächen ergeben sich hierbei wie folgt und sind zum Zeitpunkt t1 durch die Darstellung 16 und zum Zeitpunkt t2 durch die Darstellung 16' angegeben:
wobei Cpg und Cpw die spezifische Wärmekapazität des Abgases, U der Wärmeübertragungskoeffizient und A die Wärmeübertragungsfläche zwischen dem Brenner 20 und der Leitung 22 sind. Dabei werden die durch das Abgas abgeführte Leistung
where C pg and C pw are the specific heat capacity of the exhaust gas, U is the heat transfer coefficient and A is the heat transfer area between the
Wie die vorstehenden Ausführungsbeispiele verdeutlichen, kann das erfindungsgemäße Verfahren bei unterschiedlichsten Einrichtungen wie Aggregaten, Maschinen und Anlagen eingesetzt werden, wobei vorteilhaft stets die mehrdimensionalen Flächen ermittelt werden, welche jeweils die Leistung an den Schnittstellen der Funktionseinheiten zueinander in jedem beliebigen Betriebspunkt definieren und somit ein zuverlässiges Maß für die Leistungscharakteristik der Funktionseinheiten sowie bei entsprechender Auswertung der gesamten Einrichtung ergeben, wenn diese zu unterschiedlichen Zeitpunkten (z. B. t1 und t2) miteinander verglichen werden. Es versteht sich, dass die Zeitpunkte t1 und t2 hier nur beispielhaft zu verstehen sind, zweckmäßigerweise bleiben die zum Zeitpunkt t1 ermittelten Werte stets abgespeichert, um sie mit späteren vergleichen zu können, was jedoch nicht ausschließt, dass auch Zwischenwerte gespeichert werden um ggf. auch die Geschwindigkeit der Änderung zu erfassen. Auch dies kann in einer entsprechenden Auswerteinrichtung ausgewertet werden. Insoweit wird insbesondere auf
Es sei an dieser Stelle darauf hingewiesen, dass bei den vorstehend dargestellten Ausführungsbeispielen stets zwei- oder mehrdimensionale Flächen zur Ermittlung der Leistungsbilanz an den Schnittstellen der Funktionseinheiten verwendet worden sind, da dies eine Auswertung praktisch unabhängig vom jeweiligen Betriebspunkt ermöglicht. Es können bei im Wesentlichen konstanten Betriebspunkten diese Auswertungen auch vereinfacht erfolgen, indem einzelne Größen im zeitlichen Abstand miteinander verglichen werden, über die mittelbar oder unmittelbar Rückschlüsse über den Wirkungsgrad erfolgen können. Die in Rede stehenden zwei- oder mehrdimensionalen Flächen werden vorteilhaft während des Betriebs ermittelt, wobei durch geeignete Iterationsverfahren versucht wird, unter Zugrundelegung möglichst weniger unterschiedlicher Betriebspunkte eine hohe Genauigkeit der Flächen zu erzielen. Dies kann insbesondere unter Verwendung des Kálmánfilters erreicht werden, wie weiter oben schon beschrieben worden ist. Es können jedoch auch andere geeignete Iterationsverfahren Verwendung finden. Auch ist es denkbar, dass, beispielsweise bei einem Pumpenaggregat, bestimmte Betriebspunkte gezielt angefahren werden, um die die Leistungsbilanz repräsentierende Fläche mit möglichst hoher Genauigkeit zu erfassen oder durch gezieltes Anfahren von definierten Betriebspunkten auf das Ermitteln solcher Flächen verzichten zu können.It should be noted at this point that in the exemplary embodiments illustrated above, two-dimensional or more-dimensional surfaces have always been used to determine the power balance at the interfaces of the functional units, since this allows an evaluation virtually independent of the respective operating point. At substantially constant operating points, these evaluations can also take place in a simplified manner by comparing individual variables with one another over the time interval, indirectly or directly Conclusions about the efficiency can be made. The two- or multi-dimensional surfaces in question are advantageously determined during operation, whereby it is attempted by suitable iteration methods to achieve a high accuracy of the surfaces on the basis of as few as possible different operating points. This can be achieved in particular by using the Kálmánfilters, as has already been described above. However, other suitable iteration methods may be used. It is also conceivable that, for example, in a pump unit, certain operating points are approached targeted to capture the power balance representing surface area with the highest possible accuracy or to dispense with targeted detection of defined operating points on the determination of such areas.
Claims (19)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07018530.1A EP2039939B2 (en) | 2007-09-20 | 2007-09-20 | Method for monitoring an energy conversion device |
PCT/EP2008/007041 WO2009039934A1 (en) | 2007-09-20 | 2008-08-28 | Method for monitoring an energy conversion device |
US12/679,054 US20100300220A1 (en) | 2007-09-20 | 2008-08-28 | Method for monitoring an energy conversion device |
CN200880108089.6A CN101802413B (en) | 2007-09-20 | 2008-08-28 | Method for monitoring an energy conversion device |
JP2010525224A JP5439378B2 (en) | 2007-09-20 | 2008-08-28 | Method for monitoring an energy conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07018530.1A EP2039939B2 (en) | 2007-09-20 | 2007-09-20 | Method for monitoring an energy conversion device |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2039939A1 true EP2039939A1 (en) | 2009-03-25 |
EP2039939B1 EP2039939B1 (en) | 2017-08-09 |
EP2039939B2 EP2039939B2 (en) | 2020-11-18 |
Family
ID=39144574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07018530.1A Active EP2039939B2 (en) | 2007-09-20 | 2007-09-20 | Method for monitoring an energy conversion device |
Country Status (5)
Country | Link |
---|---|
US (1) | US20100300220A1 (en) |
EP (1) | EP2039939B2 (en) |
JP (1) | JP5439378B2 (en) |
CN (1) | CN101802413B (en) |
WO (1) | WO2009039934A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023111782A1 (en) | 2023-05-05 | 2024-11-07 | KSB SE & Co. KGaA | Method for detecting cavitation and/or air bubbles or air inflow within a hydraulic system |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5437687B2 (en) * | 2009-04-14 | 2014-03-12 | ナブテスコ株式会社 | Actuator monitoring circuit, control device, and actuator unit |
AU2010260026A1 (en) * | 2009-06-12 | 2012-01-19 | Cidra Corporate Services Inc. | Method and apparatus for predicting maintenance needs of a pump based at least partly on pump performance analysis |
US20130204546A1 (en) * | 2012-02-02 | 2013-08-08 | Ghd Pty Ltd. | On-line pump efficiency determining system and related method for determining pump efficiency |
JP2014202144A (en) * | 2013-04-05 | 2014-10-27 | 新日本造機株式会社 | Diagnostic method for centrifugal pump |
ES2982439T3 (en) | 2016-12-30 | 2024-10-16 | Grundfos Holding As | Method for operating an electronically controlled pump unit |
DE102018200651A1 (en) * | 2018-01-16 | 2019-07-18 | KSB SE & Co. KGaA | Method for the self-diagnosis of the mechanical and / or hydraulic condition of a centrifugal pump |
EP3567256A1 (en) * | 2018-05-11 | 2019-11-13 | Grundfos Holding A/S | A monitoring module and method for identifying an operating scenario in a wastewater pumping station |
FR3094421A1 (en) * | 2019-03-29 | 2020-10-02 | Wilo Intec | PREDICTIVE MAINTENANCE PROCEDURE FOR A FLUID CIRCULATION PUMP |
EP4019779A1 (en) | 2020-12-23 | 2022-06-29 | Grundfos Holding A/S | A pump monitoring system and method for associating a current operating state of a pump system with one or more fault scenarios |
CN114235271B (en) * | 2021-11-12 | 2024-01-12 | 潍柴动力股份有限公司 | Dew point detection method and device for differential pressure sensor, storage medium and equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19618462A1 (en) * | 1996-05-08 | 1997-11-13 | Status Pro Maschinenmesstechni | Extrinsic power parameter determination method for energy conversion appliance |
EP1564411A1 (en) | 2004-02-11 | 2005-08-17 | Grundfos A/S | Method for detecting operation errors of a pump aggregate |
US20050251362A1 (en) * | 2004-06-05 | 2005-11-10 | Ollre Albert G | System and method for determining pump underperformance |
DE102007009301A1 (en) | 2006-03-08 | 2007-09-13 | ITT Manufacturing Enterprises, Inc., Wilmington | Centrifugal pump, gyroscope mixer, rotary axial blower/centrifugal compressor`s operation regulating procedure, involves comparing actual and threshold flow values, corrected based on pumping rotation speed to determine operating condition |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4584654A (en) † | 1982-10-21 | 1986-04-22 | Ultra Products Systems, Inc. | Method and system for monitoring operating efficiency of pipeline system |
DE3402120A1 (en) | 1984-01-23 | 1985-07-25 | Rheinhütte vorm. Ludwig Beck GmbH & Co, 6200 Wiesbaden | METHOD AND DEVICE FOR CONTROLLING DIFFERENT OPERATING PARAMETERS FOR PUMPS AND COMPRESSORS |
JPS6163491U (en) | 1984-10-02 | 1986-04-30 | ||
JPH07117046B2 (en) * | 1988-12-27 | 1995-12-18 | 株式会社東芝 | Pump controller |
US5742500A (en) | 1995-08-23 | 1998-04-21 | Irvin; William A. | Pump station control system and method |
US6260004B1 (en) † | 1997-12-31 | 2001-07-10 | Innovation Management Group, Inc. | Method and apparatus for diagnosing a pump system |
EP1072795A4 (en) | 1998-04-03 | 2006-10-18 | Ebara Corp | Diagnosing system for fluid machinery |
US20010010032A1 (en) * | 1998-10-27 | 2001-07-26 | Ehlers Gregory A. | Energy management and building automation system |
US6584784B2 (en) * | 1999-02-05 | 2003-07-01 | Midwest Research Institute | Combined refrigeration system with a liquid pre-cooling heat exchanger |
US6185944B1 (en) * | 1999-02-05 | 2001-02-13 | Midwest Research Institute | Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line |
US6464464B2 (en) † | 1999-03-24 | 2002-10-15 | Itt Manufacturing Enterprises, Inc. | Apparatus and method for controlling a pump system |
JP2003028076A (en) * | 2001-07-12 | 2003-01-29 | Hitachi Ltd | Pump abnormality diagnostic device |
US6648606B2 (en) † | 2002-01-17 | 2003-11-18 | Itt Manufacturing Enterprises, Inc. | Centrifugal pump performance degradation detection |
US7368853B2 (en) * | 2002-04-22 | 2008-05-06 | Elliptec Resonant Actuator Aktiengesellschaft | Piezoelectric motors and methods for the production and operation thereof |
US6709240B1 (en) * | 2002-11-13 | 2004-03-23 | Eaton Corporation | Method and apparatus of detecting low flow/cavitation in a centrifugal pump |
WO2005057086A1 (en) * | 2003-12-12 | 2005-06-23 | Rinnai Corporation | Hot water supply system |
DE10359726A1 (en) | 2003-12-19 | 2005-07-14 | Ksb Aktiengesellschaft | quantity measurement |
JP4265982B2 (en) * | 2004-02-25 | 2009-05-20 | 三菱電機株式会社 | Equipment diagnostic equipment, refrigeration cycle equipment, refrigeration cycle monitoring system |
JP4625306B2 (en) * | 2004-10-28 | 2011-02-02 | 三菱重工業株式会社 | Fluid machinery performance diagnostic apparatus and system |
JP2006226574A (en) * | 2005-02-16 | 2006-08-31 | Paloma Ind Ltd | Hot water circulation heating device |
NZ538737A (en) * | 2005-03-10 | 2008-04-30 | Hot Water Innovations Ltd | Electronic control of water storage (hot water storage) parameters and operation |
CN1693711A (en) * | 2005-06-03 | 2005-11-09 | 王黎明 | Intelligent control device for water pump electric machine |
CN1302269C (en) * | 2005-12-16 | 2007-02-28 | 陈育青 | Method and apparatus for real-timely monitoring switch resistance of switch machine |
DE102007022348A1 (en) | 2007-05-12 | 2008-11-13 | Ksb Aktiengesellschaft | Device and method for fault monitoring |
-
2007
- 2007-09-20 EP EP07018530.1A patent/EP2039939B2/en active Active
-
2008
- 2008-08-28 US US12/679,054 patent/US20100300220A1/en not_active Abandoned
- 2008-08-28 WO PCT/EP2008/007041 patent/WO2009039934A1/en active Application Filing
- 2008-08-28 CN CN200880108089.6A patent/CN101802413B/en active Active
- 2008-08-28 JP JP2010525224A patent/JP5439378B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19618462A1 (en) * | 1996-05-08 | 1997-11-13 | Status Pro Maschinenmesstechni | Extrinsic power parameter determination method for energy conversion appliance |
EP1564411A1 (en) | 2004-02-11 | 2005-08-17 | Grundfos A/S | Method for detecting operation errors of a pump aggregate |
US20050251362A1 (en) * | 2004-06-05 | 2005-11-10 | Ollre Albert G | System and method for determining pump underperformance |
DE102007009301A1 (en) | 2006-03-08 | 2007-09-13 | ITT Manufacturing Enterprises, Inc., Wilmington | Centrifugal pump, gyroscope mixer, rotary axial blower/centrifugal compressor`s operation regulating procedure, involves comparing actual and threshold flow values, corrected based on pumping rotation speed to determine operating condition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023111782A1 (en) | 2023-05-05 | 2024-11-07 | KSB SE & Co. KGaA | Method for detecting cavitation and/or air bubbles or air inflow within a hydraulic system |
Also Published As
Publication number | Publication date |
---|---|
EP2039939B2 (en) | 2020-11-18 |
CN101802413A (en) | 2010-08-11 |
JP5439378B2 (en) | 2014-03-12 |
CN101802413B (en) | 2014-07-30 |
US20100300220A1 (en) | 2010-12-02 |
JP2010539380A (en) | 2010-12-16 |
WO2009039934A1 (en) | 2009-04-02 |
EP2039939B1 (en) | 2017-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2039939B1 (en) | Method for monitoring an energy conversion device | |
EP2258949B1 (en) | Method for recording characteristic values, in particular values, in particular of parameters of a centrifugal pump powered by an electric motor integrated into an assembly | |
DE10355651B4 (en) | Method for optimizing the efficiency of a motor operated under load | |
EP1564411B1 (en) | Method for detecting operation errors of a pump aggregate | |
EP3449132B1 (en) | Method for detecting an abnormal operating state of a pump unit | |
EP4224016A1 (en) | Electronic control device for a component of compressed air generation, compressed air conditioning, compressed air storage and / or compressed air distribution | |
EP3739212A1 (en) | Method for determining a flow volume of a fluid pumped by a pump | |
EP2006545B1 (en) | Method for recording the temperature of the carrier liquid of a rotary pump | |
DE102014008716B4 (en) | Procedure for detecting a dry run | |
DE102013106838A1 (en) | Arrangement for estimating the life of an electric motor | |
EP3242035B1 (en) | Method for operating at least one pump unit of a plurality of pump units | |
WO2009006927A1 (en) | Method for preventing dry running in a centrifugal pump, pump monitoring module and arrangement | |
EP1801415A2 (en) | Wind turbine with regreasing device for the generator bearing | |
DE112015001924T5 (en) | Motor controller | |
DE102014005090A1 (en) | Method and system for monitoring the condition of a rolling bearing of a wind turbine | |
EP3830422A1 (en) | Vacuum pump | |
EP0470935B1 (en) | Method of measuring heat quantities and heating installation applying this method | |
EP1653050A1 (en) | Method of determining a characteristic value reflecting the state of fatigue of a component | |
DE102012003639A1 (en) | Method for operating a high-pressure cleaner with different operating modes | |
DE102014221865B3 (en) | Method for calibrating a fluid pump arrangement | |
DE102008036305B4 (en) | Method for operating a compressor | |
EP1203886B1 (en) | Method for determining at least one characteristic of a fluid pumped | |
DE102015206589A1 (en) | A method of determining a temperature of a diaphragm of a pump | |
WO2020244927A1 (en) | Method for operating at least one fluid-conveying device | |
DE102009056575B4 (en) | Method and device for determining a modeled temperature value in an internal combustion engine and method for plausibility of a temperature sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20090729 |
|
17Q | First examination report despatched |
Effective date: 20090826 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170123 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20170629 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 917177 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007015791 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171110 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171209 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502007015791 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
26 | Opposition filed |
Opponent name: KSB AKTIENGESELLSCHAFT Effective date: 20180508 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170920 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 917177 Country of ref document: AT Kind code of ref document: T Effective date: 20170920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170809 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
R26 | Opposition filed (corrected) |
Opponent name: KSB SE & CO. KGAA Effective date: 20180508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20201118 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502007015791 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502007015791 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230920 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230928 Year of fee payment: 17 Ref country code: DE Payment date: 20230920 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230927 Year of fee payment: 17 |