[go: up one dir, main page]

EP2037080B1 - Methode zur abschätzung der durchlässigkeit eines frakturnetzes mit hilfe einer vernetzungsanalyse - Google Patents

Methode zur abschätzung der durchlässigkeit eines frakturnetzes mit hilfe einer vernetzungsanalyse Download PDF

Info

Publication number
EP2037080B1
EP2037080B1 EP08290574.6A EP08290574A EP2037080B1 EP 2037080 B1 EP2037080 B1 EP 2037080B1 EP 08290574 A EP08290574 A EP 08290574A EP 2037080 B1 EP2037080 B1 EP 2037080B1
Authority
EP
European Patent Office
Prior art keywords
permeability
network
connectivity
unit cells
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08290574.6A
Other languages
English (en)
French (fr)
Other versions
EP2037080A1 (de
Inventor
Matthieu Delorme
Bernard Bourbiaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2037080A1 publication Critical patent/EP2037080A1/de
Application granted granted Critical
Publication of EP2037080B1 publication Critical patent/EP2037080B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells

Definitions

  • the present invention relates to the field of optimization of the exploitation of underground deposits, such as hydrocarbon deposits, especially when they include a network of fractures.
  • the method according to the invention is particularly suitable for the study of the hydraulic properties of fractured terrains, and in particular to study hydrocarbon displacements in underground deposits.
  • the invention relates to a method for determining the permeability of a fracture network, so as to predict the flows of fluids that may occur through the deposit. It is then possible to simulate hydrocarbon production according to various production scenarios.
  • the petroleum industry and more specifically the exploration and exploitation of oil deposits, require the acquisition of the best possible knowledge of underground geology to effectively provide a reserve assessment, a production model, or farm management.
  • the determination of the location of a production well or an injection well, the constitution of the drilling mud, the completion characteristics, the parameters necessary for the optimal recovery of the hydrocarbons (such as injection pressure, production flow, ...) require a good knowledge of the deposit.
  • To know the deposit means to know the petrophysical properties of the subsoil in every point of space.
  • Modeling of Oilfields are therefore an essential technical step for any exploration or exploitation of the deposit. These models are intended to provide a description of the deposit.
  • a " fracture” is a plane discontinuity, very thin in relation to its extension, which represents a plane of rupture of a rock in the deposit.
  • the geometry of the fracture network conditions the displacement of the fluids both at the reservoir scale and at the local scale where it determines elementary matrix blocks in which the oil is trapped. Knowing the distribution of fractures, is therefore very useful, also, at a later stage, for the tank engineer who tries to calibrate the models he builds to simulate the deposits in order to reproduce or predict past production curves. or future.
  • the engineers in charge of the exploitation of fractured reservoirs therefore, need to estimate the large-scale permeability (that of the drainage radius of a well or inter-well space for example) of fracture networks, and to predict the hydrodynamic behavior (flow, pressure, ..) of these networks, in response to external demands imposed via wells.
  • geoscientists proceed in the first place to characterize the fracture network, in the form of a set of families of fractures characterized by geometric attributes.
  • a numerical model is most often used. This model is applied to a discretized representation of the deposit, that is to say that the deposit is cut into a set of meshes.
  • the application of the numerical model requires knowledge of the flow properties of the fracture network at meshes scale, usually of hectometres. In particular, the permeabilities of the fracture network must be determined.
  • An " analytical method" is one or more equations for accurately determining, without approximation or recourse to numerical techniques (iterative, etc.) the unknowns of a problem according to the data.
  • An example of an analytical method is described for example in the following document: M.Chen, M. Bai, and JC Roegiers, Permeability Tensors of Anisotropic Fracture Networks, Mathematical Geology, Vol.31, No. 4, 1999
  • LAETITIA MACÉ, LAURENT SOUCHE AND JEAN-LAURENT MALLET "3D fracture modeling integrating geomechanics and geology data.”
  • AAPG INTERNATIONAL CONFERENCE October 24, 2004, - October 27, 2004, pages 1-6
  • Canc a “describes a method in which the connectivity of fractures is determined directly from a stochastic realization of the network, by means of a processing method applied to the geometry of the network.
  • the selection of the method is then performed by defining two connectivity thresholds corresponding to two connectivity index values defining three connectivity index intervals. A different method is then selected for each of the intervals, so as to optimize the estimation of the permeability in each cell. We will choose the simplest method preserving the precision of the results.
  • modelizations are based on a representation of the deposit, in a set of meshes. Each of these meshes represents a given volume of the deposit.
  • the set of meshes constitutes a discrete representation of the deposit.
  • the geosciences specialist carries out a characterization of the geometry of the natural fracture network: he elaborates a geometrical description of the fracture network, in each meshes, by means of relevant geometric attributes.
  • This geometric description requires a set of measurements, made in the field by the geologist. These measurements make it possible to characterize the fracture network, so as to arrive at a description of the network in the form of a set of N families of fractures, characterized by geometric attributes.
  • This geometrical description of the fracture network can also be determined probabilistically.
  • a geometric description of the fracture network is then established by assigning to each family of fractures f a probability law ⁇ ⁇ , f orientations in the plane of the layers with respect to a reference direction, as well as a probability law of lengths ⁇ l , f and a density d f .
  • a geometric description of the fracture network is established by assigning to each family of fractures f a probability law ⁇ ⁇ , f orientations in the plane of the layers with respect to a reference direction, a law of probability of orientations in the plane.
  • vertical ⁇ ⁇ , f a law of probability of lengths ⁇ l , f as well as a law of probability of heights ⁇ H , f , and a density d f .
  • the permeability of the network is null.
  • the permeability is important. Indeed, a fluid has no difficulty crossing the mesh in the latter case.
  • an index representative of the number of intersections between the fractures of the network is calculated according to the invention. Indeed, more the fractures of a network comprise intersections, more they are connected.
  • connection index This index is called “connectivity index” and is noted as I C.
  • the index of connectivity I C is then a parameter function of the number of intersections between the fractures of the network. It is determined in each cell, from the information from the geometric description.
  • the reservoir engineer can optimize in cost (time) and quality (accuracy) the calculation of the fracture permeabilities.
  • the calculation of the permeabilities according to the invention is carried out by first analyzing the value of the connectivity index I C.
  • the threshold value of the connectivity index from which it is considered that it is necessary to calculate the permeability, can be obtained empirically, or by simulations. Those skilled in the art may in particular use a flow simulator, a software well known to specialists, to define this threshold. This threshold is called the percolation threshold. It's noted I VS p .
  • the evaluation of the connectivity of the fracture network in each mesh makes it possible to select the cells of the discretization of the deposit, for which it is necessary to determine the network permeability by an appropriate calculation method.
  • the other meshes have a null value of network permeability.
  • the connectivity index thus calculated can be used more.
  • a permeability curve as a function of the connectivity index, it is possible to define permeability behaviors, making it possible to define the most suitable determination technique.
  • the permeability calculation method is selected by defining connectivity thresholds corresponding to connectivity index values defining connectivity index intervals. A method is selected for each of said intervals.
  • Homogeneous behavior means that, over an interval, the permeability curve obeys the same constitutive law as a function of the connectivity index.
  • the permeability curve as a function of the connectivity index can then be modeled by a single analytical formula (linear law, polynomial, etc.). In other words, over an interval, the network has the same law of flow behavior, ie the same law of permeability (hydraulic behavior) as a function of the connectivity index.
  • the set of meshes of step i can be defined in the following way: having calculated the index of connectivity for all the meshes of the discretization of the deposit, one selects a set of meshes, whose indices are distributed over the range of connectivity indices calculated for all the meshes of the deposit.
  • two connectivity thresholds are defined, defining three connectivity index intervals.
  • the figure 1 illustrates such an approach.
  • This figure represents a network permeability curve, K , as a function of the connectivity index I C.
  • a first threshold corresponds to the percolation threshold I VS p . It is defined on the figure 1 by I VS p ⁇ 1 .
  • I VS l There is a second threshold, noted I VS l , called the linearity threshold. It is defined on the figure 1 by I VS l ⁇ 3 . Beyond this threshold, the curve is a straight line.
  • These two thresholds define three intervals over which the permeability varies according to a homogeneous behavior as a function of the connectivity index: below I VS p , the permeability is constant (zero), above I VS l , the permeability increases linearly. Between the two thresholds, the permeability changes according to the connectivity index in a unique and non-linear relationship.
  • an alternative to the numerical method can be adopted in order to increase the speed of permeability calculations. It consists in using an approximation, such as an analytical formula giving the evolution of the permeability as a function of the connectivity index.
  • the evaluation of the connectivity of the fracture network in each mesh allows to select a method of determination of the permeability adapted to the need required for each mesh (ie a reliable method on the one hand, fast and inexpensive in computing time on the other hand).
  • the reservoir engineer has a discretized representation (set of meshes) of the hydrocarbon deposit, from which he wishes to extract the hydrocarbons.
  • This representation is indicated fracture network permeability, that is to say that each cell is associated with a permeability value.
  • the reservoir engineer chooses a production process, for example the water injection recovery process, the optimal implementation scenario for the field in question.
  • the definition of an optimal water injection scenario will consist, for example, in determining the number and location (position and spacing) of injection and production wells in order to best take into account the impact of fractures on the progression of fluids within the tank.
  • a hydrocarbon deposit is discretized with a network of fractures.
  • the figure 2 illustrates the result of this mesh in two dimensions.
  • a geometric description of the fracture network is developed in each of the meshes, using information from geological measurements and analyzes.
  • This index defines the average intersection number between fractures, within each mesh.
  • the figure 2 illustrates, in two dimensions, the meshs of the representation of the deposit for which one does not calculate by the permeability (zone 1 where I VS ⁇ I VS p , in white), the meshes for which the permeability is calculated using a flow simulator (zone 2 where I VS p ⁇ I VS ⁇ I VS l , in gray), and the meshes for which the permeability is calculated using a linear formula (zone 2 where I VS ⁇ I VS l , in gray).
  • Zone 1 does not calculate permeability. We therefore gain valuable computing time. In zone 3, we perform a linear calculation that gives us the same precision as a numerical simulation. On zone 2, to obtain an important precision, one uses a flow simulator.
  • a production process is then selected, for example water injection.
  • the mode of implementation of this method for the field considered however remains to be specified, and more particularly if this field proves to be fractured.
  • Different implementation scenarios differing from each other by the position of the wells, for example, are then defined and compared on the basis of quantitative criteria of production / recovery of the fluids in place.
  • the evaluation (forecasting) of these production criteria requires the use of a field simulator able to reproduce (simulate) each of the scenarios.
  • the permeabilities of the fracture network at the simulator resolution scale constitute basic information essential for performing these simulations, and decisive for guaranteeing the reliability of the production forecasts.
  • the invention makes it possible to estimate the large-scale permeability (scale of the drainage radius of a well or the inter-well space for example) of these fractures, in a fast and precise manner.
  • the engineers in charge of the exploitation of the deposit then have a tool allowing them to quickly evaluate the performance of different production scenarios, and thus, to select the one that optimizes the exploitation with regard to the criteria selected by the operator, such as ensure optimum hydrocarbon production.
  • the invention finds an industrial application in the exploitation of underground deposits, comprising a network of fractures. It may be a hydrocarbon deposit for which it is desired to optimize production, or a gas storage reservoir for example, for which it is desired to optimize the injection or the storage conditions.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Claims (7)

  1. Verfahren für den Einsatz eines Computers zur Optimierung der Ausbeutung einer Lagerstätte, umfassend ein Netz von Brüchen, in dem die Lagerstätte in eine Gesamtheit von Mascheneinheiten aufgelöst wird, und eine geometrische Beschreibung des Netzes von Brüchen in jeder der Mascheneinheiten ausgearbeitet wird, wobei das Verfahren die folgenden Schritte umfasst:
    - innerhalb jeder Mascheneinheit Bestimmung eines Vernetzungsindex, der zumindest von der Anzahl von Schnittstellen zwischen Brüchen abhängt, mit Hilfe der geometrischen Beschreibung;
    - Schätzen der Durchlässigkeit des Netzes von Maschenbrucheinheiten, deren Vernetzungsindex größer als ein Grenzwert ist, wobei für jede Mascheneinheit ein Verfahren zur Schätzung der Durchlässigkeit des Netzes von Brüchen in Abhängigkeit vom Wert des Vernetzungsindex ausgewählt wird, wobei zwei Vernetzungsgrenzwerte definiert werden, die zwei Werten eines Vernetzungsindex entsprechen, die drei Intervalle eines Vernetzungsindex definieren, und ein unterschiedliches Verfahren für jedes der Intervalle ausgewählt wird, um die Schätzung der Durchlässigkeit an jeder Mascheneinheit zu optimieren;
    - ein festgesetzter Durchlässigkeitswert innerhalb der anderen Mascheneinheiten, deren Vernetzungsindex kleiner als der Grenzwert ist, zugewiesen wird, um die Anzahl von Durchlässigkeitsschätzungen zu begrenzen; und
    - die Ausbeutung der Lagerstätte optimiert wird, wobei Fluidströme in der Lagerstätte in Abhängigkeit von den Durchlässigkeiten des Netzes von Brüchen an jeder Mascheneinheit simuliert werden.
  2. Verfahren nach Anspruch 1, bei dem die Grenzwerte empirisch definiert werden.
  3. Verfahren nach Anspruch 1, bei dem die Grenzwerte definiert werden, wobei die folgenden Schritte durchgeführt werden:
    - Vorhandensein einer Gesamtheit von Mascheneinheiten, umfassend jeweils ein Netz von Brücken, für die eine geometrische Beschreibung vorhanden ist;
    - Bestimmen eines Vernetzungsindex für jede der Mascheneinheiten;
    - Bestimmen einer Durchlässigkeit des Netzes an jeder Mascheneinheit mit Hilfe eines Strömungssimulators;
    - Konstruieren einer Kurve der Durchlässigkeit in Abhängigkeit vom Vernetzungsindex;
    - Definieren der Grenzwerte in Abhängigkeit von der Form der Kurve, so dass die Durchlässigkeit demselben Verhaltensgesetz in Abhängigkeit von dem Vernetzungsindex innerhalb der drei durch die Grenzwerte definierten Intervalle gehorcht.
  4. Verfahren nach Anspruch 3, bei dem die Gesamtheit von Mascheneinheiten, die jeweils ein Netz von Brüchen umfassen, für die eine geometrische Beschreibung vorhanden ist, bestimmt wird, wobei eine Gesamtheit von Mascheneinheiten ausgewählt wird, die aus der Auflösung der Lagerstätte stammen, deren Indizes auf dem Intervall der Vernetzungsindizes verteilt sind, die für die Gesamtheit der Mascheneinheiten berechnet wurden, die aus der Auflösung der Lagerstätte stammen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem:
    - die Durchlässigkeit des Netzes von Brüchen innerhalb der Mascheneinheiten, deren Vernetzungsindex größer als der zweite Grenzwert ist, mit Hilfe einer analytischen Formel geschätzt wird;
    - die Durchlässigkeit des Netzes innerhalb von Mascheneinheiten, deren Vernetzungsindex zwischen den zwei Grenzwerten liegt, mit Hilfe eines Strömungssimulators geschätzt wird.
  6. Verfahren nach Anspruch 5, bei dem die Durchlässigkeit in Abhängigkeit vom Wert des Vernetzungsindex geschätzt wird.
  7. Verfahren nach Anspruch 6, bei dem:
    - die Durchlässigkeit des Netzes von Brüchen innerhalb der Mascheneinheiten, deren Vernetzungsindex größer als der zweite Grenzwert ist, mit Hilfe einer analytischen Formel geschätzt wird, bei der angenommen wird, dass die Durchlässigkeit des Netzes linear in Abhängigkeit vom Vernetzungsindex steigt;
    - die Durchlässigkeit des Netztes innerhalb von Mascheneinheiten, deren Vernetzungsindex zwischen den zwei Grenzwerten liegt, mit Hilfe eines Verfahrens geschätzt wird, bei dem angenommen wird, dass die Durchlässigkeit des Netzes nicht mehr demselben Verhältnis wie über den zweiten Grenzwert hinaus gehorcht.
EP08290574.6A 2007-06-29 2008-06-17 Methode zur abschätzung der durchlässigkeit eines frakturnetzes mit hilfe einer vernetzungsanalyse Active EP2037080B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0704703A FR2918179B1 (fr) 2007-06-29 2007-06-29 Methode pour estimer la permeabilite d'un reseau de fractures a partir d'une analyse de connectivite

Publications (2)

Publication Number Publication Date
EP2037080A1 EP2037080A1 (de) 2009-03-18
EP2037080B1 true EP2037080B1 (de) 2019-10-23

Family

ID=39148267

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08290574.6A Active EP2037080B1 (de) 2007-06-29 2008-06-17 Methode zur abschätzung der durchlässigkeit eines frakturnetzes mit hilfe einer vernetzungsanalyse

Country Status (3)

Country Link
US (1) US8078405B2 (de)
EP (1) EP2037080B1 (de)
FR (1) FR2918179B1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2708967A1 (en) * 2008-01-22 2009-07-30 Exxonmobil Upstream Research Company Dynamic connectivity analysis
US9008972B2 (en) * 2009-07-06 2015-04-14 Exxonmobil Upstream Research Company Method for seismic interpretation using seismic texture attributes
US9169726B2 (en) 2009-10-20 2015-10-27 Exxonmobil Upstream Research Company Method for quantitatively assessing connectivity for well pairs at varying frequencies
CN101942991A (zh) * 2010-06-30 2011-01-12 中国石油大学(北京) 裂缝各向异性油藏注水开发可预测物理模型建立方法
FR2967200A1 (fr) 2010-11-10 2012-05-11 IFP Energies Nouvelles Methode pour caracteriser le reseau de fractures d'un gisement fracture et methode pour l'exploiter
FR2976099B1 (fr) 2011-06-01 2013-05-17 IFP Energies Nouvelles Methode pour construire un maillage d'un reseau de fractures a partir de diagramme de voronoi
FR2981475B1 (fr) 2011-10-12 2013-11-01 IFP Energies Nouvelles Methode pour construire un maillage d'un reservoir fracture avec un nombre limite de noeuds dans le milieu matrice
AU2012396846B2 (en) 2012-12-13 2016-12-22 Landmark Graphics Corporation System, method and computer program product for evaluating and ranking geobodies using a Euler Characteristic
WO2014123988A1 (en) 2013-02-08 2014-08-14 Schlumberger Canada Limited Apparatus and methodology for measuring properties of microporous material at multiple scales
CN103257089B (zh) * 2013-04-08 2015-06-03 中国石油天然气股份有限公司 压力脉冲测量装置测量基质和裂缝渗透率的方法
CN103323887B (zh) * 2013-07-09 2016-03-02 中煤科工集团重庆研究院有限公司 一种煤矿采动稳定区煤层气储量的评估方法及系统
CN104634713B (zh) * 2013-11-13 2017-05-17 中国石油化工股份有限公司 特高含水期油水相渗比值曲线非线性关系表征方法
CN105089650B (zh) * 2014-04-22 2018-03-13 中国石油化工股份有限公司 评价储盖组合的方法及储层产能预测方法
CN104847339B (zh) * 2014-12-09 2017-09-22 中国石油集团川庆钻探工程有限公司 利用压化指数评价页岩气储层的方法
US10242136B2 (en) * 2015-05-20 2019-03-26 Saudi Arabian Oil Company Parallel solution for fully-coupled fully-implicit wellbore modeling in reservoir simulation
US11294095B2 (en) 2015-08-18 2022-04-05 Schlumberger Technology Corporation Reservoir simulations with fracture networks
EP3338115A4 (de) * 2015-08-18 2019-04-24 Services Petroliers Schlumberger Reservoirsimulationen mit frakturnetzwerken
US10302814B2 (en) * 2015-08-20 2019-05-28 Baker Hughes, A Ge Company, Llc Mechanisms-based fracture model for geomaterials
FR3041026B1 (fr) 2015-09-15 2017-10-20 Ifp Energies Now Procede pour caracteriser le reseau de fractures d'un gisement fracture et procede pour l'exploiter
FR3045868B1 (fr) 2015-12-17 2022-02-11 Ifp Energies Now Procede pour caracteriser et exploiter une formation souterraine comprenant un reseau de fractures
US10546072B2 (en) 2016-03-28 2020-01-28 Baker Huges, A Ge Company, Llc Obtaining micro- and macro-rock properties with a calibrated rock deformation simulation
CN106845786B (zh) * 2016-12-26 2021-01-29 中国石油天然气股份有限公司 注入井和生产井间储层连通性评价方法和装置
US11371323B2 (en) * 2017-01-13 2022-06-28 Baker Hughes, A Ge Company, Llc Near wellbore discrete fracture networks
US12228026B2 (en) 2017-09-14 2025-02-18 Saudi Arabian Oil Company Modeling reservoir permeability through estimating natural fracture distribution and properties
CN109374498B (zh) * 2018-10-29 2021-06-25 河海大学 一种单裂隙岩体渗流应力耦合系统及方法
CN111535849B (zh) * 2020-05-15 2021-06-01 中国石油大学(北京) 一种瓦斯排采时间计算方法、装置及设备
CN112903565B (zh) * 2021-02-01 2022-10-18 核工业北京地质研究院 考虑岩石裂隙内部几何特征的渗透率测定方法
US11933165B2 (en) 2021-03-15 2024-03-19 Saudi Arabian Oil Company Hydraulic fracture conductivity modeling
US11525935B1 (en) 2021-08-31 2022-12-13 Saudi Arabian Oil Company Determining hydrogen sulfide (H2S) concentration and distribution in carbonate reservoirs using geomechanical properties
US11921250B2 (en) 2022-03-09 2024-03-05 Saudi Arabian Oil Company Geo-mechanical based determination of sweet spot intervals for hydraulic fracturing stimulation
CN115184172B (zh) * 2022-07-11 2024-07-16 西安石油大学 一种非常规油气储集层岩石力学特征分析装置
CN118940552B (zh) * 2024-10-14 2024-12-27 湖南科技大学 路域水体功能连通性阈值确定方法及趋势研判分析系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757663A (en) * 1995-09-26 1998-05-26 Atlantic Richfield Company Hydrocarbon reservoir connectivity tool using cells and pay indicators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2725794B1 (fr) 1994-10-18 1997-01-24 Inst Francais Du Petrole Methode pour modeliser la distribution spatiale d'objets geometriques dans un milieu, tels que des failles dans une formation geologique
FR2725814B1 (fr) 1994-10-18 1997-01-24 Inst Francais Du Petrole Methode pour cartographier par interpolation, un reseau de lignes, notamment la configuration de failles geologiques
FR2733073B1 (fr) 1995-04-12 1997-06-06 Inst Francais Du Petrole Methode pour modeliser un milieu geologique stratifie et fracture
FR2757947B1 (fr) 1996-12-30 1999-01-29 Inst Francais Du Petrole Methode pour determiner la permeabilite equivalente d'un reseau de fracture dans un milieu souterrain multi-couches
WO2005033739A2 (en) * 2003-09-30 2005-04-14 Exxonmobil Upstream Research Company Corp-Urc-Sw348 Characterizing connectivity in reservoir models using paths of least resistance
AU2005309398B2 (en) * 2004-11-29 2012-01-12 Chevron U.S.A. Inc. Method, system and program storage device for simulating fluid flow in a physical system using a dynamic composition based extensible object-oriented architecture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757663A (en) * 1995-09-26 1998-05-26 Atlantic Richfield Company Hydrocarbon reservoir connectivity tool using cells and pay indicators

Also Published As

Publication number Publication date
US20090005996A1 (en) 2009-01-01
FR2918179B1 (fr) 2009-10-09
US8078405B2 (en) 2011-12-13
FR2918179A1 (fr) 2009-01-02
EP2037080A1 (de) 2009-03-18

Similar Documents

Publication Publication Date Title
EP2037080B1 (de) Methode zur abschätzung der durchlässigkeit eines frakturnetzes mit hilfe einer vernetzungsanalyse
EP3144468B1 (de) Verfahren zur charakterisierung des bruchnetzes eines bruchlagers, und verfahren zu dessen ausbeutung
EP2453106B1 (de) Methode zur Charakterisierung des Bruchnetzes eines Bruchlagers, und Methode zu dessen Ausbeutung
EP2212722B1 (de) Verfahren zur modellierung einer porösen geologischen umgebung mit durch diese verlaufendem frakturennetz
EP2530493B1 (de) Methode zur Erstellung eines Gitternetzes eines Frakturnetzes mit Hilfe eines Voronoi-Diagramms
EP2466338B1 (de) Ausbeutungsverfahren eines Erdöllagers auf der Grundlage eines stabilen Abflussmodells mittels einer skalengetreuen Normierung der Druck- und Sättigungskarten
EP2581767B1 (de) Methode zur Erstellung eines Gitternetzes eines frakturierten Reservoirs mit einer begrenzten Anzahl von Knoten in einem Matrixmilieu
EP2072752B1 (de) Methode zur optimierung der ausbeutung eines fluidlagers durch berücksichtigung eines geologischen und vorübergehenden austauschterms zwischen matrixblöcken und brüchen
FR2823877A1 (fr) Methode pour contraindre par des donnees dynamiques de production un modele fin representatif de la repartition dans le gisement d'une grandeur physique caracteristique de la structure du sous-sol
EP2685291B1 (de) Verfahren zur Ausbeutung eines geologischen Reservoirs auf der Grundlage eines Reservoirmodells, das auf einer Berechnung eines analytischen Verteilungsgesetzes beruht, das durch unsichere Parameter des Modells bedingt ist
WO2009034253A1 (fr) Procede, programme et systeme informatique de mise a l'echelle de donnees de modele de reservoir d'hydrocarbure
FR3045868A1 (fr) Procede pour caracteriser et exploiter une formation souterraine comprenant un reseau de fractures
EP3719251A1 (de) Verfahren zur nutzung eines gerissenen erdöltanks, der eine heterogene porengrösse besitzt
EP2680045A1 (de) Verfahren zur Ausbeutung eines geologischen Speichers mit Hilfe eines Speichermodells, das auf einer Multiskalen-Parametrierung basiert
EP2813668B1 (de) Methode zur optimierung der ausbeutung eines fluidreservoirs unter berücksichtigung eines geologischen und vorübergehenden austauschterms zwischen matrixblöcken und brüchen
EP2770162B1 (de) Verfahren zur Ausbeutung eines geologischen Speichers mit Hilfe eines intelligenten und kohärenten Speichermodells in Bezug auf die Ablaufeigenschaften
EP2594733A1 (de) Verfahren zum Optimieren der Nutzung eines unterirdischen Raums mit Hilfe einer Aufnahmestudie mit optimierter Maßstabstreue
EP2806101B1 (de) Verfahren zur Ausbeutung eines Bruchmilieus mit Hilfe eines kohärenten Speichermodells für Schächte, die mit Hilfe eines entsprechenden Transmissivitätsmodells ausgewählt werden
CA2711926A1 (fr) Procede, programme et systeme informatique de construction d'un modele geologique 3d
CA2968579A1 (fr) Procede d'exploitation des hydrocarbures d'une formation souterraine, au moyen d'une mise a l'echelle optimisee
FR3037682A1 (de)
WO2021063804A1 (fr) Procede pour determiner une trajectoire d'un puits dans un reservoir petrolier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090918

17Q First examination report despatched

Effective date: 20091015

AKX Designation fees paid

Designated state(s): GB NO

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E21B 43/00 20060101ALI20190520BHEP

Ipc: E21B 49/00 20060101AFI20190520BHEP

INTG Intention to grant announced

Effective date: 20190607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB NO

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20191023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240618

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240618

Year of fee payment: 17