EP2001121B1 - Engine start system with quadrature AC excitation - Google Patents
Engine start system with quadrature AC excitation Download PDFInfo
- Publication number
- EP2001121B1 EP2001121B1 EP08157450.1A EP08157450A EP2001121B1 EP 2001121 B1 EP2001121 B1 EP 2001121B1 EP 08157450 A EP08157450 A EP 08157450A EP 2001121 B1 EP2001121 B1 EP 2001121B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- exciter
- generator
- starter
- rotor
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 230000005284 excitation Effects 0.000 title claims description 25
- 238000004804 winding Methods 0.000 claims description 98
- 238000000819 phase cycle Methods 0.000 claims description 13
- 239000007858 starting material Substances 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 claims 5
- 238000000034 method Methods 0.000 description 11
- 230000004907 flux Effects 0.000 description 10
- 230000001360 synchronised effect Effects 0.000 description 9
- 238000013461 design Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/14—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
- H02P9/26—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
- H02P9/30—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
- H02P9/302—Brushless excitation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/30—Special adaptation of control arrangements for generators for aircraft
Definitions
- the present invention relates to engine start systems and, more particularly, to engine start systems that may use a readily available constant frequency power source such as an auxiliary power unit (APU) or external ground power.
- a readily available constant frequency power source such as an auxiliary power unit (APU) or external ground power.
- APU auxiliary power unit
- Using electric, brushless starter-generators for main engine start and for power generation can save aircraft weight and improve operating economics as part of the new more electric architecture (MEA) systems architectures.
- the starter-generator has to provide high starting torque to start the main engine.
- Conventional main engine starter-generator systems involve the use of high power inverters to provide a controllable variable frequency power source which adds cost, weight and complexity while decreasing the reliability of the system.
- the PMG includes a rotor having permanent magnets mounted thereon, and a stator having a plurality of windings. When the PMG rotor rotates, the permanent magnets induce AC currents in PMG stator windings. These AC currents are typically fed to a regulator or a control device, which in turn outputs a DC current to the exciter.
- the exciter typically includes single-phase (e.g., DC) stator windings and multi-phase (e.g., three-phase) rotor windings.
- the DC current from the regulator or control device is supplied to exciter stator windings, and as the exciter rotor windings that has a different number of poles or vice versa. This can lead to complexity in design and implementation.
- U.S. Patent No. 7,064,455 to Lando employs rotor windings of the exciter and the main starter-generator disposed on the same primary shaft, with a permanent magnet starter-generator (PMG) disposed about an associated secondary shaft, for determining the rotational speed of the primary shaft.
- PMG permanent magnet starter-generator
- the rotors of the exciter and main starter-generator employ three-phase windings.
- this design offers no improvement over the complexity inherent in such three-phase windings.
- European Patent No. EP1560317A2 describes a synchronous electric machine having a rotor member and a stator member having a stator core.
- the electric machine further includes a main machine having a DC rotor field winding mounted on the rotor member and a dual AC/DC excitation system for the synchronous machine.
- the excitation system includes a rotatable polyphase armature winding in electrical communication with a rectifier assembly for conducting direct current to the rotor field winding of the main machine, and a plurality of DC salient poles and at least one AC salient pole, both included in the stator core. Respective AC salient poles of the at least one AC salient pole are disposed between adjacent DC salient poles of the plurality of DC salient poles.
- a plurality of DC field coils are disposed on respective DC salient poles of the plurality of DC salient poles, where the DC field coils are connected together to constitute at least one DC field winding.
- the at least one AC field coil is disposed respectively on the at least one AC salient pole.
- At least one AC field coil is connected together to constitute at least one alternate current field winding.
- a magnetic axis of respective AC field coils is disposed in electromagnetic space-quadrature relation with respect to magnetic axes of adjacent DC field coils. When the respective AC field coils are energized, an alternating current is induced in the polyphase armature winding for providing excitation to the main machine.
- an engine starting system comprises a main starter-generator having a main starter-generator rotor, the main starter-generator rotor having main starter-generator rotor windings wound thereupon; an exciter having an exciter rotor and an exciter stator, the exciter rotor having exciter rotor windings wound thereon; wherein the exciter rotor is configured to provide two phase excitation current to the main starter-generator rotor windings.
- These two phase windings on either the exciter rotor, the main generator rotor, or both, may be configured to be shifted by a value chosen from a range of from 80 electrical degrees to 100 electrical degrees in time and space, with a choice of 90 windings that has a different number of poles or vice versa. This can lead to complexity in design and implementation.
- U.S. Patent No. 7,064,455 to Lando employs rotor windings of the exciter and the main starter-generator disposed on the same primary shaft, with a permanent magnet starter-generator (PMG) disposed about an associated secondary shaft, for determining the rotational speed of the primary shaft.
- PMG permanent magnet starter-generator
- the rotors of the exciter and main starter-generator employ three-phase windings.
- this design offers no improvement over the complexity inherent in such three-phase windings.
- an engine starting system comprises a main starter-generator having a main starter-generator rotor, the main starter-generator rotor having main starter-generator rotor windings wound thereupon; an exciter having an exciter rotor and an exciter stator, the exciter rotor having exciter rotor windings wound thereon; wherein the exciter rotor is configured to provide two phase excitation current to the main starter-generator rotor windings.
- phase windings on either the exciter rotor, the main generator rotor, or both may be configured to be shifted by a value chosen from a range of from 80 electrical degrees to 100 electrical degrees in time and space, with a choice of 90 choice of 90 electrical degrees being one exemplary embodiment.
- the connections between main rotor and exciter rotor windings can be made in the same phase sequence or opposite phase sequence.
- an engine starting system comprises a shaft, wherein sufficient rotation of the shaft starts the engine; a main starter-generator stator with a plurality of main stator windings wound thereon; a main starter-generator rotor mounted on the shaft and disposed at least partially within the main starter-generator stator, the main starter-generator rotor having a plurality of main starter-generator rotor windings wound thereon to generate an air gap flux when they are electrically excited; an exciter rotor mounted on the shaft, the exciter rotor having a plurality of exciter rotor windings wound thereon; an exciter stator surrounding at least a portion of the exciter rotor, the exciter stator having a plurality of exciter stator windings wound thereon; and an exciter controller electrically coupled to the exciter stator windings, the exciter controller configured to provide electrical excitation to the exciter stator windings.
- an aircraft starter-generator system to start an aircraft gas turbine engine as the prime mover comprises a housing; a drive shaft rotationally mounted within the housing and transmitting power to the prime mover; a main starter-generator stator mounted within the housing and having a plurality of main starter-generator stator windings wound thereon; a main starter-generator rotor mounted on the drive shaft and disposed within the main starter-generator stator, the main starter-generator rotor having a plurality of main starter-generator rotor windings wound thereon configured to receive a two-phase excitation current, wherein the main starter-generator rotor windings generate an air gap flux upon electrical excitation thereof; an exciter rotor mounted on the drive shaft, the exciter rotor having a plurality of exciter rotor windings wound thereon, the exciter rotor windings electrically connected to the main starter-generator rotor; an exciter rotor mounted on the
- the present invention provides a system and methods that may use a readily available constant frequency power source, such as the APU or external ground power supply, to start the main engine of an aircraft.
- a readily available constant frequency power source such as the APU or external ground power supply
- these systems and methods may allow for tailoring of the torque-speed profile of the starter-generator.
- the main starter-generator stator winding may be connected to a constant frequency (CF) power source to create a rotating field in the main starter-generator air gap.
- CF constant frequency
- This flux may induce current on the main rotor winding, which may be a closed circuit formed by main rotor field winding and exciter armature winding.
- the interaction between the main rotor current and the air gap flux may give rise to the starting torque to start the main engine.
- the voltage supplied to the exciter stator field winding may be adjusted to modify the induced voltage and current on the rotor circuit to control the rotor current and starting torque.
- the present invention may be useful to start a main engine of, for example, an aircraft, a ground vehicle, an industrial generator and the like.
- a traditional synchronous wound rotor starter-generator typically has a single phase winding on the main rotor that creates a flux field that is locked to the rotor rotation.
- the present invention may create a rotor winding scheme using two phase windings that are in quadrature with each other and are controlled in a manner that allows the air gap flux to rotate at a speed that is synchronous with the stator power frequency. More specifically, the starter-generator described herein may employ the use of two-phase current to transfer energy from the exciter rotor to the main starter-generator rotor, whereas in the prior art, three-phase current is used between the exciter rotor and the main starter-generator rotor.
- FIG. 1 a functional schematic block diagram of an exemplary high speed starter-generator system 100 for use with, for example, an aircraft gas turbine engine, is shown.
- This exemplary starter-generator system 100 may include a permanent magnet starter-generator (PMG) 110, an exciter 120, a main starter-generator 130, and an exciter controller 140.
- PMG permanent magnet starter-generator
- the starter-generator system 100 may also include one or more additional components, sensors, or controllers. However, a description of these additional components, sensors, and controllers, if included, is not necessary for a description of the invention, and will therefore not be further depicted or described.
- a PMG rotor 112 of the PMG 110, an exciter rotor 124 of the exciter 120, and a main starter-generator rotor 132 of the main starter-generator 130 may be mounted on a common drive shaft 150.
- the drive shaft 150 may provide a rotational drive force to a prime mover 160, such as an an aircraft gas turbine engine, which may cause the PMG rotor 112, the exciter rotor 124, and the main starter-generator rotor 132 to all rotate at the same rotational speed.
- a prime mover 160 such as an an aircraft gas turbine engine
- a rotating field in an air gap of the main starter-generator 130 may be created.
- This air gap flux may induce current on the winding of the main starter-generator rotor 132.
- Interaction between the current in the winding of the main starter-generator rotor 132 and air gap flux may give rise to the starting torque to start the main engine (not shown) via the prime mover 160.
- the starter-generator system 100 may operate as a starter-generator. It will be appreciated that as the PMG rotor 112 rotates, the PMG 110 may generate and supply AC power to the exciter controller 140 from a PMG stator 114. In response, the exciter controller 140 may be electrically coupled to an exciter stator 122 of the exciter 120 to supply AC power to the exciter stator 122. In turn, this may induce the exciter rotor 124 to supply an induced alternating current to the main starter-generator rotor 132. As the main starter-generator rotor 132 rotates, it may induce AC current in a main starter-generator stator 134, which may be, in turn, supplied to one or more loads.
- the starter-generator system 100 may include a speed sensor 202 rather than the PMG 110.
- the speed sensor 202 which may be implemented using any one of numerous types of rotational speed sensors, may be configured to sense the rotational speed of the drive shaft 150 and supply a speed signal (NCS) representative of the rotational speed of the drive shaft 150 to the exciter controller 140.
- NCS speed signal
- the exciter controller 140 may use this speed signal NCS to modulate an energy source (not shown) that is independent of the starter-generator system 100, e.g. another generator associated with the prime mover but decoupled from the shaft or a battery-operated generator.
- an energy source e.g. another generator associated with the prime mover but decoupled from the shaft or a battery-operated generator.
- the exciter controller 140 in this alternative embodiment may also supply AC power to the exciter stator 122, it may do so in response to the speed signal from the speed sensor 202 rather than in response to the AC power supplied from the PMG 110, the frequency of which may be indicative of the rotational speed of drive shaft 150.
- the exciter controller 140 may use a frequency signal from main generator stator windings 404 to determine the correct input frequency to the exciter stator windings 406 to achieve the predetermined constant output frequency at the main generator 130.
- the signal supplied to the exciter controller 140 regardless of whether it is the AC power signal from the PMG 110 or the speed signal from the speed sensor 202, may be representative of shaft rotational speed.
- the exciter rotor 124 and the main starter-generator rotor 132 may be configured differently from conventional brushless AC starter-generator systems, and the exciter stator 122 and main starter-generator stator 134 may also be configured differently from conventional brushless AC generator systems.
- the exciter rotor 124 and the main starter-generator rotor 132 may be implemented with two phase exciter rotor windings 402 and two phase main rotor windings 408 respectively.
- phase windings may be configured to be shifted by a value in a range of from 80 electrical degrees to 100 electrical degrees in time and in space, with 90 electrical degrees being an exemplary amount (resulting in the phase windings being in quadrature with each other).
- the exciter stator 122 may be implemented with three phase exciter stator windings 406 as shown in Fig. 3 or two phase exciter stator windings 406 as shown in Fig. 4 , while the main starter-generator stator 134 may be implemented with standard three phase main stator windings 404. It will be appreciated that core of the exciter stator 122 can be configured to use either slotted cylindrical poles or salient poles.
- Another difference from conventional brushless AC generator systems may be that there may be no rotating rectifier assemblies coupled between the exciter rotor 124 and the main rotor 132. Rather, the exciter rotor windings 402 may be directly coupled to the main rotor windings 408.
- the exciter controller 140 may be implemented, at least in part, as a power converter circuit that is configured, in response to the signal supplied to it from either the PMG 110 or main starter-generator stator windings 404, to supply variable-frequency, three-phase excitation to the exciter stator windings 406, as shown in FIG. 3 , with either a relatively positive or negative phase sequence or to supply a DC current in the synchronous operating mode.
- the exciter controller 140 may be implemented to supply variable frequency, two-phase excitation to the exciter stator windings 406, as shown in FIG. 4 .
- the exciter rotor windings 402 may be configured to provide two phase excitation current to the main starter-generator rotor windings 408. These two phase windings are shifted by 90 electrical degrees in time and in space. It may be appreciated that relatively negative phase sequence excitation, as used herein, is excitation that is supplied in a direction opposite that which the exciter rotor 124 is rotating, and relatively positive sequence excitation, as used herein, is excitation that is supplied in a direction the same as which the exciter rotor 124 is rotating. It may be also appreciated that the exciter can be operating at three different modes, namely sub synchronous (negative phase sequence), super synchronous (positive phase sequence) and synchronous (DC current).
- the excitation frequency and phase sequence that the exciter controller 140 may supply to the exciter stator windings 406 may depend upon the desired torque and rotational speed needed to turn the prime mover 160 in order to augment the main starter-generator stator 134.
- the exciter controller 140 may supply to the exciter stator windings 406 an excitation frequency and phase sequence to control the starting of the main engine (not shown) and avoid high in-rush current being generated in the main stator windings 404 and power supply units (not shown).
- the exciter controller 140 may control the phasing and frequency of the current in the exciter stator 122 to produce the appropriate prime mover 160 starting torque to meet the main engine start torque profile. This may eliminate the requirement for controlled power electronics to be supplied to the main starter-generator stator 134.
- the present invention may also include a method 500 for starting an aircraft engine.
- a method 500 may include, for example, a step 510 of creating a rotor winding scheme using two phase windings that are in quadrature with each other and are controlled in a manner that allows the air gap flux to rotate at a speed that is synchronous with the stator power frequency.
- the method may also include a step 520 for controlling the rotor flux speed by an exciter stator that induces a current in the rotor windings of appropriate amplitude, phasing and frequency.
- the methods of the present invention may also include a step 530 for controlling, with an electronic controller, for example, the phasing and frequency of the current in an exciter stator having a plurality of windings wrapped therearound, to produce the appropriate rotor starting current and starting torque to meet the main engine start torque profile requirements.
- an electronic controller for example, the phasing and frequency of the current in an exciter stator having a plurality of windings wrapped therearound, to produce the appropriate rotor starting current and starting torque to meet the main engine start torque profile requirements.
- a starter-generator with the configuration configuration described in this invention can also start a main engine or other type of loads by directly connecting its main stator windings 404 to a readily available CF power supply without exciting the exciter stator 122.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
- Synchronous Machinery (AREA)
Description
- The present invention relates to engine start systems and, more particularly, to engine start systems that may use a readily available constant frequency power source such as an auxiliary power unit (APU) or external ground power.
- Using electric, brushless starter-generators for main engine start and for power generation can save aircraft weight and improve operating economics as part of the new more electric architecture (MEA) systems architectures. The starter-generator has to provide high starting torque to start the main engine. Conventional main engine starter-generator systems involve the use of high power inverters to provide a controllable variable frequency power source which adds cost, weight and complexity while decreasing the reliability of the system.
- Many aircraft include starter-generator systems to supply relatively constant frequency AC power. Many of the starter-generator systems installed in aircraft include three separate brushless starter-generators, namely, a permanent magnet starter-generator (PMG), an exciter, and a main starter-generator. The PMG includes a rotor having permanent magnets mounted thereon, and a stator having a plurality of windings. When the PMG rotor rotates, the permanent magnets induce AC currents in PMG stator windings. These AC currents are typically fed to a regulator or a control device, which in turn outputs a DC current to the exciter.
- The exciter typically includes single-phase (e.g., DC) stator windings and multi-phase (e.g., three-phase) rotor windings. The DC current from the regulator or control device is supplied to exciter stator windings, and as the exciter rotor windings that has a different number of poles or vice versa. This can lead to complexity in design and implementation.
-
U.S. Patent No. 7,064,455 to Lando employs rotor windings of the exciter and the main starter-generator disposed on the same primary shaft, with a permanent magnet starter-generator (PMG) disposed about an associated secondary shaft, for determining the rotational speed of the primary shaft. The rotors of the exciter and main starter-generator employ three-phase windings. However, this design offers no improvement over the complexity inherent in such three-phase windings. - European Patent No.
EP1560317A2 describes a synchronous electric machine having a rotor member and a stator member having a stator core. The electric machine further includes a main machine having a DC rotor field winding mounted on the rotor member and a dual AC/DC excitation system for the synchronous machine. The excitation system includes a rotatable polyphase armature winding in electrical communication with a rectifier assembly for conducting direct current to the rotor field winding of the main machine, and a plurality of DC salient poles and at least one AC salient pole, both included in the stator core. Respective AC salient poles of the at least one AC salient pole are disposed between adjacent DC salient poles of the plurality of DC salient poles. A plurality of DC field coils are disposed on respective DC salient poles of the plurality of DC salient poles, where the DC field coils are connected together to constitute at least one DC field winding. The at least one AC field coil is disposed respectively on the at least one AC salient pole. At least one AC field coil is connected together to constitute at least one alternate current field winding. A magnetic axis of respective AC field coils is disposed in electromagnetic space-quadrature relation with respect to magnetic axes of adjacent DC field coils. When the respective AC field coils are energized, an alternating current is induced in the polyphase armature winding for providing excitation to the main machine. - The patents mentioned above concern generation mode only and have no provision to be a starter. Hence, it can be seen that there is a need for a system and method of starting a main engine from a starter-generator that is relatively small, lightweight, less complex, and more reliable, as compared to current systems and methods, and that does not rely on specified numbers of exciter and main starter-generator poles.
- The present invention in its various aspects is as set out in the appended claims. In one aspect of the present invention, an engine starting system comprises a main starter-generator having a main starter-generator rotor, the main starter-generator rotor having main starter-generator rotor windings wound thereupon; an exciter having an exciter rotor and an exciter stator, the exciter rotor having exciter rotor windings wound thereon; wherein the exciter rotor is configured to provide two phase excitation current to the main starter-generator rotor windings.
- These two phase windings on either the exciter rotor, the main generator rotor, or both, may be configured to be shifted by a value chosen from a range of from 80 electrical degrees to 100 electrical degrees in time and space, with a choice of 90 windings that has a different number of poles or vice versa. This can lead to complexity in design and implementation.
-
U.S. Patent No. 7,064,455 to Lando employs rotor windings of the exciter and the main starter-generator disposed on the same primary shaft, with a permanent magnet starter-generator (PMG) disposed about an associated secondary shaft, for determining the rotational speed of the primary shaft. The rotors of the exciter and main starter-generator employ three-phase windings. However, this design offers no improvement over the complexity inherent in such three-phase windings. - Both patents mentioned above concern generation mode only and have no provision to be a starter. Hence, it can be seen that there is a need for a system and method of starting a main engine from a starter-generator that is relatively small, lightweight, less complex, and more reliable, as compared to current systems and methods, and that does not rely on specified numbers of exciter and main starter-generator poles.
- In one aspect of the present invention, an engine starting system comprises a main starter-generator having a main starter-generator rotor, the main starter-generator rotor having main starter-generator rotor windings wound thereupon; an exciter having an exciter rotor and an exciter stator, the exciter rotor having exciter rotor windings wound thereon; wherein the exciter rotor is configured to provide two phase excitation current to the main starter-generator rotor windings. These two phase windings on either the exciter rotor, the main generator rotor, or both, may be configured to be shifted by a value chosen from a range of from 80 electrical degrees to 100 electrical degrees in time and space, with a choice of 90 choice of 90 electrical degrees being one exemplary embodiment. The connections between main rotor and exciter rotor windings can be made in the same phase sequence or opposite phase sequence.
- In another aspect of the invention, an engine starting system comprises a shaft, wherein sufficient rotation of the shaft starts the engine; a main starter-generator stator with a plurality of main stator windings wound thereon; a main starter-generator rotor mounted on the shaft and disposed at least partially within the main starter-generator stator, the main starter-generator rotor having a plurality of main starter-generator rotor windings wound thereon to generate an air gap flux when they are electrically excited; an exciter rotor mounted on the shaft, the exciter rotor having a plurality of exciter rotor windings wound thereon; an exciter stator surrounding at least a portion of the exciter rotor, the exciter stator having a plurality of exciter stator windings wound thereon; and an exciter controller electrically coupled to the exciter stator windings, the exciter controller configured to provide electrical excitation to the exciter stator windings.
- In still another aspect of the invention, an aircraft starter-generator system to start an aircraft gas turbine engine as the prime mover comprises a housing; a drive shaft rotationally mounted within the housing and transmitting power to the prime mover; a main starter-generator stator mounted within the housing and having a plurality of main starter-generator stator windings wound thereon; a main starter-generator rotor mounted on the drive shaft and disposed within the main starter-generator stator, the main starter-generator rotor having a plurality of main starter-generator rotor windings wound thereon configured to receive a two-phase excitation current, wherein the main starter-generator rotor windings generate an air gap flux upon electrical excitation thereof; an exciter rotor mounted on the drive shaft, the exciter rotor having a plurality of exciter rotor windings wound thereon, the exciter rotor windings electrically connected to the main starter-generator rotor; an exciter stator surrounding the exciter rotor, the exciter stator having a plurality of exciter stator windings wound thereon, the exciter stator windings configured, upon electrical excitation thereof, to electrically excite the exciter rotor windings, wherein interaction between currents in the main starter-generator rotor windings and the main starter-generator stator windings, which can be powered by a readily available constant frequency power source such as APU or external ground power, creates a starting torque to turn the shaft to start the engine, and voltage supplied to the exciter stator winding controls the current in the main starter-generator rotor and the starting torque. It will be also appreciated that the starter-generator described therein can provide starting torque to start an engine by powering the main stator windings only with a constant frequency power source without powering the exciter stator windings.
- These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
-
-
FIG. 1 is a functional block diagram of an exemplary high speed starter-generator system according to an embodiment of the present invention; -
FIG. 2 is a functional block diagram of an exemplary high speed starter-generator system according to an alternative embodiment of the present invention; -
FIG. 3 is a schematic representation of an embodiment of the high speed starter-generators ofFIGS. 1 and2 ; -
FIG. 4 is a schematic representation of another embodiment of the high speed starter-generators ofFIGS. 1 and2 ; and -
FIG. 5 is a flow chart describing a method according to the present invention. - The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
- Broadly, the present invention provides a system and methods that may use a readily available constant frequency power source, such as the APU or external ground power supply, to start the main engine of an aircraft. These systems and methods, together with intelligent excitation control and novel starter-generator design, may allow for tailoring of the torque-speed profile of the starter-generator. For example, in one embodiment of the present invention, the main starter-generator stator winding may be connected to a constant frequency (CF) power source to create a rotating field in the main starter-generator air gap. This flux, in turn, may induce current on the main rotor winding, which may be a closed circuit formed by main rotor field winding and exciter armature winding. The interaction between the main rotor current and the air gap flux may give rise to the starting torque to start the main engine. The voltage supplied to the exciter stator field winding may be adjusted to modify the induced voltage and current on the rotor circuit to control the rotor current and starting torque. The present invention may be useful to start a main engine of, for example, an aircraft, a ground vehicle, an industrial generator and the like.
- A traditional synchronous wound rotor starter-generator typically has a single phase winding on the main rotor that creates a flux field that is locked to the rotor rotation. The present invention may create a rotor winding scheme using two phase windings that are in quadrature with each other and are controlled in a manner that allows the air gap flux to rotate at a speed that is synchronous with the stator power frequency. More specifically, the starter-generator described herein may employ the use of two-phase current to transfer energy from the exciter rotor to the main starter-generator rotor, whereas in the prior art, three-phase current is used between the exciter rotor and the main starter-generator rotor. By using two-phase instead of three-phase power transfer between the rotors, a simple winding scheme for the rotor poles can be used, with the phase windings being in quadrature with each other, which greatly reduces the complexity of the general construction of the starter-generator.
- Turning now to the description and with reference first to
FIG. 1 , a functional schematic block diagram of an exemplary high speed starter-generator system 100 for use with, for example, an aircraft gas turbine engine, is shown. This exemplary starter-generator system 100 may include a permanent magnet starter-generator (PMG) 110, anexciter 120, a main starter-generator 130, and anexciter controller 140. It will be appreciated that the starter-generator system 100 may also include one or more additional components, sensors, or controllers. However, a description of these additional components, sensors, and controllers, if included, is not necessary for a description of the invention, and will therefore not be further depicted or described. - In the depicted embodiment, a
PMG rotor 112 of thePMG 110, anexciter rotor 124 of theexciter 120, and a main starter-generator rotor 132 of the main starter-generator 130 may be mounted on acommon drive shaft 150. Thedrive shaft 150 may provide a rotational drive force to aprime mover 160, such as an an aircraft gas turbine engine, which may cause thePMG rotor 112, theexciter rotor 124, and the main starter-generator rotor 132 to all rotate at the same rotational speed. - By connecting the windings of a main starter-
generator stator 134 to a constant frequency (CF) power source (such as an APU or external power, not shown, but connect via a power line), a rotating field in an air gap of the main starter-generator 130 may be created. This air gap flux may induce current on the winding of the main starter-generator rotor 132. Interaction between the current in the winding of the main starter-generator rotor 132 and air gap flux may give rise to the starting torque to start the main engine (not shown) via theprime mover 160. - After engine start, the starter-
generator system 100 may operate as a starter-generator. It will be appreciated that as thePMG rotor 112 rotates, thePMG 110 may generate and supply AC power to theexciter controller 140 from aPMG stator 114. In response, theexciter controller 140 may be electrically coupled to anexciter stator 122 of theexciter 120 to supply AC power to theexciter stator 122. In turn, this may induce theexciter rotor 124 to supply an induced alternating current to the main starter-generator rotor 132. As the main starter-generator rotor 132 rotates, it may induce AC current in a main starter-generator stator 134, which may be, in turn, supplied to one or more loads. - Before proceeding further, it will be appreciated that although the starter-
generator system 100 described above is implemented with aPMG 110, the starter-generator system 100 could alternatively be implemented with other devices in place of thePMG 110, which respond to the rotational speed of thedrive shaft 150. In such an alternative embodiment, as shown inFIG. 2 , the starter-generator system 100 may include aspeed sensor 202 rather than thePMG 110. Thespeed sensor 202, which may be implemented using any one of numerous types of rotational speed sensors, may be configured to sense the rotational speed of thedrive shaft 150 and supply a speed signal (NCS) representative of the rotational speed of thedrive shaft 150 to theexciter controller 140. Theexciter controller 140 may use this speed signal NCS to modulate an energy source (not shown) that is independent of the starter-generator system 100, e.g. another generator associated with the prime mover but decoupled from the shaft or a battery-operated generator. Although theexciter controller 140 in this alternative embodiment may also supply AC power to theexciter stator 122, it may do so in response to the speed signal from thespeed sensor 202 rather than in response to the AC power supplied from thePMG 110, the frequency of which may be indicative of the rotational speed ofdrive shaft 150. In yet another embodiment (not shown), theexciter controller 140 may use a frequency signal from maingenerator stator windings 404 to determine the correct input frequency to theexciter stator windings 406 to achieve the predetermined constant output frequency at themain generator 130. In all embodiments, however, it should be noted that the signal supplied to theexciter controller 140, regardless of whether it is the AC power signal from thePMG 110 or the speed signal from thespeed sensor 202, may be representative of shaft rotational speed. - Referring now to
FIG. 3 , it may be seen, for example, that theexciter rotor 124 and the main starter-generator rotor 132 may be configured differently from conventional brushless AC starter-generator systems, and theexciter stator 122 and main starter-generator stator 134 may also be configured differently from conventional brushless AC generator systems. In particular, theexciter rotor 124 and the main starter-generator rotor 132 may be implemented with two phaseexciter rotor windings 402 and two phasemain rotor windings 408 respectively. These two phase windings may be configured to be shifted by a value in a range of from 80 electrical degrees to 100 electrical degrees in time and in space, with 90 electrical degrees being an exemplary amount (resulting in the phase windings being in quadrature with each other). Conversely, theexciter stator 122 may be implemented with three phaseexciter stator windings 406 as shown inFig. 3 or two phaseexciter stator windings 406 as shown inFig. 4 , while the main starter-generator stator 134 may be implemented with standard three phasemain stator windings 404. It will be appreciated that core of theexciter stator 122 can be configured to use either slotted cylindrical poles or salient poles. Another difference from conventional brushless AC generator systems may be that there may be no rotating rectifier assemblies coupled between theexciter rotor 124 and themain rotor 132. Rather, theexciter rotor windings 402 may be directly coupled to themain rotor windings 408. - The
exciter controller 140 may be implemented, at least in part, as a power converter circuit that is configured, in response to the signal supplied to it from either thePMG 110 or main starter-generator stator windings 404, to supply variable-frequency, three-phase excitation to theexciter stator windings 406, as shown inFIG. 3 , with either a relatively positive or negative phase sequence or to supply a DC current in the synchronous operating mode. Alternatively, theexciter controller 140 may be implemented to supply variable frequency, two-phase excitation to theexciter stator windings 406, as shown inFIG. 4 . In either case, theexciter rotor windings 402 may be configured to provide two phase excitation current to the main starter-generator rotor windings 408. These two phase windings are shifted by 90 electrical degrees in time and in space. It may be appreciated that relatively negative phase sequence excitation, as used herein, is excitation that is supplied in a direction opposite that which theexciter rotor 124 is rotating, and relatively positive sequence excitation, as used herein, is excitation that is supplied in a direction the same as which theexciter rotor 124 is rotating. It may be also appreciated that the exciter can be operating at three different modes, namely sub synchronous (negative phase sequence), super synchronous (positive phase sequence) and synchronous (DC current). - The excitation frequency and phase sequence that the
exciter controller 140 may supply to theexciter stator windings 406 may depend upon the desired torque and rotational speed needed to turn theprime mover 160 in order to augment the main starter-generator stator 134. Alternatively, theexciter controller 140 may supply to theexciter stator windings 406 an excitation frequency and phase sequence to control the starting of the main engine (not shown) and avoid high in-rush current being generated in themain stator windings 404 and power supply units (not shown). In other words, theexciter controller 140 may control the phasing and frequency of the current in theexciter stator 122 to produce the appropriateprime mover 160 starting torque to meet the main engine start torque profile. This may eliminate the requirement for controlled power electronics to be supplied to the main starter-generator stator 134. - Referring now to
Figure 5 , the present invention may also include amethod 500 for starting an aircraft engine. Such amethod 500 may include, for example, astep 510 of creating a rotor winding scheme using two phase windings that are in quadrature with each other and are controlled in a manner that allows the air gap flux to rotate at a speed that is synchronous with the stator power frequency. The method may also include astep 520 for controlling the rotor flux speed by an exciter stator that induces a current in the rotor windings of appropriate amplitude, phasing and frequency. Furthermore, the methods of the present invention may also include astep 530 for controlling, with an electronic controller, for example, the phasing and frequency of the current in an exciter stator having a plurality of windings wrapped therearound, to produce the appropriate rotor starting current and starting torque to meet the main engine start torque profile requirements. It may be appreciated that a starter-generator with the configuration configuration described in this invention can also start a main engine or other type of loads by directly connecting itsmain stator windings 404 to a readily available CF power supply without exciting theexciter stator 122. - It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the scope of the invention as set forth in the following claims.
Claims (9)
- (Currently Amended) An engine starting system (100) comprising:a main starter-generator (130) having a main starter-generator rotor (132), the main starter-generator rotor (132) having main starter-generator rotor windings (408) wound thereupon;an exciter (120) having an exciter rotor (124) and an exciter stator (122), the exciter rotor (124) having exciter rotor windings (402) wound thereon;wherein the exciter rotor (124) is configured to provide two phase excitation current to the main starter-generator rotor windings (408);wherein the system (100) is characterized in that:the main starter generator rotor windings (408) are two phase main starter-generator rotor windings that are in quadrature with each other;the exciter rotor windings (402) are two phase exciter rotor windings that are in quadrature with each other; anda connection between the main starter-generator rotor windings (408) and the exciter rotor windings (402) is made in an opposite phase sequence or in the same phase sequence.
- The engine starting system (100) of claim 1, wherein:the main starter-generator rotor (132) and the exciter rotor (124) are configured to rotate in a first direction at a variable rotational speed;the electrical excitation supplied to the exciter stator (122) is multi-phase AC or DC excitation having a phase sequence; andan exciter controller (140) supplies the multi-phase AC or DC electrical excitation to a plurality of exciter stator windings (406) in the phase sequence that is in either the first direction or a second direction opposite the first direction.
- The engine starting system (100) of claim 2, wherein:the exciter rotor windings (402) have a phase shift in space and time.
- The engine starting system (100) of claim 3, wherein:the amount of phase shift is a value within a range of about 80 electrical degrees to about 100 electrical degrees.
- The engine starting system (100) of claim 4, wherein the amount of phase shift is 90 electrical degrees.
- The engine starting system (100) of claim 5, wherein:the main starter-generator rotor windings (408) have a phase shift in space and time.
- The engine starting system (100) of claim 6, wherein:the amount of phase shift is a value within a range of about 80 electrical degrees to about 100 electrical degrees.
- The engine starting system (100) of any of claims 5 to 7, wherein the exciter controller (140) receives a speed signal from a device (202) that senses the speed of a shaft (150) of the main starter-generator (130), wherein the device (202) is selected from the group consisting of a permanent magnet starter-generator, a speed sensor, and the main stator windings.
- The engine starting system (100) of any of claims1 to 8, further comprising:a permanent magnet starter-generator (110) mounted on a shaft (150) of the main starter-generator (130) and configured, upon rotation thereof, to provide a speed signal to an exciter controller (140), the speed signal being representative of the rotational speed of the shaft (150),wherein the exciter controller (140) provides electrical excitation having a supply amplitude, a frequency, and a phase sequence based at least in part on the speed signal.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/758,189 US7514806B2 (en) | 2007-06-05 | 2007-06-05 | Engine start system with quadrature AC excitation |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2001121A2 EP2001121A2 (en) | 2008-12-10 |
EP2001121A3 EP2001121A3 (en) | 2015-10-21 |
EP2001121B1 true EP2001121B1 (en) | 2016-11-23 |
Family
ID=39773064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08157450.1A Not-in-force EP2001121B1 (en) | 2007-06-05 | 2008-06-02 | Engine start system with quadrature AC excitation |
Country Status (3)
Country | Link |
---|---|
US (1) | US7514806B2 (en) |
EP (1) | EP2001121B1 (en) |
ES (1) | ES2610813T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10723469B2 (en) | 2018-09-21 | 2020-07-28 | Hamilton Sunstrand Corporation | System and method for driving electrically driving a gas turbine engine via a wound field synchronous machine assisted by a PMG |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7863868B2 (en) * | 2007-06-05 | 2011-01-04 | Honeywell International Inc. | Generator with quadrature AC excitation |
NZ556760A (en) * | 2007-07-26 | 2008-12-24 | Auckland Uniservices Ltd | An electric generator |
US7592786B2 (en) * | 2007-08-13 | 2009-09-22 | Honeywell International Inc. | Aircraft engine starter/generator |
US8097968B2 (en) * | 2007-12-21 | 2012-01-17 | Honeywell International, Inc. | Position-controlled start from the AC line using a synchronous machine |
US7977925B2 (en) * | 2008-04-04 | 2011-07-12 | General Electric Company | Systems and methods involving starting variable speed generators |
US20090273192A1 (en) * | 2008-04-30 | 2009-11-05 | Guven Mustafa K | Doubly fed axial flux induction generator |
US7990115B2 (en) * | 2009-02-18 | 2011-08-02 | Honeywell International Inc. | High frequency generator without rotating diode rectifier |
US8278774B2 (en) * | 2009-06-29 | 2012-10-02 | Pratt & Whitney Canada Corp. | Gas turbine with wired shaft forming part of a generator/motor assembly |
US8097972B2 (en) * | 2009-06-29 | 2012-01-17 | Pratt & Whitney Canada Corp. | Gas turbine with magnetic shaft forming part of a generator/motor assembly |
US20110006545A1 (en) * | 2009-07-08 | 2011-01-13 | Hamilton Sundstrand Corporation | Nested exciter and main generator stages for a wound field generator |
US8207644B2 (en) | 2009-07-14 | 2012-06-26 | Hamilton Sundstrand Corporation | Hybrid cascading lubrication and cooling system |
US8198743B2 (en) * | 2009-09-11 | 2012-06-12 | Honeywell International, Inc. | Multi-stage controlled frequency generator for direct-drive wind power |
US8742605B1 (en) * | 2013-02-07 | 2014-06-03 | Hamilton Sundstrand Corporation | Method for aircraft engine start using synchronous generator and constant speed drive |
CN103457427A (en) * | 2013-09-03 | 2013-12-18 | 西北工业大学 | Exciter structure used for three-level starting/power generating system and control method |
CN103532454B (en) * | 2013-09-03 | 2015-09-23 | 西北工业大学 | The control method of two-phase brushless exciter in three grades of formula starting/generating system starting-generating processes |
GB201403178D0 (en) * | 2014-02-24 | 2014-04-09 | Rolls Royce Plc | Electrical power generator for a gas turbine engine |
US9209741B2 (en) * | 2014-02-24 | 2015-12-08 | The Boeing Company | Method and system for controlling synchronous machine as generator/starter |
US10305356B2 (en) | 2014-09-26 | 2019-05-28 | The Boeing Company | Synchronous machine with common motor/generator exciter stage |
US10075106B2 (en) * | 2015-04-10 | 2018-09-11 | Hamilton Sundstrand Corporation | DC synchronous machine |
US9467083B1 (en) * | 2015-05-21 | 2016-10-11 | Hamilton Sundstrand Corporation | Wound-field generator including electrically isolated engine alternator |
US20160365814A1 (en) * | 2015-06-09 | 2016-12-15 | Hamilton Sundstrand Corporation | Variable speed ac generator system including independently controlled rotor field |
US10472084B2 (en) | 2016-03-21 | 2019-11-12 | Honeywell International Inc. | Motor-generator for high efficiency auxiliary power system |
EP3235723B1 (en) * | 2016-04-22 | 2019-11-27 | Rolls-Royce plc | Aircraft electrical network |
US10415530B2 (en) * | 2018-01-16 | 2019-09-17 | The Boeing Company | System and method for operating an independent speed variable frequency generator as a starter |
US11056963B2 (en) | 2019-06-27 | 2021-07-06 | The Boeing Company | Hybrid wound-rotor motor and generator with induction feed and persistent current |
CN112152420A (en) * | 2019-06-27 | 2020-12-29 | 波音公司 | Hybrid Wound Rotor Motors and Generators with Inductive Feed and Continuous Current |
US11069463B2 (en) | 2019-06-27 | 2021-07-20 | The Boeing Company | Hybrid wound-rotor motor and generator with induction feed and persistent current |
US11362567B2 (en) * | 2020-01-16 | 2022-06-14 | The Boeing Company | Electrical power generation from turbine engines |
US11193426B2 (en) | 2020-04-16 | 2021-12-07 | The Boeing Company | Electrically geared turbofan |
CN112290736A (en) * | 2020-10-15 | 2021-01-29 | 东方电气集团东风电机有限公司 | Three-machine excitation steam generator suitable for isolated network operation |
KR20220082733A (en) | 2020-12-10 | 2022-06-17 | 더 보잉 컴파니 | Direct drive electrically-geared turbofan |
US11936252B2 (en) * | 2021-07-08 | 2024-03-19 | Hamilton Sundstrand Corporation (HSC) | Exciter windings for wide speed operation |
CN118554804B (en) * | 2024-07-24 | 2024-12-06 | 西安理工大学 | A method for predicting and controlling the exciter current of an aviation three-stage starting and generating system |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH402156A (en) * | 1962-11-30 | 1965-11-15 | Bbc Brown Boveri & Cie | Self-regulating three-phase synchronous generator |
CA832111A (en) | 1965-06-18 | 1970-01-13 | M. Potter Frederick | Variable speed constant frequency generating system |
US3908161A (en) | 1974-02-07 | 1975-09-23 | Gen Electric | Field excitation system for synchronous machines utilizing a rotating transformer brushless exciter generating combination |
US4093869A (en) | 1976-04-13 | 1978-06-06 | Westinghouse Electric Corp. | Quadrature axis field brushless exciter |
US4219739A (en) * | 1978-04-27 | 1980-08-26 | Lear Avia Corporation | Starter motor-alternator apparatus |
US4246531A (en) | 1978-09-20 | 1981-01-20 | Jordan John E | Constant frequency variable rpm generator |
JPS60226759A (en) | 1984-04-23 | 1985-11-12 | Yaskawa Electric Mfg Co Ltd | Brushless motor |
US5488286A (en) * | 1993-05-12 | 1996-01-30 | Sundstrand Corporation | Method and apparatus for starting a synchronous machine |
US5512811A (en) | 1994-01-21 | 1996-04-30 | Sundstrand Corporation | Starter/generator system having multivoltage generation capability |
SE9602079D0 (en) | 1996-05-29 | 1996-05-29 | Asea Brown Boveri | Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same |
JP3456158B2 (en) * | 1999-01-11 | 2003-10-14 | 国産電機株式会社 | Starter generator for internal combustion engine |
US6188204B1 (en) | 1999-08-05 | 2001-02-13 | Joseph Vithayathil | Brushless AC field system for stable frequency variable speed alternators |
US6788031B2 (en) | 2001-01-26 | 2004-09-07 | Larry Stuart Pendell | Induction generator system and method |
US6768278B2 (en) * | 2002-08-06 | 2004-07-27 | Honeywell International, Inc. | Gas turbine engine starter generator with switchable exciter stator windings |
US6906479B2 (en) * | 2002-08-06 | 2005-06-14 | Honeywell International, Inc. | Gas turbine engine starter generator with multiple windings on each exciter stator pole |
US6809496B2 (en) * | 2002-09-16 | 2004-10-26 | Honeywell International Inc. | Position sensor emulator for a synchronous motor/generator |
US6909263B2 (en) * | 2002-10-23 | 2005-06-21 | Honeywell International Inc. | Gas turbine engine starter-generator exciter starting system and method including a capacitance circuit element |
US20040183308A1 (en) * | 2003-03-17 | 2004-09-23 | Mingzhou Xu | Gas turbine engine starter generator that selectively changes the number of rotor poles |
FR2859835B1 (en) | 2003-09-11 | 2006-05-26 | Airbus France | FIXED FREQUENCY POWER GENERATING SYSTEM AND METHOD OF CONTROLLING THE SAME |
US20050162030A1 (en) * | 2004-01-27 | 2005-07-28 | Shah Manoj R. | Brushless exciter with electromagnetically decoupled dual excitation systems for starter-generator applications |
US7045986B2 (en) * | 2004-02-20 | 2006-05-16 | Honeywell International Inc. | Position sensing method and apparatus for synchronous motor generator system |
US7078826B2 (en) * | 2004-08-17 | 2006-07-18 | Honeywell International, Inc. | Hybrid gas turbine engine starter-generator |
US20060087293A1 (en) | 2004-10-26 | 2006-04-27 | Honeywell International, Inc. | AC generator with independently controlled field rotational speed |
FR2881896B1 (en) | 2005-02-04 | 2011-06-10 | Airbus France | FIXED FREQUENCY ELECTRIC GENERATION SYSTEM WITH INDUCTION COUPLER AND USE THEREOF IN AN AIRCRAFT |
US7301311B2 (en) * | 2006-02-22 | 2007-11-27 | Honeywell International, Inc. | Brushless starter-generator with independently controllable exciter field |
US7400056B2 (en) * | 2006-09-29 | 2008-07-15 | Honeywell International Inc. | Engine starter-generator optimized for start function |
-
2007
- 2007-06-05 US US11/758,189 patent/US7514806B2/en not_active Expired - Fee Related
-
2008
- 2008-06-02 ES ES08157450.1T patent/ES2610813T3/en active Active
- 2008-06-02 EP EP08157450.1A patent/EP2001121B1/en not_active Not-in-force
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10723469B2 (en) | 2018-09-21 | 2020-07-28 | Hamilton Sunstrand Corporation | System and method for driving electrically driving a gas turbine engine via a wound field synchronous machine assisted by a PMG |
Also Published As
Publication number | Publication date |
---|---|
EP2001121A2 (en) | 2008-12-10 |
US7514806B2 (en) | 2009-04-07 |
ES2610813T3 (en) | 2017-05-03 |
EP2001121A3 (en) | 2015-10-21 |
US20080303280A1 (en) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2001121B1 (en) | Engine start system with quadrature AC excitation | |
US7863868B2 (en) | Generator with quadrature AC excitation | |
US7915869B2 (en) | Single stage starter/generator with rotor quadrature AC excitation | |
EP1570566B1 (en) | Gas turbine engine starter generator with multiple windings on each exciter stator pole | |
US7301311B2 (en) | Brushless starter-generator with independently controllable exciter field | |
US6768278B2 (en) | Gas turbine engine starter generator with switchable exciter stator windings | |
US7388300B2 (en) | Starter-generator operable with multiple variable frequencies and voltages | |
JP5568129B2 (en) | Aircraft engine start / power generation system and control method | |
EP0237246B1 (en) | Starter generator system | |
US9543876B2 (en) | Three phase flux switching generator in a three stage wound field synchronous machine | |
US7400056B2 (en) | Engine starter-generator optimized for start function | |
EP2779421B1 (en) | Integrated starter generator | |
US20060087293A1 (en) | AC generator with independently controlled field rotational speed | |
EP2592728B1 (en) | Electromagnetic device | |
US8680734B2 (en) | Compact starter-generator with common core for main and exciter winding | |
EP3021478B1 (en) | A two stage flux switching machine for an electrical power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080602 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H02P 9/08 20060101AFI20150916BHEP Ipc: H02P 6/22 20060101ALI20150916BHEP Ipc: H02P 9/30 20060101ALI20150916BHEP |
|
17Q | First examination report despatched |
Effective date: 20151020 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: HONEYWELL INTERNATIONAL INC. |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB |
|
AXX | Extension fees paid |
Extension state: MK Extension state: BA Extension state: RS Extension state: AL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160713 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008047489 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2610813 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170503 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170526 Year of fee payment: 10 Ref country code: FR Payment date: 20170518 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008047489 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20170705 Year of fee payment: 10 Ref country code: DE Payment date: 20170623 Year of fee payment: 10 |
|
26N | No opposition filed |
Effective date: 20170824 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008047489 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190101 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180602 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180603 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |