EP1957221B1 - Combinaison de processus de coulage et compositions alliées produisant des pièces coulées de combinaison supérieure de propriétés de fluage à température élevée, de ductilité et de résistance à la corrosion - Google Patents
Combinaison de processus de coulage et compositions alliées produisant des pièces coulées de combinaison supérieure de propriétés de fluage à température élevée, de ductilité et de résistance à la corrosion Download PDFInfo
- Publication number
- EP1957221B1 EP1957221B1 EP06805766A EP06805766A EP1957221B1 EP 1957221 B1 EP1957221 B1 EP 1957221B1 EP 06805766 A EP06805766 A EP 06805766A EP 06805766 A EP06805766 A EP 06805766A EP 1957221 B1 EP1957221 B1 EP 1957221B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- metals
- process according
- anyone
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 63
- 239000000956 alloy Substances 0.000 title claims abstract description 63
- 238000005266 casting Methods 0.000 title claims abstract description 15
- 239000000203 mixture Substances 0.000 title description 15
- 230000007797 corrosion Effects 0.000 title description 13
- 238000005260 corrosion Methods 0.000 title description 13
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 30
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 24
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 239000011777 magnesium Substances 0.000 claims abstract description 16
- 239000004411 aluminium Substances 0.000 claims abstract description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 14
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 12
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 11
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 11
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 10
- 239000011575 calcium Substances 0.000 claims abstract description 10
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 230000003068 static effect Effects 0.000 claims abstract description 5
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 239000011701 zinc Substances 0.000 claims abstract description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 3
- 238000001816 cooling Methods 0.000 claims description 13
- 229910052779 Neodymium Inorganic materials 0.000 claims description 8
- 229910052746 lanthanum Inorganic materials 0.000 claims description 8
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 7
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 6
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 6
- 238000012360 testing method Methods 0.000 description 15
- 238000007711 solidification Methods 0.000 description 14
- 230000008023 solidification Effects 0.000 description 14
- 229910003023 Mg-Al Inorganic materials 0.000 description 11
- 238000004512 die casting Methods 0.000 description 11
- 230000005496 eutectics Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 239000010410 layer Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 229910000691 Re alloy Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910000549 Am alloy Inorganic materials 0.000 description 3
- 229910021323 Mg17Al12 Inorganic materials 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 101001108245 Cavia porcellus Neuronal pentraxin-2 Proteins 0.000 description 2
- 241000446313 Lamella Species 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- GANNOFFDYMSBSZ-UHFFFAOYSA-N [AlH3].[Mg] Chemical compound [AlH3].[Mg] GANNOFFDYMSBSZ-UHFFFAOYSA-N 0.000 description 1
- 244000144987 brood Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000010120 permanent mold casting Methods 0.000 description 1
- 238000010111 plaster casting Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/08—Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/04—Casting aluminium or magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/06—Alloys based on magnesium with a rare earth metal as the next major constituent
Definitions
- the invention relates to a process for casting a magnesium alloy consisting of 2,0 - 6,00 % by weight of aluminium, 3,00 - 8,00 % by weight of rare earth metals (RE-metals), the ratio of the amount of RE-metals to the amount of aluminium expressed as % by weight being larger than 0,8, at least 40 % by weight of the RE-metals being cerium, less than 0,5 % by weight of manganese, less than 1,00 % by weight of zinc, less than 0,01% by weight of calcium less than 0,01% by weight of strontium and the balance being magnesium and unavoidable impurities, the total impurity level being below 0,1 % by weight.
- RE-metals rare earth metals
- Magnesium-based alloys are widely used as cast parts in the aerospace and automotive industries. Magnesium-based alloy cast parts can be produced by conventional casting methods, which include die-casting, sand casting, permanent and semi-permanent mold casting, plaster-mold casting and investment casting.
- Mg-based alloys demonstrate a number of particularly advantageous properties that have prompted an increased demand for magnesium-based alloy cast parts in the automotive industry. These properties include low density, high strength-to-weight ratio, good castability, easy machinability and good damping characteristics.
- Mg-Al-alloys or Mg-Al-Zn-alloys are known to lose their creep resistance at temperatures above 120° C.
- Mg-At-Si alloys have been developed for higher temperature applications and offer only a limited improvement in creep resistance.
- Alloys of the Mg-Al-Ca and Mg-Al-Sr system offer a further improvement in creep resistance, but a great disadvantage with these alloys is problems with castability. This is particularly a problem with high metal velocities impinging directly onto the die surface, the so-called water hammer effect.
- alloy AE48 (4% AP, 2-3 % RE) offers a significant improvement in elevated temperatures properties and corrosion.
- Mg-Al alloys containing elements like Sr and Ca offer a further improvement in creep properties, however at the cost of reduced castability.
- Alloys of the Mg-Al-Ca and Mg-Al-Sr system offer a further improvement in creep resistance, but a great disadvantage with these alloys are problems with castability. This is particularly a problem with high metal velocities impinging directly onto the die surface, the so-called water hammer effect.
- each machine has a die 10, 20 provided with a hydraulic damping system 11, 21 respectively.
- Molten metal is introduced into the die by means of a shot cylinder 12, 22 provided with a piston 13, 23 respectively.
- a shot cylinder 12, 22 provided with a piston 13, 23 respectively.
- an auxiliary system for metering of the metal to the horizontal shot cylinder is required.
- the hot chamber machine ( Fig. 1 B) uses a vertical piston system (12, 23) directly in the molten alloy.
- the steel die 10, 20 is equipped with an oil (or water) cooling system controlling the die temperature in the range of 200-300°C.
- a prerequisite for good quality is a short die filling time to avoid solidification of metal during filling.
- a die filling time in the order of 10 -2 s x average part thickness (mm) is recommended. This is obtained by forcing the alloy through a gate with high speeds typically in the range 30-300 m/s. Plunger velocities up to 10 m/s with sufficiently large diameters are being used to obtain the desired volume flows in the shot cylinder for the short filling times needed.
- Fig. 2 there is shown the relationship between the solidification range and the microstructure.
- Line 30 indicates the grain size obtained, whereas line 31 is the obtained value for the secondary dendrite arm spacings.
- cooling rate With die casting grain refining is obtained by the cooling rate. As mentioned above cooling rates in the range of 10-1000 °C/s is normally achieved. This typically results in grain sizes in the range of 5-100 ⁇ m.
- the castability term describes the ability of an alloy to be cast into a final product with required functionalities and properties. It generally contains 3 categories; (1) the ability to form a part with all desired geometry features and dimensions, (2) the ability to produce a dense part with desired properties, and (3) the effects on die cast tooling, foundry equipment and die casting process efficiency.
- the German Patent Application 2122148 describes alloys of the Mg-Al-RE type mainly Mg-Al-RE alloys with RE content ⁇ 3wt%, although alloys with higher RE content are discussed as well. It is known that the alloy AE42 (4% Al, 2-3% RE) offers a significant improvement in elevated temperature properties and corrosion properties. It is experienced that small RE additions to Mg-Al alloys lead to a significant improvement in corrosion properties, but a deterioration in the castability as problems with die sticking occur more frequently. In the annexed Fig. 5 there is shown the regions of excellent, poor and very poor castability in the Mg-Al-Re system.
- the line 40 is the line indicating the solubility of RE at 680 °C, whereas the line 41 indicates the solubility of RE at 640 °C.
- the region (dark) 42 represents the composition with very poor castability.
- the region (intermediate) 43 represents the composition with poor castability and the region 44 (light) represents the compositions with excellent castability. As illustrated in Fig. 5 , the castability becomes worse as the RE content of the alloy increases. However, as Fig.
- the compositions of the present invention minimise the volume fraction of the brittle Mg 17 Al 12 phase (The RE/Al ratio in the dispersoid phases increases with increasing %RE/%Al content in the alloy). Due to the fact that the eutectic Mg 17 Al 2 phase melts at around 420°C, the conventional Mg-Al alloys like AM50, AM60 and AZ91 will have a solidification range of nearly 200°C as shown in the annexed Fig. 6. Fig 6 shows the fraction solid (expressed in % by weight) on the horizontal axis versus the temperature (°C) on the vertical axis for a number of alloys. The Mg-Al-RE alloys with the %RE/%Al ratios as specified in the present invention will solidify completely at around 570°C, hence the solidification range is only approximately 50°C.
- Mg-Al die casting alloys improves the die castability. This is due to the fact that Mg-Al alloys have a wide solidification range, which makes them inherently difficult to cast unless a sufficiently large amount of eutectic is present at the end of solidification. This can explain the good castability of AZ91 D consistent with the cooling curves shown in Fig. 6 . As the Al-content is reduced to 6, 5 and 2% in AM60, AM50 and AM20, respectively, the remaining eutectic is decreasing to a level where feeding becomes difficult during the final stages of solidification which means, for thick walled parts, microporosity and even larger voids can be present.
- the ability to feed during the final stages is less important (while alloy fluidity becomes the significant factor) since the volume shrinkage is partly taken up by thickness reduction due to shrinkage from the die walls.
- the AE44 and AE35 alloys show very different cooling characteristics from Mg-Al alloys. The solidification interval is significantly smaller, indicating concentrated shrinkage porosity can be decreased during solidification. These alloys have good fluidity during mold filling, and can thus easily be cast into final products with less casting defects.
- the castability of AE44 and AE35 is relatively equal to that of AZ91D.
- a further issue related to the narrow solidification interval is the fact that the commonly observed inverse segregation occurring in AZ91 D as well as AM alloys will not occur. This is illustrated by the fact that AE alloys with high RE contents have a shiny surface without segregations of Mg-Al eutectic phase. The surface layer solidifies during and immediately after die filling, and the temperature will rapidly decrease below the solidus temperature, thereby preventing molten metal to be forced towards the die surface when shrinkage starts. This will be beneficial to prevent reactions between the die wall and molten metal, which could lead to die sticking.
- the surface layer having a thickness of approx. 50 ⁇ m, consists of equiaxed grains with size about 10 ⁇ m. This is a fairly small grain size, which can be explained by the rapid cooling conditions on the die wall.
- the intermediate layer is about 100 ⁇ m thick and is extremely fine grained. The morphology is different from the former and DAS in the range of 2-4 ⁇ m is observed. The change in equilibrium melting point due to pressure may explain this observation. When the metal becomes pressurized the equilibrium melting point increases, i.e., the metal suddenly becomes undercooled.
- the core consists of equiaxed grains of ⁇ 20 ⁇ m.
- the solidification of the core is restricted by the heat flow out of the core to the die. Both the heat transport through the already solidified layer and the heat transfer over the casting/die interface will give a slower cooling rate than the skin and thus a coarser microstructure is formed.
- Fig. 8 there is shown a box die (upper) part of the drawing. Micrographs of examples from node 3 (close to the gate) for alloys AM60, AM40, AE63, AE44 and AE35 as shown below. Hot cracks are observed in AM40 and AE63.
- Fig. 8 have demonstrated that AE44 and AE35 are less susceptible to hot tearing than AM alloys. This is explained from the fairly rapid solidification of the surface layer resulting in the relatively fine grained structure as described above.
- this layer becomes very ductile, and is therefore able to deform when thermal strains are developing during solidifaction.
- a surface layer with coarser grains, as would typically appear in alloys with larger solidification interval, and/or a Mg 17 Al 12 rich layer, will have a much lower ductility and would tend to crack and form hot tears rather than deform.
- Fig. 9 are SEM-BEC (Backscatter Electronic Composition) images showing the die cast microstructure of (from left to right) AE44, AE35 and AE63. While Al alone provides the solid solution strengthening, RE combines with AL forming dispersoid phases in the grain boundary regions.
- FIG. 10 A further enlargement of the SEM-BEC-images for AE 44 is shown in Fig. 10 , which also shows the lamellar structure of Al x RE y phases in AE44.
- the dispersoid AlxREy phases in the AE alloys consist of an extremely fine lamellar structure. This structure of submicron lamellas are stiffening the grain boundaries thereby preventing creep.
- these lamellas are not brittle (or not as brittle as the eutectic Mg-Al) as the die cast AE44 alloy experience a ductility that is similar to AE42.
- the network (mainly Al 11 RE 3 ) becomes fragmented and the grain boundary regions are probably influenced by a substantial amount of eutectic Mg-Al, reducing the ductility and the creep properties.
- AE42 there is probably also a significant amount of eutectic Mg-Al that limits the creep properties.
- the alloy AE35 has slightly lower ductility than AE44, but still higher than AE63.
- Fig. 11 Numerous examples of mechanical properties including ductility, tensile strength, creep resistance and corrosion properties of the AE alloys are shown later.
- the unique combination of creep resistance and ducility compared to existing alloys is illustrated in Fig. 11 .
- the ducility horizontal axis
- the zone 50 comprises AM-alloys, zones 51 AE-alloys, zone 52 AZ91 -alloy and zone 53 other high temperature alloys.
- the AE alloys of the present invention are the only die casting alloys that combine ducility and elevated temperature properties in this way, and hence offer numerous new and unexplored opportunities for constructors and designers particulary in the automotive industry.
- the present invention therefore provides:
- RE-metais in general a number of RE-metais can be used as alloying element, such as e.g. Ce, La, Nd and or Pr and mixtures thereof. It is however preferred to use cerium in substantial amounts as this metal gives the best mechanical properties. Mn is added to improve the corrosion resistance but its addition is restricted due to limited solubility.
- the aluminium content is between 2,0 and 6,00 % be weight, more preferably between 2,60 and 4,50 % by weight.
- the RE-content is between 3,50 and 7,00 % by weight, the upper limit being restricted by the solubility of RE in the Mg-Al-RE system as indicated in Fig. 1 .
- the RE/Al ratio is larger than 0.9.
- composition of the alloy is selected in such a way that the aluminium content is between 3,6 and 4,5 % by weight and the RE-content is between 3,6 and 4,5 % be weight, with the additional constraint that the Re/Al ratio is larger than 0,9.
- This type of alloys can be used for applications up to 175°C while still showing excellent creep properties and tensile strength. Moreover this alloy does not show any degradation of its properties due to ageing and has a good castability.
- the composition of the alloy is such that the aluminium content is between 2,6 and 3,5 % by weight and the RE-content is greater than 4,6 % by weight.
- this alloy does not show any degradation of properties due to ageing.
- the RE-metals are selected from the group cerium, lanthanum, neodymium and praseodymium.
- the RE-metals are contributing to the ease of alloying, but also increase the corrosion resistance, the creep resistance and improve the mechanical properties.
- the amount of lanthanum is at least 15 % by weight and more preferably at least 20 % by weight of the total content of RE-metals, Preferably the amount of lanthanum is less than 35 % by weight of the total content of RE-metals.
- the amount of neodymium is at least 7 % by weight and more preferably at least 10 % by weight of the total content of RE-metals. Preferably the amount of neodymium is less than 20 % by weight of the total content of RE-metals.
- the amount of praseodymium is at least 2 % by weight and more preferably at least 4 % by weight of the total content of RE-metals. Preferably the amount of praseodymium is less than 10 % by weight. Of the total content of RE-metals.
- the amount of cerium is greater than 50 % by weight of the total content of RE-metals, preferably between 50 and 55 % by weight.
- test bars Of each alloy purposes a number of test bars has been made to do the testing described in the following examples. The performed tests are the following :
- Test-bars of 6 mm in accordance to ASTM have been made, and the following
- test material is used :
- the testing is done in accordance with ASTM E 139
- the corrosion is tested according to ASTM 117.
- the Creep strain has been measured as a function of the time.
- the y-axis is representing the creep strain expressed in percentage
- the x-axis is representing the time expressed in hours.
- the y-axis is representing the remaining load expressed in percentage of initial load, whereas the x-axis is representing the time expressed in hours.
- the y-axis is representing the RE-content expressed in % by weight whereas the x-axis is representing the Al-content also expressed in % by weight.
- the border lines between the zones with different shades are representing lines of equal corrosion resistances.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Forging (AREA)
- Continuous Casting (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Mold Materials And Core Materials (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Claims (18)
- Processus pour couler un alliage de magnésium consistant en
2,0 à 6,00 % en poids d'aluminium,
3,00 à 8,00 % en poids de métaux des terres rares (métaux RE) ,
le rapport de la quantité de métaux RE Sur la quantité d'aluminium exprimé en % en poids étant plus grand que 0,8 ,
au moins 40 % en poids des métaux RE étant du cérium,
moins de 0,5 % en poids de manganèse,
moins de 1,00 % en poids de zinc,
moins de 0,01 % en poids de calcium,
moins de 0,01 % en poids de strontium
et le reste étant du magnésium et des impuretés inévitables, le niveau total d'impureté étant au-dessous de 0,1 % en poids, dans lequel- l'alliage est coulé dans une matrice dont la température est commandée dans la plage de 180 à 340 °C,- la matrice est remplie dans un temps qui, exprimé en millisecondes, est égal au produit d'un nombre entre 5 et 500 multiplié par l'épaisseur de partie moyenne exprimée en millimètres,- les pressions statiques de métal étant maintenues pendant la coulée entre 20 et 70 MPa et sont par la suite intensifiées jusqu'à 180 MPa. - Processus selon la revendication 1, dans lequel la température de matrice est commandée à une température dans la plage de 200 à 270 °C.
- Processus selon la revendication 1 ou 2, dans lequel le temps de remplissage de la matrice exprimé en millisecondes est égal au produit de l'épaisseur de partie moyenne exprimée en millimètres multiplié par un nombre entre 8 et 200, de préférence entre 5 et 50, le plus de préférence entre 5 et 20.
- Processus selon chacune des revendications 1 à 3, dans lequel la pression statique de métal pendant la coulée est maintenue entre 30 et 70 MPa.
- Processus selon chacune des revendications 1 à 4, dans lequel la vitesse de refroidissement après la coulée est dans la plage de 10 à 1 000 °C/s.
- Processus selon l'une quelconque des revendications 1 à 5, dans lequel la teneur en aluminium est entre 2,50 et 5,50 % en poids, de préférence entre 2,60 et 4,50 % en poids.
- Processus selon l'une quelconque des revendications 1 à 6, dans lequel la teneur en RE est entre 3,50 et 7,00 % en poids.
- Processus selon l'une quelconque des revendications 1 à 7, dans lequel la teneur en aluminium est entre 3,6 et 4,5 % en poids et la teneur en RE est entre 3,6 et 4,5 % en poids, et que le rapport RE-Al est supérieur à 0,9.
- Processus selon l'une quelconque des revendications 1 à 8, dans lequel la teneur en aluminium est entre 2,6 et 3,5 % en poids et la teneur en RE est supérieure à 4,6 % en poids.
- Processus selon l'une quelconque des revendications 1 à 9, dans lequel les métaux RE sont sélectionnés à partir du groupe cérium, lanthane, néodyme et praséodyme.
- Processus selon la revendication 10, dans lequel la quantité de lanthane est d'au moins 15 % en poids de la teneur totale en métaux RE, de préférence au moins 20 % en poids.
- Processus selon la revendication 10 ou 11, dans lequel la quantité de lanthane est au plus de 35 % en poids de la teneur totale en métaux RE.
- Processus selon l'une quelconque des revendications 10 à 12, dans lequel la quantité de néodyme est d'au moins 7 en poids de la teneur totale en métaux RE, de préférence d'au moins 10 % en poids.
- Processus selon l'une quelconque des revendications 10 à 13, dans lequel la quantité de néodyme est au plus de 20 en poids de la teneur totale en métaux RE.
- Processus selon l'une quelconque des revendications 10 à 14, dans lequel la quantité de praséodyme est d'au moins 2 % en poids de la teneur totale en métaux RE, de préférence d'au moins 4 % en poids.
- Processus selon l'une quelconque des revendications 10 à 15, dans lequel la quantité de praséodyme est au plus de 10 % en poids de la teneur totale en métaux RE.
- Processus selon l'une quelconque des revendications 10 à 16, dans lequel à quantité de cérium est supérieure à 50 % en poids de la teneur totale en métaux RE, de préférence entre 50 et 55 % en poids.
- Processus selon l'une quelconque des revendications 10 à 17, dans lequel la quantité de calcium et/ou de strontium est inférieure à 0,01 % en poids.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL06805766T PL1957221T3 (pl) | 2005-11-10 | 2006-09-19 | Kombinacja sposobu odlewania i kompozycji stopów dająca części odlewnicze o udoskonalonej kombinacji cech pełzania w podwyższonych temperaturach, ciągliwości i osiągach korozyjnych |
EP06805766A EP1957221B1 (fr) | 2005-11-10 | 2006-09-19 | Combinaison de processus de coulage et compositions alliées produisant des pièces coulées de combinaison supérieure de propriétés de fluage à température élevée, de ductilité et de résistance à la corrosion |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05077583 | 2005-11-10 | ||
EP06805766A EP1957221B1 (fr) | 2005-11-10 | 2006-09-19 | Combinaison de processus de coulage et compositions alliées produisant des pièces coulées de combinaison supérieure de propriétés de fluage à température élevée, de ductilité et de résistance à la corrosion |
PCT/EP2006/009082 WO2007054152A1 (fr) | 2005-11-10 | 2006-09-19 | Combinaison de processus de coulage et compositions alliées produisant des pièces coulées de combinaison supérieure de propriétés de fluage à température élevée, de ductilité et de résistance à la corrosion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1957221A1 EP1957221A1 (fr) | 2008-08-20 |
EP1957221B1 true EP1957221B1 (fr) | 2011-12-28 |
Family
ID=37546955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06805766A Active EP1957221B1 (fr) | 2005-11-10 | 2006-09-19 | Combinaison de processus de coulage et compositions alliées produisant des pièces coulées de combinaison supérieure de propriétés de fluage à température élevée, de ductilité et de résistance à la corrosion |
Country Status (17)
Country | Link |
---|---|
US (1) | US20090133849A1 (fr) |
EP (1) | EP1957221B1 (fr) |
JP (1) | JP5290764B2 (fr) |
KR (1) | KR101191105B1 (fr) |
CN (1) | CN101528390B (fr) |
AT (1) | ATE538887T1 (fr) |
AU (1) | AU2006312743B2 (fr) |
BR (1) | BRPI0618517B1 (fr) |
CA (1) | CA2627491C (fr) |
EA (1) | EA013656B1 (fr) |
ES (1) | ES2379806T3 (fr) |
HR (1) | HRP20120244T1 (fr) |
PL (1) | PL1957221T3 (fr) |
PT (1) | PT1957221E (fr) |
RS (1) | RS52267B (fr) |
SI (1) | SI1957221T1 (fr) |
WO (1) | WO2007054152A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202016105961U1 (de) | 2016-10-24 | 2016-12-20 | Magontec Gmbh | Hochfeste und Hochduktile Magnesiumschmelzlegierung |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20063703L (no) * | 2006-08-18 | 2008-02-19 | Magontec Gmbh | Magnesium stopeprosess og legeringssammensetning |
CN101158002B (zh) * | 2007-11-06 | 2011-01-12 | 中国科学院长春应用化学研究所 | 含铈、镧的ae系耐热压铸镁合金 |
CN102162053B (zh) * | 2011-03-11 | 2012-07-25 | 闻喜县瑞格镁业有限公司 | 一种高强度耐热抗蠕变稀土镁合金的制备方法 |
US9070304B2 (en) | 2012-03-28 | 2015-06-30 | Korea Institute Of Geoscience And Mineral Resources | Debris-flow simulation apparatus having variable flume |
KR101195409B1 (ko) | 2012-04-10 | 2012-11-05 | 한국지질자원연구원 | 수막현상 재현형 토석류 모형시험장치 |
US9669459B2 (en) * | 2012-10-26 | 2017-06-06 | Ford Motor Company | System and method of making a cast part |
CN103469124B (zh) * | 2013-09-12 | 2015-12-09 | 哈尔滨工程大学 | 一种原位自生Al4La晶须增强镁基复合材料及制备方法 |
IL238698B (en) * | 2015-05-07 | 2018-04-30 | Dead Sea Magnesium Ltd | Creep resistant, ductile magnesium alloys for die casting |
CN107052298A (zh) * | 2017-02-14 | 2017-08-18 | 山东银光钰源轻金属精密成型有限公司 | 一种轿车车门外板铝合金压铸模具 |
CN106862523A (zh) * | 2017-02-14 | 2017-06-20 | 山东银光钰源轻金属精密成型有限公司 | 一种c级轿车用铝合金结构件压铸模具 |
CN109136699B (zh) * | 2017-06-15 | 2021-07-09 | 比亚迪股份有限公司 | 高导热镁合金、逆变器壳体、逆变器及汽车 |
CN107604228B (zh) * | 2017-08-30 | 2019-09-27 | 上海交通大学 | 高导热耐腐蚀压铸镁合金及其制备方法 |
SE544427C2 (en) * | 2021-04-21 | 2022-05-24 | Husqvarna Ab | A Magnesium Alloy and a High Performance Magnesium Cylinder made from the Magnesium Alloy |
US20230383384A1 (en) * | 2022-02-15 | 2023-11-30 | Metali Llc | Methods and Systems for High Pressure Die Casting |
CN114921707B (zh) * | 2022-05-09 | 2023-04-14 | 苏州慧金新材料科技有限公司 | 一种稀土与碳化硅协同增强的镁基复合材料及其制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO132492C (fr) | 1973-10-01 | 1975-11-19 | Nl Industries Inc | |
US5552110A (en) * | 1991-07-26 | 1996-09-03 | Toyota Jidosha Kabushiki Kaisha | Heat resistant magnesium alloy |
US6264763B1 (en) | 1999-04-30 | 2001-07-24 | General Motors Corporation | Creep-resistant magnesium alloy die castings |
EP1060817B1 (fr) | 1999-06-04 | 2004-09-15 | Mitsui Mining and Smelting Co., Ltd | Procédé de moulage sous pression d'alliages de magnésium |
CN1225565C (zh) * | 2001-08-24 | 2005-11-02 | 三菱铝株式会社 | 模铸镁合金 |
US6892790B2 (en) | 2002-06-13 | 2005-05-17 | Husky Injection Molding Systems Ltd. | Process for injection molding semi-solid alloys |
AUPS311202A0 (en) * | 2002-06-21 | 2002-07-18 | Cast Centre Pty Ltd | Creep resistant magnesium alloy |
WO2005108634A1 (fr) * | 2004-05-10 | 2005-11-17 | Norsk Hydro Technology B.V. | Alliage de magnesium presentant des performances superieures a temperature elevee |
JP4926496B2 (ja) * | 2006-02-24 | 2012-05-09 | 株式会社豊田中央研究所 | 耐熱性、鋳造性、耐食性に優れたダイカスト用マグネシウム合金 |
NO20063703L (no) | 2006-08-18 | 2008-02-19 | Magontec Gmbh | Magnesium stopeprosess og legeringssammensetning |
-
2006
- 2006-09-19 US US12/093,070 patent/US20090133849A1/en not_active Abandoned
- 2006-09-19 BR BRPI0618517-7A patent/BRPI0618517B1/pt active IP Right Grant
- 2006-09-19 EA EA200801268A patent/EA013656B1/ru not_active IP Right Cessation
- 2006-09-19 AT AT06805766T patent/ATE538887T1/de active
- 2006-09-19 JP JP2008539269A patent/JP5290764B2/ja active Active
- 2006-09-19 EP EP06805766A patent/EP1957221B1/fr active Active
- 2006-09-19 KR KR1020087011832A patent/KR101191105B1/ko active IP Right Grant
- 2006-09-19 CN CN2006800414689A patent/CN101528390B/zh active Active
- 2006-09-19 AU AU2006312743A patent/AU2006312743B2/en not_active Ceased
- 2006-09-19 WO PCT/EP2006/009082 patent/WO2007054152A1/fr active Application Filing
- 2006-09-19 ES ES06805766T patent/ES2379806T3/es active Active
- 2006-09-19 SI SI200631272T patent/SI1957221T1/sl unknown
- 2006-09-19 PT PT06805766T patent/PT1957221E/pt unknown
- 2006-09-19 PL PL06805766T patent/PL1957221T3/pl unknown
- 2006-09-19 CA CA2627491A patent/CA2627491C/fr active Active
- 2006-09-19 RS RS20120132A patent/RS52267B/en unknown
-
2012
- 2012-03-16 HR HR20120244T patent/HRP20120244T1/hr unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202016105961U1 (de) | 2016-10-24 | 2016-12-20 | Magontec Gmbh | Hochfeste und Hochduktile Magnesiumschmelzlegierung |
Also Published As
Publication number | Publication date |
---|---|
US20090133849A1 (en) | 2009-05-28 |
CN101528390B (zh) | 2011-06-22 |
ATE538887T1 (de) | 2012-01-15 |
CA2627491A1 (fr) | 2007-05-18 |
JP5290764B2 (ja) | 2013-09-18 |
PL1957221T3 (pl) | 2012-07-31 |
HRP20120244T1 (hr) | 2012-04-30 |
AU2006312743B2 (en) | 2010-10-21 |
SI1957221T1 (sl) | 2012-03-30 |
EA200801268A1 (ru) | 2008-10-30 |
ES2379806T3 (es) | 2012-05-03 |
JP2009527637A (ja) | 2009-07-30 |
KR20080066805A (ko) | 2008-07-16 |
KR101191105B1 (ko) | 2012-10-16 |
RS52267B (en) | 2012-10-31 |
PT1957221E (pt) | 2012-04-03 |
AU2006312743A1 (en) | 2007-05-18 |
WO2007054152A1 (fr) | 2007-05-18 |
BRPI0618517B1 (pt) | 2018-01-09 |
EA013656B1 (ru) | 2010-06-30 |
BRPI0618517A2 (pt) | 2011-09-06 |
EP1957221A1 (fr) | 2008-08-20 |
CA2627491C (fr) | 2011-11-22 |
CN101528390A (zh) | 2009-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1957221B1 (fr) | Combinaison de processus de coulage et compositions alliées produisant des pièces coulées de combinaison supérieure de propriétés de fluage à température élevée, de ductilité et de résistance à la corrosion | |
EP0799901B1 (fr) | Alliage à base de magnesium résistant à la chaleur | |
AU753538B2 (en) | Die casting magnesium alloy | |
KR101082065B1 (ko) | 합금 조성물의 캐스팅 방법 | |
EP2369025B1 (fr) | Alliage de magnésium et pièce coulée en alliage de magnésium | |
Li et al. | Effect of specific pressure on microstructure and mechanical properties of squeeze casting ZA27 alloy | |
JPH0967635A (ja) | 強度と靱性に優れた高圧鋳造によるアルミニウム合金鋳物とその製造方法 | |
JP4145242B2 (ja) | 鋳物用アルミニウム合金、アルミニウム合金製鋳物およびアルミニウム合金製鋳物の製造方法 | |
EP4093894B1 (fr) | Alliages d'aluminium coulé sous pression pour composants structurels | |
JP4285188B2 (ja) | 鋳造用耐熱マグネシウム合金とマグネシウム合金製鋳物およびその製造方法 | |
KR100916194B1 (ko) | 고강도 고인성 마그네슘 합금 | |
EP3381586B1 (fr) | Procédé de moule permanent à basse pression sans revêtement | |
MX2008006088A (en) | A combination of casting process and alloy compositions resulting in cast parts with superior combination of elevated temperature creep properties, ductility and corrosion performance | |
Masoumi | Effects of applied pressures and calcium contents on microstructure and tensile properties of squeeze cast magnesium-aluminum-calcium alloys. | |
Masoumi | SQUEEZE CAST Mg-Al-Ca ALLOYS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080418 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20090316 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAX | Requested extension states of the european patent have changed |
Extension state: MK Payment date: 20080430 Extension state: BA Payment date: 20080430 Extension state: HR Payment date: 20080430 Extension state: RS Payment date: 20080430 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: BA HR MK RS |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 538887 Country of ref document: AT Kind code of ref document: T Effective date: 20120115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006026749 Country of ref document: DE Effective date: 20120308 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20120244 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20120321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20120244 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2379806 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120503 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120428 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 11798 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20120244 Country of ref document: HR Payment date: 20120913 Year of fee payment: 7 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20120913 Year of fee payment: 7 Ref country code: SE Payment date: 20120919 Year of fee payment: 7 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: NON FERRUM GMBH Effective date: 20120928 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20120917 Year of fee payment: 7 Ref country code: TR Payment date: 20120917 Year of fee payment: 7 Ref country code: BG Payment date: 20120913 Year of fee payment: 7 Ref country code: SI Payment date: 20120912 Year of fee payment: 7 Ref country code: SK Payment date: 20120917 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602006026749 Country of ref document: DE Effective date: 20120928 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120926 Year of fee payment: 7 Ref country code: IT Payment date: 20120924 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120920 Year of fee payment: 7 Ref country code: PT Payment date: 20120321 Year of fee payment: 7 Ref country code: FR Payment date: 20121010 Year of fee payment: 7 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120919 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20140319 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20120244 Country of ref document: HR Effective date: 20130919 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20140401 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130919 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130920 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 602006026749 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120919 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20140429 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 11798 Country of ref document: SK Effective date: 20130919 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130919 Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130920 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130930 Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130919 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140401 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20141007 |
|
27O | Opposition rejected |
Effective date: 20140513 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 602006026749 Country of ref document: DE Effective date: 20140513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130919 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: LAPE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141231 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240925 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240919 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240910 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240919 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20241001 Year of fee payment: 19 |