EP1954938B1 - Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids - Google Patents
Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids Download PDFInfo
- Publication number
- EP1954938B1 EP1954938B1 EP06807073A EP06807073A EP1954938B1 EP 1954938 B1 EP1954938 B1 EP 1954938B1 EP 06807073 A EP06807073 A EP 06807073A EP 06807073 A EP06807073 A EP 06807073A EP 1954938 B1 EP1954938 B1 EP 1954938B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injection
- sound
- measuring volume
- measuring
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002347 injection Methods 0.000 title claims abstract description 79
- 239000007924 injection Substances 0.000 title claims abstract description 79
- 239000007788 liquid Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000012360 testing method Methods 0.000 claims abstract description 21
- 238000005259 measurement Methods 0.000 claims abstract description 19
- 230000001419 dependent effect Effects 0.000 claims abstract 2
- 230000005236 sound signal Effects 0.000 claims description 11
- 239000000446 fuel Substances 0.000 claims description 7
- 238000009530 blood pressure measurement Methods 0.000 claims 2
- 230000010355 oscillation Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M65/00—Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
- F02M65/001—Measuring fuel delivery of a fuel injector
Definitions
- the injected fuel causes pressure oscillations in the corresponding natural frequencies of the measuring volume, these natural frequencies depending on the geometric dimensions of the measuring volume.
- many harmonics are usually excited, with several vibration modes are usually possible. This makes it difficult to filter the pressure sensor measuring signal, since the frequencies of the natural oscillations are partly in the range of the frequencies of the measuring signal.
- this method does not take into account the change in the speed of sound due to the pressure increase. Especially with injection processes, which consist of up to five partial injections, such a measurement is not always possible with the necessary precision, which is necessary for the testing of modern injectors. Also, the calculation of the speed of sound from the induced pressure oscillations by the superimposed vibrations of different modes is not always possible with the required accuracy.
- the method according to the invention with the features of claim 1 has the advantage that it is possible to determine very precisely both the injection quantity and the course of the injection, that is to say the injection rate, from the pressure curve.
- the time course of the pressure in the measuring volume is recorded during the injection and, moreover, the speed of sound is measured at least before and after the injection. From these quantities can be calculated with high accuracy the mentioned sizes.
- the speed of sound is determined by emitting a sound pulse from a sound transducer into the measuring volume, which is reflected at the opposite, parallel base and in turn is received as an echo by the sound transducer. From the length of the measurement volume and the duration of the sound signal can be calculated directly the speed of sound. Because of the long running distance and thus large time, the measured variables are subject to a relatively small error.
- the measurement data of the pressure profile are stored with the aid of an electronic computer, which also makes direct further processing of the data possible.
- the device according to the invention has the advantage over the prior art that a sound transducer provided in the measuring volume simultaneously serves as a sound generator and as a sound receiver. Since this eliminates a separate sound receiver, this arrangement is cheaper and it also eliminates the implementation of a signal cable, would otherwise be routed to the measurements of the sound receiver to the electronic computer.
- FIG. 1 the measuring device is shown in a partially sectioned view.
- a cylindrical measuring volume 1 with a wall 2 is completely filled with a test liquid, wherein the measuring volume 1 is completed on all sides.
- the wall 2 has a first base area 102 and a second base area 202, which are connected by a cylindrical side wall 303, which has a longitudinal axis 4.
- an injection valve 3 projects with its tip into the measuring volume 1, wherein the passage of the injection valve 3 is closed by the wall 2 liquid-tight.
- the injection valve 3 has a valve body 7, in which in a bore 6, a piston-shaped valve needle 5 is arranged longitudinally displaceable.
- test liquid flows from a pressure space 9 formed between the valve needle 5 and the wall of the bore 6 to the injection openings 12 and is injected from there into the measurement volume 1 until the injection openings 12 are closed again by the valve needle 5.
- the injection of the test liquid takes place here with a high pressure, which may be more than 200 MPa depending on the injection valve used.
- control valve 15 line 16 In the side wall 303 of the cylindrical wall 2 opens a connected to a control valve 15 line 16, can be derived by the test liquid from the measuring volume 1 in a not shown in the drawing leakage volume.
- a holder 22 projects through the wall 2 into the measuring volume 1.
- a pressure sensor 20 is arranged, which is connected via a signal line 24, which is led out of the measuring volume 1 in the holder 22 with an electronic computer 28, wherein the passage of the holder 22 through the wall 2 liquid-tight is closed.
- the pressure sensor 20 is arranged in the median plane between the two base surfaces 102, 202 and thus has the same distance to both base surfaces 102, 202.
- the signal representing the pressure supplied by the pressure sensor 20 can be read out and stored electronically.
- the pressure sensor 20 is constructed on a piezo-based basis, for example, so that even rapid changes in pressure can be measured without significant delay.
- a transducer 30 is arranged, which can both send sound signals and receive the associated echo.
- the transmitted sound signal is reflected at the base surface 202 opposite the sound transducer 30 and thus passes twice the length of the measurement volume 1 before it is detected by the sound transducer 30 as an echo.
- a separate sound receiver 31 is arranged on the base 202 with respect to the sound transducer 30. This allows two measurements of the speed of sound in a very short time interval: The speed of sound is determined on the one hand from the duration of the sound signal from the sound transducer 30 to the sound receiver 31.
- the wall 2 of the measuring volume 2 can be regarded as inelastic in a good approximation and thus V can be regarded as constant.
- V can be regarded as constant.
- the speed of sound c depends on the pressure p in the measuring volume 1.
- p v is the pressure before
- p n is the pressure after injection.
- the pressure in the measuring volume 1 increases. Liquids are virtually incompressible compared to gases, so that even a small increase in volume leads to a well-measurable pressure increase. It should be noted that the speed of sound depends on the pressure p and this in turn on the time t. Since the injection process is very short and usually completed in a period of 1 to 2 ms, the speed of sound during the injection can not be measured. Instead, c is measured before and after the injection and a linear relationship between the speed of sound c and the pressure p is assumed, which is a good approximation here. This can be used to solve the integral and determine the absolute quantity according to equation II.
- the injection valve 3 injects by a rapid longitudinal movement of the valve needle 5, through which the injection openings 12 are opened and be closed again, a certain amount of liquid.
- the pressure sensor 20 measures the pressure p (t) which is read out and stored by the computer 28 at a specific rate of, for example, 100 kHz.
- equation III In order to determine the time course of the injection quantity dm (t) / dt and thus the injection rate r (t), equation III is used.
- the measured values p (t) stored in the computer are converted into a sound velocity, so that the integral can be calculated according to equation III.
- This provides a function of time t, which is then numerically differentiated, giving the injection rate r (t).
- the speed of sound c is determined in a separate procedure.
- equation (II) by integration over the pressure p, the injected quantity m is obtained.
- FIG. 2 shows the time course of the pressure p (t) and its derivative dp (t) / dt as a function of time t in arbitrary units U.
- an injector is used as used for direct-injection, auto-ignition internal combustion engines, this corresponds to fuel injection subdivided into a pilot or pilot injection and a subsequent main injection.
- the evaluation according to equation III results in the injection rate r (t).
- the measurement method together with the described test setup thus makes it possible to measure the pressure curve and the speed of sound c under the current test conditions to determine what the injection quantity and the injection rate can be determined from.
- the test liquid may be fuel or another liquid whose properties approximate the liquid used in normal use of the injector.
- the measuring volume 1 does not have to be cylindrically shaped, but instead may also be cuboid or in another suitable shape, for example spherical.
- the pressure sensor may in principle be mounted at any point in all forms of the measuring volume 1, but direct admission to the injected fuel should be avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
Bei der Fertigungs- und Funktionsprüfung von Kraftstoff-Einspritzkomponenten, wie beispielsweise von Einspritzventilen, Common-Rail-Injektoren und anderen Hochdruckeinspritzventilen, sind zur Mengenmessung verschiedene Prüfvorrichtungen und Prüfverfahren im Stand der Technik beschrieben. So ist beispielsweise aus der
Ein alternatives und genaues Verfahren, wie es beispielsweise in
In der Praxis wird dies jedoch durch eine Reihe von Faktoren erschwert: Im Messvolumen V kommt es durch den eingespritzten Kraftstoff zu Druckschwingungen in den entsprechenden Eigenfrequenzen des Messvolumens, wobei diese Eigenfrequenzen von den geometrischen Abmessungen des Messvolumens abhängen. Neben der Grundschwingung werden in der Regel auch viele Oberschwingungen angeregt, wobei in der Regel mehrere Schwingungsmoden möglich sind. Dies erschwert eine Filterung des Drucksensor-Messsignals, da die Frequenzen der Eigenschwingungen zum Teil im Bereich der Frequenzen des Messsignals liegen.In practice, however, this is made difficult by a number of factors: In the measuring volume V, the injected fuel causes pressure oscillations in the corresponding natural frequencies of the measuring volume, these natural frequencies depending on the geometric dimensions of the measuring volume. In addition to the fundamental vibration also many harmonics are usually excited, with several vibration modes are usually possible. This makes it difficult to filter the pressure sensor measuring signal, since the frequencies of the natural oscillations are partly in the range of the frequencies of the measuring signal.
Weiter wird eine genaue Messung des Absolutwerts der Einspritzmenge Δm dadurch erschwert, dass die Messgröße des Drucks erst auf die eingespritzte Flüssigkeitsmenge umgerechnet werden muss. Es gilt hierbei
In der
Dieses Verfahren berücksichtigt jedoch nicht die Änderung der Schallgeschwindigkeit durch die Druckerhöhung. Gerade bei Einspritzvorgängen, die aus bis zu fünf Teileinspritzungen bestehen, ist so eine Messung nicht immer mit der nötigen Präzision möglich, die zur Prüfung von modernen Einspritzventilen nötig ist. Auch ist die Berechnung der Schallgeschwindigkeit aus den induzierten Druckschwingungen durch die überlagerten Schwingungen verschiedener Modi nicht immer mit der erforderlichen Genauigkeit möglich.However, this method does not take into account the change in the speed of sound due to the pressure increase. Especially with injection processes, which consist of up to five partial injections, such a measurement is not always possible with the necessary precision, which is necessary for the testing of modern injectors. Also, the calculation of the speed of sound from the induced pressure oscillations by the superimposed vibrations of different modes is not always possible with the required accuracy.
Das erfindungsgemäße Verfahren mit den Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass sich aus dem Druckverlauf sehr genau sowohl die Einspritzmenge als auch der Einspritzverlauf, also die Einspritzrate, sehr präzise bestimmen lässt. Hierzu wird der zeitliche Verlauf des Drucks im Messvolumen bei der Einspritzung aufgezeichnet und darüber hinaus die Schallgeschwindigkeit zumindest vor und nach der Einspritzung gemessen. Aus diesen Größen lässt sich mit hoher Genauigkeit die erwähnten Größen berechnen.In contrast, the method according to the invention with the features of
Durch das erfindungsgemäße Verfahren wird die Schallgeschwindigkeit dadurch ermittelt, dass ein Schallimpuls von einem Schallwandler in das Messvolumen abgegeben wird, der an der gegenüberliegenden, parallelen Grundfläche reflektiert und wiederum von dem Schallwandler als Echo empfangen wird. Aus der Länge des Messvolumens und der Laufzeit des Schallsignals lässt sich direkt die Schallgeschwindigkeit berechnen. Wegen der großen Laufstrecke und damit großen Zeit sind die Messgrößen mit einem relativ geringen Fehler behaftet.By means of the method according to the invention, the speed of sound is determined by emitting a sound pulse from a sound transducer into the measuring volume, which is reflected at the opposite, parallel base and in turn is received as an echo by the sound transducer. From the length of the measurement volume and the duration of the sound signal can be calculated directly the speed of sound. Because of the long running distance and thus large time, the measured variables are subject to a relatively small error.
In einer weiteren vorteilhaften Weiterbildung des Verfahrens werden die Messdaten des Druckverlaufs mit Hilfe eines elektronischen Rechners gespeichert, der auch eine direkte Weiterbearbeitung der Daten möglich macht.In a further advantageous embodiment of the method, the measurement data of the pressure profile are stored with the aid of an electronic computer, which also makes direct further processing of the data possible.
Die erfindungsgemäße Vorrichtung weist gegenüber dem Stand der Technik den Vorteil auf, dass ein im Messvolumen vorgesehener Schallwandler gleichzeitig als Schallgeber und als Schallempfänger dient. Da hierdurch ein separater Schallempfänger entfällt, ist diese Anordnung kostengünstiger und es entfällt darüber hinaus die Durchführung eines Signalkabels, über das sonst die Messwerte des Schallempfängers an den elektronischen Rechner geleitet werden müssten.The device according to the invention has the advantage over the prior art that a sound transducer provided in the measuring volume simultaneously serves as a sound generator and as a sound receiver. Since this eliminates a separate sound receiver, this arrangement is cheaper and it also eliminates the implementation of a signal cable, would otherwise be routed to the measurements of the sound receiver to the electronic computer.
In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung dargestellt. Es zeigt
Figur 1- die Messvorrichtung mit den schematisch dargestellten Komponenten und
Figur 2- das Diagramm einer Messung, wobei der Druck und dessen Ableitung über der Zeit abgetragen sind.
- FIG. 1
- the measuring device with the schematically illustrated components and
- FIG. 2
- the diagram of a measurement, where the pressure and its derivative are plotted over time.
In der
In die Seitenwand 303 der zylinderförmigen Wandung 2 mündet eine mit einem Steuerventil 15 verbundene Leitung 16, durch die Prüfflüssigkeit aus dem Messvolumen 1 in ein in der Zeichnung nicht dargestelltes Leckvolumen abgeleitet werden kann. Durch die zeitlich variable Ansteuerung des Steuerventils ist die Aufrechterhaltung eines gewissen Druckes im Messvolumen 1 und die stets vollständige Füllung mit Flüssigkeit sichergestellt.In the
Eine Halterung 22 ragt durch die Wandung 2 in das Messvolumen 1 hinein. Am Ende der Halterung 22 ist ein Drucksensor 20 angeordnet, der über eine Signalleitung 24, die in der Halterung 22 aus dem Messvolumen 1 herausgeführt ist, mit einem elektronischen Rechner 28 verbunden ist, wobei der Durchtritt der Halterung 22 durch die Wandung 2 flüssigkeitsdicht verschlossen ist. Der Drucksensor 20 ist in der Mittelebene zwischen den beiden Grundflächen 102, 202 angeordnet und hat somit zu beiden Grundflächen 102, 202 denselben Abstand. Über den elektronischen Rechner 28 kann das den Druck repräsentierende Signal, das der Drucksensor 20 liefert, ausgelesen und elektronisch gespeichert werden. Um eine schnelle Messung des Druckverlaufs zu ermöglichen, ist der Drucksensor 20 beispielsweise auf Piezo-Basis gebaut, so dass auch schnelle Änderungen des Drucks ohne nennenswerte Verzögerung gemessen werden können.A
An der Grundfläche 202 der Wandung 2 ist ein Schallwandler 30 angeordnet, der sowohl Schallsignale aussenden als auch das zugehörige Echo empfangen kann. Das gesendete Schallsignal wird dabei an der dem Schallwandler 30 gegenüberliegenden Grundfläche 202 reflektiert und durchläuft somit die zweifache Länge des Messvolumens 1, ehe es vom Schallwandler 30 als Echo detektiert wird. Alternativ kann es auch vorgesehen sein, dass ein separater Schallempfänger 31 an der Grundfläche 202 gegenüber dem Schallwandler 30 angeordnet ist. Dies ermöglicht zwei Messungen der Schallgeschwindigkeit in sehr kurzem Zeitabstand: Die Schallgeschwindigkeit wird zum einen aus der Laufzeit des Schallsignals vom Schallwandler 30 zum Schallempfänger 31 bestimmt. Zum anderen kann aus der Laufzeit des von der Grundfläche 202 reflektierten Schallsignals zum Schallwandler 30 zurück eine zweite Messung vorgenommen werden, die zeitlich unmittelbar auf die erste folgt. Dies erlaubt es, die Schallgeschwindigkeit in sehr kurzem zeitlichen Abstand zu messen und bei entsprechend kleinem Messvolumen wegen Mehrfachreflexionen an den Grundflächen 102, 202 auch während der Dauer einer Einspritzung.At the
Die zu messende Einspritzmenge Δm der Prüfflüssigkeit kann aus dem Druckanstieg und der Schallgeschwindigkeit berechnet werden. Ist p die Dichte der Prüfflüssigkeit und V das Volumen des Messvolumens, so ergibt sich durch das Einspritzen einer Menge Δm Prüfflüssigkeit bei konstantem Volumen V eine Änderung der Dichte Δρ, so dass gilt
Die Wandung 2 des Messvolumes 2 kann hierbei in guter Näherung als inelastisch angesehen und damit V als konstant betrachtet werden. Nach der bekannten akustischen Theorie ist der Zusammenhang zwischen der Schallgeschwindigkeit c, der Dichteänderung Δρ und dem Druckanstieg Δp wie folgt
Die Schallgeschwindigkeit c hängt vom Druck p im Messvolumen 1 ab. Die eingespritzte Menge m ergibt sich dann durch Integration mit Hilfe der genannten Beziehungen zu
Mit dem Drucksensor 20 wird der zeitliche Verlauf des Drucks p(t) gemessen, woraus sich wiederum die Einspritzrate r(t) bestimmen lässt, also die pro Zeiteinheit dt eingespritzte Menge dm(t) der Prüfflüssigkeit. Aus Gleichung II ergibt sich damit für die Einspritzrate r(t), also die zeitliche Ableitung der eingespritzten Menge dm(t)/dt, folgende Gleichung:
Beim Einspritzen der Prüfflüssigkeit in das Messvolumen 1, das anfänglich einen konstanten Druck aufweist, der beispielsweise 1 MPa entspricht, steigt der Druck im Messvolumen 1 an. Flüssigkeiten sind im Vergleich zu Gasen praktisch inkompressibel, so dass auch eine kleine Mengenzunahme zu einer gut messbaren Druckerhöhung führt. Hierbei ist zu beachten, dass die Schallgeschwindigkeit vom Druck p und dieser wiederum von der Zeit t abhängt. Da der Einspritzvorgang sehr kurz ist und in der Regel in einem Zeitraum von 1 bis 2 ms abgeschlossen ist, lässt sich die Schallgeschwindigkeit während der Einspritzung nicht messen. Statt dessen wird c vor und nach der Einspritzung gemessen und ein linearer Zusammenhang zwischen der Schallgeschwindigkeit c und dem Druck p angenommen, was hier eine gute Näherung darstellt. Damit lässt sich das Integral lösen und die absolute Menge nach Gleichung II bestimmen.When injecting the test liquid into the measuring
Zur Auswertung der Messung geht man folgendermaßen vor: In das Messvolumen 1, in dem sich die Prüfflüssigkeit befindet, spritzt das Einspritzventil 3 durch eine schnelle Längsbewegung der Ventilnadel 5, durch welche die Einspritzöffnungen 12 geöffnet und wieder verschlossen werden, eine bestimmte Flüssigkeitsmenge ein. Der Drucksensor 20 misst den Druck p(t), der mit einer bestimmen Rate von beispielsweise 100 kHz vom Rechner 28 ausgelesen und gespeichert wird.For evaluation of the measurement, the following procedure is used: In the measuring
Um den zeitlichen Verlauf der Einspritzmenge dm(t)/dt und damit die Einspritzrate r(t) zu bestimmen, benutzt man Gleichung III. Die im Rechner gespeicherten Messwerte p(t) werden in eine Schallgeschwindigkeit umgerechnet, so dass das Integral nach Gleichung III berechnet werden kann. Dies liefert eine Funktion der Zeit t, die anschließend numerisch differenziert wird, was die Einspritzrate r(t) ergibt.In order to determine the time course of the injection quantity dm (t) / dt and thus the injection rate r (t), equation III is used. The measured values p (t) stored in the computer are converted into a sound velocity, so that the integral can be calculated according to equation III. This provides a function of time t, which is then numerically differentiated, giving the injection rate r (t).
Die Schallgeschwindigkeit c wird in einem separaten Verfahren bestimmt. Hierzu wird vom Schallwandler 30 ein Schallimpuls ausgesandt, der an der gegenüberliegenden Grundfläche 202 des Messvolumens 1 reflektiert wird und als Echo nach einer Laufzeit tL wiederum vom Schallwandler aufgefangen wird. Aus dem Abstand s von Schallwandler 30 und Grundfläche 202 berechnet sich dann nach
die Schallgeschwindigkeit c. Nach der Gleichung (II) ergibt sich durch Integration über den Druck p die eingespritzte Menge m.The speed of sound c is determined in a separate procedure. For this purpose, a sound pulse is emitted by the
the speed of sound c. By the equation (II), by integration over the pressure p, the injected quantity m is obtained.
Das Messverfahren zusammen mit dem beschriebenen Messaufbau ermöglicht es also, den Druckverlauf zu messen und die Schallgeschwindigkeit c bei den aktuellen Prüfbedingungen zu bestimmen, woraus sich die Einspritzmenge und die Einspritzrate bestimmen lässt. Die Prüfflüssigkeit kann hierbei Kraftstoff oder eine andere Flüssigkeit sein, deren Eigenschaften der Flüssigkeit nahekommen, die im normalen Gebrauch des Einspritzventils verwendet wird. Das Messvolumen 1 muss nicht zylinderförmig ausgebildet sein, sondern kann statt dessen auch quaderförmig oder in einer anderen geeigneten Form ausgebildet sein, beispielsweise kugelförmig. Der Drucksensor kann bei allen Formen des Messvolumens 1 grundsätzlich an jeder Stelle angebracht sein, jedoch sollte eine direkte Beaufschlagung mit dem eingespritzten Kraftstoff vermieden werden.The measurement method together with the described test setup thus makes it possible to measure the pressure curve and the speed of sound c under the current test conditions to determine what the injection quantity and the injection rate can be determined from. The test liquid may be fuel or another liquid whose properties approximate the liquid used in normal use of the injector. The measuring
Claims (8)
- Method for measuring the injection rate of an injection valve for liquids, preferably for liquid fuel, in which method the injection valve (3) injects the liquid into a liquid-filled measuring volume (1), with the measuring volume (1) being closed on all sides and with a pressure sensor (20) being arranged in the measuring volume (1), characterized by the following method steps:- injecting liquid through the injection valve (3) into the measuring volume (1),- measuring the pressure (p(t)) in the measuring volume (1) by means of the pressure sensor (20) during the injection and plotting said measurement values,- determining the speed of sound (c) in the measuring volume (1) at least before and after the injection,- determining the injected test liquid quantity (m(t); Δm) from the pressure measurement values (p(t)) and the pressure-dependent speed of sound (c(p)), with the speed of sound (c) being determined from the propagation time of a sound signal emitted by a sound transducer (30) which receives the echo of said sound signal.
- Method according to Claim 1, characterized in that the pressure measurement values (p(t)) during the injection are plotted by an electronic computer (28).
- Method according to Claim 1, characterized in that the speed of sound (c) is determined by means of the propagation time of a sound signal in the measuring volume (1).
- Device for measuring the injection rate (r(t)) of an injection valve (3) for liquids, having a measuring volume (1) which is closed on all sides and which is filled with a test liquid, having an opening (10) in the wall (2) of the measuring volume (1), which opening (10) serves to hold an injection valve (3) such that, in the installed position, the injection valve (3) projects with at least one injection opening (12) into the measuring volume (1), and with a pressure sensor (20) which is arranged in the measuring volume (1) characterized in that a sound transducer (30) is arranged in the measuring volume (1), which sound transducer (30) emits a sound signal and receives the echo thereof, and having an electronic computer which determines the speed of sound (c) from the propagation time of a sound signal emitted by the sound transducer (30) which receives the echo of said sound signal.
- Device according to Claim 4, characterized in that the measuring volume (1) is of cylindrical design.
- Device according to Claim 5, characterized in that the sound transducer (30) is arranged on one of the base surfaces (102, 202) of the wall (2).
- Device according to Claim 4, characterized in that an electronic computer (28) records and stores the measurement values of the pressure sensor (20).
- Device according to Claim 4, characterized in that a separate sound receiver (31) is arranged in the measuring volume (1) in addition to the sound transducer (30).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005056153A DE102005056153A1 (en) | 2005-11-23 | 2005-11-23 | Method for measuring injection quantity and injection rate of injection valve for liquids, involves measurement of pressure in measuring volume by means of pressure sensor during injection and recording these measuring value |
PCT/EP2006/067181 WO2007060055A1 (en) | 2005-11-23 | 2006-10-09 | Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1954938A1 EP1954938A1 (en) | 2008-08-13 |
EP1954938B1 true EP1954938B1 (en) | 2010-04-07 |
EP1954938B2 EP1954938B2 (en) | 2014-08-27 |
Family
ID=37387346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06807073.9A Active EP1954938B2 (en) | 2005-11-23 | 2006-10-09 | Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1954938B2 (en) |
AT (1) | ATE463671T1 (en) |
DE (2) | DE102005056153A1 (en) |
WO (1) | WO2007060055A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011081544A1 (en) | 2011-07-15 | 2013-01-17 | Robert Bosch Gmbh | Method for measuring pressure of fuel in automotive industry, involves determining pressure in measuring reservoir depending on pressure-dependent sound velocity and continuously measured temperature |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010002898A1 (en) * | 2010-03-16 | 2011-09-22 | Robert Bosch Gmbh | Method and device for evaluating an injection device |
DE102015201817B4 (en) | 2015-02-03 | 2022-05-05 | Ford Global Technologies, Llc | Mass flow curve CNG valve |
DE102015209398A1 (en) | 2015-05-22 | 2016-11-24 | Robert Bosch Gmbh | Apparatus for measuring the injection rate, method for producing such a device and measuring method |
DE102018203542A1 (en) * | 2018-03-08 | 2019-09-12 | Volkswagen Aktiengesellschaft | Method for diagnosing an injection device for an internal combustion engine |
CN111946517A (en) * | 2020-08-07 | 2020-11-17 | 哈尔滨工程大学 | A Variable Range Fuel Injection Regularity Measuring Instrument |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10064511C2 (en) * | 2000-12-22 | 2002-11-21 | Bosch Gmbh Robert | Device, method and computer program for measuring the injection quantity of injection systems, in particular for internal combustion engines of motor vehicles |
DE10249754A1 (en) * | 2002-10-25 | 2004-05-06 | Robert Bosch Gmbh | Method and device for measuring the injection rate of a liquid injection valve |
DE10310114A1 (en) † | 2003-03-06 | 2004-09-16 | Robert Bosch Gmbh | Device and method for hydrostatic pressure determination in a high pressure container by means of ultrasonic transit time measurement |
-
2005
- 2005-11-23 DE DE102005056153A patent/DE102005056153A1/en not_active Ceased
-
2006
- 2006-10-09 WO PCT/EP2006/067181 patent/WO2007060055A1/en active Application Filing
- 2006-10-09 EP EP06807073.9A patent/EP1954938B2/en active Active
- 2006-10-09 DE DE502006006663T patent/DE502006006663D1/en active Active
- 2006-10-09 AT AT06807073T patent/ATE463671T1/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011081544A1 (en) | 2011-07-15 | 2013-01-17 | Robert Bosch Gmbh | Method for measuring pressure of fuel in automotive industry, involves determining pressure in measuring reservoir depending on pressure-dependent sound velocity and continuously measured temperature |
Also Published As
Publication number | Publication date |
---|---|
DE502006006663D1 (en) | 2010-05-20 |
EP1954938B2 (en) | 2014-08-27 |
WO2007060055A1 (en) | 2007-05-31 |
EP1954938A1 (en) | 2008-08-13 |
ATE463671T1 (en) | 2010-04-15 |
DE102005056153A1 (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1561029B1 (en) | Method and device for measuring the injection rate of an injection valve for liquids | |
EP1954938B1 (en) | Method and device for measuring the injection quantity and the injection rate of an injection valve for liquids | |
EP3298266B1 (en) | Device for measuring the injection rate and measuring method | |
EP1948924B1 (en) | Fuel injection system for internal combustion engines | |
EP1644707B1 (en) | Device for measuring time-resolved volumetric throughflow processes | |
DE10301264B4 (en) | Method and device for determining the temperature of the fuel in a storage injection system | |
DE102010004615A1 (en) | Method for determining the amount of liquid withdrawn from a tank | |
EP1368620B1 (en) | Method, computer program and device for measuring the amount injected by an injection system | |
DE102008040628A1 (en) | Fluid i.e. fuel, quantity measuring method for engine of vehicle, involves determining injected fluid quantity from sound velocity of fluid found in chamber and from pressure drop that is measured in chamber during injection of fluid | |
DE102013224706A1 (en) | Method for calculating the injection rate profile | |
DE102006042098B3 (en) | Method for determining a correction of a partial injection quantity of an internal combustion engine | |
DE102014225530A1 (en) | Method for operating a fuel injector | |
DE102015208416B3 (en) | Determination method for determining an absolute value of an injected fuel mass | |
DE102014007963A1 (en) | Method for operating an internal combustion engine and engine control unit | |
DE3806129C2 (en) | ||
DE2916150C2 (en) | Device for determining the chattering behavior of a fuel injection valve | |
DE60019365T2 (en) | Device for determining the fuel injection timing for a diesel internal combustion engine | |
EP2347117B1 (en) | Method for measuring flow paths in valves | |
Schmidt et al. | Detection of cavitation in fuel injector nozzles | |
DE102004049002A1 (en) | Method for measuring the tightness of an injection valve for liquids | |
DE102015204684A1 (en) | Method for operating a fuel injector | |
DE102008043347A1 (en) | Measuring and testing device for determining leakage quantity in fuel injecting valve of self-igniting internal-combustion engine, has ultrasonic receiver, where part of ultrasonic wave is guided from test piece to receiver over probe | |
EP1944502A1 (en) | Measuring device and measuring method for an injector | |
DE102011081544A1 (en) | Method for measuring pressure of fuel in automotive industry, involves determining pressure in measuring reservoir depending on pressure-dependent sound velocity and continuously measured temperature | |
AT518663B1 (en) | Device for determining the injection rate variance of gas valves, in particular for internal combustion engines operable with gaseous fuels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080623 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080923 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502006006663 Country of ref document: DE Date of ref document: 20100520 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100407 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100807 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100602 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100708 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100809 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: IAV GMBH INGENIEURSGESELLSCHAFT AUTO UND VERKEHR Effective date: 20110106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
BERE | Be: lapsed |
Owner name: ROBERT BOSCH G.M.B.H. Effective date: 20101031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
PLAP | Information related to despatch of examination report in opposition + time limit deleted |
Free format text: ORIGINAL CODE: EPIDOSDORE2 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101009 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100707 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20140827 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502006006663 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502006006663 Country of ref document: DE Effective date: 20140827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140827 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231218 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241024 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241021 Year of fee payment: 19 Ref country code: FR Payment date: 20241024 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241031 Year of fee payment: 19 |