EP1945920B1 - Lubrication system and internal combustion engine comprising such a system - Google Patents
Lubrication system and internal combustion engine comprising such a system Download PDFInfo
- Publication number
- EP1945920B1 EP1945920B1 EP05810912A EP05810912A EP1945920B1 EP 1945920 B1 EP1945920 B1 EP 1945920B1 EP 05810912 A EP05810912 A EP 05810912A EP 05810912 A EP05810912 A EP 05810912A EP 1945920 B1 EP1945920 B1 EP 1945920B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- lubrication system
- oil
- engine
- proportional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000005461 lubrication Methods 0.000 title claims abstract description 27
- 238000002485 combustion reaction Methods 0.000 title claims description 10
- 238000001816 cooling Methods 0.000 claims abstract description 17
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 239000003921 oil Substances 0.000 description 51
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/18—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
- F04C14/22—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
- F04C14/223—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M1/00—Pressure lubrication
- F01M1/16—Controlling lubricant pressure or quantity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/06—Arrangements for cooling pistons
- F01P3/08—Cooling of piston exterior only, e.g. by jets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M1/00—Pressure lubrication
- F01M1/02—Pressure lubrication using lubricating pumps
- F01M2001/0207—Pressure lubrication using lubricating pumps characterised by the type of pump
- F01M2001/0215—Electrical pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M1/00—Pressure lubrication
- F01M1/02—Pressure lubrication using lubricating pumps
- F01M2001/0207—Pressure lubrication using lubricating pumps characterised by the type of pump
- F01M2001/0246—Adjustable pumps
Definitions
- This invention concerns a lubrication system for an internal combustion engine. It also concerns an internal combustion engine including at least such one system.
- a pump which feeds oil to different locations in the engine.
- a standard working condition of the engine e.g. the torque point of the engine, that is the working condition of the engine at 1000 rpm.
- the working conditions of the pump may vary to a great extent. It is therefore known, e.g. from WO-A-2004/065765 , to use an oil pump controlled via a pressure-sensing means acted on by the working pressure of the oil. With such a system, one can bypass the pump under certain circumstances but the pump works at a constant pace, which means that some power is wasted.
- EP-A-1 362 993 discloses a lubrication system with an electrically driven pump which feeds oil to a crankshaft and to cooling means.
- the system is complex and, therefore, quite expensive.
- the invention aims at providing a lubrication system which is adapted to feed oil to a crank shaft and to at least one piston cooling jet, this system needing less power than the ones of the prior art, which means that the overall fuel consumption of an engine equipped with such a system can be lower than the one of engines equipped with systems of the prior art.
- the invention concerns a lubrication system for an internal combustion engine, this system comprising a pump feeding a main line providing oil to a support interface for a crank shaft of the engine, and an auxiliary line, connected to at least one piston cooling jet, wherein:
- the work of the pump can be automatically adapted to the flow conditions of oil in the main line, whereas the proportion of oil directed to the piston cooling jets can be controlled by the proportional means on the basis of the working conditions of the engine. This allows an optimization of the working conditions of the pump, which means that the power needed to drive this pump is optimized in all working conditions of the engine.
- a lubrication system might incorporate one or several of the following features:
- the invention also concerns an internal combustion engine comprising at least a crank shaft and at least one piston cooling jet, this engine including also at least a lubrication system as mentioned here above.
- the lubrication system represented on figure 1 is adapted to be mounted onto an internal combustion engine 1 which comprises a crank shaft 11 and several cylinders 12, only two cylinders being represented.
- a piston 13 is slidably movable within each cylinder 12, between a top dead center position and a bottom dead center position represented on figure 1 .
- a piston cooling jet 15 is provided for each cylinder 12 and is adapted to direct a flow of oil towards its piston 13 in its bottom dead center position, as represented by arrows A 1 on figure 1 .
- Crank shaft 11 is supported by several bearings 16. Only one bearing is represented on figure 1 . Oil is to be fed to each interface between a bearing 16 and crank shaft 11.
- a lubrication system 2 includes a vane pump 21 adapted to suck oil from a sump and to feed a heat exchanger 23 which, itself, feeds two lines, namely a first line 24 feeding the interface between crank shaft 11 and at least one bearing 16 and a second line 25 feeding piston cooling jets 15.
- a central line 27 runs from pump 21 to a separation point P between lines 24 and 25.
- Lines 24 and 27 form together the main line for the circulation of oil coming from pump 21 and going towards crank shaft 11, whereas line 25 is an auxiliary line dedicated to the feeding of jets 15.
- An optional safety pressure relief valve 26 is mounted on central line 27, upstream of heat exchanger 23. This pressure relief valve sends oil back to the sump 22 in case pressure within line 27 is higher than a predetermined level.
- Oil provided to crank shaft 11 or to piston cooling jets 15 is directed, after use, to sump parts 221 and 222, these parts being connected to the main sump 22.
- An oil pressure intake 28 is installed on line 24 and feeds a conduit 281 which opens in the internal volume V 21 of pump 21. This provides to pump 21 the value of oil, pressure in line 24, in the form of an analogous signal S 1 , which is used to move downwardly on figure 2 the central rotating body 211 of pump 21, against the action of a spring 212.
- Body 211 bears several vanes 213 which are each loaded by a spring 214 to extend radially away from the center C of body 211. Vanes 213 can be pushed towards center C when they interact with the carter 215 of pump 21. The load due to spring 212 can be adjusted by a screw 216.
- the value of oil pressure in line 24 is used to control the flow rate of oil fed by pump 21 to lines 24 and 25, through central line 27.
- variable displacement pumps like a sliding gear pump.
- a variable timing pump can also be used, for example a gerotor pump.
- the value of oil pressure can be provided to the pump via a conduit connected to a pressure intake in the main line.
- a proportional valve 29 is mounted on auxiliary line 25 and piloted by an electronic control unit 30. Valve 29 creates a variable restriction in line 25 and controls the flow rate of oil provided to assembly 14, separately from the flow rate of oil provided by pump 21 to crank shaft 11.
- a temperature sensor 31 is mounted on line 27 and delivers an electrical signal S 2 to unit 30 via an electrical wire 32.
- Unit 30 drives valve 29 while taking into account this temperature signal.
- the flow rate of oil within main line 24 is automatically adapted by a control of its pressure via intake 28 and conduit 281.
- the flow rate of oil to the piston cooling jets 15 is controlled, depending on oil temperature, via unit 30 and valve 29. Therefore, the working conditions of variable flow rate pump 21 are adapted to the actual needs in oil. If oil is cold, the power needed to drive pump 21 will be relatively low since the flow rate of oil to be delivered by pump 21 to shaft 11 will be low, to keep an adequate pressure at the interface between the shaft and the associated bearings 16, and jets 15 will be very efficient with a small quantity of oil, so that valve 29 can restrict flow in line 25.
- pump 21 does not generate a very high flow since its capacity is automatically adapted in order to take into account the actual oil pressure within main line 24.
- main line 24 which feeds crank shaft 11 is fed at the desired pressure and the flow rate to the piston cooling jets is set by more or less restricting the flow in auxiliary line 25.
- valve 29 When valve 29 is fully opened, a maximum oil flow is directed to pistons 13 to cool them. Such a situation arises when engine 1 runs at high speed or delivers a high torque.
- valve 29 When valve 29 is closed, the flow rate needed from pump 21 can be lowered to a flow rate adapted to feed crank shaft 11 only.
- the lubrication system 2 of figure 4 includes a variable speed pump 21 which sucks oil from a sump 22 and feeds a central line 27 from which a first line 24 and a second line 25 are fed.
- a pressure sensor 28 determines oil pressure in central line 27 and delivers, via an electrical wire 282, an electronic signal S 1 to control the operation of a variable speed oil pump 21.
- Pump 21 is driven by a motor 217 through a rigid shaft 218.
- Motor 213 is controlled by an electronic control unit 219 to which signal S 1 is provided.
- unit 215 might increase or lower the speed of motor 214 and pump 21, which influences the flow rate of oil in lines 27, 24 and 25.
- Oil is fed by pump 21 to an interface, between a crank shaft 11 and at least one bearing 16, and to several piston cooling jets 15, respectively by lines 24 and 25.
- a proportional valve 29 is installed on line 25 and controlled by an electronic control unit 30.
- This control unit determines the control strategy for the piston cooling jets flow represented by arrows A 1 .
- This strategy may take into consideration the oil temperature in line 28, as measured by a sensor 31 and delivered as an electronic signal S 2 . It may also take into consideration the engine speed represented by another signal S 3 , the engine load or the torque delivered by the engine represented by other signals S 4 and S 5 .
- Other variable parameters can be taken into account at this stage, e.g. parameters depending on the type of oil sucked from pump 22.
- the electronic control unit can also pilot valve 29 on the basis of a signal S 6 representing the actuation of a compression brake 4 of engine 1.
- signal S 6 can be representative of the actuation of other auxiliary equipments of engine 1, like a centrifugal filtration unit.
- variable flow pump 21 and proportional valve 29 allows to optimize the power needed to efficiently feed the support interface of crank shaft 11 and jets 15.
- the proportional valve 29 can be replaced by a piloted flow regulator, that is a mechanical device which controls flow within line 25 with a moving part loaded by a spring or a fluid, the load exerted on this element being adjustable.
- a piloted flow regulator that is a mechanical device which controls flow within line 25 with a moving part loaded by a spring or a fluid, the load exerted on this element being adjustable.
- unit 30 of the first embodiment can control valve 29 on the basis of all the parameters mentioned with respect to unit 30 of the second embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Abstract
Description
- This invention concerns a lubrication system for an internal combustion engine. It also concerns an internal combustion engine including at least such one system.
- In order to lubricate moving parts of an internal combustion engine, it is known to use a pump which feeds oil to different locations in the engine. In order to determine the capacity of such a pump, one generally considers a standard working condition of the engine, e.g. the torque point of the engine, that is the working condition of the engine at 1000 rpm. However, depending on the actual rotational speed of the engine on the torque to be delivered, on the temperature of the oil, etc... the working conditions of the pump may vary to a great extent. It is therefore known, e.g. from
WO-A-2004/065765 , to use an oil pump controlled via a pressure-sensing means acted on by the working pressure of the oil. With such a system, one can bypass the pump under certain circumstances but the pump works at a constant pace, which means that some power is wasted. - It is also known, e.g. from
US-A-5,220,891 , to feed some piston cooling jets with oil in order to cool down the pistons and cylinder units of an internal combustion engine. An oil pump sucks lubricating oil stored in a sump and feeds a delivery path where distribution of oil is controlled by throttles. The pump delivers the same quantity of oil, independently of the actual working conditions of the engine. -
EP-A-1 362 993 discloses a lubrication system with an electrically driven pump which feeds oil to a crankshaft and to cooling means. The system is complex and, therefore, quite expensive. - The invention aims at providing a lubrication system which is adapted to feed oil to a crank shaft and to at least one piston cooling jet, this system needing less power than the ones of the prior art, which means that the overall fuel consumption of an engine equipped with such a system can be lower than the one of engines equipped with systems of the prior art.
- The invention concerns a lubrication system for an internal combustion engine, this system comprising a pump feeding a main line providing oil to a support interface for a crank shaft of the engine, and an auxiliary line, connected to at least one piston cooling jet, wherein:
- the pump is a variable flow pump controlled on the basis of oil pressure in the main line,
- a proportional means is mounted on the auxiliary line, this proportional means being adapted to control flow of oil in said auxiliary line depending on the working conditions of the engine, and
- the system includes pressure sensing means adapted to determine oil pressure within said main line downstream of said pump, said pressure sensing means delivering a signal adapted to control said pump,
- Thanks to the invention, the work of the pump can be automatically adapted to the flow conditions of oil in the main line, whereas the proportion of oil directed to the piston cooling jets can be controlled by the proportional means on the basis of the working conditions of the engine. This allows an optimization of the working conditions of the pump, which means that the power needed to drive this pump is optimized in all working conditions of the engine.
- According to further aspects of the invention, a lubrication system according to the invention might incorporate one or several of the following features:
- The pump is a variable displacement pump. In such a case, it might be a vane pump, or a sliding gear pump.
- The pump is a variable timing pump, e.g. a gerotor pump.
- The pump is a variable speed pump.
- The proportional means might be piloted on the basis of oil temperature in the main line, on the basis of the load of the engine or the torque delivered by the engine, on the basis of the engine speed, or on the basis of the actuation of an auxiliary equipment.
- The proportional means might be a proportional valve or a piloted flow regulator.
- The invention also concerns an internal combustion engine comprising at least a crank shaft and at least one piston cooling jet, this engine including also at least a lubrication system as mentioned here above.
- The invention will be better understood on the basis of the following description, which is given in correspondence with the annexed figures and as an illustrative example, without restricting the object of the invention. In the annexed figures,
-
figure 1 is a scheme of a lubrication system according to a first embodiment of the invention, -
figure 2 is a schematic cross-section of a vane pump belonging to the system offigure 1 , and -
figure 3 is a scheme similar tofigure 1 for a lubrication system which is not according to the invention. - The lubrication system represented on
figure 1 is adapted to be mounted onto aninternal combustion engine 1 which comprises acrank shaft 11 andseveral cylinders 12, only two cylinders being represented. Apiston 13 is slidably movable within eachcylinder 12, between a top dead center position and a bottom dead center position represented onfigure 1 . Apiston cooling jet 15 is provided for eachcylinder 12 and is adapted to direct a flow of oil towards itspiston 13 in its bottom dead center position, as represented by arrows A1 onfigure 1 . - Crank
shaft 11 is supported byseveral bearings 16. Only one bearing is represented onfigure 1 . Oil is to be fed to each interface between a bearing 16 andcrank shaft 11. - To this purpose, a
lubrication system 2 includes avane pump 21 adapted to suck oil from a sump and to feed aheat exchanger 23 which, itself, feeds two lines, namely afirst line 24 feeding the interface betweencrank shaft 11 and at least one bearing 16 and asecond line 25 feedingpiston cooling jets 15. - A
central line 27 runs frompump 21 to a separation point P betweenlines Lines pump 21 and going towardscrank shaft 11, whereasline 25 is an auxiliary line dedicated to the feeding ofjets 15. - An optional safety
pressure relief valve 26 is mounted oncentral line 27, upstream ofheat exchanger 23. This pressure relief valve sends oil back to thesump 22 in case pressure withinline 27 is higher than a predetermined level. - Oil provided to
crank shaft 11 or topiston cooling jets 15 is directed, after use, to sumpparts main sump 22. - An
oil pressure intake 28 is installed online 24 and feeds aconduit 281 which opens in the internal volume V21 ofpump 21. This provides to pump 21 the value of oil, pressure inline 24, in the form of an analogous signal S1, which is used to move downwardly onfigure 2 the central rotating body 211 ofpump 21, against the action of aspring 212. - Body 211 bears several vanes 213 which are each loaded by a
spring 214 to extend radially away from the center C of body 211. Vanes 213 can be pushed towards center C when they interact with thecarter 215 ofpump 21. The load due tospring 212 can be adjusted by ascrew 216. - The translation of body 211, under the action of the force F exerted by the pressure in
line 24 andconduit 281, changes the displacement or capacity ofpump 21. - In other words, the pressure value in
line 24 exerts on body 211 a force F which changes the displacement ofvane pump 21. - Therefore, the value of oil pressure in
line 24 is used to control the flow rate of oil fed bypump 21 tolines central line 27. - Other types of variable displacement pumps might be used with the invention, like a sliding gear pump. Moreover, a variable timing pump can also be used, for example a gerotor pump. For these types of pump too, the value of oil pressure can be provided to the pump via a conduit connected to a pressure intake in the main line.
- A
proportional valve 29 is mounted onauxiliary line 25 and piloted by anelectronic control unit 30. Valve 29 creates a variable restriction inline 25 and controls the flow rate of oil provided to assembly 14, separately from the flow rate of oil provided bypump 21 tocrank shaft 11. - In the example of
figure 1 , atemperature sensor 31 is mounted online 27 and delivers an electrical signal S2 to unit 30 via anelectrical wire 32.Unit 30 drivesvalve 29 while taking into account this temperature signal. - Thanks to the invention, the flow rate of oil within
main line 24 is automatically adapted by a control of its pressure viaintake 28 andconduit 281. On the other hand, the flow rate of oil to thepiston cooling jets 15 is controlled, depending on oil temperature, viaunit 30 andvalve 29. Therefore, the working conditions of variableflow rate pump 21 are adapted to the actual needs in oil. If oil is cold, the power needed to drivepump 21 will be relatively low since the flow rate of oil to be delivered bypump 21 toshaft 11 will be low, to keep an adequate pressure at the interface between the shaft and the associatedbearings 16, andjets 15 will be very efficient with a small quantity of oil, so thatvalve 29 can restrict flow inline 25. - For high engine speeds, e.g. superior to 1300 rpm, pump 21 does not generate a very high flow since its capacity is automatically adapted in order to take into account the actual oil pressure within
main line 24. - In all working conditions of the engine,
main line 24, which feeds crankshaft 11 is fed at the desired pressure and the flow rate to the piston cooling jets is set by more or less restricting the flow inauxiliary line 25. Whenvalve 29 is fully opened, a maximum oil flow is directed topistons 13 to cool them. Such a situation arises whenengine 1 runs at high speed or delivers a high torque. - When
valve 29 is closed, the flow rate needed frompump 21 can be lowered to a flow rate adapted to feed crankshaft 11 only. - Because of the invention, the power consumption of the pump will be much lower than in the prior art systems. In particular, at high engine speed, pump 21 requires about 25% less power than a standard pump of a prior art system. Independently of the engine speed,
proportional valve 29 decreases the power needed to drive the pump up to -20% to -30%. One can expect that this will decrease the overall fuel consumption of the vehicle by about 1% under standard conditions like flat motorway. - In the embodiment represented on
figure 3 , the same elements as the ones of the first embodiment have the same references. Thelubrication system 2 of figure 4 includes avariable speed pump 21 which sucks oil from asump 22 and feeds acentral line 27 from which afirst line 24 and asecond line 25 are fed. Apressure sensor 28 determines oil pressure incentral line 27 and delivers, via anelectrical wire 282, an electronic signal S1 to control the operation of a variablespeed oil pump 21. -
Pump 21 is driven by amotor 217 through arigid shaft 218. Motor 213 is controlled by anelectronic control unit 219 to which signal S1 is provided. - Depending on the electrical signal S1 received from
sensor 28 viawire 282,unit 215 might increase or lower the speed ofmotor 214 and pump 21, which influences the flow rate of oil inlines - Oil is fed by
pump 21 to an interface, between acrank shaft 11 and at least onebearing 16, and to severalpiston cooling jets 15, respectively bylines proportional valve 29 is installed online 25 and controlled by anelectronic control unit 30. This control unit determines the control strategy for the piston cooling jets flow represented by arrows A1. This strategy may take into consideration the oil temperature inline 28, as measured by asensor 31 and delivered as an electronic signal S2. It may also take into consideration the engine speed represented by another signal S3, the engine load or the torque delivered by the engine represented by other signals S4 and S5. Other variable parameters can be taken into account at this stage, e.g. parameters depending on the type of oil sucked frompump 22. - The electronic control unit can also pilot
valve 29 on the basis of a signal S6 representing the actuation of acompression brake 4 ofengine 1. In fact, signal S6 can be representative of the actuation of other auxiliary equipments ofengine 1, like a centrifugal filtration unit. - As for the first embodiment, the use of
variable flow pump 21 andproportional valve 29 allows to optimize the power needed to efficiently feed the support interface ofcrank shaft 11 andjets 15. - According to an embodiment of the invention which is not represented, the
proportional valve 29 can be replaced by a piloted flow regulator, that is a mechanical device which controls flow withinline 25 with a moving part loaded by a spring or a fluid, the load exerted on this element being adjustable. - Thanks to the invention and as represented on
figure 3 , pressure inmain line - The individual features of the above mentioned embodiments can be combined. In particular,
unit 30 of the first embodiment can controlvalve 29 on the basis of all the parameters mentioned with respect tounit 30 of the second embodiment. -
- 1
- engine
11 crank shaft
12 cylinder
13 piston
15 piston cooling jet
16 bearing - 2
- lubrication system
21 variable displacement pump
211 central body
212 spring
213 vanes
214 springs
215 carter
216 screw
217 motor
218 shaft
219 electronic control unit
22 sump
221 sump part
222 sump part
23 heat exchanger
24 main line
25 auxiliary line
26 pressure relief valve
27 central line
28 oil pressure intake/oil sensor
281 conduit
282 electrical wire
29 proportional valve
30 electronic control unit
31 temperature sensor
32 electrical wire - 4
- compression
- A1
- arrows
- C
- center of body 211
- F
- force exerted by oil pressure on body 211
- P
- separation point
- S1
- signal (oil pressure)
- S2
- signal (temperature)
- S3
- signal (engine speed)
- S4
- signal (engine load)
- S5
- signal (engine torque)
- S6
- signal (actuation of 4)
- V21
- internal volume of
pump 21
Claims (13)
- A lubrication system (2) for an internal combustion engine (1), said system comprising a pump (21) feeding a main line (24, 27), providing oil to a support interface (16) for a crank shaft (11) of the engine, and an auxiliary line (25), connected to at least one piston cooling jet (15), wherein:- said pump is a variable flow pump (21) controlled on the basis of oil pressure in said main line (24, 27),- a proportional means (29) is mounted on said auxiliary line (25), said proportional means being adapted to control oil flow in said auxiliary line depending on the working conditions of said engine, and- said system includes pressure sensing means (28, 281) adapted to determine oil pressure within said main line (24, 27) downstream of said pump (21), said pressure sensing means delivering a signal (S1) adapted to control said pump,characterized in that said pressure sensing means includes an oil conduit (281) connecting a portion (24) of said main line (24, 27) located downstream of said pump (21) to the internal volume (V21) of said pump.
- A lubrication system according to claim 1, characterized in that said pump is a variable displacement pump (21).
- A lubrication system according to claim 1, characterized in that said variable flow pump is a vane pump (21).
- A lubrication system according to claim 1, characterized in that said variable flow pump is a sliding gear pump.
- A lubrication system according to claim 1, characterized in that said variable flow pump is a variable timing pump, in particular a gerotor pump.
- A lubrication system according to claim 1, characterized in that said pump is a variable speed pump (21).
- A lubrication system according to one of the previous claims, characterized in that said proportional means (29) is piloted on the basis of oil temperature (S2) in said main line (24, 25).
- A lubrication system according to one of the previous claims, characterized in that said proportional means (29) is piloted on the basis of the engine speed (S3).
- A lubrication system according to one of the previous claims, characterized in that said proportional means (29) is piloted on the basis of the load (S4) of the engine (1), or the torque (S5) delivered by the engine.
- A lubrication system according to one of the previous claims, characterized in that said proportional means (29) is piloted on the basis of the actuation of an auxiliary equipment (4).
- A lubrication system according to one of the previous claims, characterized in that the proportional means is a proportional valve (29).
- A lubrication system according to one of claim 1 to 10 characterized in that the proportional means is a piloted flow regulator.
- An internal combustion engine (1) comprising at least a crank shaft (11) and at least a piston cooling jet (15), characterized in that it includes at least a lubrication system (2) according to one of the previous claims.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2005/011791 WO2007042067A1 (en) | 2005-10-14 | 2005-10-14 | Lubrication system and internal combustion engine comprising such a system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1945920A1 EP1945920A1 (en) | 2008-07-23 |
EP1945920B1 true EP1945920B1 (en) | 2009-12-30 |
Family
ID=35695549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05810912A Not-in-force EP1945920B1 (en) | 2005-10-14 | 2005-10-14 | Lubrication system and internal combustion engine comprising such a system |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080308353A1 (en) |
EP (1) | EP1945920B1 (en) |
AT (1) | ATE453783T1 (en) |
DE (1) | DE602005018692D1 (en) |
WO (1) | WO2007042067A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7823545B2 (en) * | 2007-08-17 | 2010-11-02 | Gm Global Technology Operations, Inc. | Piston squirter system and method |
GB2466274B (en) * | 2008-12-18 | 2015-05-27 | Gm Global Tech Operations Inc | A lubrication system for an internal combustion engine provided with a variable displacement oil pump and control method therefor |
GB2468354B (en) * | 2009-03-06 | 2015-08-05 | Gm Global Tech Operations Inc | Lubrication circuitry control by means of magneto-rheological oil |
EP2553311A4 (en) * | 2010-04-01 | 2013-08-21 | Skf Ab | Advanced lubrication system |
GB2480474B (en) | 2010-05-20 | 2016-10-05 | Ford Global Tech Llc | An oil supply system for an engine |
GB2484748A (en) * | 2010-10-18 | 2012-04-25 | Gm Global Tech Operations Inc | Oil Supply Control for Internal Combustion Engine Pistons |
GB2486195A (en) * | 2010-12-06 | 2012-06-13 | Gm Global Tech Operations Inc | Method of Operating an I.C. Engine Variable Displacement Oil Pump by Measurement of Metal Temperature |
FR2972488B1 (en) * | 2011-03-10 | 2013-03-29 | Peugeot Citroen Automobiles Sa | THERMAL ENGINE LUBRICATING SYSTEM COMPRISING A VARIABLE CYLINDER OIL PUMP |
US8955474B1 (en) * | 2011-04-14 | 2015-02-17 | Patrick J. Derbin | Closed loop electronic control for the reduction of soot produced in diesel, gasoline and alternative-fueled engines |
US9121335B2 (en) * | 2011-05-13 | 2015-09-01 | Ford Global Technologies, Llc | System and method for an engine comprising a liquid cooling system and oil supply |
WO2013003800A1 (en) * | 2011-06-29 | 2013-01-03 | Compressor Products International Llc | Lubricator pump adjuster |
DK2573388T3 (en) * | 2011-09-22 | 2019-01-14 | Moventas Gears Oy | Process for controlling the lubrication of an exchange and of an exchange |
ES2479692T3 (en) * | 2011-09-22 | 2014-07-24 | Moventas Gears Oy | A procedure to control the lubrication of a transmission and a transmission |
DE102012200279A1 (en) * | 2012-01-11 | 2013-07-11 | Ford Global Technologies, Llc | Method and apparatus for operating a lubrication system of an internal combustion engine |
GB2502369B (en) * | 2012-05-25 | 2016-03-23 | Gm Global Tech Operations Inc | Lubrication system for an internal combustion engine |
MY173690A (en) * | 2012-11-07 | 2020-02-17 | Nissan Motor | Oil supply device for internal combustion engine |
KR102463186B1 (en) * | 2016-12-13 | 2022-11-03 | 현대자동차 주식회사 | Piston cooling apparatus for vehicle |
JP6607232B2 (en) * | 2017-05-31 | 2019-11-20 | トヨタ自動車株式会社 | Oil circulation device for internal combustion engine |
CN110454252B (en) * | 2019-07-25 | 2020-09-08 | 中国第一汽车股份有限公司 | Variable displacement oil pump control method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3453995A (en) * | 1965-06-11 | 1969-07-08 | Mack Trucks | Piston cooling and lubrication system |
DE2516765C3 (en) * | 1975-04-16 | 1985-12-05 | Mannesmann Rexroth GmbH, 8770 Lohr | Control valve for a vane pump |
JP2833285B2 (en) * | 1991-09-17 | 1998-12-09 | トヨタ自動車株式会社 | Variable displacement pump |
US5829647A (en) * | 1996-07-23 | 1998-11-03 | Nordson Corporation | Metering gearhead dispensing apparatus having selectively positionable gear pumps |
US7674095B2 (en) * | 2000-12-12 | 2010-03-09 | Borgwarner Inc. | Variable displacement vane pump with variable target regulator |
DE10124564A1 (en) * | 2001-05-14 | 2002-11-28 | Joma Hydromechanic Gmbh | Control of variable-displacement lubricant pump for use in internal combustion engine, involves measurement of engine parameters and matching pump delivery to engine requirements |
GB2388633B (en) * | 2002-05-15 | 2006-03-08 | Dana Automotive Ltd | Engine lubrication system |
GB2388634A (en) * | 2002-05-15 | 2003-11-19 | Dana Automotive Ltd | Engine lubrication system having dual/auxiliary pump operation |
DE10239364A1 (en) * | 2002-08-28 | 2004-03-18 | Dr.Ing.H.C. F. Porsche Ag | Device for controlling the pump output of a lubricant pump for an internal combustion engine |
US6763797B1 (en) * | 2003-01-24 | 2004-07-20 | General Motors Corporation | Engine oil system with variable displacement pump |
US20050120982A1 (en) * | 2003-12-09 | 2005-06-09 | Detroit Diesel Corporation | Separate oil gallery for piston cooling with electronic oil flow control |
-
2005
- 2005-10-14 AT AT05810912T patent/ATE453783T1/en not_active IP Right Cessation
- 2005-10-14 WO PCT/EP2005/011791 patent/WO2007042067A1/en active Application Filing
- 2005-10-14 DE DE602005018692T patent/DE602005018692D1/en active Active
- 2005-10-14 US US12/090,099 patent/US20080308353A1/en not_active Abandoned
- 2005-10-14 EP EP05810912A patent/EP1945920B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
ATE453783T1 (en) | 2010-01-15 |
US20080308353A1 (en) | 2008-12-18 |
WO2007042067A1 (en) | 2007-04-19 |
DE602005018692D1 (en) | 2010-02-11 |
EP1945920A1 (en) | 2008-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1945920B1 (en) | Lubrication system and internal combustion engine comprising such a system | |
US6941922B2 (en) | Engine lubrication system | |
EP0174867B1 (en) | Hydraulic assist turbocharger system and method for its operation | |
US6488479B1 (en) | Variable pressure oil pump | |
US7549848B2 (en) | Device for adjusting the pumping capacity of a lubricant pump for an internal combustion engine | |
US5884601A (en) | Electric motor driven primary oil pump for an internal combustion engine | |
CA1333221C (en) | Controller for a three-wheel turbocharger | |
US7036480B2 (en) | Engine lubrication system | |
EP1292761B1 (en) | Apparatus for and method of lubricating of piston engine | |
US20120266595A1 (en) | Hydraulic turbo accelerator apparatus | |
US20010047647A1 (en) | Process and device for lubricating an aircraft engine | |
US5603609A (en) | Variable delivery swash plate pump having a piston located spill port | |
EP2097172B1 (en) | Nozzle, lubrication system and internal combustion engine comprising such a nozzle or such a system | |
US20040161340A1 (en) | Drive arrangement for a conveying device | |
US20110266090A1 (en) | Lubricant circuit | |
US8511274B2 (en) | Engine speed sensitive oil pressure regulator | |
US8430645B2 (en) | Two stage pressure regulation system for variable displacement hydraulic pumps | |
CA1207539A (en) | Control arrangement for an hydraulic assist turbocharger | |
US6889634B1 (en) | Method of providing hydraulic pressure for mechanical work from an engine lubricating system | |
KR102084873B1 (en) | Pressure regulating arrangements and methods | |
US7152570B2 (en) | Lubrication system for an internal combustion engine | |
CN117128066A (en) | Lubricating system of engine and control method thereof | |
KR100844460B1 (en) | Variable oil pumps with extra oil pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080514 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602005018692 Country of ref document: DE Date of ref document: 20100211 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20091230 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20091230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100430 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100430 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100410 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100331 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20101001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101014 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20131011 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20131015 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005018692 Country of ref document: DE Representative=s name: V. FUENER EBBINGHAUS FINCK HANO, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20141229 AND 20141231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005018692 Country of ref document: DE Representative=s name: V. FUENER EBBINGHAUS FINCK HANO, DE Effective date: 20141219 Ref country code: DE Ref legal event code: R081 Ref document number: 602005018692 Country of ref document: DE Owner name: VOLVO TRUCK CORP., SE Free format text: FORMER OWNER: RENAULT TRUCKS, SAINT PRIEST, FR Effective date: 20141219 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: VOLVO LASTVAGNAR AKTIEBOLAG, SE Effective date: 20150209 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141014 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221024 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20221018 Year of fee payment: 18 Ref country code: DE Payment date: 20220527 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005018692 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231014 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240501 |