EP1939412A1 - Heat exchanger for cooling fission gas - Google Patents
Heat exchanger for cooling fission gas Download PDFInfo
- Publication number
- EP1939412A1 EP1939412A1 EP07033540A EP07033540A EP1939412A1 EP 1939412 A1 EP1939412 A1 EP 1939412A1 EP 07033540 A EP07033540 A EP 07033540A EP 07033540 A EP07033540 A EP 07033540A EP 1939412 A1 EP1939412 A1 EP 1939412A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- gas
- subspace
- water
- lying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
- F01K3/188—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using heat from a specified chemical reaction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
- F22B1/1838—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
- F22B1/1884—Hot gas heating tube boilers with one or more heating tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/40—Arrangements of partition walls in flues of steam boilers, e.g. built-up from baffles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B9/00—Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body
- F22B9/10—Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body the boiler body being disposed substantially horizontally, e.g. at the side of the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0066—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0066—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
- F28D7/0083—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
- F28D7/0091—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium the supplementary medium flowing in series through the units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0075—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/1607—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
- F28F2009/222—Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
- F28F2009/226—Transversal partitions
Definitions
- the invention relates to a heat exchanger for cooling cracked gas having the features of the preamble of claim 1.
- pyrolysis or ethylene cracking furnaces form the key components for the production of the raw materials ethylene, propylene, butadiene and others for the plastics industry.
- the starting materials used are saturated hydrocarbons, mainly ethane, propane, butane, natural gas, naphtha or gas oil.
- the conversion of the saturated into the unsaturated hydrocarbons takes place in the cans of the cracking furnace, namely at inlet temperatures of 500 - 680 ° C and outlet temperatures of 775 - 875 ° C in a pressure range of 1.5-5 bar.
- the unsaturated hydrocarbons In downstream cracked gas coolers at the outlet of the cracking furnace, the unsaturated hydrocarbons, the so-called cracking gases, from 775 to 875 ° C with the formation of high or low pressure steam to about 350 to 450 ° C cooled.
- the "cooling water” has boiling temperature at a corresponding pressure. The cooling takes place due to the phase transition from liquid to gaseous.
- the steam is in the ethylene plant z. B. used for steam turbines.
- the cooling of the fission gas to form steam is carried out either in single-stage systems, with the complete cooling to about 350 - 450 ° C takes place in a single quench cooler or in two-stage systems in which a gradual cooling takes place in two successive split gas coolers; z. B. in the first step from 875 ° C to 550 ° C and in the second step from 550 ° C to 350 ° C.
- the quench cooler have the corresponding designation primary and secondary radiator.
- a fission gas cooler is known in which the fission gas is cooled by steam in a first cooling stage representing an evaporator and by steam in a second cooling stage representing a superheater.
- an additional cooler is to be connected downstream of the quench cooler, in which the cracked gas is further cooled down by feed water.
- the evaporator and the superheater are arranged in a common shell and separated by a partition, which prevents overflow of the cooling medium from one cooling stage to the other.
- the invention has for its object to make the generic, two subspaces within a common shell comprehensive heat exchanger for cooling fission gas such that the cooling is reduced within the lying on the gas outlet side of the quenching gas subspace more effective and the apparatus design.
- the lying on the gas inlet side of the fission gas subspace of the heat exchanger serves as an evaporator and cools the cracking gas to near the boiling point of the boiling water. Subsequently, the cracked gas passes into the lying on the gas outlet side of the fission gas and serving as a preheater subspace, where the fission gas is further cooled by the cooler feed water well below the boiling temperature of the water. As a result, the cooling of the fission gas is total more effective.
- the heating feed water is either fed to the steam drum, where it is heated to boiling temperature, or it flows directly through the acting as a "leaking" tubesheet bulkhead in the evaporator section.
- the intentionally permeable to the cooling medium partition wall ensures a pressure equalization between the subspaces.
- the combination of evaporator and preheater is reduced to a common aggregate apparatus design of the quench cooling by the previously separate feedwater is integrated into the evaporator, thereby eliminating a complete cooler within the cooling row and the fission gas line between the evaporator and the feedwater and shorter Pipes to the steam drum are possible.
- the heat exchanger shown serves to cool cracked gas in an ethylene plant.
- the heat exchanger consists of a tube bundle of straight heat exchanger tubes 1, which are held in each case a tube plate 2, 3 on both sides of the tube bundle. In the drawing, for the sake of clarity, only some of the heat exchanger tubes 1 are shown.
- Each tube plate 2, 3 is penetrated by holes in each one of the heat exchanger tubes 1 is inserted and welded by a weld with the tube plate 2, 3.
- the tube bundle is enclosed by an outer jacket 4 which, together with the respective tube plates 2, 3, delimits an interior through which a cooling medium flows.
- the tube plates 2, 3 is followed on the gas inlet side and on the gas outlet side in each case an end chamber, the inlet chamber 5 and the outlet chamber 6 at.
- the inlet chamber 5 and the outlet chamber 6 are each provided with a nozzle for supplying or discharging the fission gas. All parts of the heat exchanger are made of a heat-resistant steel.
- the hot gap gas introduced through the inlet chamber 5 impinges on the tube plate 2 and flows through the bores of the tube plate 2 into the heat exchanger tubes 1 and leaves the cooled region of the heat exchanger through the tube plate 3 at the other end.
- the outlet chamber 6 the cooled cleavage gas is removed.
- the arrows indicate the flow direction.
- the interior of the heat exchanger is divided by a partition wall 7 into two subspaces 8, 9, so that two cooling sections have formed within the heat exchanger, each of which is acted upon by its own cooling medium and serve as the evaporator section or preheater section.
- the lying on the gas inlet side of the fission gas subspace 8 of the horizontally disposed heat exchanger is provided on the bottom with multiple feed nozzle 10 and on the top with a plurality of Ab arrangementsstutzen 11 for a cooling medium.
- the cooling medium is boiling, high-pressure water, which is one of the separation of water and steam serving water / steam drum 12 is removed.
- a supply line 13 is connected to the supply nozzle 10, which starts from the water chamber 14 of the water / steam drum 12.
- the discharge pipe 11 are connected to discharge lines 15 which open at a different location in the water space 14 of the water / steam drum 12 and the heat exchange with the Dissipate fission gas generated saturated steam.
- the steam separated in the water / steam drum 12 is discharged via a steam pipe 17 extending from the steam space 16 of the water / steam drum 12.
- the lying on the gas outlet side space 9 of the horizontally disposed heat exchanger is provided at the bottom with one or more feed port 18 in the vicinity of the tube sheet 3 and at the top with one or more discharge port 19 in the vicinity of the partition 7.
- Feed water is fed into the subspace 9 via the feed connection 18.
- baffles 20 are spaced from each other and arranged in parallel and below and above offset from each other, which act as baffles and lead the feed water in countercurrent to the fission gas through the subspace 9.
- the feed water is preheated in heat exchange with the cracking gas and passed through a connected to the discharge port 19 discharge line 21 into the water space 14 of the water / steam drum 12.
- the combination of evaporator section and preheater section to a common heat exchanger unit shortens the inlets and outlets between the heat exchanger and the water / steam drum 12. This arrangement makes it possible for the water / steam drum 12 directly on the jacket 4 of the heat exchanger to assemble. This creates a compact unit through which piping and the times for their installation can be saved.
- the partition 7 between the two subspaces 8, 9 is a non-structural component, which only has the task to keep the currents in the subspaces 8, 9 apart.
- the partition wall 7 is provided with bores 22 whose diameter is slightly larger than the outer diameter of the heat exchanger tubes 1, so that the heat exchanger tubes 1 are guided through the partition wall 7 with clearance 23 therethrough.
- the outer diameter of the partition wall 7 is less than the inner diameter of the jacket 4, so that in the installed state, a gap 24 between partition 7 and jacket 4 is made.
- the partition wall 7 can be pushed into the jacket 4 with the tube bundle consisting of the heat exchanger tubes 1.
- the gap 24 between the partition wall 7 and the jacket 4th a few millimeters, for example 2 mm, and the clearance 23 between the heat exchanger tubes 1 and the bores 22 in the partition wall 7 less than 1 mm, z. B. 0.6 mm. 2, the gap 24 and the game 23 are disproportionately large.
- the partition 7 thus acts as a "leaking" tube sheet.
- the feed water is supplied to the lying on the gas outlet side space 9 via pumps and is under a pressure that is slightly fluctuating or always higher than the pressure in the lying on the gas inlet side subspace 8. It is usually therefore always a pressure difference.
- This pressure difference is compensated for by the fact that water from the subspace 9 located on the gas outlet side passes through the intentionally leaky separating wall 7 into the subspace 8 located on the gas inlet side.
- the leaking from the lying on the gas outlet side space 9 leaking vaporizes in the lying on the gas inlet side compartment 8 and also passes into the water / steam drum 12th
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Bei einem Wärmetauscher zur Kühlung von Spaltgas in einer Ethylenanlage sind von dem Spaltgas durchströmte Wärmetauscherrohre (1) an ihren jeweiligen Enden in jeweils eine Rohrplatte (2, 3) eingesetzt und von einem Mantel (4) umgeben, an dessen beiden Stirnseiten je eine teilweise durch eine der Rohrplatten (2, 3) begrenzte Endkammer (5, 6) für die Zuführung und die Abführung des Spaltgases vorgesehen ist. Der von dem Mantel (4) umschlossene Innenraum des Wärmetauschers ist von Wasser als Kühlmedium durchströmt und durch eine senkrecht zu den Wärmetauscherrohren (1) verlaufende und von den Wärmetauscherrohren (1) durchdrungene Trennwand (7) in zwei in Strömungsrichtung des Spaltgases hintereinander liegende Teilräume (8, 9) aufgeteilt, die mit jeweils eigenen Zuführungsstutzen (10, 18) und Abführungsstutzen (11, 19) für das Kühlmedium versehen sind. Der auf der Gaseintrittsseite des Spaltgases liegende Teilraum (8) ist von siedendem Wasser durchströmt. Der Teilraum (8)ist über eine Zuführungsleitung (13) und Abführungsleitungen (15) mit einer Wasser/Dampf-Trommel (12) verbunden. Der auf der Gasaustrittsseite des Spaltgases liegende Teilraum (9) ist von Speisewasser durchströmt. Der Teilraum (9) ist über eine Abführungsleitung (19) mit der Wasser/Dampf-Trommel (12) verbunden. Die Trennwand (7) zwischen den beiden Teilräumen (8, 9) ist für den Durchtritt des im Inneren des Wärmetauschers strömenden Kühlmediums durchlässig. In a heat exchanger for cooling cracked gas in an ethylene plant are flowed through by the gap gas heat exchanger tubes (1) at their respective ends in a respective tube plate (2, 3) and surrounded by a jacket (4), at the two end faces each one partially through one of the tube plates (2, 3) limited end chamber (5, 6) is provided for the supply and the discharge of the cracking gas. The interior of the heat exchanger enclosed by the jacket (4) is traversed by water as the cooling medium and passed through a partition wall (7) perpendicular to the heat exchanger tubes (1) and penetrated by the heat exchanger tubes (2) in two subspaces one behind the other in the flow direction of the quenching gas. 8, 9), which are each provided with their own supply nozzles (10, 18) and exhaust nozzles (11, 19) for the cooling medium. The lying on the gas inlet side of the fission gas subspace (8) is traversed by boiling water. The subspace (8) is connected via a feed line (13) and discharge lines (15) with a water / steam drum (12). The lying on the gas outlet side of the fission gas subspace (9) is flowed through by feedwater. The subspace (9) is connected via a discharge line (19) with the water / steam drum (12). The partition wall (7) between the two subspaces (8, 9) is permeable to the passage of the cooling medium flowing inside the heat exchanger.
Description
Die Erfindung betrifft einen Wärmetauscher zur Kühlung von Spaltgas mit den Merkmalen des Oberbegriffes des Anspruches 1.The invention relates to a heat exchanger for cooling cracked gas having the features of the preamble of claim 1.
Pyrolyse- oder Ethylen-Spaltöfen bilden innerhalb einer Ethylenanlage die Schlüsselkomponenten zur Herstellung der Grundstoffe Ethylen, Propylen, Butadien und andere für die Kunststoff-Industrie. Als Ausgangsstoffe werden gesättigte Kohlenwasserstoffe, hauptsächlich Ethan, Propan, Butan, Erdgas, Naphta oder Gasöl verwendet. Die Umwandlung der gesättigten in die ungesättigten Kohlenwasserstoffe findet in den Spaltrohren des Spaltofens statt, und zwar bei Eintrittstemperaturen von 500 - 680°C und Austrittstemperaturen von 775 - 875°C in einem Druckbereich von 1,5-5 bar.Within an ethylene plant, pyrolysis or ethylene cracking furnaces form the key components for the production of the raw materials ethylene, propylene, butadiene and others for the plastics industry. The starting materials used are saturated hydrocarbons, mainly ethane, propane, butane, natural gas, naphtha or gas oil. The conversion of the saturated into the unsaturated hydrocarbons takes place in the cans of the cracking furnace, namely at inlet temperatures of 500 - 680 ° C and outlet temperatures of 775 - 875 ° C in a pressure range of 1.5-5 bar.
In nachgeschalteten Spaltgaskühlern am Austritt des Spaltofens werden die ungesättigten Kohlenwasserstoffe, die sogenannten Spaltgase, von 775 - 875°C unter Bildung von Hoch- oder Niederdruckdampf auf ca. 350 - 450 °C abgekühlt. Das "Kühlwasser" hat hierbei Siedetemperatur bei einem entsprechenden Druck. Die Kühlung findet aufgrund des Phasenüberganges von flüssig nach gasförmig statt. Der Dampf wird in der Ethylenanlage z. B. für Dampfturbinen genutzt.In downstream cracked gas coolers at the outlet of the cracking furnace, the unsaturated hydrocarbons, the so-called cracking gases, from 775 to 875 ° C with the formation of high or low pressure steam to about 350 to 450 ° C cooled. The "cooling water" has boiling temperature at a corresponding pressure. The cooling takes place due to the phase transition from liquid to gaseous. The steam is in the ethylene plant z. B. used for steam turbines.
Die Abkühlung des Spaltgases unter Bildung von Dampf geschieht entweder in einstufigen Systemen, wobei die vollständige Abkühlung auf ca. 350 - 450 °C in nur einem Spaltgaskühler stattfindet oder in zweistufigen Systemen, bei denen in zwei hintereinander geschalteten Spaltgaskühlern eine schrittweise Abkühlung erfolgt; z. B. im ersten Schritt von 875 °C auf 550 °C und im zweiten Schritt von 550 °C auf 350° C. Die Spaltgaskühler haben die entsprechende Bezeichnung Primär-und Sekundär-Kühler.The cooling of the fission gas to form steam is carried out either in single-stage systems, with the complete cooling to about 350 - 450 ° C takes place in a single quench cooler or in two-stage systems in which a gradual cooling takes place in two successive split gas coolers; z. B. in the first step from 875 ° C to 550 ° C and in the second step from 550 ° C to 350 ° C. The quench cooler have the corresponding designation primary and secondary radiator.
Zusätzlich erfolgt eine weitere Abkühlung des Spaltgases in Kesselwasserspeisevorwärmern sowohl im einstufigem als auch im zweistufigen System. Hierbei wird kein Dampf mehr erzeugt, sondern das "Kühlwasser", das Kesselspeisewasser, wird für die Primär- und Sekundärkühler möglichst nahe der Siedetemperatur vorgewärmt. Die Zufuhr des vorgewärmten Kesselspeisewassers zu den Primär- und Sekundärspaltgaskühlern erfolgt indirekt über eine Dampftrommel, in der das Kesselspeisewasser auf Siedetemperatur erhitzt wird.In addition, further cooling of the cracked gas in boiler water feed preheaters takes place both in the single-stage and in the two-stage system. Here, no more steam is generated, but the "Cooling water", the boiler feed water, is preheated as close as possible to the boiling temperature for the primary and secondary coolers. The feed of the preheated boiler feed water to the primary and secondary slit gas coolers takes place indirectly via a steam drum in which the boiler feed water is heated to boiling temperature.
Aus der
Der Erfindung liegt die Aufgabe zugrunde, den gattungsgemäßen, zwei Teilräume innerhalb eines gemeinsamen Mantels umfassenden Wärmetauschers zum Kühlen von Spaltgas derart zu gestalten, dass die Kühlung innerhalb des auf der Gasaustrittsseite des Spaltgases liegenden Teilraumes effektiver und der apparative Aufbau reduziert wird.The invention has for its object to make the generic, two subspaces within a common shell comprehensive heat exchanger for cooling fission gas such that the cooling is reduced within the lying on the gas outlet side of the quenching gas subspace more effective and the apparatus design.
Die Aufgabe wird bei einem gattungsgemäßen Wärmetauscher erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.The object is achieved according to the invention in a generic heat exchanger by the characterizing features of claim 1. Advantageous embodiments of the invention are the subject of the dependent claims.
Der auf der Gaseintrittseite des Spaltgases liegende Teilraum des Wärmetauschers dient als Verdampfer und kühlt das Spaltgas bis nahe an die Siedetemperatur des siedenden Wassers ab. Anschließend gelangt das Spaltgas in den auf der Gasaustrittsseite des Spaltgases liegenden und als Vorwärmer dienenden Teilraum, wo das Spaltgas durch das kühlere Speisewasser deutlich unter die Siedetemperatur des Wassers weiter abgekühlt wird. Dadurch wird die Kühlung des Spaltgases insgesamt effektiver. Das sich dabei erwärmende Speisewasser wird entweder der Dampftrommel zugeführt, wo es auf Siedetemperatur erhitzt wird, oder es strömt direkt durch die wie ein "leckender" Rohrboden wirkende Trennwand in den Verdampferabschnitt. Die für das Kühlmedium absichtlich durchlässig gestaltete Trennwand sorgt für einen Druckausgleich zwischen den Teilräumen.The lying on the gas inlet side of the fission gas subspace of the heat exchanger serves as an evaporator and cools the cracking gas to near the boiling point of the boiling water. Subsequently, the cracked gas passes into the lying on the gas outlet side of the fission gas and serving as a preheater subspace, where the fission gas is further cooled by the cooler feed water well below the boiling temperature of the water. As a result, the cooling of the fission gas is total more effective. The heating feed water is either fed to the steam drum, where it is heated to boiling temperature, or it flows directly through the acting as a "leaking" tubesheet bulkhead in the evaporator section. The intentionally permeable to the cooling medium partition wall ensures a pressure equalization between the subspaces.
Außerdem wird durch die Zusammenfassung von Verdampfer und Vorwärmer zu einem gemeinsamen Aggregat der apparative Aufbau der Spaltgaskühlung reduziert, indem der bisher separate Speisewasservorwärmer in den Verdampfer integriert wird, wodurch ein kompletter Kühler innerhalb der Abkühlungsreihe sowie die Spaltgasleitung zwischen dem Verdampfer und dem Speisewasservorwärmer entfallen und kürzere Rohrleitungen zur Dampftrommel möglich werden.In addition, the combination of evaporator and preheater is reduced to a common aggregate apparatus design of the quench cooling by the previously separate feedwater is integrated into the evaporator, thereby eliminating a complete cooler within the cooling row and the fission gas line between the evaporator and the feedwater and shorter Pipes to the steam drum are possible.
Durch den Wegfall der Verbindung Verdampfer zum Vorwärmer entfallen die gasseitigen Druckverluste, welche sonst durch Rohrausströmung Verdampfer und Rohreinströmung Vorwärmer sowie durch die Strömungen in der Gasaustrittskammer und der. Gaseintrittskammer verursacht worden wären. Dadurch wird der gesamte Druckverlust des Spaltgases im Kühler reduziert, was sowohl die Ausbeute an Ethylen, Propylen, Butadien und andere im Spaltgas erhöht, als auch die Laufzeit des Kühlers verlängert.By eliminating the connection evaporator to the preheater eliminates the gas side pressure losses, which otherwise by tube outflow evaporator and tube inflow preheater and by the currents in the gas outlet chamber and the. Gas inlet chamber would have been caused. Thereby, the total pressure loss of the cracking gas in the cooler is reduced, which increases both the yield of ethylene, propylene, butadiene and others in the cracking gas, as well as extends the life of the cooler.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher erläutert. Es zeigen:
- Fig. 1 schematisch den Längsschnitt durch einen Wärmetauscher zum Kühlen von Spaltgas und
- Fig. 2 den Schnitt II - II nach Fig. 1.
- Fig. 1 shows schematically the longitudinal section through a heat exchanger for cooling cracked gas and
- 2 shows the section II - II of FIG. 1st
Der gezeigte Wärmetauscher dient zum Kühlen von Spaltgas in einer Ethylenanlage. Der Wärmetauscher besteht aus einem Rohrbündel aus geraden Wärmetauscherrohren 1, die in jeweils einer Rohrplatte 2, 3 zu beiden Seiten des Rohrbündels gehalten sind. In der Zeichnung sind der Übersichtlichkeit wegen nur einige der Wärmetauscherrohre 1 dargestellt. Jede Rohrplatte 2, 3 ist von Bohrungen durchdrungen, in die jeweils eines der Wärmetauscherrohre 1 eingesetzt und durch eine Schweißnaht mit der Rohrplatte 2, 3 verschweißt ist. Das Rohrbündel ist von einem äußeren Mantel 4 umschlossen, der zusammen mit den jeweiligen Rohrplatten 2, 3 einen von einem Kühlmedium durchflossenen Innenraum begrenzt.The heat exchanger shown serves to cool cracked gas in an ethylene plant. The heat exchanger consists of a tube bundle of straight heat exchanger tubes 1, which are held in each case a
An die Rohrplatten 2, 3 schließt sich auf der Gaseintrittsseite und auf der Gasaustrittsseite jeweils eine Endkammer, die Eintrittskammer 5 und die Austrittskammer 6 an. Die Eintrittskammer 5 und die Austrittskammer 6 sind jeweils mit einem Stutzen zur Zuführung oder Abführung des Spaltgases versehen. Alle Teile des Wärmetauschers sind aus einem warmfesten Stahl gefertigt.To the
Das durch die Eintrittskammer 5 herangeführte, heiße Spaltgas trifft auf die Rohrplatte 2 und strömt durch die Bohrungen der Rohrplatte 2 in die Wärmetauscherrohre 1 und verlässt durch die Rohrplatte 3 am anderen Ende den gekühlten Bereich des Wärmetauschers. Über die Austrittskammer 6 wird das abgekühlte Spaltgas abgeführt. Die gezeigten Pfeile geben die Strömungsrichtung an.The hot gap gas introduced through the
Der Innenraum des Wärmetauschers ist durch eine Trennwand 7 in zwei Teilräume 8, 9 aufgeteilt, so dass innerhalb des Wärmetauschers zwei Kühlabschnitte entstanden sind, die jeweils mit einem eigenen Kühlmedium beaufschlagt werden und als Verdampferabschnitt bzw. als Vorwärmerabschnitt dienen.The interior of the heat exchanger is divided by a
Der auf der Gaseintrittsseite des Spaltgases liegende Teilraum 8 des liegend angeordneten Wärmetauschers ist auf der Unterseite mit mehreren Zuführungsstutzen 10 und auf der Oberseite mit mehreren Abführungsstutzen 11 für ein Kühlmedium versehen. Als Kühlmedium dient siedendes, unter hohem Druck stehendes Wasser, das einer der Trennung von Wasser und Dampf dienenden Wasser/Dampf-Trommel 12 entnommen wird. Dazu ist an die Zuführungsstutzen 10 eine Zuführungsleitung 13 angeschlossen, die von dem Wasserraum 14 der Wasser/Dampf-Trommel 12 ausgeht. Die Abführungsstutzen 11 sind mit Abführungsleitungen 15 verbunden, die an einer anderen Stelle in den Wasserraum 14 der Wasser/Dampf-Trommel 12 einmünden und den im Wärmetausch mit dem Spaltgas erzeugten Sattdampf abführen. Der in der Wasser/Dampf-Trommel 12 abgetrennte Dampf wird über eine von dem Dampfraum 16 der Wasser/Dampf-Trommel 12 ausgehenden Dampfleitung 17 abgeführt.The lying on the gas inlet side of the
Der auf der Gasaustrittsseite liegende Teilraum 9 des liegend angeordneten Wärmetauschers ist an der Unterseite mit einem oder mehreren Zuführungsstutzen 18 in der Nähe des Rohrbodens 3 und an der Oberseite mit einem oder mehreren Abführungsstutzen 19 in der Nähe der Trennwand 7 versehen. Über den Zuführungsstutzen 18 wird Speisewasser in den Teilraum 9 eingespeist. In dem Teilraum 9 sind Umlenkbleche 20 voneinander beabstandet und parallel und unten und oben versetzt zueinander angeordnet, die als Schikanen wirken und das Speisewasser im Gegenstrom zu dem Spaltgas durch den Teilraum 9 führen. Das Speisewasser wird im Wärmetausch mit dem Spaltgas vorgewärmt und über eine an den Abführungsstutzen 19 angeschlossene Abführungsleitung 21 in den Wasserraum 14 der Wasser/Dampf-Trommel 12 geleitet.The lying on the gas
Die Zusammenfassung von Verdampferabschnitt und Vorwärmerabschnitt zu einem gemeinsamen Wärmetauscher-Aggregat verkürzt die Zu- und Abführungen zwischen dem Wärmetauscher und der Wasser/Dampf-Trommel 12. Diese Anordnung macht es möglich, die Wasser/Dampf-Trommel 12 direkt auf dem Mantel 4 des Wärmetauschers zu montieren. Dadurch entsteht eine kompakte Baueinheit, durch die Rohrleitungen sowie die Zeiten zu deren Montage eingespart werden können.The combination of evaporator section and preheater section to a common heat exchanger unit shortens the inlets and outlets between the heat exchanger and the water /
Die Trennwand 7 zwischen den beiden Teilräumen 8, 9 ist ein nichttragendes Bauteil, das lediglich die Aufgabe hat, die Strömungen in den Teilräumen 8, 9 auseinander zu halten. Die Trennwand 7 ist mit Bohrungen 22 versehen, deren Durchmesser geringfügig größer ist als der Außendurchmesser der Wärmetauscherrohre 1, so dass die Wärmetauscherrohre 1 durch die Trennwand 7 mit Spiel 23 hindurch geführt sind. Der Außendurchmesser der Trennwand 7 ist geringer als der Innendurchmesser des Mantels 4, so dass im eingebauten Zustand ein Spalt 24 zwischen Trennwand 7 und Mantel 4 besteht. Die Trennwand 7 kann mit dem aus den Wärmetauscherrohren 1 bestehenden Rohrbündel in den Mantel 4 hinein geschoben werden. Bei einem Wärmetauscher üblicher Größe beträgt der Spalt 24 zwischen der Trennwand 7 und dem Mantel 4 wenige Millimetern, beispielsweise 2 mm, und das Spiel 23 zwischen den Wärmetauscherrohren 1 und den Bohrungen 22 in der Trennwand 7 weniger als 1 mm, z. B. 0,6 mm. In der Fig. 2 sind der Spalt 24 und das Spiel 23 überproportional groß dargestellt.The
Der Spalt 24 zwischen der Trennwand 7 und dem Mantel 4 sowie das Spiel 23 zwischen dem Umfang der Wärmetauscherrohre 1 und den Bohrungen 22 in der Trennwand 7 bewirken, dass die Trennwand 7 durchlässig ist für den Durchtritt des jeweiligen Kühlmediums von dem einem Teilraum 8, 9 in den anderen. Die Trennwand 7 wirkt damit wie ein "leckender" Rohrboden.The
Das Speisewasser wird dem auf der Gasaustrittsseite liegenden Teilraum 9 über Pumpen zugeführt und steht unter einem Druck, der zwar leicht schwankend oder immer höher ist als der Druck in dem auf der Gaseintrittsseite liegenden Teilraum 8. Es herrscht in der Regel also immer ein Druckunterschied. Dieser Druckunterschied wird dadurch ausgeglichen, dass Wasser aus dem auf der Gasaustrittsseite liegenden Teilraum 9 durch die bewusst undicht gehaltene Trennwand 7 in den auf der Gaseintrittsseite liegenden Teilraum 8 übertritt. Das aus dem auf der Gasaustrittsseite liegenden Teilraum 9 austretende Leckwasser verdampft in dem auf der Gaseintrittsseite liegenden Teilraum 8 und gelangt ebenfalls in die Wasser/Dampf-Trommel 12.The feed water is supplied to the lying on the gas
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006055973A DE102006055973A1 (en) | 2006-11-24 | 2006-11-24 | Heat exchanger for cooling cracked gas |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1939412A1 true EP1939412A1 (en) | 2008-07-02 |
EP1939412B1 EP1939412B1 (en) | 2010-10-13 |
Family
ID=39326389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07033540A Active EP1939412B1 (en) | 2006-11-24 | 2007-11-02 | Heat exchanger for cooling fission gas |
Country Status (6)
Country | Link |
---|---|
US (1) | US7784433B2 (en) |
EP (1) | EP1939412B1 (en) |
JP (1) | JP5368694B2 (en) |
AT (1) | ATE484653T1 (en) |
DE (2) | DE102006055973A1 (en) |
ES (1) | ES2351522T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018002086A1 (en) * | 2018-03-09 | 2019-09-12 | Borsig Gmbh | quench |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT2174075E (en) * | 2007-07-05 | 2011-12-30 | Ib Ntec | Thermodynamic system employing a device for producing heat by passing a fluid at pressure through a plurality of tubes |
CN101769658B (en) * | 2009-12-17 | 2012-12-12 | 中国石油化工股份有限公司 | Fluid distribution method for rapid-cooling heat exchanger |
CN101865446B (en) * | 2010-06-17 | 2012-01-11 | 南京国昌化工科技有限公司 | Horizontal-type bushing-type high temperature exhaust-heat recovery unit capable of generating saturated vapor and superheated vapor at the same time |
AU2013207783B2 (en) | 2012-01-13 | 2017-07-13 | Lummus Technology Llc | Process for providing C2 hydrocarbons via oxidative coupling of methane and for separating hydrocarbon compounds |
US9428978B2 (en) * | 2012-06-28 | 2016-08-30 | Carbon Energy Limited | Method for shortening an injection pipe for underground coal gasification |
US9969660B2 (en) | 2012-07-09 | 2018-05-15 | Siluria Technologies, Inc. | Natural gas processing and systems |
DE212012000286U1 (en) * | 2012-09-26 | 2015-06-17 | Trane International Inc. | Subcooler with high performance and low coolant |
US9598328B2 (en) | 2012-12-07 | 2017-03-21 | Siluria Technologies, Inc. | Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products |
EP3074119B1 (en) | 2013-11-27 | 2019-01-09 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
CN110655437B (en) | 2014-01-08 | 2022-09-09 | 鲁玛斯技术有限责任公司 | System and method for ethylene to liquids |
US10377682B2 (en) | 2014-01-09 | 2019-08-13 | Siluria Technologies, Inc. | Reactors and systems for oxidative coupling of methane |
US9701597B2 (en) | 2014-01-09 | 2017-07-11 | Siluria Technologies, Inc. | Oxidative coupling of methane implementations for olefin production |
US9334204B1 (en) | 2015-03-17 | 2016-05-10 | Siluria Technologies, Inc. | Efficient oxidative coupling of methane processes and systems |
US10793490B2 (en) | 2015-03-17 | 2020-10-06 | Lummus Technology Llc | Oxidative coupling of methane methods and systems |
US20160289143A1 (en) | 2015-04-01 | 2016-10-06 | Siluria Technologies, Inc. | Advanced oxidative coupling of methane |
US9328297B1 (en) | 2015-06-16 | 2016-05-03 | Siluria Technologies, Inc. | Ethylene-to-liquids systems and methods |
US20170107162A1 (en) | 2015-10-16 | 2017-04-20 | Siluria Technologies, Inc. | Separation methods and systems for oxidative coupling of methane |
FR3044081B1 (en) * | 2015-11-20 | 2017-12-29 | Technip France | COOL FLOW COOLING SYSTEM AND METHOD THEREOF |
EP3442934A4 (en) | 2016-04-13 | 2019-12-11 | Siluria Technologies, Inc. | Oxidative coupling of methane for olefin production |
PL3267100T3 (en) * | 2016-07-08 | 2021-10-25 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Steam creation system |
DE102016013459A1 (en) * | 2016-11-12 | 2018-05-17 | Linde Aktiengesellschaft | Process for changing the temperature of a fluid by means of a shell-and-tube heat exchanger and shell-and-tube heat exchanger |
WO2018118105A1 (en) | 2016-12-19 | 2018-06-28 | Siluria Technologies, Inc. | Methods and systems for performing chemical separations |
CN106839827A (en) * | 2017-01-19 | 2017-06-13 | 南京天华化学工程有限公司 | A kind of multi-functional cracking rapid-cooling heat exchanger |
PL3630707T3 (en) | 2017-05-23 | 2024-02-19 | Lummus Technology Llc | Integration of oxidative coupling of methane processes |
EP3406970A1 (en) | 2017-05-26 | 2018-11-28 | ALFA LAVAL OLMI S.p.A. | Vapour and liquid drum for a shell-and-tube heat exchanger |
KR20200051583A (en) | 2017-07-07 | 2020-05-13 | 루머스 테크놀로지 엘엘씨 | Systems and methods for oxidative coupling of methane |
CN110056848B (en) * | 2018-04-23 | 2024-05-03 | 新能能源有限公司 | High-temperature high-pressure flue gas waste heat utilization system |
ES2965366T3 (en) | 2021-03-05 | 2024-04-15 | Alfa Laval Olmi S P A | Process heat recovery system |
AU2022340529A1 (en) | 2021-08-31 | 2024-02-29 | Lummus Technology Llc | Methods and systems for performing oxidative coupling of methane |
DE102023004053A1 (en) * | 2023-10-01 | 2025-04-03 | Borsig Gmbh | Quench system and method for a quench system for cooling cracked gas from a cracked gas furnace |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0062344A2 (en) * | 1981-04-06 | 1982-10-13 | The M. W. Kellogg Company | Waste heat boiler and steam superheater system |
EP0272378A1 (en) * | 1986-12-20 | 1988-06-29 | Deutsche Babcock-Borsig AG | Process and device for cooling cracking gases |
DE3643303A1 (en) * | 1986-12-18 | 1988-06-30 | Uhde Gmbh | DEVICE FOR HEAT EXCHANGE, ESPECIALLY BETWEEN SYNTHESIS GAS AND BOILER FEED WATER |
BE1012128A3 (en) * | 1998-08-21 | 2000-05-02 | Blommaert Paul | Combined steam boiler and water supply pre-heater of the type with a flare pipe known as a "combination boiler" |
EP1219892A1 (en) * | 2000-12-14 | 2002-07-03 | Borsig GmbH | Heat recovery boiler for cooling hot synthesis gas |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2711897C3 (en) * | 1977-03-18 | 1980-01-10 | Davy International Ag, 6000 Frankfurt | Process and device for the catalytic oxidation of gaseous sulfur compounds to sulfur trioxide |
JPS5752793A (en) * | 1980-09-12 | 1982-03-29 | Mitsubishi Heavy Ind Ltd | Rapid cooling type heat exchanger |
DE3302304A1 (en) * | 1983-01-25 | 1984-07-26 | Borsig Gmbh, 1000 Berlin | HEAT EXCHANGER FOR COOLING HOT GASES, ESPECIALLY FROM THE AMMONIA SYNTHESIS |
US4488513A (en) * | 1983-08-29 | 1984-12-18 | Texaco Development Corp. | Gas cooler for production of superheated steam |
DE3429366C2 (en) * | 1984-08-09 | 1990-09-13 | L. & C. Steinmüller GmbH, 5270 Gummersbach | Cracked gas cooler |
DE3913731A1 (en) * | 1989-04-26 | 1990-10-31 | Borsig Gmbh | HEAT EXCHANGER FOR COOLING FUSE GAS |
JP2778878B2 (en) * | 1991-09-12 | 1998-07-23 | 株式会社日本触媒 | Method for producing ethylene oxide |
DK173540B1 (en) * | 1994-06-29 | 2001-02-05 | Topsoe Haldor As | Waste heat boiler |
DE19534823C2 (en) * | 1995-09-20 | 2002-08-22 | Ruhr Oel Gmbh | Shell and tube heat exchangers |
US5813453A (en) * | 1996-06-01 | 1998-09-29 | Deutsche Babcock-Borsig Ag | Heat exchanger for cooling cracked gas |
JP3885904B2 (en) * | 1997-05-06 | 2007-02-28 | 臼井国際産業株式会社 | EGR gas cooling device |
JPH1113549A (en) * | 1997-06-23 | 1999-01-19 | Isuzu Motors Ltd | Egr cooler |
DE19811905C2 (en) | 1998-03-18 | 2000-03-30 | Papierfabrik Scheufelen Gmbh & | Method and device for measuring the breakage behavior of cardboard, in particular playing cards |
DE10233818B4 (en) * | 2002-07-25 | 2007-05-24 | Uhde Gmbh | Waste heat boiler for a Claus plant |
US7090816B2 (en) * | 2003-07-17 | 2006-08-15 | Kellogg Brown & Root Llc | Low-delta P purifier for nitrogen, methane, and argon removal from syngas |
DE102005057674B4 (en) * | 2005-12-01 | 2008-05-08 | Alstom Technology Ltd. | waste heat boiler |
-
2006
- 2006-11-24 DE DE102006055973A patent/DE102006055973A1/en not_active Withdrawn
-
2007
- 2007-11-02 DE DE502007005333T patent/DE502007005333D1/en active Active
- 2007-11-02 AT AT07033540T patent/ATE484653T1/en active
- 2007-11-02 EP EP07033540A patent/EP1939412B1/en active Active
- 2007-11-02 ES ES07033540T patent/ES2351522T3/en active Active
- 2007-11-19 JP JP2007299862A patent/JP5368694B2/en active Active
- 2007-11-20 US US11/943,140 patent/US7784433B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0062344A2 (en) * | 1981-04-06 | 1982-10-13 | The M. W. Kellogg Company | Waste heat boiler and steam superheater system |
DE3643303A1 (en) * | 1986-12-18 | 1988-06-30 | Uhde Gmbh | DEVICE FOR HEAT EXCHANGE, ESPECIALLY BETWEEN SYNTHESIS GAS AND BOILER FEED WATER |
EP0272378A1 (en) * | 1986-12-20 | 1988-06-29 | Deutsche Babcock-Borsig AG | Process and device for cooling cracking gases |
BE1012128A3 (en) * | 1998-08-21 | 2000-05-02 | Blommaert Paul | Combined steam boiler and water supply pre-heater of the type with a flare pipe known as a "combination boiler" |
EP1219892A1 (en) * | 2000-12-14 | 2002-07-03 | Borsig GmbH | Heat recovery boiler for cooling hot synthesis gas |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018002086A1 (en) * | 2018-03-09 | 2019-09-12 | Borsig Gmbh | quench |
US10744474B2 (en) | 2018-03-09 | 2020-08-18 | Borsig Gmbh | Quenching system |
Also Published As
Publication number | Publication date |
---|---|
DE502007005333D1 (en) | 2010-11-25 |
ES2351522T3 (en) | 2011-02-07 |
US7784433B2 (en) | 2010-08-31 |
EP1939412B1 (en) | 2010-10-13 |
JP2008145097A (en) | 2008-06-26 |
ATE484653T1 (en) | 2010-10-15 |
US20080121383A1 (en) | 2008-05-29 |
JP5368694B2 (en) | 2013-12-18 |
DE102006055973A1 (en) | 2008-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1939412B1 (en) | Heat exchanger for cooling fission gas | |
DE3715712C1 (en) | Heat exchanger especially for cooling cracked gas | |
EP2151652B1 (en) | Connecting piece between a cracking tube and a cooling tube and method for connecting a cracking tube with a cooling tube | |
EP2052199B1 (en) | Apparatus for combining heat exchange and static mixing with a liquid | |
EP3536763B1 (en) | Quench system and process for cooling a cracked gas from a cracking furnace | |
EP0718579B1 (en) | Heat exchanger for cooling cracked gas | |
EP0417428A2 (en) | Tube bundle heat exchanger | |
DE3039787A1 (en) | HEAT EXCHANGER | |
WO2004067165A1 (en) | Multi-zone tubular reactor for carrying out exothermic gas-phase reactions | |
EP1219892B1 (en) | Heat recovery boiler for cooling hot synthesis gas | |
EP0810414B1 (en) | Heat exchanger for cooling cracked gases | |
DE102007050799B3 (en) | Device for humidifying and heating fuel gas for fuel cell system, has housing through which gas to be humidified and heated flows on predetermined path | |
EP0974803B1 (en) | Heat exchanger for cooling hot process gas | |
DE3208467A1 (en) | CONVECTION HEATER FOR HEATING FLUIDA, E.g. A SLAVE OR THE LIKE | |
EP3516179B1 (en) | Method and arrangement for heat energy recovery in systems comprising at least one reformer | |
DE2551195C3 (en) | Heat exchanger for cooling fission gases | |
DE102012007721B4 (en) | Process gas cooler with lever-controlled process gas cooler flaps | |
DE3333735C2 (en) | ||
WO2017032880A1 (en) | Reactor and method for catalytic conversion of a gas mixture | |
WO2002093099A1 (en) | Heat exchanger for heating a product, in particular a mass for production of confectionery | |
DE102009011847A1 (en) | Heat exchanger for use in organic rankine cycle system, has guide plates for guiding hot gas after cooling, where hot gas is inwardly circulated around predominant part of outer casing, before leaving through openings in casing | |
CH665019A5 (en) | HEAT EXCHANGER, ESPECIALLY FOR COOLING GAS FROM A HIGH TEMPERATURE REACTOR. | |
DE2224899A1 (en) | Heat-exchanger - for steam raising in pipes surrounding hot gas pipes fed from an inlet chamber | |
EP1059486B1 (en) | Method and steam generator for recovering heat from hot process gases | |
EP1772692A1 (en) | Apparatus for cooling waste gases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20080924 |
|
17Q | First examination report despatched |
Effective date: 20081027 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502007005333 Country of ref document: DE Date of ref document: 20101125 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Effective date: 20110126 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110214 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110213 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110113 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101130 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
26N | No opposition filed |
Effective date: 20110714 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007005333 Country of ref document: DE Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101102 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110414 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101013 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241120 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241202 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241120 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241120 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241128 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241121 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241024 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241126 Year of fee payment: 18 Ref country code: ES Payment date: 20241230 Year of fee payment: 18 |