EP1934452B1 - Device for pressure-based load detection - Google Patents
Device for pressure-based load detection Download PDFInfo
- Publication number
- EP1934452B1 EP1934452B1 EP06792231A EP06792231A EP1934452B1 EP 1934452 B1 EP1934452 B1 EP 1934452B1 EP 06792231 A EP06792231 A EP 06792231A EP 06792231 A EP06792231 A EP 06792231A EP 1934452 B1 EP1934452 B1 EP 1934452B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- intake manifold
- manifold pressure
- pressure
- determined
- air mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 17
- 238000002485 combustion reaction Methods 0.000 claims abstract description 29
- 238000005259 measurement Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012806 monitoring device Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 241001503485 Mammuthus Species 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2474—Characteristics of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0402—Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
- F02D2200/0408—Estimation of intake manifold pressure
Definitions
- the invention relates to a device for pressure-based load detection according to the subject-matter of claim 1.
- In the load detection is the determination of the air mass, which is sucked for the purpose of combustion in the combustion chamber of a cylinder of an internal combustion engine.
- two methods are to be distinguished here - those based on an immediate measurement of the air mass by means of sensors (eg hot-film air mass sensor, hot-wire air mass sensor or the like), and those which operate without a direct air mass measurement.
- sensors eg hot-film air mass sensor, hot-wire air mass sensor or the like
- direct air mass measurement the air mass flowing into the intake manifold is measured and the air mass flowing into the cylinder from the intake manifold is calculated by means of a calculation model which describes the intake manifold dynamics.
- the measured intake manifold pressure is usually used, from which an air mass model is used to deduce the incoming air mass.
- These methods are also referred to as pressure-based or suction tube pressure-based methods for load detection.
- the air mass is determined as a function of the intake manifold pressure and the temperature of the air in the intake manifold.
- complex calculation models are required, which describe the fresh air mass flow from the collector in the intake to the combustion chamber of the cylinder.
- Parameters to be taken into account here are, in particular, the engine speed, the camshaft position and / or the lift positions and / or lift positions of exhaust and intake valves, the engine temperature and, with supercharged engines: the position of the bypass (Wastegate).
- the fresh air mass remaining in the cylinders steadily increases with the intake manifold pressure with otherwise identical input parameters (parameters) ( FIG. 2 ).
- Known devices for the pressure-based determination of the air mass (load) therefore include suction tube pressure sensors, which can cover or measure the entire intake manifold pressure range.
- the invention has for its object to provide a device that ensures improved accuracy of the load detection, especially in low load ranges.
- the invention is based on the finding that measurement errors occur due to the tolerance of the sensors, which have different effects in the different load ranges.
- a distinction between an absolute measurement error, the proportion (amount) over the entire measuring range is always the same and which corresponds to a percentage of the final value, and a relative measurement error, the proportion of which changes depending on the height of the measured value .
- the relative measurement error increases disproportionately at small intake pipe pressures (loads) and thus has a particularly disadvantageous effect on the accuracy of the load signal.
- high accuracy of the load signal is extremely important for drivability of a motor vehicle (e.g., in the transition from high loads to idle).
- load calculation models of direct-injection supercharged engines are sensitive to existing pressure sensor tolerances.
- the gradient is twice that of non-supercharged engines due to high valve overlaps (i.e., phases in which both intake and exhaust valves are open) and the intake manifold pressure range to be sensed.
- the device according to the invention is therefore particularly suitable for directly supercharged supercharged internal combustion engines.
- a device according to the invention comprises a
- the absolute measuring error is smaller than with a measuring device that covers the entire physical measuring range (total physical intake manifold pressure range). Further, due to the smaller relative measurement error, the error in determining the load as a function of the measured intake manifold pressure is considerably smaller for smaller loads. Outside the pressure range of the pressure sensor used, the intake manifold pressure is determined by means of a calculation model and the required load is calculated on the basis of the calculated intake manifold pressure. The present error due to the calculation model for calculating the intake manifold pressure in the upper intake manifold pressure range is significantly less noticeable, so that clearly outweigh the benefits of increased accuracy in the lower intake manifold pressure range.
- the intake manifold pressure (value) measured in the lower part of the intake manifold pressure range is used directly as an input to a load sensing model to determine the load.
- the intake manifold pressure can be simulated over the entire intake manifold pressure range via a calculation model, wherein the measured intake manifold pressure is supplied to a regulator device in the lower Saugrohrbuchteil Colour (in which the intake manifold pressure is detected by a sensor device) is adjusted over the modeled intake manifold pressure to the measured intake manifold pressure.
- the sensor device is preferably designed such that it covers the entire Saugrohrbuch Kunststoff Kunststoff #2 without active supercharger (in this lower pressure range so the intake manifold pressure is determined directly via a measurement), while in the pressure range above the maximum mammoth pressure without active Charger device to intake manifold maximum pressure with active charger device, the intake manifold pressure is determined model-based.
- FIG. 1 is schematically shown a cylinder 2 of an internal combustion engine of a motor vehicle together with its associated intake and its associated exhaust tract.
- a piston 4 driven by a crankshaft not shown, moves up and down.
- the valve drive represented in simplified form by an inlet valve EV and an outlet valve AV together with the associated valve control, which is preferably designed as a valve control variable with respect to the valve timing and / or the valve strokes, the various cycles of a combustion process are realized.
- the intake tract comprises a suction pipe 6 with a collector 6a, wherein in the collector 6a for measuring the intake manifold pressure P SD is designed as a Saugrohrdrucksensor sensor device S SD is arranged and a controllable throttle 8.
- P SD intake manifold pressure
- S SD Saugrohrdrucksensor sensor
- a controllable throttle 8 In the illustrated embodiment with Ladereihraum is seen in the intake further a in the air flow direction In front of the throttle valve 8 arranged boost pressure sensor S LD , a charge air cooler 10 and a compressor unit 12 of a charger provided.
- an exhaust manifold 14 with an integrated turbine unit 16 of the charger and associated controllable bypass 18 (wastegate) is shown.
- the air mass flowing into the combustion chamber is not equal to the air mass remaining in the combustion chamber at some operating points, since a so-called over-flushing can occur, especially in supercharger operation due to valve overlaps, in which portions of the air mass supplied to the combustion chamber are still in the intake stroke in the exhaust tract be forwarded and thus not available in the combustion process.
- FIG. 3 a first preferred embodiment of the device according to the invention is illustrated.
- the device according to the invention is designed such that via the intake manifold pressure P SD , P SD 'the incoming air mass LM can be determined by means of a calculation model M LE for load detection.
- a sensor device S SD for direct detection of the intake manifold pressure P SD which is designed (designed) with respect to its measuring range such that the intake manifold pressure P SD can only be measured in a lower intake manifold pressure portion of the internal combustion engine.
- a calculation model M SD for indirect detection of the intake manifold pressure P SD ' is present, which is designed such that hereby the intake manifold pressure P SD ' can be determined by calculation in an upper intake manifold pressure portion of the internal combustion engine.
- the device is designed such that within the lower Saurohrbuchteilrios the incoming air mass LM is determined as a function of the measured by means of sensor S SD intake manifold pressure P SD , and that within the upper Saugrohrteilteil Schemes the incoming air mass LM via the determined by means of calculation model M SD intake manifold pressure P SD 'is determined.
- a monitoring device ÜE is provided, by means of which it is monitored whether the actual intake manifold pressure is within the measuring range of the sensor device S SD or not.
- the measured intake manifold pressure P SD is forwarded directly to the calculation model M LE for load detection for further processing. If there is an intake manifold pressure that is outside the measuring range (x> P sensor_max ) of the sensor device S SD , an intake manifold pressure P SD 'is calculated and this forwarded instead of the measured intake manifold pressure P SD for further processing to the calculation model M LE for load detection (or for determining the air mass LM).
- the selection of which intake manifold pressure (measured intake manifold pressure P SD or model-based calculated intake manifold pressure P SD ') is relevant and is forwarded is realized via a diverter element W controlled by the monitoring device UE.
- the device according to the invention for determining the load can be designed such that it always works with a model-based intake manifold pressure P SD 'as an input signal for the calculation model M LE for load detection.
- a device according to FIG. 4 Use.
- the intake manifold pressure P SD ' is always model-based determined, depending on whether the intake manifold pressure is within the measuring range of the sensor device S SD or not, the calculated intake manifold pressure P SD ' is adjusted via a correction value K to the measured intake manifold pressure P SD or calculated intake manifold pressure P SD 'remains unchanged.
- a correction value K for calculating the intake manifold pressure P SD ' is determined via a balancing regulator R.
- the correction quantity K is determined by means of a difference between measured intake manifold pressure P SD and calculated intake manifold pressure P SD 'fed to balancing regulator R, and the calculated intake manifold pressure P SD ' is compared to the measured intake manifold pressure P SD . If the intake manifold pressure value is outside the sensor measurement range, the calculation model M SD for calculating the intake manifold pressure P SD 'can not be adjusted to the measured intake manifold pressure P SD .
- the unbalanced calculated intake manifold pressure value P SD ' is then used directly as input to the post-order calculation model M LE for load detection.
- the calculation model for load detection instead of the correction value K, a neutral value N is fed to the calculation of the intake manifold pressure is not affected.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zur druckbasierten Lasterfassung gemäß dem Gegenstand des Anspruchs 1.The invention relates to a device for pressure-based load detection according to the subject-matter of claim 1.
Bei der Lasterfassung handelt es sich um die Bestimmung der Luftmasse, die zum Zwecke der Verbrennung in den Brennraum eines Zylinders einer Brennkraftmaschine angesaugt wird.In the load detection is the determination of the air mass, which is sucked for the purpose of combustion in the combustion chamber of a cylinder of an internal combustion engine.
Hierbei sind insbesondere zwei Verfahren zu unterscheiden - diejenigen, die auf einer unmittelbaren Messung der Luftmasse mittels Sensorik (z.B. Heißfilm-Luftmassensensor, Hitzdraht-Luftmassensensor oder dergleichen) basieren, und diejenigen, die ohne eine direkte Luftmassenmessung arbeiten. Bei Verfahren mit direkter Luftmassenmessung wird die in das Saugrohr einströmende Luftmasse gemessen und die aus dem Saugrohr in die Zylinder einströmende Luftmasse mittels eines Berechnungsmodells, das die Saugrohrdynamik beschreibt, berechnet. Bei Verfahren ohne direkte Luftmassenmessung wird meist der gemessene Saugrohrdruck verwendet, aus dem über ein Luftmassenmodell auf die einströmende Luftmasse geschlossen wird. Bei diesen Verfahren spricht man auch von druckbasierten oder saugrohrdruckbasierten Verfahren zur Lasterfassung. Bei saugrohrdruckbasierten Verfahren zur Lasterfassung erfolgt die Bestimmung der Luftmasse in Abhängigkeit vom Saugrohrdruck und der Temperatur der Luft im Saugrohr. Um vom Saugrohrdruck auf die in die Brennkammer einströmende Luftmasse schließen zu können sind komplexe Berechnungsmodelle erforderlich, welche den Frischluftmassenstrom vom Sammler im Ansaugtrakt bis in die Brennkammer der Zylinder beschreiben. Hierbei zu berücksichtigende Parameter sind insbesondere die Motordrehzahl, die Nockenwellenposition bzw. die Steuerzeiten und/oder Hubpositionen von Auslass- und Einlassventilen, die Motortemperatur und bei aufgeladenen Motoren: die Position des Bypasses (wastegate). Die in den Zylindern verbleibende Frischluftmasse steigt bei sonst gleichen Eingangsgrößen (Parametern) mit dem Saugrohrdruck stetig an (
Bekannte Vorrichtungen zur druckbasierten Bestimmung der Luftmasse (Last) umfassen daher Saurohrdrucksensoren, die den gesamten Saugrohrdruckbereich abdecken bzw. messen können.Known devices for the pressure-based determination of the air mass (load) therefore include suction tube pressure sensors, which can cover or measure the entire intake manifold pressure range.
Aus der Druckschrift
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zu schaffen, die eine verbesserte Genauigkeit der Lasterfassung, insbesondere in niedrigen Lastbereichen, gewährleistet.The invention has for its object to provide a device that ensures improved accuracy of the load detection, especially in low load ranges.
Der Erfindung liegt die Erkenntnis zugrunde, dass aufgrund der Toleranzbehaftung der Sensoren Messfehler auftreten, die sich in den unterschiedlichen Lastbereichen unterschiedlich auswirken. Dabei ist zwischen einem absoluten Messfehler, dessen Anteil (Betrag) über den gesamten Messbereich stets der gleiche ist und der einem prozentualen Anteil bezogen auf den Endwert entspricht, und einem relativen Messfehler, dessen Anteil sich in Abhängigkeit von der Höhe des Messwertes ändert, zu unterscheiden. Der relative Messfehler steigt bei kleinen Saugrohrdrücken (Lasten) überproportional an und wirkt sich somit genau hier besonders nachteilig auf die Genauigkeit des Lastsignals aus. Gerade aber bei kleinen Lasten ist eine hohe Genauigkeit des Lastsignals aus Gründen der Fahrbarkeit eines Kraftfahrzeugs enorm wichtig (z.B. beim Übergang von hohen Lasten in den Leerlauf). Je größer der Messbereich eines Sensors ist und je größer der Gradient der Last über dem Saugrohrdruck ist, desto stärker ist der beschriebene nachteilige Effekt ausgeprägt. Aus diesen Gründen reagieren insbesondere Lastberechnungsmodelle direkt einspritzender aufgeladener Motoren empfindlich auf vorhandene Drucksensortoleranzen. Gerade bei diesen Motoren ist der Gradient wegen hoher Ventilüberschneidungen (d.h. Phasen, in denen sowohl Einlass- und Auslassventile geöffnet sind) und der zu erfassende bzw. zu messende Saugrohrdruckbereich doppelt so groß wie bei nicht aufgeladenen Motoren. Die erfindungsgemäße Vorrichtung eignet sich demnach besonders für direkt einspritzende aufgeladene Brennkraftmaschinen.The invention is based on the finding that measurement errors occur due to the tolerance of the sensors, which have different effects in the different load ranges. In this case, a distinction between an absolute measurement error, the proportion (amount) over the entire measuring range is always the same and which corresponds to a percentage of the final value, and a relative measurement error, the proportion of which changes depending on the height of the measured value , The relative measurement error increases disproportionately at small intake pipe pressures (loads) and thus has a particularly disadvantageous effect on the accuracy of the load signal. However, especially at low loads, high accuracy of the load signal is extremely important for drivability of a motor vehicle (e.g., in the transition from high loads to idle). The larger the measuring range of a sensor and the greater the gradient of the load over the intake manifold pressure, the stronger the disadvantageous effect described is pronounced. For these reasons, in particular load calculation models of direct-injection supercharged engines are sensitive to existing pressure sensor tolerances. Especially in these engines, the gradient is twice that of non-supercharged engines due to high valve overlaps (i.e., phases in which both intake and exhaust valves are open) and the intake manifold pressure range to be sensed. The device according to the invention is therefore particularly suitable for directly supercharged supercharged internal combustion engines.
Erfindungsgemäß wird die Aufgabe durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst, während in den Unteransprüchen bevorzugte Weiterbildungen der Erfindung angegeben sind. Eine erfindungsgemäße Vorrichtung umfasst eineAccording to the invention the object is achieved by the totality of the features of claim 1, while in the dependent claims preferred embodiments of the invention are given. A device according to the invention comprises a
Sensoreinrichtung (Saugrohrdrucksensor), deren Messbereich nur den unteren Teil des physikalischen Saugrohrdruckbereichs der Brennkraftmaschine abdeckt. Durch den kleineren Messbereich ist der absolute Messfehler kleiner als bei einer Messeinrichtung, die den kompletten physikalischen Messbereich (gesamter physikalischer Saugrohrdruckbereich) abdeckt. Ferner ist aufgrund des kleineren relativen Messfehlers der Fehler bei der Ermittlung der Last in Abhängigkeit von dem gemessenen Saugrohrdruck bei kleineren Lasten erheblich kleiner. Außerhalb des Druckbereichs des verwendeten Drucksensors wird der Saugrohrdruck über ein Berechnungsmodell ermittelt und an Hand des berechneten Saugrohrdruckes die erforderliche Last berechnet. Der vorliegende Fehler aufgrund des Berechnungsmodells zur Berechnung des Saugrohrdruckes im oberen Saugrohrdruckbereich macht sich erheblich weniger bemerkbar, so dass deutlich die Vorteile der erhöhten Genauigkeit im unteren Saugrohrdruckbereich überwiegen.Sensor device (intake manifold pressure sensor) whose measuring range covers only the lower part of the physical intake manifold pressure range of the internal combustion engine. Due to the smaller measuring range, the absolute measuring error is smaller than with a measuring device that covers the entire physical measuring range (total physical intake manifold pressure range). Further, due to the smaller relative measurement error, the error in determining the load as a function of the measured intake manifold pressure is considerably smaller for smaller loads. Outside the pressure range of the pressure sensor used, the intake manifold pressure is determined by means of a calculation model and the required load is calculated on the basis of the calculated intake manifold pressure. The present error due to the calculation model for calculating the intake manifold pressure in the upper intake manifold pressure range is significantly less noticeable, so that clearly outweigh the benefits of increased accuracy in the lower intake manifold pressure range.
In einer bevorzugten Ausführungsform wird der im unteren Teil des Saugrohrdruckbereichs gemessene Saugrohrdruck(wert) direkt als Eingangsgröße für ein Lasterfassungsmodell zur Bestimmung der Last verwendet. Alternativ kann der Saugrohrdruck über den gesamten Saugrohrdruckbereich über ein Berechnungsmodell nachgebildet werden, wobei im unteren Saugrohrdruckteilbereich (in dem der Saugrohrdruck über eine Sensoreinrichtung erfasst wird) der gemessene Saugrohrdruck einer Reglereinrichtung zugeführt wird über die der modellierte Saugrohrdruck auf den gemessenen Saugrohrdruck abgeglichen wird.In a preferred embodiment, the intake manifold pressure (value) measured in the lower part of the intake manifold pressure range is used directly as an input to a load sensing model to determine the load. Alternatively, the intake manifold pressure can be simulated over the entire intake manifold pressure range via a calculation model, wherein the measured intake manifold pressure is supplied to a regulator device in the lower Saugrohrdruckteilbereich (in which the intake manifold pressure is detected by a sensor device) is adjusted over the modeled intake manifold pressure to the measured intake manifold pressure.
Gemäß einer Weiterbildung der Erfindung für aufgeladene Motoren ist die Sensoreinrichtung vorzugsweise derart ausgebildet, dass sie den gesamten Saugrohrdruckbereich ohne aktive Ladereinrichtung abdeckt (in diesem unteren Druckbereich also der Saugrohrdruck direkt über eine Messung ermittelt wird), während im Druckbereich oberhalb des Säugrohr-Maximaldruckes ohne aktive Ladereinrichtung bis zum Saugrohrmaximaldruck mit aktiver Ladereinrichtung der Saugrohrdruck modellbasiert ermittelt wird.According to one embodiment of the invention for turbocharged engines, the sensor device is preferably designed such that it covers the entire Saugrohrdruckbereich without active supercharger (in this lower pressure range so the intake manifold pressure is determined directly via a measurement), while in the pressure range above the maximum mammoth pressure without active Charger device to intake manifold maximum pressure with active charger device, the intake manifold pressure is determined model-based.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Es zeigen:
- Figur 1:
- einen Zylinder einer Brennkraftmaschine mit zugehörigem Ansaug- und Abgastrakt in schematischer Darstellung,
- Figur 2:
- den schematisch dargestellten Verlauf der der Brennkammer eines Zylinders zugeführten Luftmasse in Abhängigkeit vom Saugrohrdruck,
- Figur 3:
- die erfindungsgemäße Vorrichtung in einer ersten möglichen Ausführungsform in schematischer Darstellung, und
- Figur 4:
- die erfindungsgemäße Vorrichtung in einer weiteren möglichen Ausführungsform in schematischer Darstellung.
- FIG. 1:
- a cylinder of an internal combustion engine with associated intake and exhaust tract in a schematic representation,
- FIG. 2:
- the schematically illustrated course of the combustion chamber of a cylinder supplied air mass as a function of intake manifold pressure,
- FIG. 3:
- the inventive device in a first possible embodiment in a schematic representation, and
- FIG. 4:
- the device according to the invention in a further possible embodiment in a schematic representation.
In
Der Ansaugtrakt umfasst ein Saugrohr 6 mit einem Sammler 6a, wobei im Sammler 6a zur Messung des Saugrohrdruckes PSD eine als Saugrohrdrucksensor ausgebildete Sensoreinrichtung SSD angeordnet ist sowie eine steuerbare Drosselklappe 8. Bei der dargestellten Ausführungsform mit Ladereihrichtung ist im Ansaugtrakt ferner ein in Luftströmungsrichtung gesehen vor der Drosselklappe 8 angeordneter Ladedrucksensor SLD, ein Ladeluftkühler 10 sowie eine Verdichtereinheit 12 einer Ladereinrichtung vorgesehen.The intake tract comprises a
Im dargestellten Teil des Abgastraktes ist ein Abgaskrümmer 14 mit einer integrierten Turbineneinheit 16 der Ladereinrichtung und zugehörigem steuerbaren Bypass 18 (wastegate) dargestellt.In the illustrated part of the exhaust system, an
Zur Steuerung der Last bzw. der aufgrund einer Lastanforderung zuzuführenden Luftmasse ist es erforderlich zu wissen, wie viel Luftmasse in der Brennkammer des Zylinders tatsächlich zum Zwecke der Verbrennung verbleibt. Dabei ist die in die Brennkammer einströmende Luftmasse in einigen Betriebspunkten nicht gleich der in der Brennkammer verbleibenden Luftmasse, da es insbesondere im Laderbetrieb aufgrund von Ventilüberschneidungen zu einem so genannten Überspülen kommen kann, bei dem Anteile der der Brennkammer zugeführten Luftmasse noch im Ansaugtakt in den Auslasstrakt weitergeleitet werden und somit nicht beim Verbrennungsprozess zur Verfügung stehen.To control the load or air mass to be supplied due to a load request, it is necessary to know how much air mass actually remains in the combustion chamber of the cylinder for the purpose of combustion. In this case, the air mass flowing into the combustion chamber is not equal to the air mass remaining in the combustion chamber at some operating points, since a so-called over-flushing can occur, especially in supercharger operation due to valve overlaps, in which portions of the air mass supplied to the combustion chamber are still in the intake stroke in the exhaust tract be forwarded and thus not available in the combustion process.
In
Alternativ zur Ausführung gemäß
Claims (3)
- A device for determining the air mass (LM) flowing into the cylinder combustion chamber of an internal combustion engine cylinder of a motor vehicle, wherein the inflowing air mass (LM) can be determined by means of a calculation model (MLE) for detecting the load as a function of the intake manifold pressure (PSD), and the device contains,- a sensor device (SSD) for the direct detection of the intake manifold pressure (PSD), with a measurement range, so that the intake manifold pressure (PSD) can be measured by means of the sensor device (SSD) exclusively in a lower partial range of the intake manifold pressure of the internal combustion engine,- and a calculation model (MSD) for the indirect detection of the intake manifold pressure (PSD'), which is configured in such a way that the intake manifold pressure (PSD') can be determined with this by means of calculation in an upper partial range of the intake manifold pressure of the internal combustion engine,- and the device is configured in such a way that, within the lower partial range of the intake manifold pressure, the inflowing air mass (LM) is determined as a function of the intake manifold pressure (PSD) measured by means of a sensor device (SSD), and in that within the upper partial range of the intake manifold pressure, the inflowing air mass (LM) is determined by means of the intake manifold pressure (PSD') determined by means of the calculation model (MSD).
- A device according to claim 1, characterised in that the device is configured for a supercharged internal combustion engine, wherein the sensor device (SSD) has a measurement range, which corresponds to the pressure range up to the maximum intake manifold pressure without an activated supercharger device and the intake manifold pressure (PSD) in this pressure range can be determined directly by means of the sensor device (SSD), and wherein the intake manifold pressure (PSD') in the pressure range above the maximum intake manifold pressure without an activated supercharger device is determined up to the maximum pressure with an activated supercharger device by means of the calculation model (MSD).
- A device according to any one of the preceding claims, characterised in that the intake manifold pressure over the entire intake manifold pressure range is determined by means of the calculation model (MSD) to determine the intake manifold pressure (PSD'), the determined intake manifold pressure (PSD') in the lower partial range of the intake manifold pressure being matched to the measured intake manifold pressure (PSD).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005046504A DE102005046504A1 (en) | 2005-09-29 | 2005-09-29 | Device for determining the air mass flowing in the cylinder combustion chamber of an engine cylinder of a vehicle comprises a sensor arrangement for directly measuring the suction tube pressure and a calculating module |
PCT/EP2006/009229 WO2007036330A1 (en) | 2005-09-29 | 2006-09-22 | Device for pressure-based load detection |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1934452A1 EP1934452A1 (en) | 2008-06-25 |
EP1934452B1 true EP1934452B1 (en) | 2009-03-11 |
Family
ID=37433726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06792231A Ceased EP1934452B1 (en) | 2005-09-29 | 2006-09-22 | Device for pressure-based load detection |
Country Status (4)
Country | Link |
---|---|
US (1) | US7546760B2 (en) |
EP (1) | EP1934452B1 (en) |
DE (2) | DE102005046504A1 (en) |
WO (1) | WO2007036330A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009003285B4 (en) * | 2009-05-20 | 2021-01-07 | Robert Bosch Gmbh | Method for diagnosing pressure sensors of an air supply to an internal combustion engine |
JP5204162B2 (en) * | 2009-08-05 | 2013-06-05 | 本田技研工業株式会社 | Vehicle speed change control device |
DE102014003276A1 (en) * | 2014-03-12 | 2015-09-17 | Man Truck & Bus Ag | Internal combustion engine, in particular gas engine, for a motor vehicle |
CN110907165B (en) * | 2019-12-26 | 2024-06-14 | 重庆科杰实业有限责任公司 | Three comprehensive detection frock of air intake manifold |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5003950A (en) * | 1988-06-15 | 1991-04-02 | Toyota Jidosha Kabushiki Kaisha | Apparatus for control and intake air amount prediction in an internal combustion engine |
EP0820559B1 (en) * | 1995-04-10 | 1999-09-15 | Siemens Aktiengesellschaft | Process for finding the mass of air entering the cylinders of an internal combustion engine with the aid of a model |
CN1077210C (en) * | 1996-03-15 | 2002-01-02 | 西门子公司 | Process for model-assisted determination of fresh air mass flowing into cylinder of I. C. engine with external exhaust-gas recycling |
US6078907A (en) * | 1998-02-18 | 2000-06-20 | Lamm; David | Method and system for electronically presenting and paying bills |
DE10049907B4 (en) * | 2000-10-10 | 2014-09-11 | Robert Bosch Gmbh | Method, computer program and control and / or regulating device for operating an internal combustion engine |
DE10102914C1 (en) * | 2001-01-23 | 2002-08-08 | Siemens Ag | Method for determining an estimated value of a mass flow in the intake tract of an internal combustion engine |
EP1715163A1 (en) * | 2001-11-28 | 2006-10-25 | Volkswagen Aktiengesellschaft | Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with exhaust gas recirculation |
US6804601B2 (en) * | 2002-03-19 | 2004-10-12 | Cummins, Inc. | Sensor failure accommodation system |
DE10227466B4 (en) * | 2002-06-20 | 2004-06-09 | Bayerische Motoren Werke Ag | Method for determining cylinder loading in an internal combustion engine |
JP4029739B2 (en) * | 2003-02-05 | 2008-01-09 | トヨタ自動車株式会社 | Calculation of charge air quantity in internal combustion engine |
CN100532809C (en) * | 2003-07-10 | 2009-08-26 | 丰田自动车株式会社 | Air intake amount estimation device for internal combustion engine |
DE102004041708B4 (en) * | 2004-08-28 | 2006-07-20 | Bayerische Motoren Werke Ag | Method for the model-based determination of fresh air mass flowing into the cylinder combustion chamber of an internal combustion engine during an intake phase |
JP4143862B2 (en) * | 2004-11-29 | 2008-09-03 | トヨタ自動車株式会社 | Air quantity estimation device for internal combustion engine |
-
2005
- 2005-09-29 DE DE102005046504A patent/DE102005046504A1/en not_active Withdrawn
-
2006
- 2006-09-22 DE DE502006003125T patent/DE502006003125D1/en active Active
- 2006-09-22 WO PCT/EP2006/009229 patent/WO2007036330A1/en active Application Filing
- 2006-09-22 EP EP06792231A patent/EP1934452B1/en not_active Ceased
-
2008
- 2008-03-27 US US12/056,739 patent/US7546760B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE102005046504A1 (en) | 2007-04-05 |
US20080229816A1 (en) | 2008-09-25 |
DE502006003125D1 (en) | 2009-04-23 |
US7546760B2 (en) | 2009-06-16 |
WO2007036330A1 (en) | 2007-04-05 |
EP1934452A1 (en) | 2008-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102014210207B4 (en) | Control device and control method for internal combustion engine | |
DE10362028B4 (en) | Method for determining a quantity of fresh gas | |
EP2921678B1 (en) | Combustion engine, in particular gas engine, for a motor vehicle | |
WO2016034370A1 (en) | Method and device for actuating an exhaust gas recirculation valve of a supercharged internal combustion engine with exhaust gas recirculation | |
EP1934452B1 (en) | Device for pressure-based load detection | |
DE102008043975B4 (en) | Method and device for providing air mass flow information in a supercharged internal combustion engine | |
DE102011079726A1 (en) | Method and system for controlling an engine | |
EP1242739B1 (en) | Method for detecting malfunctioning in a sensor | |
DE19753873A1 (en) | IC engine operating method | |
DE10102914C1 (en) | Method for determining an estimated value of a mass flow in the intake tract of an internal combustion engine | |
EP2924272A1 (en) | Control device of internal combustion engine | |
WO2009144194A1 (en) | Method and device for operating an internal combustion engine and an internal combustion engine | |
CN102192813B (en) | The method and apparatus of the analogue value of pressure is determined in the engine system with internal combustion engine | |
DE102014226181A1 (en) | Method and apparatus for testing a pressure-based mass flow sensor in an air supply system for an internal combustion engine | |
US11203994B2 (en) | Method and control device for determining reliability regarding misfire determination of cylinders of an internal combustion engine | |
WO2017178130A1 (en) | Method for operating an internal combustion engine having an wastegate turbocharger, and internal combustion engine | |
EP1247967B1 (en) | Method to determine the intake air mass flow in an internal combustion engine | |
EP1375881B1 (en) | Method for determining the filling of a cylinder in an internal combustion engine with variable valve timing, control unit and internal combustion engine | |
EP3635231A1 (en) | Checking the plausibility of an air mass flow meter | |
JP6515903B2 (en) | Control device for internal combustion engine | |
EP1609970B1 (en) | Method and device to operate an internal combustion engine | |
EP3430252A1 (en) | Method and controller for determining the quantity of filling components in a cylinder of an internal combustion engine | |
DE10344709B4 (en) | Method for determining an exhaust gas recirculation quantity | |
DE19853817C2 (en) | Method for controlling an internal combustion engine | |
DE102008054933A1 (en) | Air supply section deviation information i.e. correction information, determining method for internal combustion engine of vehicle, involves providing deviation information based on deviation of attribute of torque characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080331 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502006003125 Country of ref document: DE Date of ref document: 20090423 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20091214 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160922 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170925 Year of fee payment: 12 Ref country code: GB Payment date: 20170925 Year of fee payment: 12 Ref country code: DE Payment date: 20170915 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170922 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006003125 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180922 |