[go: up one dir, main page]

EP1930679B1 - Method and device for cooling reactors with boiling liquids - Google Patents

Method and device for cooling reactors with boiling liquids Download PDF

Info

Publication number
EP1930679B1
EP1930679B1 EP20070121643 EP07121643A EP1930679B1 EP 1930679 B1 EP1930679 B1 EP 1930679B1 EP 20070121643 EP20070121643 EP 20070121643 EP 07121643 A EP07121643 A EP 07121643A EP 1930679 B1 EP1930679 B1 EP 1930679B1
Authority
EP
European Patent Office
Prior art keywords
reactor
heat exchanger
cooling
porous
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20070121643
Other languages
German (de)
French (fr)
Other versions
EP1930679A1 (en
Inventor
Gerd Kaibel
Dirk Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP20070121643 priority Critical patent/EP1930679B1/en
Publication of EP1930679A1 publication Critical patent/EP1930679A1/en
Application granted granted Critical
Publication of EP1930679B1 publication Critical patent/EP1930679B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0022Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for chemical reactors

Definitions

  • the present invention relates to an improved method for cooling a reactor in which an exothermic reaction takes place, wherein within the reactor a heat exchanger dissipates heat produced by means of evaporative cooling.
  • the reaction media which are present here within the reactor can be, for example, gaseous, liquid, gaseous and liquid, liquid with suspended solids or gaseous and liquid with suspended solids.
  • the reactions can be carried out continuously or batchwise.
  • the invention relates to a device for carrying out the method.
  • reactors are used to maintain the desired temperature ranges when carrying out exothermic reactions, which allow an internal or external heat dissipation.
  • reactors with internal heat removal are tube-bundle reactors or reactors with built-in cooling coils, tube registers or plate heat exchangers.
  • the heat of reaction can be dissipated by circulation and recycling of the reaction medium, the cooling can be done by externally mounted heat exchangers of different types. From a reaction engineering point of view, preference is given to reactor designs with internal cooling, since they allow a more precise maintenance of the desired reaction temperatures.
  • tube bundle reactors which can be operated in very wide temperature ranges with maximum reaction temperatures up to about 450 ° C.
  • the heat removal takes place at high reaction temperatures of more than about 240 ° C., preferably via salt melts, which are circulated.
  • the heat of reaction absorbed via an increase in temperature of the molten salt is released in a further cooling circuit in which steam is generated in desired pressure stages.
  • the use of two cooling circuits increases the capital expenditure.
  • Another measure to reduce the investment costs is the replacement of the tube bundles against heat exchanger plates. This design allows lower investment costs. Also for the design with heat exchanger plates is the technically and economically possible maximum pressure level for the generated steam at about 100 bar.
  • a heat removal by steam generation over low-cost heat exchanger plates should be possible even at high reaction temperatures in the range of about 300 to 450 ° C
  • the heat exchanger should advantageously still be operated in a low pressure stage of about 4 to 40 bar.
  • this reactor concept has hitherto encountered technical difficulties.
  • the boiling temperatures of water are about 150 to 250 ° C.
  • a reaction temperature of about 400 ° C which is present for example in the butane oxidation to obtain maleic anhydride, so that temperature differences between the reaction medium and the evaporating water of about 150 to 250 ° C occur.
  • a method for cooling a reactor in which an exothermic reaction takes place wherein inside the reactor a heat exchanger dissipates heat produced by means of evaporative cooling, which is characterized in that the integrated into the reactor heat exchanger on the side of the evaporating liquid at least partially porous structured or rough surfaces, wherein the temperature difference between the reaction medium inside the reactor and the evaporating liquid is more than 35 ° C, preferably more than 50 to about 200 ° C.
  • Evaporator surfaces with a porous or rough coating to promote the evaporation process even at very small temperature differences of about 2 to 5 ° C are already known in the art.
  • porous coated tubes of the company UOP UOP LLC, Des Plaines, IL, 60017-5017, USA
  • Wieland Wieland-Werke AG, D-89070 Ulm
  • Enhanced Boiling Tubes to call.
  • UOP stochastically distributed pores
  • Wieland mechanically targeted applied porous or rough microstructures
  • EP 0607839 used, which serve to improve the heat transfer during evaporation.
  • the porous microstructures or the stochastically distributed pores act comparable to the boiling stones used in chemical laboratory practice and trigger the formation of vapor bubbles even at very small temperature differences of about 2 to 5 ° C. With a smooth evaporator surface larger temperature differences of about 10 ° C and more are needed depending on the geometric design of the evaporator surface.
  • the pore size of the microstructures is in the range of about 1 to 500 microns.
  • evaporators are used in basic chemicals, such as ethylene, propylene, C 2 , C 3 and C 4 hydrocarbons (LPG, LNG), aromatics, such as benzene, toluene and xylene, and other hydrocarbons, ethylene glycol, methyl tert-butyl ether and ammonia (see company brochures Fa. Wieland and Fa. UOP).
  • basic chemicals such as ethylene, propylene, C 2 , C 3 and C 4 hydrocarbons (LPG, LNG), aromatics, such as benzene, toluene and xylene, and other hydrocarbons, ethylene glycol, methyl tert-butyl ether and ammonia ( see company brochures Fa. Wieland and Fa. UOP).
  • the surface of the invention which is porous or has a porous structure on the side of the evaporating liquid in the evaporator preferably has numerous pores or depressions arranged regularly or stochastically.
  • the pore size of the approximately circular or present in other geometries pores is about 1 to 500 microns.
  • the proportion of pores on the surface can be about 1 to 80%, preferably about 10 to 50%.
  • the pore depth corresponds to a random or regular arrangement of the pores about the pore diameter. In the case of a mechanical attachment of the pores, it is possible to move from the rather round pore shape to any geometric shapes, for example also longitudinal channels.
  • the depth of the pores or depressions of about 0.1 to 2 mm is independent of the pore width of about 0.1 to 0.3 mm. Examples of such pore structures are in EP 0607839 . DE 102 10 016 and DE 44 04 357 described. DE 101 56 374 describes by way of example a method for producing such porous or rough structures.
  • the application of the porous layers to metallic sheets may preferably be carried out by flame spraying or plasma spraying.
  • Such coating methods are state of the art.
  • As a base material and as a coating material a variety of materials come into consideration, such as stainless chromium nickel steels, chromium steels and non-ferrous metals.
  • the coating can also optionally be carried out as a rough surface without formation of pores. This formation of rough surfaces occurs particularly in the application of thinner layers of about 0.1 to 0.4 mm, while in the formation of more porous layers generally greater layer thicknesses of about 0.2 to 1 mm are applied.
  • the entire surface of the evaporator on the inventive design with pores or roughness, but it may be provided hereby only parts thereof. It can be provided with it about 10 to 100% of the surface.
  • the process according to the invention for oxidation reactions is preferably used.
  • examples include the oxidation of n-butane to maleic anhydride at a reaction temperature of about 400 ° C, the oxidation of o-xylene to phthalic anhydride at a reaction temperature of about 350 ° C, the oxidation of propene to acrolein at about 350 ° C and its Further oxidation to acrylic acid at about 280 ° C.
  • the inventive method is also suitable for any further exothermic reactions with gaseous or liquid media.
  • evaporative cooling water As a medium for evaporative cooling water is preferably used. In principle, other liquids with suitable vapor pressures can be used.
  • the design of the heat exchanger is arbitrary. For reasons of cost, plate heat exchangers are to be preferred.
  • the effectiveness of the method according to the invention and the enlargement of the temperature difference made possible here are predetermined by the prevailing general conditions, such as the design of the heat exchanger, type of porous structuring, heat of reaction to be dissipated, and safety-related maximum wall temperatures to be observed, and can be clarified experimentally by a person skilled in the art.
  • the inventive method allows to perform exothermic reactions in reactors under boiling cooling safely. Even with continuous reactions with very high temperature peaks, the heat can be safely dissipated.
  • the porous coating or rough design of the surface of the evaporator is a primary measure of plant safety.
  • the temperature difference should not exceed an amount of about 35 to 50 ° C, in a structured surface according to the invention, the temperature difference can be raised to values up to about 200 ° C, whereby the effectiveness of the method is further increased.
  • the effectiveness of the porous coating in the evaporation of water was tested in a test apparatus.
  • a 0.1 m long tube with an outer diameter of 25 mm was used as the evaporator surface, which was heated on the inside with a heat transfer oil.
  • the wall temperature was measured via thermocouples soldered into the pipe wall.
  • the experiments were carried out with water at a pressure of 1 bar.
  • Experiments were carried out with a smooth tube and with a porous coated tube.
  • the porous coating was applied by plasma spraying.
  • the layer thickness was about 0.1 mm with a pore diameter of about 0.002 to 0.02 mm.
  • Fig. 1 shows the measurement results that were achieved with the different pipe surfaces at different heat outputs.
  • the uncoated tube (curve 2 in Figure 1) occurred from a temperature difference of about 50 ° C, the film boiling, whereby the heat transfer was greatly reduced and the surface temperature rose massively.
  • the porous coated tube (curve 1 in Figure 1) occurred up to the maximum apparatus of possible heating power of about 500 kW / m 2 and temperature differences of up to 90 ° C no film boiling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Kühlung eines Reaktors, in welchem eine exotherme Reaktion stattfindet, wobei innerhalb des Reaktors ein Wärmetauscher mittels Siedekühlung entstehende Wärme abführt. Die Reaktionsmedien, welche hierbei innerhalb des Reaktors vorliegen, können beispielsweise gasförmig, flüssig, gasförmig und flüssig, flüssig mit suspendierten Feststoffen oder gasförmig und flüssig mit suspendierten Feststoffen sein. Die Reaktionen können kontinuierlich oder diskontinuierlich durchgeführt werden. Weiterhin betrifft die Erfindung eine Vorrichtung zur Durchführung des Verfahrens.The present invention relates to an improved method for cooling a reactor in which an exothermic reaction takes place, wherein within the reactor a heat exchanger dissipates heat produced by means of evaporative cooling. The reaction media which are present here within the reactor can be, for example, gaseous, liquid, gaseous and liquid, liquid with suspended solids or gaseous and liquid with suspended solids. The reactions can be carried out continuously or batchwise. Furthermore, the invention relates to a device for carrying out the method.

Nach dem Stand der Technik werden zur Einhaltung der gewünschten Temperaturbereiche bei der Durchführung exothermer Reaktionen Reaktoren benutzt, die eine interne oder externe Wärmeabfuhr ermöglichen. Beispiele für Reaktoren mit interner Wärmeabfuhr (im folgenden in diesem Sinne auch als Reaktoren mit integriertem Wärmetauscher bezeichnet) sind Rohrbündelreaktoren oder Reaktoren mit eingebauten Kühlschlangen, Rohrregistern oder Plattenwärmetauschern. Alternativ kann die Reaktionswärme auch durch Umwälzung und Rückführung des Reaktionsmediums abgeführt werden, wobei die Kühlung durch extern angebrachte Wärmetauscher verschiedener Bauarten erfolgen kann. Aus reaktionstechnischer Sicht zu bevorzugen sind Reaktorbauformen mit interner Kühlung, da sie eine präzisere Einhaltung der gewünschten Reaktionstemperaturen ermöglichen.According to the state of the art reactors are used to maintain the desired temperature ranges when carrying out exothermic reactions, which allow an internal or external heat dissipation. Examples of reactors with internal heat removal (hereinafter also referred to as reactors with integrated heat exchanger in this sense) are tube-bundle reactors or reactors with built-in cooling coils, tube registers or plate heat exchangers. Alternatively, the heat of reaction can be dissipated by circulation and recycling of the reaction medium, the cooling can be done by externally mounted heat exchangers of different types. From a reaction engineering point of view, preference is given to reactor designs with internal cooling, since they allow a more precise maintenance of the desired reaction temperatures.

In der chemischen Technik besonders verbreitet sind Rohrbündelreaktoren, die in sehr weiten Temperaturbereichen mit maximalen Reaktionstemperaturen bis zu etwa 450°C betrieben werden können. Die Wärmeabfuhr erfolgt bei hohen Reaktionstemperaturen von mehr als etwa 240°C bevorzugt über Salzschmelzen, die im Kreis geführt werden. Die über eine Temperaturerhöhung der Salzschmelze aufgenommene Reaktionswärme wird in einem weiteren Kühlkreis abgeben, in dem Dampf in gewünschten Druckstufen erzeugt wird. Durch die Anwendung von zwei Kühlkreisen erhöht sich jedoch der Investitionsaufwand.Particularly common in chemical engineering are tube bundle reactors which can be operated in very wide temperature ranges with maximum reaction temperatures up to about 450 ° C. The heat removal takes place at high reaction temperatures of more than about 240 ° C., preferably via salt melts, which are circulated. The heat of reaction absorbed via an increase in temperature of the molten salt is released in a further cooling circuit in which steam is generated in desired pressure stages. However, the use of two cooling circuits increases the capital expenditure.

Es wird versucht, den Aufwand für den ersten Kühlkreis mit der Salzschmelze zu umgehen, indem die Kühlung direkt mit verdampfendem Wasser durchgeführt wird. Dies ist bei mäßigen Reaktionstemperaturen grundsätzlich möglich, indem der Druck des verdampfenden Wassers und damit die Siedetemperatur erhöht wird. Aus Kostengründen ist der Druck des erzeugten Dampfes auf maximal etwa 100 bar beschränkt, da die Apparatekosten bei weiteren Drucksteigerungen auf unwirtschaftlich hohe Werte steigen.An attempt is made to avoid the expense of the first cooling circuit with the molten salt by the cooling is carried out directly with evaporating water. This is basically possible at moderate reaction temperatures by increasing the pressure of the evaporating water and thus the boiling temperature. For cost reasons, the pressure of the generated steam is limited to a maximum of about 100 bar, since the equipment costs rise to uneconomically high values with further pressure increases.

Eine weitere Maßnahme zur Verringerung der Investitionskosten besteht in dem Austausch der Rohrbündel gegen Wärmetauscherplatten. Diese Bauform ermöglicht niedrigere Investitionskosten. Auch für die Bauform mit Wärmetauscherplatten liegt die technisch und wirtschaftlich mögliche maximale Druckstufe für den erzeugten Dampf bei etwa 100 bar.Another measure to reduce the investment costs is the replacement of the tube bundles against heat exchanger plates. This design allows lower investment costs. Also for the design with heat exchanger plates is the technically and economically possible maximum pressure level for the generated steam at about 100 bar.

Die bisher realisierten Verfahren sind jedoch in ihrer Effektivität begrenzt. Es stellte sich somit die Aufgabe, ein verbessertes Verfahren zur Kühlung exothermer Reaktionen in einem Reaktor mit integriertem Wärmetauscher, der mittels Siedekühlung betrieben wird, zu finden.However, the methods implemented so far are limited in their effectiveness. It was therefore an object to find an improved method for cooling exothermic reactions in a reactor with an integrated heat exchanger, which is operated by means of evaporative cooling.

Hierbei soll bevorzugt eine Wärmeabfuhr durch Dampferzeugung über kostengünstige Wärmetauscherplatten auch bei hohen Reaktionstemperaturen im Bereich von etwa 300 bis 450°C möglich sein, wobei der Wärmetauscher vorteilhafterweise noch in einer niedrigen Druckstufe von etwa 4 bis 40 bar betrieben werden können soll. Diesem Reaktorkonzept stehen bisher jedoch technische Schwierigkeiten entgegen. Bei den Druckstufen des erzeugten Dampfs von 4 bis 40 bar liegen die Siedetemperaturen von Wasser bei etwa 150 bis 250°C. Bei einer Reaktionstemperatur von etwa 400°C, die beispielsweise bei der Butanoxidation zur Gewinnung von Maleinsäureanhydrid vorliegt, treten damit Temperaturunterschiede zwischen dem Reaktionsmedium und dem verdampfenden Wasser von etwa 150 bis 250°C auf. Derartig hohe Temperaturdifferenzen bei der Dampferzeugung sind derzeit nicht beherrschbar, da sich in diesem Fall an der Wärmetauscherfläche, an der das Wasser siedet, ein geschlossener Dampffilm ausbildet (Leidenfrost-Effekt). Dieser Dampffilm wirkt wegen der sehr schlechten Wärmeleitfähigkeit von dampfförmigem Wasser im Vergleich zu flüssigem Wasser zu einer drastischen Verschlechterung der Wärmeabfuhr aus dem Reaktor. Reaktoren können unter derartigen Bedingungen nicht sicher betrieben werden. Bei glatten Wärmetauscheroberflächen, wie sie bisher bei solchen Aufgabenstellungen eingesetzt werden, muss die Temperaturdifferenz auf etwa 35°C, maximal 50°C, begrenzt werden, um Filmsieden auszuschließen.In this case, preferably a heat removal by steam generation over low-cost heat exchanger plates should be possible even at high reaction temperatures in the range of about 300 to 450 ° C, the heat exchanger should advantageously still be operated in a low pressure stage of about 4 to 40 bar. However, this reactor concept has hitherto encountered technical difficulties. At the pressure levels of the generated steam of 4 to 40 bar, the boiling temperatures of water are about 150 to 250 ° C. At a reaction temperature of about 400 ° C, which is present for example in the butane oxidation to obtain maleic anhydride, so that temperature differences between the reaction medium and the evaporating water of about 150 to 250 ° C occur. Such high temperature differences in steam generation are currently unmanageable, since in this case forms a closed vapor film on the heat exchanger surface at which the water boils (Leidenfrost effect). This steam film acts because of the very poor thermal conductivity of vaporous water compared to liquid water to a drastic deterioration of heat removal from the reactor. Reactors can not operate safely under such conditions. For smooth heat exchanger surfaces, as they are used in such tasks, the temperature difference must be limited to about 35 ° C, a maximum of 50 ° C, to exclude film boiling.

Demgemäß wurde ein Verfahren zur Kühlung eines Reaktors, in welchem eine exotherme Reaktion stattfindet, gefunden, wobei innerhalb des Reaktors ein Wärmetauscher mittels Siedekühlung entstehende Wärme abführt, welches dadurch gekennzeichnet ist, dass der in den Reaktor integrierte Wärmetauscher auf der Seite der verdampfenden Flüssigkeit zumindest teilweise porös strukturierte oder raue Oberflächen aufweist, wobei die Temperaturdifferenz zwischen dem Reaktionsmedium im Innern des Reaktors und der verdampfenden Flüssigkeit mehr als 35°C, bevorzugt mehr als 50 bis etwa 200°C beträgt.Accordingly, a method has been found for cooling a reactor in which an exothermic reaction takes place, wherein inside the reactor a heat exchanger dissipates heat produced by means of evaporative cooling, which is characterized in that the integrated into the reactor heat exchanger on the side of the evaporating liquid at least partially porous structured or rough surfaces, wherein the temperature difference between the reaction medium inside the reactor and the evaporating liquid is more than 35 ° C, preferably more than 50 to about 200 ° C.

Es wurde gefunden, dass die Wärmeabfuhr bei sehr hohen Temperaturdifferenzen dann verfahrenstechnisch einfach und wirtschaftlich möglich ist, wenn die Oberfläche, an der bei der Siedekühlung die Flüssigkeit - bevorzugt Wasser - verdampft, eine poröse oder raue Struktur aufweist. In diesem Fall bildet sich offensichtlich kein geschlossener Wasserdampffilm aus. Die poröse bzw. raue Struktur schafft in den Hohlräumen kleinere Bereiche, in denen die Verdampfung eintritt und ähnlich wie bei den in der Labortechnik gebräuchlichen porösen Siedesteinchen sogar gefördert wird. Daneben finden sich jedoch auch kleinere Bereiche, in denen kein Sieden eintritt, sondern die Flüssigkeit in das Innere benachbarter Poren befördert wird, um dort zu verdampfen.It has been found that the heat removal at very high temperature differences is then procedurally simple and economically possible if the surface, in which in the boiling cooling the liquid - preferably water - evaporates, has a porous or rough structure. In this case, obviously no closed steam film is formed. The porous or rough structure creates smaller areas in the cavities in which the evaporation occurs and, like the porous boiling stones commonly used in laboratory technology, is even conveyed. In addition, however, there are also smaller areas in which no boiling occurs, but the liquid is conveyed into the interior of adjacent pores in order to evaporate there.

Verdampferoberflächen mit einer porösen oder rauen Beschichtung zur Förderung des Verdampfungsvorgangs bereits bei sehr kleinen Temperaturdifferenzen von etwa 2 bis 5°C sind in der Technik bereits bekannt. Hier sind als Bauformen porös beschichtete Rohre der Fa. UOP (UOP LLC, Des Plaines, IL, 60017-5017, USA) mit der Bezeichnung "High-Flux Tubes" oder Rohre mit mikrostrukturierter Oberfläche der Fa. Wieland (Wieland-Werke AG, D-89070 Ulm) mit der Bezeichnung "Enhanced Boiling Tubes" zu nennen. Es werden entweder stochastisch verteilte Poren (UOP) oder mechanisch gezielt aufgebrachte poröse oder raue Mikrostrukturen (Wieland), wie beispielsweise in EP 0607839 beschrieben, genutzt, die der Verbesserung des Wärmeübergangs bei der Verdampfung dienen. Die porösen Mikrostrukturen bzw. die stochastisch verteilten Poren wirken vergleichbar den in der chemischen Laborpraxis verwendeten Siedesteinchen und lösen die Bildung von Dampfblasen bereits bei sehr kleinen Temperaturdifferenzen von etwa 2 bis 5°C aus. Bei einer glatten Verdampferfläche werden je nach geometrischer Ausgestaltung der Verdampferfläche größere Temperaturdifferenzen von etwa 10°C und mehr benötigt. Die Porengröße der Mikrostrukturen liegt im Bereich von etwa 1 bis 500 Mikrometern.Evaporator surfaces with a porous or rough coating to promote the evaporation process even at very small temperature differences of about 2 to 5 ° C are already known in the art. Here, as designs, porous coated tubes of the company UOP (UOP LLC, Des Plaines, IL, 60017-5017, USA) with the designation "High-Flux Tubes" or tubes with a microstructured surface of the company Wieland (Wieland-Werke AG, D-89070 Ulm) with the name "Enhanced Boiling Tubes" to call. There are either stochastically distributed pores (UOP) or mechanically targeted applied porous or rough microstructures (Wieland), such as in EP 0607839 used, which serve to improve the heat transfer during evaporation. The porous microstructures or the stochastically distributed pores act comparable to the boiling stones used in chemical laboratory practice and trigger the formation of vapor bubbles even at very small temperature differences of about 2 to 5 ° C. With a smooth evaporator surface larger temperature differences of about 10 ° C and more are needed depending on the geometric design of the evaporator surface. The pore size of the microstructures is in the range of about 1 to 500 microns.

Die kleineren Temperaturdifferenzen für die Wärmeübertragung eröffnen bessere Chancen für Wärmeverbundmaßnahmen zwischen den einzelnen Prozessströmen und dienen somit der Senkung des Energieverbrauchs von Gesamtverfahren. Bei einer mechanischen Brüdenverdichtung zur Beheizung des Verdampfers können sie infolge der verkleinerten Temperaturdifferenz die benötigte Antriebsleistung wirksam verringern. Derartige Verdampfer werden bei Basischemikalien, wie Ethylen, Propylen, C2-, C3- und C4-Kohlenwasserstoffen (LPG, LNG), Aromaten, wie Benzol, Toluol und Xylol, und anderen Kohlenwasserstoffen, bei Ethylenglykol, Methyltertiärbutylether und Ammoniak eingesetzt (s. Firmenprospekte Fa. Wieland und Fa. UOP).The smaller temperature differences for the heat transfer open up better opportunities for heat-bonding measures between the individual process streams and thus serve to reduce the energy consumption of overall processes. In a mechanical vapor compression for heating the evaporator, they can effectively reduce the required drive power due to the reduced temperature difference. Such evaporators are used in basic chemicals, such as ethylene, propylene, C 2 , C 3 and C 4 hydrocarbons (LPG, LNG), aromatics, such as benzene, toluene and xylene, and other hydrocarbons, ethylene glycol, methyl tert-butyl ether and ammonia ( see company brochures Fa. Wieland and Fa. UOP).

Bei hohen Temperaturdifferenzen wurden poröse Beschichtungen oder raue Oberflächen zur Stabilisierung des Siedevorgangs und zur Vermeidung des Filmsiedens bisher nicht beschrieben. In diesem Zusammenhang sind unter hohen Temperaturdifferenzen Temperaturunterschiede zwischen Innenraum des Reaktors und Temperatur des verdampfenden Kühlmediums von mehr als etwa 35°C, bevorzugt in einem Bereich von etwa 50 bis etwa 200°C zu verstehen. Bei so hohen Temperaturdifferenzen hätte der Fachmann generell eine solche Art der Kühlung (Siedekühlung) nicht in Erwägung gezogen, da das bei diesen Bedingungen entstehende Filmsieden zu einer deutlichen Verringerung des Wärmeübergangs führt, wodurch die Effektivität stark beeinträchtigt wird.At high temperature differences, porous coatings or rough surfaces to stabilize the boiling process and avoid film boiling have not previously been described. In this context, temperature differences between the interior of the reactor and the temperature of the evaporating cooling medium of more than about 35 ° C, preferably in a range of about 50 to about 200 ° C are to be understood by high temperature differences. With such high temperature differences, one skilled in the art would not have generally considered such a type of cooling (evaporative cooling), since the film boiling produced under these conditions leads to a significant reduction in the heat transfer, which severely impairs the effectiveness.

Die erfindungsgemäße, auf der Seite der verdampfenden Flüssigkeit porös strukturierte oder raue Oberfläche in dem Verdampfer weist bevorzugt zahlreiche regelmäßig oder stochastisch angeordnete Poren oder Vertiefungen auf. Der Porengröße der etwa kreisförmig oder auch in anderen Geometrien vorliegenden Poren beträgt etwa 1 bis 500 Mikrometer. Der Porenanteil an der Oberfläche kann dabei etwa 1 bis 80 %, bevorzugt etwa 10 bis 50 %, betragen. Die Porentiefe entspricht bei einer regellosen oder regelmäßigen Anordnung der Poren etwa dem Porendurchmesser. Bei einer mechanischen Anbringung der Poren kann man von der eher runden Porenform auf beliebige geometrische Formen, beispielsweise auch Längskanäle, übergehen. Die Tiefe der Poren bzw. Vertiefungen mit etwa 0,1 bis 2 mm ist dabei unabhängig von der Porenbreite mit etwa 0,1 bis 0,3 mm. Beispiele derartigen Porenstrukturen sind in EP 0607839 , DE 102 10 016 und DE 44 04 357 beschrieben. DE 101 56 374 beschreibt beispielhaft ein Verfahren zur Herstellung derartiger poröser oder rauer Strukturen.The surface of the invention which is porous or has a porous structure on the side of the evaporating liquid in the evaporator preferably has numerous pores or depressions arranged regularly or stochastically. The pore size of the approximately circular or present in other geometries pores is about 1 to 500 microns. The proportion of pores on the surface can be about 1 to 80%, preferably about 10 to 50%. The pore depth corresponds to a random or regular arrangement of the pores about the pore diameter. In the case of a mechanical attachment of the pores, it is possible to move from the rather round pore shape to any geometric shapes, for example also longitudinal channels. The depth of the pores or depressions of about 0.1 to 2 mm is independent of the pore width of about 0.1 to 0.3 mm. Examples of such pore structures are in EP 0607839 . DE 102 10 016 and DE 44 04 357 described. DE 101 56 374 describes by way of example a method for producing such porous or rough structures.

Das Aufbringen der porösen Schichten auf metallische Bleche kann bevorzugt über Flammspritzen oder Plasmaspritzen erfolgen. Derartige Beschichtungsverfahren sind Stand der Technik. Als Grundmaterial und als Beschichtungsmaterial kommen eine Vielzahl von Werkstoffen in Betracht, beispielsweise rostfreie Chromnickelstähle, Chromstähle und Nichteisenmetalle.The application of the porous layers to metallic sheets may preferably be carried out by flame spraying or plasma spraying. Such coating methods are state of the art. As a base material and as a coating material, a variety of materials come into consideration, such as stainless chromium nickel steels, chromium steels and non-ferrous metals.

Je nach der technischen Durchführung des Flammspritz- oder Plasmaspritzverfahrens kann die Beschichtung auch wahlweise als raue Oberfläche ohne Ausbildung von Poren durchgeführt werden. Diese Ausbildung von rauen Oberflächen tritt insbesondere bei der Auftragung dünnerer Schichten von etwa 0,1 bis 0,4 mm auf, während bei der Ausbildung von stärker porösen Schichten im Allgemeinen größere Schichtdicken von etwa 0,2 bis 1 mm aufgetragen werden.Depending on the technical implementation of the flame spraying or plasma spraying process, the coating can also optionally be carried out as a rough surface without formation of pores. This formation of rough surfaces occurs particularly in the application of thinner layers of about 0.1 to 0.4 mm, while in the formation of more porous layers generally greater layer thicknesses of about 0.2 to 1 mm are applied.

Bevorzugt weist die komplette Oberfläche des Verdampfers die erfindungsgemäße Ausgestaltung mit Poren oder Rauigkeiten auf, es können jedoch auch nur Teile davon hiermit versehen sein. Es können etwa 10 bis 100 % der Oberfläche damit versehen sein.Preferably, the entire surface of the evaporator on the inventive design with pores or roughness, but it may be provided hereby only parts thereof. It can be provided with it about 10 to 100% of the surface.

Bevorzugt setzt man das erfindungsgemäße Verfahren für Oxidationsreaktionen ein. Beispiele hierfür sind die Oxidation von n-Butan zu Maleinsäureanhydrid bei einer Reaktionstemperatur von etwa 400°C, die Oxidation von o-Xylol zu Phthalsäureanhydrid bei einer Reaktionstemperatur von etwa 350°C, die Oxidation von Propen zu Acrolein bei etwa 350°C und dessen Weiteroxidation zu Acrylsäure bei etwa 280°C. Neben diesen Oxidationsreaktionen in der Gasphase eignet sich das erfindungsgemäße Verfahren auch für beliebige weitere exotherme Reaktionen mit gasförmigen oder flüssigen Medien.The process according to the invention for oxidation reactions is preferably used. Examples include the oxidation of n-butane to maleic anhydride at a reaction temperature of about 400 ° C, the oxidation of o-xylene to phthalic anhydride at a reaction temperature of about 350 ° C, the oxidation of propene to acrolein at about 350 ° C and its Further oxidation to acrylic acid at about 280 ° C. In addition to these oxidation reactions in the gas phase, the inventive method is also suitable for any further exothermic reactions with gaseous or liquid media.

Als Medium zur Siedekühlung wird bevorzugt Wasser eingesetzt. Grundsätzlich können auch andere Flüssigkeiten mit geeigneten Dampfdrücken eingesetzt werden.As a medium for evaporative cooling water is preferably used. In principle, other liquids with suitable vapor pressures can be used.

Die Bauform der Wärmetauscher ist beliebig. Aus Kostengründen sind Plattenwärmetauscher zu bevorzugen.The design of the heat exchanger is arbitrary. For reasons of cost, plate heat exchangers are to be preferred.

Die Wirksamkeit des erfindungsgemäßen Verfahrens und die hierbei ermöglichte Vergrößerung der Temperaturdifferenz wird von den jeweils vorliegenden Rahmenbedingungen, wie Bauform des Wärmetauschers, Art der porösen Strukturierung, abzuführende Reaktionswärme und einzuhaltende sicherheitsbedingte maximale Wandtemperaturen, vorgegeben und kann vom Fachmann experimentell geklärt werden.The effectiveness of the method according to the invention and the enlargement of the temperature difference made possible here are predetermined by the prevailing general conditions, such as the design of the heat exchanger, type of porous structuring, heat of reaction to be dissipated, and safety-related maximum wall temperatures to be observed, and can be clarified experimentally by a person skilled in the art.

Als einfacher Eignungstest empfiehlt sich die Untersuchung der Verdampfung eines Wassertropfens auf der beschichteten porösen oder rauen Oberfläche bei Umgebungsdruck. Die beschichtete Werkstoffprobe wird horizontal befestigt und auf verschiedene Temperaturniveaus oberhalb von 150°C aufgeheizt. Die Temperaturmessung kann berührungslos erfolgen. Zur Prüfung der Eignung wird ein Wassertropfen mit Umgebungstemperatur in einer Menge von beispielsweise 0,1 ml mit einer Pipette auf die Oberfläche aufgebracht. Bei einer geeigneten Oberflächenbeschichtung tritt eine sofortige Spreitung des Wassertropfens und ein rasches gleichmäßiges Verdampfen auf der vergrößerten benetzten Oberfläche auf. Eine unzureichende poröse oder raue Beschichtung zeigt sich durch ein Ausbleiben der Spreitung und ein langsameres Verdampfen des Flüssigkeitstropfens ohne deutliche Benetzung der Oberfläche.As a simple suitability test, it is advisable to investigate the evaporation of a water droplet on the coated porous or rough surface at ambient pressure. The coated material sample is attached horizontally and heated to various temperature levels above 150 ° C. The temperature measurement can be done without contact. To test the suitability, a drop of water at ambient temperature in an amount of, for example, 0.1 ml is applied to the surface with a pipette. With a suitable surface coating, there is immediate spreading of the water drop and rapid uniform evaporation on the enlarged wetted surface. An insufficient porous or rough coating is manifested by a lack of spreading and a slower evaporation of the liquid drop without significant wetting of the surface.

Das erfindungsgemäße Verfahren ermöglicht, exotherme Reaktionen in Reaktoren unter Siedekühlung sicher durchzuführen. Selbst bei durchgehenden Reaktionen mit sehr hohen Temperaturspitzen kann die Wärme sicher abgeführt werden. Die poröse Beschichtung bzw. raue Ausgestaltung der Oberfläche des Verdampfers stellt eine Primärmaßnahme zur Anlagensicherheit dar.The inventive method allows to perform exothermic reactions in reactors under boiling cooling safely. Even with continuous reactions with very high temperature peaks, the heat can be safely dissipated. The porous coating or rough design of the surface of the evaporator is a primary measure of plant safety.

Durch das erfindungsgemäße Verfahren ist es möglich, bei der Reaktorkühlung durch Wasserverdampfung die Temperaturdifferenzen deutlich anzuheben. Während bei glatten Oberflächen die Temperaturdifferenz einen Betrag von etwa 35 bis 50°C nicht überschreiten soll, kann bei einer erfindungsgemäß strukturierten Oberfläche die Temperaturdifferenz auf Werte bis zu etwa 200°C angehoben werden, wodurch die Effektivität des Verfahrens weiter gesteigert wird.By the method according to the invention, it is possible to significantly increase the temperature differences in the reactor cooling by evaporation of water. While with smooth surfaces, the temperature difference should not exceed an amount of about 35 to 50 ° C, in a structured surface according to the invention, the temperature difference can be raised to values up to about 200 ° C, whereby the effectiveness of the method is further increased.

BeispieleExamples

Die Wirksamkeit der porösen Beschichtung bei der Verdampfung von Wasser wurde in einer Versuchsapparatur überprüft. Dabei wurde als Verdampferfläche ein 0,1 m langes Rohr mit einem Außendurchmesser von 25 mm verwendet, das auf der Innenseite mit einem Wärmeträgeröl beheizt wurde. Die Messung der Wandtemperatur erfolgte über in die Rohrwand eingelötete Thermoelemente. Die Versuche wurden mit Wasser bei einem Druck von 1 bar durchgeführt. Es wurden Versuche mit einem glatten Rohr sowie mit einem porös beschichteten Rohr durchgeführt. Die poröse Beschichtung wurde durch Plasmaspritzen aufgebracht. Die Schichtdicke betrug etwa 0,1 mm bei einem Porendurchmesser von etwa 0,002 bis 0,02 mm.The effectiveness of the porous coating in the evaporation of water was tested in a test apparatus. In this case, a 0.1 m long tube with an outer diameter of 25 mm was used as the evaporator surface, which was heated on the inside with a heat transfer oil. The wall temperature was measured via thermocouples soldered into the pipe wall. The experiments were carried out with water at a pressure of 1 bar. Experiments were carried out with a smooth tube and with a porous coated tube. The porous coating was applied by plasma spraying. The layer thickness was about 0.1 mm with a pore diameter of about 0.002 to 0.02 mm.

Fig. 1 zeigt die Messergebnisse, die mit den unterschiedlichen Rohroberflächen bei verschiedenen Heizleistungen erreicht wurden. Bei den Versuchen mit dem unbeschichteten Rohr (Kurve 2 in Figur 1) trat ab einer Temperaturdifferenz von etwa 50°C das Filmsieden ein, wodurch die Wärmeübertragung stark verringert wurde und die Oberflächentemperatur massiv anstieg. Bei den Versuchen mit dem porös beschichteten Rohr (Kurve 1 in Figur 1) trat bis zu der apparativ möglichen maximalen Heizleistung von etwa 500 kW/m2 und Temperaturdifferenzen von bis zu 90°C kein Filmsieden ein.Fig. 1 shows the measurement results that were achieved with the different pipe surfaces at different heat outputs. In the experiments with the uncoated tube (curve 2 in Figure 1) occurred from a temperature difference of about 50 ° C, the film boiling, whereby the heat transfer was greatly reduced and the surface temperature rose massively. In the experiments with the porous coated tube (curve 1 in Figure 1) occurred up to the maximum apparatus of possible heating power of about 500 kW / m 2 and temperature differences of up to 90 ° C no film boiling.

Claims (5)

  1. A process for cooling a reactor in which an exothermic reaction takes place, a heat exchanger within the reactor removing heat which arises by means of evaporative cooling, wherein the heat exchanger integrated into the reactor has, on the side of the evaporating liquid, at least in part, porous structured or rough surfaces, the temperature difference between the reaction medium in the interior of the reactor and the evaporating liquid being more than 35°C, preferably from more than 50 to about 200°C.
  2. The process according to claim 1, wherein the temperature difference between the reaction medium in the interior of the reactor and the evaporating liquid is from 50 to 200°C.
  3. The process according to claim 1 or 2, wherein a heat exchanger which has, on the side of the evaporating liquid, a rough surface which has regular or stochastically distributed depressions with a depth of from about 0.1 to 2 mm and a width of from about 0.1 to 0.3 mm is used.
  4. The process according to claim 1 or 2, wherein a heat exchanger which has, on the side of the evaporating liquid, a porous structured surface with regularly or stochastically arranged pores, the pore size of the pores present in roughly circular or else other geometric forms being from about 1 to 500 micrometers and the proportion of pores at the surface being from about 1 to 80%, preferably from about 10 to 50%, is used.
  5. The process according to claims 1 to 4, wherein water is used for the evaporative cooling.
EP20070121643 2006-12-01 2007-11-27 Method and device for cooling reactors with boiling liquids Not-in-force EP1930679B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070121643 EP1930679B1 (en) 2006-12-01 2007-11-27 Method and device for cooling reactors with boiling liquids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06125203 2006-12-01
EP20070121643 EP1930679B1 (en) 2006-12-01 2007-11-27 Method and device for cooling reactors with boiling liquids

Publications (2)

Publication Number Publication Date
EP1930679A1 EP1930679A1 (en) 2008-06-11
EP1930679B1 true EP1930679B1 (en) 2009-07-15

Family

ID=39203324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070121643 Not-in-force EP1930679B1 (en) 2006-12-01 2007-11-27 Method and device for cooling reactors with boiling liquids

Country Status (1)

Country Link
EP (1) EP1930679B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839572B2 (en) * 1979-04-03 1983-08-31 東洋エンジニアリング株式会社 Reactor and its use
JPS5993181A (en) * 1982-11-19 1984-05-29 Hitachi Ltd Liquid film vaporization type heat exchanger
SE453010B (en) * 1986-07-24 1988-01-04 Eric Granryd HEATING EXCHANGE WALL PROVIDED WITH A THIN, HALF-CONTAINED METAL WRAP TO IMPROVE HEAT TRANSITION BY COOKING RESPECTIVE CONDENSATION
DE4301668C1 (en) 1993-01-22 1994-08-25 Wieland Werke Ag Heat exchange wall, in particular for spray evaporation
DE4404357C2 (en) 1994-02-11 1998-05-20 Wieland Werke Ag Heat exchange tube for condensing steam
DE10156374C1 (en) 2001-11-16 2003-02-27 Wieland Werke Ag Heat exchange tube structured on both sides has inner fins crossed by secondary grooves at specified rise angle
DE10210016B9 (en) 2002-03-07 2004-09-09 Wieland-Werke Ag Heat exchange tube with a ribbed inner surface

Also Published As

Publication number Publication date
EP1930679A1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
EP1384502B1 (en) Mixer, heat exchanger
EP1232004A1 (en) Method for catalytic gas phase oxidation to (meth)acrolein and/or (meth)acrylic acid
EP1185494B1 (en) Method of gas phase catalytic oxidation to give maleic acid anhydride
EP1879674A1 (en) Micro-evaporator
DE19717165A1 (en) Device and method for temperature measurement in tubular reactors
WO1990002603A1 (en) Device for carrying out catalytic reactions
EP1910265B1 (en) Assembly for the treatment of a polymerizable material
DE69015327T2 (en) Falling film heat exchanger.
DE102016204420A1 (en) Quench tank system and method of use
EP3120099B1 (en) Heat exchanger, reactor arrangement comprising said heat exchanger, and method for temperature control of a reactor
EP1930679B1 (en) Method and device for cooling reactors with boiling liquids
DE102007059153A1 (en) Process for increasing the efficiency of the heat and mass transport and the chemical reactivity and selectivity of systems for the transfer of heat energy and systems for technical reaction, in particular heterogeneous catalysis, used with formed structures molded components and methods for the production of microstructures on these components
WO2004036137A2 (en) Method for obtaining a gaseous phase from a liquid medium and device for carrying out the same
EP1837410B1 (en) Process and installation for rapid cooling of workpieces
DE69414970T2 (en) Heat pipe and gas-liquid contact device with heat exchange, with heat pipes, and plate heat exchanger with gas-liquid contact
EP1711254A1 (en) Reactor comprising a heat exchanging region provided with an insert
EP1234612A2 (en) Reactor for performing catalytic reactions
EP2046713A1 (en) Device and method for producing acrylic acid with a reduced autoxidation tendency
DE102009031765B4 (en) Converter for carrying out exothermic catalytic reactions
EP1246788B1 (en) Method for catalytic gas phase oxidation to produce phthalic acid anhydride
WO2009015654A1 (en) Monolithic, porous component composed of substantially parallel nanotubes, method for producing it and use of the same
AT153194B (en) Device for carrying out catalytic gas reactions.
DE102005028032A1 (en) Evaporation of thermally sensitive substances entails carrying out evaporation in evaporator with porously structured surface on product side
CH648651A5 (en) BOILER SURFACE FOR HEAT EXCHANGERS.
DE1468802C3 (en) Process for the oxychlorination of aliphatic hydrocarbons containing 1 to 4 carbon atoms or their partially chlorinated derivatives

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081211

17Q First examination report despatched

Effective date: 20090120

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007001067

Country of ref document: DE

Date of ref document: 20090827

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091015

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

26N No opposition filed

Effective date: 20100416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131129

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131129

Year of fee payment: 7

Ref country code: BE

Payment date: 20131128

Year of fee payment: 7

Ref country code: NL

Payment date: 20131127

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140131

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007001067

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141127

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201