EP1920642A1 - Vorschaltgerät für eine entladungslampe mit adaptiver vorheizung - Google Patents
Vorschaltgerät für eine entladungslampe mit adaptiver vorheizungInfo
- Publication number
- EP1920642A1 EP1920642A1 EP06806734A EP06806734A EP1920642A1 EP 1920642 A1 EP1920642 A1 EP 1920642A1 EP 06806734 A EP06806734 A EP 06806734A EP 06806734 A EP06806734 A EP 06806734A EP 1920642 A1 EP1920642 A1 EP 1920642A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electronic ballast
- electrodes
- preheating
- electrode temperature
- ballast according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/295—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
Definitions
- the present invention relates to an electronic ballast for discharge lamps, specifically for such discharge lamps having preheatable electrodes.
- Electronic ballasts for the operation of discharge lamps are known per se.
- an electronic ballast from a given supply for example a mains supply, generates a supply power for a connected discharge lamp, which has the characteristics necessary for the operation of the discharge lamp, in particular a high-frequency AC voltage supply.
- the electrodes of a discharge lamp are preheated prior to the ignition of the discharge. In this way, the emissivity of the electrodes can be improved and their service life extended.
- a preheat process typically lasts between 0.4 s and just over 2 s and occurs after a preheat program set in a scheduler.
- the invention is based on the problem of specifying an improved ballast for discharge lamps with preheatable electrodes.
- the invention relates to an electronic ballast for operating a discharge lamp with preheatable electrodes, characterized in that it comprises a measuring device which is designed, during the preheating process, to produce an electric current which is increased by the preheating.
- rod temperature correlated size at least one of the electrodes of a connected discharge lamp to measure and a control device which is adapted during the preheating operation in response to the measurement to adjust the electrode temperature by adjusting an operating parameter of the electronic ballast.
- the invention is based on the recognition that simply carrying out a predetermined preheating process can lead to an unsatisfactory result of the preheating process. Even if an electronic ballast is designed and used to operate discharge lamps of the same type in each case, the preheating process may easily be different for each individual discharge lamp. A different from lamp to lamp course of preheating can be due to manufacturing tolerances of the preheatable electrodes and tolerances of the components of the electronic ballast.
- the preheatable electrodes of a discharge lamp after the preheating time could not reach the desired temperature, while in extreme cases, the preheating leads across the electrodes of another discharge lamp to ignite an unwanted transverse discharge.
- the aim is a shortest possible preheating, i. It should be used as large as possible Vorchingströme or Voriffenciesen without a voltage across the electrodes, which leads to a transverse discharge.
- the electronic ballast according to the invention has a measuring device which is designed, during the preheating process, the temperature of at least one electrode of at least one connected Discharge lamp to measure. For the measurement of the electrode temperature, any correlated property can be measured. Suitable quantities are dealt with within the scope of the dependent claims.
- a control device compares the measured values of the measuring device with standard values of the value correlated to the electrode temperature. If there is a deviation between the measured value and the standard value, the control device adapts the following course of the preheating process by changing an operating parameter of the electronic ballast so that the expected deviation between a following measurement and a corresponding standard value becomes smaller. This process is therefore in principle a regulation.
- a variable correlated to the electrode temperature is measured only once, preferably in the middle range of the expected preheat interval. In response to this measurement, if necessary, an intervention of the control device follows.
- Examples of operating parameters of the electronic ballast which are suitable for adjusting the course of the electrode temperature during the preheating, are: the Vortexstrom through the electrodes, the preheating voltage at the electrodes, the frequency of the high frequency AC power supply generated by the electronic ballast and the duty cycle just this AC power supply.
- the default values of the value correlated to the electrode temperature can be stored in a memory device within the electronic ballast, or else hardwired in the form of an electronic circuit, for example a circuit, which has threshold elements (comparators) to which the measured values are supplied and whose threshold values decide on this whether there is a deviation from the standard values. Such a circuit could simultaneously implement the control device as well.
- an electronic ballast according to the invention can also have increased flexibility when using different lamp types. Although different types of lamps may have different electrodes, the control circuit can be used to effect an efficient preheating process.
- the measuring device is designed to measure the electrode resistance as the quantity correlated to the electrode temperature.
- the electrodes represent an ohmic resistor with a positive temperature coefficient.
- the electrode resistance during the preheating time results from the preheating voltage and the preheating current, so it is easy to determine.
- the measuring device is designed to measure the cold resistance of one of the electrodes of a connected discharge lamp after switching on the electronic ballast and before or at the beginning of the preheating process.
- the cold resistance of an electrode is understood here as meaning the resistance of an electrode when its temperature corresponds to the ambient temperature.
- the electrode resistance during the preheating time is measured by the measuring device. The quotient of the current electrode resistance, ie the heat resistance, and the cold resistance, as well as the electrode resistance itself, approximately proportional to the temperature of the electrodes. Since it is divided by the cold resistance, but a normalized in this regard size is used.
- control device can be designed to carry out the determination of the quotient of the cold resistance measured by the measuring device and the heat resistance likewise measured by the measuring device.
- the quotient of the actual resistance of one of the electrodes and the cold resistance is not only interesting for adaptation to a standard course of the preheating process, but also to detect extraordinary processes by means of the measuring device, which can be reacted accordingly by means of the control device.
- the course of the electrode temperature must in any case correspond to the standard values. Deviations are possible, especially with a few measured values. For example, the electrode temperature can reach a sufficient level sooner than expected.
- ignition should then be initiated, for example via the control circuit.
- the discharge is ignited. More preferred is a lower limit for the ignition of the discharge of 4.5 and independently an upper limit of 6.
- a transverse discharge may occur. Querentladungen are not desirable, inter alia, because with a transverse discharge, the electrode temperature decreases again. at If the temperature is lower, the electrode will be less emissive and igniting the discharge if the temperature is too low will increase the wear. Transverse discharges can be detected on a non-monotonic course of a variable correlated to the electrode temperature. If a transverse discharge is detected, a preferred embodiment of the invention is designed to initiate ignition.
- a decrease in temperature across an electrode can be detected by a nonmonotonic history of a value correlated to electrode temperature within the preheat time. For example, with a transverse discharge across the electrode, your resistance and the voltage drop across it also decrease. However, the current through the electrode increases due to the lower resistance. How strongly these behaviors are pronounced also depends on whether the heating power supply has more of a voltage source characteristic or a current source characteristic. Really, the properties of the heating power supply will be between these extremes.
- the quantity correlated to the electrode temperature, which is used for cross-discharge detection is the voltage across one of the electrodes
- the electronic ballast has a pronounced current source characteristic, then it makes sense to observe the voltage across one of the electrodes for transverse discharge detection. If the electronic ballast is a pronounced voltage source, a transverse discharge detection via the quotient of hot and cold resistance, which is determined by means of a current measurement, is recommended.
- this size is preferably measured by the measuring device at least every 100 ms. With the usual Heating times are thus several measurements during the preheating possible.
- the lamp type is determined by measuring the cold resistance of an electrode of a connected discharge lamp.
- the storage device is designed to store a set of suitable preheating parameters for different lamp types, for example the preheating time, standard values for the heating current and the heating voltage and the maximum permitted heating voltage. If the electronic ballast has detected the connected lamp type on the basis of the cold resistance, then the control device controls the preheating process in accordance with the standard values corresponding to the lamp type.
- the electronic ballast may be provided with a timer to determine if the power interruption was shorter than a predetermined duration. If this is the case, then no measurement of the cold resistance is carried out after the power interruption, otherwise already.
- the invention therefore also relates in principle to a method for operating a discharge lamp equipped with preheatable electrodes, comprising the steps of: connecting the discharge lamp, measuring a variable correlated to the electrode temperature increased by the preheating, at least one of ner of the electrodes during the preheating with a measuring device, adjusting the electrode temperature during the preheating by setting an operating parameter of the electronic ballast by means of an appealing to the measurement control device, and also refers to the above and implicitly also explained for this method embodiments.
- FIG. 1 shows a circuit diagram of an electronic ballast according to the invention.
- FIG. 2 shows a time course of a variable correlated to the electrode temperature.
- FIG. 3 shows a time characteristic of a quantity correlated to the electrode temperature and an associated heating current, which is adapted during the preheating process.
- FIG. 4 shows a variation of FIG. 2.
- FIG. 5 shows a further variation of FIG. 2.
- FIG. 6 also shows a variation of FIG. 2.
- FIG. 1 shows a circuit diagram of an electronic ballast according to the invention.
- the electronic ballast is fed from the mains supply lines N1 and N2.
- a generator G generates from the given mains supply N1, N2 a supply power for a connected low-pressure discharge lamp LA.
- the generator G includes a rectifier for rectifying the AC voltage supply, a power factor correction circuit for a possible sinusoidal current drain from the mains supply, a DC link capacitor and a Halbmaschinenin- verter, wherein over the DC link capacitor to supply the Halbmaschineninverters necessary DC voltage.
- the half-bridge inverter generates a high-frequency alternating voltage between the output A1 and the reference potential GND or the other potential of the intermediate circuit voltage.
- a series circuit of a lamp inductor L, a coupling capacitor CC, a lamp terminal KL1 A, the low-pressure discharge lamp LA, a lamp terminal KL2A and a resistor R1 is connected.
- Parallel to the series connection of the lamp terminal KL1 A, the low-pressure discharge lamp LA and the lamp terminal KL2A a series circuit of a lamp terminal KL1 B, a resonant capacitor CR and a lamp terminal KL2B is connected.
- the electrode E1 Between the lamp terminals KL1 A and KL1 B is the electrode E1 and between the lamp terminals KL2A and KL2B is the electrode E2.
- connection node K1 Between the lamp terminal KL2A and the resistor R1 is a connection node K1. Between a second output at the generator A2 and the connection node K1, a control device C and a measuring device M is connected.
- the control device C and the measuring device M are part of a microcontroller, and are therefore drawn with a common enclosure. Both the control device C and the measuring device M have a reference to the reference potential GND.
- the control device C can via a control line SL operating parameters of the GE set generator G, here the heating current.
- the measuring device is connected via the node K1 in series with the reference potential GND. Furthermore, the measuring device M is connected in series with the resonance capacitor CR via the lamp terminal KL2B. Between the resonant capacitor CR and the measuring device M is a connection node K2. At this connection node, the lamp terminal KL2B is connected.
- the voltage dropped across the resistor R1 is proportional to the current flowing through the electrode E2 between the lamp terminals KL2A and KL2B.
- the voltage across the resistor R1 can be detected by the measuring device M.
- the voltage between the lamp terminals KL2A and KL2B can also be detected by the measuring device M.
- FIG. 2 shows a typical course of a variable correlated to the electrode temperature of the low-pressure discharge lamp LA during the preheating process.
- the measuring device M measures, here 10 times, the resistance RW of the electrode E2 between the lamp terminals KL2A and KL2B during the preheating time.
- the preheating process starts at time t ⁇ and ends at time t1.
- the resistance RW of the electrode also increases and reaches its highest value until the end of t1 of the preheating time, here after 0.5 s.
- the electrode resistance has the value RK, its cold resistance.
- the quotient of RW and RK is shown as a function of time, which reaches the value 5 at the end t1 of the preheating time, which corresponds to an electrode temperature of almost 800 ° C.
- Figure 3a shows a time course of the quotient of hot and cold resistance and Figure 3b shows the associated heating current IE2, the heating current through electrode 2, which is adjusted during the preheating process.
- the control device C five standard values for the quotient appearing during the preheating process are provided for different lamp types. th of hot and cold resistance and the heating current stored.
- the measuring device M determines the cold resistance of the electrode E2. Based on the cold resistance RK of the electrode E2, the lamp type is detected and the standard values corresponding to the detected lamp type are selected as a comparison scale for the control device C for the preheating process.
- the crosses in FIGS. 3a and 3b respectively correspond to the standard values stored in the control device.
- the solid line in Figure 3a corresponds to the actual course of the quotient of hot and cold resistance and the solid line in Figure 3b corresponds to the actual course of the heating current during the preheating time.
- the controller adapts and increases the heating current so that the quotient of hot and cold resistance has a greater slope.
- the heating current change is here proportional to the difference between the measured quotient of the hot and cold resistance and the associated standard value.
- FIG. 4 shows the quotient of RW and RK as a function of time during the preheating process for two different preheating operations.
- first preheating process dashe-dashed line
- second preheating process solid line
- the quotient reaches the value 5 before the expected end t1 of the preheating time.
- the electrode is hot enough and the discharge is ignited.
- the initially increased temperature of the electrode drops again. This is shown in FIG. 5 and is also expressed by the fact that the quotient of the current electrode resistance RW and the cold resistance RK decreases.
- the measuring device M takes here in the interval between t ⁇ and t1 ten measurements of the electrode resistance RW before. If the electrode resistance falls within this interval after it has risen first, this is an indication of a transverse discharge; the discharge is ignited.
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
- Control Of Non-Electrical Variables (AREA)
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202005013754U DE202005013754U1 (de) | 2005-08-31 | 2005-08-31 | Vorschaltgerät für eine Entladungslampe mit adaptiver Vorheizung |
PCT/EP2006/065801 WO2007025976A1 (de) | 2005-08-31 | 2006-08-30 | Vorschaltgerät für eine entladungslampe mit adaptiver vorheizung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1920642A1 true EP1920642A1 (de) | 2008-05-14 |
EP1920642B1 EP1920642B1 (de) | 2010-02-17 |
Family
ID=35433671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06806734A Not-in-force EP1920642B1 (de) | 2005-08-31 | 2006-08-30 | Vorschaltgerät für eine entladungslampe mit adaptiver vorheizung |
Country Status (7)
Country | Link |
---|---|
US (1) | US8134297B2 (de) |
EP (1) | EP1920642B1 (de) |
JP (1) | JP4723646B2 (de) |
CN (1) | CN101253818B (de) |
AT (1) | ATE458383T1 (de) |
DE (2) | DE202005013754U1 (de) |
WO (1) | WO2007025976A1 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4561350B2 (ja) * | 2004-12-20 | 2010-10-13 | 東芝ライテック株式会社 | 放電灯点灯装置及び照明器具並びに照明システム |
JP2007258134A (ja) * | 2006-03-27 | 2007-10-04 | Osram-Melco Ltd | 蛍光ランプ用電子安定器 |
DE112008002296A5 (de) * | 2007-10-02 | 2010-09-02 | Tridonicatco Gmbh & Co. Kg | Verfahren zum Bestimmen von Betriebsparametern einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe sowie ein entsprechendes Vorschaltgerät |
JP4966164B2 (ja) * | 2007-11-05 | 2012-07-04 | 株式会社東芝 | 洗濯機 |
DE102008022198A1 (de) * | 2008-03-04 | 2009-09-10 | Tridonicatco Gmbh & Co. Kg | Typerkennung einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe |
US11131431B2 (en) | 2014-09-28 | 2021-09-28 | Jiaxing Super Lighting Electric Appliance Co., Ltd | LED tube lamp |
US11480305B2 (en) | 2014-09-25 | 2022-10-25 | Jiaxing Super Lighting Electric Appliance Co., Ltd. | LED tube lamp |
US10560989B2 (en) | 2014-09-28 | 2020-02-11 | Jiaxing Super Lighting Electric Appliance Co., Ltd | LED tube lamp |
US11519565B2 (en) | 2015-03-10 | 2022-12-06 | Jiaxing Super Lighting Electric Appliance Co., Ltd | LED lamp and its power source module |
US9897265B2 (en) | 2015-03-10 | 2018-02-20 | Jiaxing Super Lighting Electric Appliance Co., Ltd. | LED tube lamp having LED light strip |
CN219283098U (zh) | 2021-01-27 | 2023-06-30 | 嘉兴山蒲照明电器有限公司 | 一种led直管灯 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0266894A (ja) * | 1988-08-31 | 1990-03-06 | Toshiba Lighting & Technol Corp | 低圧水銀蒸気放電灯の点灯方法およびその装置 |
DE59209173D1 (de) * | 1992-10-28 | 1998-03-05 | Knobel Lichttech | Verfahren und Schaltungsanordnung zum Zünden von Leuchtstofflampen bei vorbestimmter Temperatur der Lampenkathoden |
CN1179693A (zh) * | 1996-10-01 | 1998-04-22 | 通用电气公司 | 带有阴极预热功能的灯镇流器电路 |
JPH10340791A (ja) * | 1997-06-06 | 1998-12-22 | Tec Corp | 放電灯点灯装置 |
EP0889675A1 (de) * | 1997-07-02 | 1999-01-07 | MAGNETEK S.p.A. | Elektronisches Vorhaltgerät mit Lampentyperkennung |
DE19850441A1 (de) | 1998-10-27 | 2000-05-11 | Trilux Lenze Gmbh & Co Kg | Verfahren und Vorschaltgerät zum Betrieb einer mit einer Leuchtstofflampe versehenen Leuchte |
DE19941437A1 (de) * | 1999-08-30 | 2001-03-01 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Schaltungsanordnung zum Betrieb mindestens einer Entladungslampe |
TW458485U (en) * | 2000-07-31 | 2001-10-01 | Nat Science Council | Pre-heat circuit of gas discharging lamp |
US6359387B1 (en) | 2000-08-31 | 2002-03-19 | Philips Electronics North America Corporation | Gas-discharge lamp type recognition based on built-in lamp electrical properties |
DE10133515A1 (de) * | 2001-07-10 | 2003-01-30 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Schaltungsanordnung zum Betreiben einer Leuchtstofflampe |
DE10134566A1 (de) | 2001-07-16 | 2003-02-06 | Tridonicatco Gmbh & Co Kg | Elektronisches Vorschaltgerät mit Vorheizbetrieb |
DE10145766A1 (de) * | 2001-09-17 | 2003-04-03 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Vorrichtung und Verfahren zum Vorheizen der Wendelelektroden einer Leuchtstofflampe |
JP3801034B2 (ja) * | 2001-11-30 | 2006-07-26 | 松下電工株式会社 | 放電灯点灯装置 |
DE10345610A1 (de) | 2003-09-29 | 2005-05-12 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe |
EP1695597A1 (de) | 2003-12-11 | 2006-08-30 | Koninklijke Philips Electronics N.V. | Elektronische ballastschaltung mit lampentypbestimmung |
DE102004044180A1 (de) * | 2004-09-13 | 2006-03-16 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden |
DE102005007346A1 (de) * | 2005-02-17 | 2006-08-31 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Schaltungsanordnung und Verfahren zum Betreiben von Gasentladungslampen |
-
2005
- 2005-08-31 DE DE202005013754U patent/DE202005013754U1/de not_active Expired - Lifetime
-
2006
- 2006-08-30 JP JP2008528508A patent/JP4723646B2/ja not_active Expired - Fee Related
- 2006-08-30 CN CN2006800313870A patent/CN101253818B/zh not_active Expired - Fee Related
- 2006-08-30 WO PCT/EP2006/065801 patent/WO2007025976A1/de active Application Filing
- 2006-08-30 AT AT06806734T patent/ATE458383T1/de active
- 2006-08-30 DE DE502006006192T patent/DE502006006192D1/de active Active
- 2006-08-30 EP EP06806734A patent/EP1920642B1/de not_active Not-in-force
- 2006-08-30 US US11/990,080 patent/US8134297B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2007025976A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP4723646B2 (ja) | 2011-07-13 |
DE202005013754U1 (de) | 2005-11-17 |
ATE458383T1 (de) | 2010-03-15 |
JP2009506509A (ja) | 2009-02-12 |
CN101253818B (zh) | 2012-07-18 |
CN101253818A (zh) | 2008-08-27 |
EP1920642B1 (de) | 2010-02-17 |
WO2007025976A1 (de) | 2007-03-08 |
US20100156299A1 (en) | 2010-06-24 |
DE502006006192D1 (de) | 2010-04-01 |
US8134297B2 (en) | 2012-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1920642B1 (de) | Vorschaltgerät für eine entladungslampe mit adaptiver vorheizung | |
EP1519638B1 (de) | Verfahren zum Betreiben mindestens einer Niederdruckentladungslampe | |
EP2298038A1 (de) | Erkennung des typs einer an einem betriebsgerät angeschlossenen gasentladungslampe | |
EP1920643B1 (de) | Vorschaltgerät für eine entladungslampe mit adaptiver vorheizung | |
EP1492393B1 (de) | Verfahren zum Betrieb mindestens einer Niederdruckentladungslampe und Betriebsgerät für mindestens eine Niederdruckentladungslampe | |
DE102008022198A1 (de) | Typerkennung einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe | |
DE102009019625B4 (de) | Verfahren zum Ermitteln eines Typs einer Gasentladungslampe und elektronisches Vorschaltgerät zum Betreiben von mindestens zwei unterschiedlichen Typen von Gasentladungslampen | |
DE3910900A1 (de) | Vorschaltgeraet fuer eine entladungslampe | |
AT517953B1 (de) | Beleuchtungssystem und verfahren zum prüfen, ob mindestens zwei mit einem evg zu betreibende gasentladungslampen vom gleichen typ sind | |
EP2208403A1 (de) | Betriebsgerät zum steuern des einbrennvorganges einer lampe | |
EP2198672B1 (de) | Verfahren zum bestimmen von betriebsparametern einer mit einem elektronischen vorschaltgerät zu betreibenden gasentladungslampe sowie ein entsprechendes vorschaltgerät | |
EP1424881A1 (de) | Verfahren zum Betrieb mindestens einer Niederdruckentladungslampe und Betriebsgerät für mindestens eine Niederdruckentladungslampe | |
DE102006031341A1 (de) | Elektronisches Lampenvorschaltgerät zur Regelung von Betriebsparametern einer HF-betriebenen Leuchtstofflampe | |
DE3910738A1 (de) | Vorschaltgeraet fuer eine direkt geheizte entladungslampe | |
EP1992203B1 (de) | Elektronisches vorschaltgerät und verfahren zum betreiben einer elektrischen lampe | |
WO2008122324A1 (de) | Schaltung zur wendelheizung | |
DE102010063933A1 (de) | Betriebsgerät und Verfahren zum Betrieb von Gasentladungslampen | |
EP1793655B1 (de) | Elektronisches Vorschaltgerät mit Betriebszustandsüberwachung und entsprechendes Verfahren | |
EP2796012B1 (de) | Verfahren, betriebsgerät und beleuchtungssystem, mit erkennung von lampen-gleichrichtungseffekt | |
EP2335457B1 (de) | Bestimmung des typs eines leuchtmittels oder der topologie mehrerer leuchtmittel | |
EP2468078B1 (de) | Elektronisches vorschaltgerät und verfahren zum betreiben mindestens einer entladungslampe | |
WO2009059643A1 (de) | Elektronisches vorschaltgerät und verfahren zum betreiben mindestens einer ersten und einer zweiten entladungslampe | |
DE102008012454A1 (de) | Verfahren zum Bestimmen von Betriebsparametern einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe sowie ein entsprechendes Vorschaltgerät | |
DE102009016906A1 (de) | Elektronisches Vorschaltgerät zum Betreiben von mindestens zwei unterschiedlichen Typen von Entladungslampen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080122 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080709 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502006006192 Country of ref document: DE Date of ref document: 20100401 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100217 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100617 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100617 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100518 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100517 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20101118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
BERE | Be: lapsed |
Owner name: OSRAM G.M.B.H. Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20110809 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006006192 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE Effective date: 20111213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100818 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 458383 Country of ref document: AT Kind code of ref document: T Effective date: 20110830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006006192 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE Effective date: 20130205 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006006192 Country of ref document: DE Owner name: OSRAM GMBH, DE Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE Effective date: 20130823 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140821 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140820 Year of fee payment: 9 Ref country code: FR Payment date: 20140821 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006006192 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150830 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160301 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |