Katalysator und Verfahren zur Hydrierung von Carbonylverbindungen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Hydrierung von organischen Verbindungen, die mindestens eine Carbonylgruppe aufweisen, unter Verwendung eines Katalysators, der sich unter anderem dadurch auszeichnet, dass dieser aus Kupferoxid, Aluminiumoxid und mindestens einem der Oxide des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinns oder Mangans zusätzlich besteht, und dass durch die Behandlung mit siedendem Wasser und/oder Dampf ein Katalysator mit hoher Selektivität und gleichzeitig hoher Stabilität entsteht. Bei seiner Herstellung kann zusätzlich Kupferpulver, Kupferblättchen oder Zement zugegeben werden.
Die katalytische Hydrierung von Carbonylverbindungen wie beispielsweise Carbonsäu- ren oder Carbonsäureestern nimmt in den Produktionssträngen der chemischen Grundstoffindustrie eine bedeutende Stellung ein.
Die katalytische Hydrierung von Carbonylverbindungen wie z.B. Carbonsäureestern wird in technischen Verfahren fast ausschließlich in Festbettreaktoren durchgeführt. Als Festbettkatalysatoren werden, neben Katalysatoren vom Raney-Typ, vor allem geträ- gerte Katalysatoren, beispielsweise Kupfer-, Nickel- oder Edelmetall-Katalysatoren verwendet.
Die US 3,923,694 beschreibt beispielsweise einen Katalysator vom Typ Kupferoxid / Zinkoxid / Aluminiumoxid. Der Nachteil dieses Katalysators besteht darin, dass er während der Reaktion mechanisch nicht ausreichend stabil ist und daher relativ schnell zerfällt. Daraus resultiert ein Aktivitätsverlust und ein Aufbau von Differenzdruck über den Reaktor durch die zerfallenden Katalysator-Formkörper. In der Folge muss die Anlage vorzeitig abgestellt werden.
Die DE 198 09 418.3 beschreibt ein Verfahren zur katalytischen Hydrierung einer Car- bonylverbindung in Gegenwart eines Katalysators, der einen Träger, der vornehmlich Titandioxid enthält, und als Aktivkomponente Kupfer oder ein Gemisch aus Kupfer mit mindestens einem der Metalle, ausgewählt aus der Gruppe Zink, Aluminium, Cer, ei- nem Edelmetall und einem Metall der VIII. Nebengruppe, umfasst, wobei die Kupferoberfläche maximal 10 m2/g beträgt. Bevorzugte Trägermaterialien sind Mischungen aus Titandioxid mit Aluminiumoxid oder Zirkonoxid oder Aluminiumoxid und Zirkonoxid. In einer bevorzugten Ausführungsform wird das Katalysatormaterial unter Zusatz von metallischem Kupferpulver oder Kupferblättchen verformt.
Die DE-A 195 05 347 beschreibt ganz allgemein ein Verfahren von Katalysatortabletten mit hoher mechanischer Festigkeit, wobei dem zu tablettirrenden Material ein Metallpulver oder ein Pulver einer Metall-Legierung zugegeben wird. Unter anderem wird als Metallpulver Aluminiumpulver oder Kupferpulver oder Kupferblättchen zugegeben. Bei der Zugabe von Aluminiumpulver wird bei einem Kupferoxid / Zinkoxid / Aluminiumoxid-Katalysator allerdings ein Formkörper erhalten, der eine schlechtere Seitendruckfestigkeit aufweist als ein Formkörper, der ohne Zusatz von Aluminiumpulver hergestellt wurde, und der erfindungsgemäße Formkörper zeigte bei seiner Verwendung als Katalysator eine schlechtere Konvertierungsaktivität als Katalysatoren, die ohne Zusatz von Aluminiumpulver hergestellt wurden. Ebenfalls offenbart ist dort ein Hydrierkatalysator aus NiO, ZrO2, Moθ3 und CuO, dem bei der Herstellung unter anderem Cu- Pulver zugemischt wurde. Über die Selektivität oder die Aktivität sind in dieser Schrift jedoch keine Angaben gemacht.
Die DE 256 515 beschreibt ein Verfahren zur Herstellung von Alkoholen aus Synthesegas, wobei Katalysatoren auf der Basis von Cu / AI / Zn eingesetzt werden, die durch gemeinsame Vermahlung und Verpillung mit metallischem Kupferpulver oder Kupferblättchen gewonnen werden. Das Hauptaugenmerk liegt bei dem beschriebenen Verfahren auf der Herstellung von Gemischen aus d- bis Cs-Alkoholen, wobei eine Ver- fahrensführung gewählt wird, in dem der Reaktionsreaktor im oberen Schichtdrittel einen Katalysator enthält, der einen höheren Anteil an Kupferpulver oder Kupferblättchen aufweist, und im unteren Drittel einen Katalysator enthält, der einen geringeren Anteil an Kupferpulver oder Kupferblättchen aufweist.
JP-A 50-99987 beschreibt die Erhöhung der mechanischen Stabilität spezieller Raney- Katalysatoren, die Kupfer basiert sein können, durch Wasser oder Dampfbehandlung. Aus SU-A 728 908 ist die Härtung von Alumo-Kupfer-Zink-Katalysatoren für die Methanolsynthese durch Wasserbehandlung bekannt. Über die Selektivität oder Aktivität werden in beiden Schriften keine Angaben gemacht.
Eine Aufgabe der vorliegenden Erfindung war es, ein Verfahren und einen Katalysator bereitzustellen, die die Nachteile des Standes der Technik nicht aufweisen und Verfahren zur katalytischen Hydrierung von Carbonylverbindungen sowie Katalysatoren bereitzustellen, wobei die Katalysatoren sowohl hohe mechanische Stabilität als auch hohe Hydrieraktivität und Selektivität aufweisen.
Es wurde gefunden, dass durch die simultane Fällung von Kupfer- und einer Aluminiumverbindung sowie gegebenenfalls zusätzlich einer Verbindung des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinns und/oder Mangans und durch die anschließende Trocknung, Calcinierung, Tablettierung und durch die Zugabe von
metallischem Kupferpulver, Kupferblättchen oder Zementpulver oder Graphit oder ein Gemisch, ein Katalysator erhalten wird, der durch eine Wasser und/der Dampfbehandlung sowohl zu hohen Aktivitäten und Selektivitäten sowie zu einer hohen Stabilität des Formkörpers, der als Katalysator eingesetzt wird, führt.
Demgemäss betrifft die vorliegende Erfindung ein Verfahren zur Hydrierung einer mindestens eine Carbonylgruppe aufweisenden organischen Verbindung, bei dem die organische Verbindung in Anwesenheit von Wasserstoff mit einem Formkörper in Kontakt gebracht wird, der herstellbar ist gemäß einem Verfahren, in dem
(i) ein oxidisches Material, umfassend Kupferoxid und Aluminiumoxid und mindestens eines der Oxide des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinns oder Mangans bereitgestellt wird,
(ii) dem oxidischen Material pulverförmiges metallisches Kupfer, Kupferblättchen, pulverförmiger Zement oder Graphit oder ein Gemisch davon zugegeben werden kann,
(iii) das aus (ii) resultierende Gemisch zu einem Formkörper verformt wird und
(iv) der Formkörper mit siedendem Wasser und/oder Dampf behandelt wird.
Unter Eisenoxid wird Fe(lll)oxid verstanden.
In bevorzugten Ausführungsformen werden die erfindungsgemäßen Formkörper als Voll,- Tränk-, Schalen- und Fällkatalysatoren eingesetzt.
Der in dem erfindungsgemäßen Verfahren verwendete Katalysator zeichnet sich dadurch aus, dass die Aktivkomponente Kupfer, die Komponente Aluminium und die Komponente mindestens eines der Oxide des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinns oder Mangans bevorzugt mit einer Sodalösung simultan oder nacheinander gefällt werden, im Anschluss getrocknet, calciniert, tablettiert und nochmals calciniert wird.
Insbesondere kommt folgende Fällungsmethode in Betracht:
A) Eine Kupfersalzlösung, eine Aluminiumsalzlösung und eine Lösung eines Salzes des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinn oder Mangans oder eine Lösung, enthaltend Kupfer-, Aluminium- und ein Salz des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinn oder Mangans, wird
parallel oder nacheinander mit einer Sodalösung gefällt. Das gefällte Material im Anschluss getrocknet und ggf. calciniert.
B) Fällung einer Kupfersalzlösung und einer Lösung eines Salzes des Eisens, Lan- thans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinn oder Mangans oder einer
Lösung, enthaltend Kupfersalz und mindestens ein Salz des Eisens, auf einen vorgefertigten Aluminiumoxidträger. Dieser liegt in einer besonders bevorzugten Ausführungsform als Pulver in einer wässrigen Suspension vor. Das Trägermaterial kann aber auch als Kugeln, Stränge, Splitt oder Tabletten vorliegen.
B1) In einer Ausführungsform (I) wird eine Kupfersalzlösung und eine Lösung eines Salzes des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinn oder Mangans oder ein Lösung, enthaltend Kupfersalz und ein Salz des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinn oder Mangans, bevor- zugt mit Sodalösung, gefällt. Als Vorlage wird eine wässrige Suspension des
Trägermaterials Aluminiumoxid verwendet.
Ausgefällte Niederschläge, die aus A) oder B) resultieren, werden in üblicher Weise filtriert und vorzugsweise alkalifrei gewaschen, wie dies beispielsweise in der DE 198 09 418.3 beschrieben ist.
Sowohl die Endprodukte aus A) als auch die aus B) werden bei Temperaturen von 50 bis 150°C, vorzugsweise bei 1200C getrocknet und im Anschluss ggf. vorzugsweise 2 Stunden bei im allgemeinen 200 bis 6000C, insbesondere bei 300 bis 500°C calci- niert.
Als Ausgangssubstanzen für A) und/oder B) können prinzipiell alle in den bei der Aufbringung verwendeten Lösungsmitteln löslichen Cu(I) und/oder Cu(ll)-Salze, wie beispielsweise Nitrate, Carbonate, Acetate, Oxalate oder Ammonium-Komplexe, analoge Aluminiumsalze und Salze des Eisens verwendet werden. Besonders bevorzugt für Verfahren gemäß A) und B) wird Kupfernitrat eingesetzt.
In dem erfindungsgemäßen Verfahren wird das oben beschriebene getrocknete und gegebenenfalls calcinierte Pulver bevorzugt zu Tabletten, Ringen, Ringtabletten, Extrudaten, Wabenkörpern oder ähnlichen Formkörpern verarbeitet. Hierfür sind sämtliche aus dem Stand der Technik geeigneten Verfahren denkbar. Besonders bevorzugt wird ein Katalysatorformkörper oder ein Katalysatorextrudat mit einem Durchmesser d und einer Höhe h < 5 mm, Katalysatorkugeln mit einem Durchmesser d < 6 mm oder Katalysator-Wabenkörper mit einem Zellendurchmesser rz < 5 mm verwendet.
Die Zusammensetzung des oxidischen Material ist im allgemeinen so beschaffen, dass der Anteil an Kupferoxid im Bereich von 40 bis 90 Gew.-%, der Anteil an Oxiden des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinns oder Mangans im Bereich von 0 bis 50 Gew.-% und der Anteil an Aluminiumoxid im Bereich bis zu 50 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Summe der oben genannten oxidischen Bestandteile, liegt, wobei diese drei Oxide zusammen mindestens 80 Gew.-% des oxidischen Materials nach Calcinierung darstellen, wobei Zement nicht dem oxidischen Material in obigem Sinne zugerechnet wird.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung daher ein Verfahren, wie oben beschrieben, das dadurch gekennzeichnet ist, dass das oxidische Material
(a) Kupferoxid mit einem Anteil im Bereich von 50 < x < 80, vorzugsweise 55 < x < 75 Gew.-%,
(b) Aluminiumoxid mit einem Anteil im Bereich von 15 < y <35, vorzugsweise 20 < y < 30 Gew.-% und
(c) mindestens eines der Oxide des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinn oder Mangans mit einem Anteil im Bereich von 1 < z < 30, bevorzugt 2 < z < 25 Gew.-%,
jeweils bezogen auf das Gesamtgewicht des oxidischen Materials nach Calcinierung, wobei gilt: 80 < x + y + z < 100, insbesondere 95 < + y + z < 100, umfasst.
Das erfindungsgemäße Verfahren und die erfindungsgemäßen Katalysatoren zeichnen sich dadurch aus, dass durch die Behandlung des Formkörpers mit siedendem Wasser und/oder Dampf eine hohe Stabilität des Formkörpers, der als Katalysator eingesetzt wird, erreicht wird und gleichzeitig die Hydrieraktivität und Selektivität des Katalysators gesteigert wird.
Für die Wasserbehandlung wird der wie vorstehend beschrieben getrocknete und cal- cinierte Formkörper in einer zum vollständigen Bedecken des Katalysators ausreichen- den Menge Wasser, oder einer wässrig-alkolischen Lösung mit einem Cr bis C4- Alkohol wie Methanol, Ethanol oder Butanol bedeckt. Die wässrig-alkoholischen Lösungen weisen eine maximale Alkoholkonzentration von 30 Gew.-% auf. Wird Wasser verwendet so wird mit Hilfe von Mineralsäuren wie Salpetersäure, Schwefelsäure oder Salzsäure oder Natriumcarbonat oder Natronlauge der pH-Wert auf 4 bis 9, bevorzugt auf 6 bis 8,5 eingestellt. Die Katalysatoren werden bei 100 bis 14O0C und einem Druck
von 1 bis 30 bar, bevorzugt bei 1 bis 3 bar, von 1 bis 48 h, bevorzugt 5 bis 20 h, mit Wasser bzw. der wässrig-alkolischen Lösung behandelt.
Die Dampfbehandlung kann mit 100%-Wasserdampf mit Dampfgemischen aus Was- serdampf und inerten Gasen, wie zum Beispiel Stickstoff, mit einem Anteil des inerten Gases von bis zu 90 Gew.%, und/oder mit Dämpfen von Verbindungen, bei denen unter den Reaktionsbedindungen der Dampfbehandlung Wasser entsteht, wie zum Beispiel die Cr bis C4-Alkohole wie Methanol, Ethanol oder Butanol, mit einem Alkoholanteil von maximal 90 Gew.%, durchgeführt werden. Bevorzugt wird die Dampfbehand- lung mit reinem Wasserdampf durchgeführt.
Die Behandlung der Katalysatorkörper mit Dampf erfolgt bei 100 bis 3000C, bevorzugt bei 100 bis 15O0C im Allgemeinen bei Normaldruck, jedoch ist auch ein erhöhter Druck von 1 bis 20 bar, bevorzugt 1 bis 2 bar möglich. Die Dampfbehandlung wird üblicher- weise mindestens 1 h lang erfolgen, bevorzugt sind es 10 bis 48 h Behandlungsdauer.
Nach der Wasser- und/oder Dampfbehandlung wird der Katalysatorform körper erneut bei Temperaturen von 1200C, vorzugsweise 2 h bei im allgemeinen 5 bis 3000C getrocknet, und gegebenenfalls calciniert.
Im allgemeinen wird dem oxidischen Material pulverförmiges Kupfer, Kupferblättchen oder pulverförmiger Zement oder Graphit oder ein Gemisch davon im Bereich von 1 bis 40 Gew.-%, bevorzugt im Bereich von 2 bis 20 Gew.-% und besonders bevorzugt im Bereich von 3 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des oxidischen Materials, enthält.
Als Zement wird vorzugsweise ein Tonerdezement eingesetzt. Besonders bevorzugt besteht der Tonerdezement im wesentlichen aus Aluminiumoxid und Calciumoxid, und besonders bevorzugt besteht er aus ungefähr 75 bis 85 Gew.-% Aluminiumoxid und ungefähr 15 bis 25 Gew.-% Calciumoxid. Ferner kann ein Zement auf Basis Magnesiumoxid/Aluminiumoxid, Calciumoxid/Siliciumoxid und Calciumoxid/Aluminiumoxid/ Eisenoxid verwendet werden.
Insbesondere kann das oxidische Material in einem Anteil von höchstens 10 Gew.-%, bevorzugt höchstens 5 Gew.-%, bezogen auf das Gesamtgewicht des oxidischen Materials, mindestens eine weitere Komponente aufweisen, die ausgewählt wird aus der Gruppe bestehend aus den Elementen Re, Fe, Ru, Co, Rh, Ir, Ni, Pd und Pt.
In einer weiter bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird dem oxidischen Material vor dem Verformen zum Formkörper zusätzlich zu dem Kup-
ferpulver, der Kupferblättchen oder dem Zementpulver oder dem Gemisch davon Graphit zugesetzt. Vorzugsweise wird soviel Graphit zugegeben, dass die Verformung zu einem Formkörper besser durchgeführt werden kann. In einer bevorzugten Ausführungsform werden 0,5 bis 5 Gew.-% Graphit, bezogen auf das Gesamtgewicht des oxidischen Materials, zugegeben. Dabei ist es gleichgültig, ob Graphit dem oxidischen Material vor oder nach oder gleichzeitig mit dem Kupferpulver, den Kupferblättchen oder dem Zementpulver oder dem Gemisch davon zugesetzt wird.
Demgemäss betrifft die vorliegende Erfindung auch ein Verfahren, wie oben beschrie- ben, das dadurch gekennzeichnet, ist, dass dem oxidischen Material oder dem aus (ii) resultierendem Gemisch Graphit in einem Anteil im Bereich von 0,5 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des oxidischen Materials, zugegeben wird.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung daher auch einen Formkörper, mit siedendem Wasser und/oder Dampf behandelt und umfassend
ein oxidisches Material, das
(a) Kupferoxid mit einem Anteil im Bereich von 50 < x < 80, vorzugsweise 55 < x < 75 Gew.-%,
(b) Aluminiumoxid mit einem Anteil im Bereich von 15 < y < 35, vorzugsweise 20 < y < 30 Gew.-% und
(c) mindestens eines Oxids des Eisens, Lanthans, Wolframs, Molybdäns, Titans, Zirkoniums, Zinn oder Mangans mit einem Anteil im Bereich von 1 < z < 30, bevorzugt 2 bis 25 Gew.-%,
jeweils bezogen auf das Gesamtgewicht des oxidischen Materials nach Calcinierung, wobei gilt: 80 < x + y + z < 100, insbesondere 95 < x + y+ z < 100 umfasst,
metallisches Kupferpulver, Kupferblättchen oder Zementpulver oder ein Gemisch davon mit einem Anteil im Bereich von 1 bis 40 Gew.-%, bezogen auf das Gesamtgewicht des oxidischen Materials, und
Graphit mit einem Anteil von 0,5 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des oxidischen Materials,
wobei die Summe der Anteile aus oxidischem Material, metallischem Kupferpulver, Kupferblättchen oder Zementpulver oder einem Gemisch davon und Graphit mindestens 95 Gew.-% des Formkörpers ergeben.
Nach Zugabe des Kupferpulvers, der Kupferblättchen oder des Zementpulvers oder des Gemischs davon und gegebenenfalls Graphit zu dem oxidischen Material wird der im Anschluss an die Verformung erhaltene Formkörper gegebenenfalls mindestens einmal calciniert über eine Zeit von im allgemeinen 0,5 bis 10 h, bevorzugt 0,5 bis 2 Stunden. Die Temperatur bei diesem mindestens einen Calcinierschritt liegt im all- gemeinen im Bereich von 200 bis 6000C, bevorzugt im Bereich von 250 bis 5000C und besonders bevorzugt im Bereich von 270 bis 4000C.
Im Falle der Formgebung mit Zementpulver kann es vorteilhaft sein, den vor der Calci- nierung erhaltenen Formkörper mit Wasser zu befeuchten und anschließend zu trock- nen.
Bei Einsatz als Katalysator in der oxidischen Form wird der Formkörper vor Beschickung mit der Hydrierlösung mit reduzierenden Gasen, beispielsweise Wasserstoff, vorzugsweise Wasserstoff-Inertgasgemischen, insbesondere Wasserstoff/Stickstoff- gemischen bei Temperaturen im Bereich von 100 bis 500°C, bevorzugt im Bereich von 150 bis 350°C und insbesondere im Bereich von 180 bis 2000C vorreduziert. Bevorzugt wird dabei ein Gemisch mit einem Wasserstoffanteil im Bereich von 1 bis 100 Vol.-%, besonders bevorzugt im Bereich von 1 bis 50 Vol.-% verwendet.
In einer bevorzugten Ausführungsform wird der erfindungsgemäße Formkörper vor dem Einsatz als Katalysator in an sich bekannter Weise durch Behandlung mit reduzierenden Medien aktiviert. Das Aktivieren erfolgt entweder vorab in einem Reduktionsofen oder nach dem Einbau im Reaktor. Ist der Reaktor vorab im Reduktionsofen aktiviert worden, wird er in den Reaktor eingebaut und direkt unter Wasserstoffdruck mit der Hydrierlösung beschickt.
Bevorzugtes Einsatzgebiet der nach dem erfindungsgemäßen Verfahren hergestellten Formkörper ist die Hydrierung von Carbonylgruppen aufweisenden organischen Verbindungen im Festbett. Andere Ausführungsformen wie beispielsweise die Wirbelreak- tion mit in auf- und abwirbelnder Bewegung befindlichem Katalysatormaterial ist jedoch ebenfalls möglich. Die Hydrierung kann in der Gasphase oder in der Flüssigphase durchgeführt werden. Vorzugsweise wird die Hydrierung in flüssiger Phase durchgeführt, beispielsweise in Riesel- oder Sumpffahrweise.
Bei Arbeiten in Rieselfahrweise lässt man das flüssige, die zu hydrierende Carbonyl- verbindung enthaltende Edukt in dem Reaktor, der unter Wasserstoffdruck steht, über das in diesem angeordnete Katalysatorbett rieseln, wobei sich auf dem Katalysator ein dünner Flüssigkeitsfilm ausbildet. Dagegen wird beim Arbeiten in Sumpffahrweise Wasserstoffgas in den mit der flüssigen Reaktionsmischung gefluteten Reaktor eingeleitet, wobei der Wasserstoff das Katalysatorbett in aufsteigenden Gasperlen passiert.
In einer Ausführungsform wird die zu hydrierende Lösung im geraden Durchgang über die Katalysatorschüttung gepumpt. In einer anderen Ausführungsform des erfindungs- gemäßen Verfahrens wird ein Teil des Produkts nach Durchgang durch den Reaktor als Produktstrom kontinuierlich abgezogen und ggf. durch einen zweiten Reaktor, wie oben definiert, geleitet. Der andere Teil des Produkts wird zusammen mit frischem, die Carbonylverbindung enthaltendem Edukt dem Reaktor erneut zugeführt. Diese Verfahrensweise wird im folgenden als Kreislauffahrweise bezeichnet.
Wird als Ausführungsform des erfindungsgemäßen Verfahrens die Rieselfahrweise gewählt, ist hierbei die Kreislauffahrweise bevorzugt. Weiter bevorzugt wird in Kreislauffahrweise unter Verwendung eines Haupt- und Nachreaktors gearbeitet.
Das erfindungsgemäße Verfahren eignet sich zur Hydrierung von Carbonylverbindun- gen wie z.B. Aldehyden und Ketonen, Carbonsäuren, Carbonsäureestern oder Carbonsäureanhydriden zu den entsprechenden Alkoholen, wobei aliphatische und cycloa- liphatische gesättigte und ungesättigte Carbonylverbindungen bervorzugt sind. Bei aromatischen Carbonylverbindungen kann es zur Bildung unerwünschter Nebenpro- dukte durch Hydrierung des aromatischen Kerns kommen. Die Carbonylverbindungen können weitere funktionelle Gruppen wie Hydroxy- oder Aminogruppen tragen. Ungesättigte Carbonylverbindungen werden in der Regel zu den entsprechenden gesättigten Alkoholen hydriert. Der Begriff "Carbonylverbindungen", wie er im Rahmen der Erfindung verwendet wird, umfasst alle Verbindungen, die eine C=O-Gruppe aufweisen, einschließlich Carbonsäuren und deren Derivaten. Selbstverständlich können auch Gemische aus zwei oder mehr als zwei Carbonylverbindungen gemeinsam hydriert werden. Ferner kann auch die einzelne, zu hydrierende Carbonylverbindung mehr als eine Carbonylgruppe enthalten.
Bevorzugt wird das erfindungsgemäße Verfahren zur Hydrierung aliphatischer Aldehyde, Hydroxyaldehyde, Ketone, Säuren, Ester, Anhydride, Lactone und Zucker eingesetzt.
Bevorzugte aliphatische Aldehyde sind verzweigte und unverzweigte gesättigte und/oder ungesättigte aliphatische C2-C3o-Aldehyde, wie sie beispielsweise durch Oxo-
synthese aus linearen oder verzweigten Olefinen mit interner oder terminaler Doppelbindung erhältlich sind. Ferner können auch oligomere Verbindungen, die auch mehr als 30 Carbonylgruppen enthalten, hydriert werden.
Als Beispiel für aliphatische Aldehyde sind zu nennen:
Formaldehyd, Propionaldehyd, n-Butyraldehyd, iso-Butyraldehyd, Valeraldehyd, 2-Methylbutyraldehyd, 3-Methylbutyraldehyd (Isovaleraldehyd), 2,2-Dimethylpropional- dehyd (Pivalinaldehyd), Capronaldehyd, 2-Methylvaleraldehyd, 3-Methylvaleraldehyd, 4-Methylvaleraldehyd, 2-Ethylbutyraldehyd, 2,2-Dimethylbutyraldehyd, 3,3-Dimethyl- butyraldehyd, Caprylaldehyd, Caprinaldehyd, Glutardialdehyd.
Neben den genannten kurzkettigen Aldehyden sind insbesondere auch langkettige aliphatische Aldehyde geeignet, wie sie beispielsweise durch Oxosynthese aus linea- ren α-Olefinen erhalten werden können.
Besonders bevorzugt sind Enalisierungsprodukte, wie z.B. 2-Ethylhexenal, 2-Methyl- pentenal, 2,4-Diethyloctenal oder 2,4-Dimethylheptenal.
Bevorzugte Hydroxyaldehyde sind C3-Ci2-Hydroxyaldehyde, wie sie beispielsweise durch Aldolreaktion aus aliphatischen und cycloaliphatischen Aldehyden und Ketonen mit sich selbst oder Formaldehyd zugänglich sind. Beispiele sind 3-Hydroxypropanal, Dimethylolethanal, Trimethylolethanal (Pentaerythrital), 3-Hydroxybutanal (Acetaldol), 3-Hydroxy-2-ethylhexanal (Butylaldol), 3-Hydroxy-2-methylpentanal (Propienaldol), 2-Methylolpropanal, 2,2-Dimethylolpropanal, 3-Hydroxy-2-methylbutanal, 3-Hydroxy- pentanal, 2-Methylolbutanal, 2,2-Dimethylolbutanal, Hydroxypivalinaldehyd. Besonders bevorzugt sind Hydroxypivalinaldehyd (HPA) und Dimethylolbutanal (DMB).
Bevorzugte Ketone sind Aceton, Butanon, 2-Pentanon, 3-Pentanon, 2-Hexanon, 3-Hexanon, Cyclohexanon, Isophoron, Methylisobutylketon, Mesityloxid, Acetophenon, Propiophenon, Benzophenon, Benzalaceton, Dibenzalaceton, Benzalacetophenon, 2,3-Butandion, 2,4-Pentandion, 2,5-Hexandion und Methylvinylketon.
Darüber hinaus können Carbonsäuren und Derivate davon, vorzugsweise solche mit 1-20 C-Atomen umgesetzt werden. Insbesondere sind die folgenden zu nennen:
Carbonsäuren, wie z.B. Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, n-Valeriansäure, Trimethylessigsäure ("Pivalinsäure"), Capronsäure, Önanth- säure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearin- säure, Acrylsäure, Methacrylsäure, Ölsäure, Elaidinsäure, Linolsäure, Linolensäure,
Cyclohexancarbonsäure, Benzoesäure, Phenylessigsäure, o-Toluylsäure, m-Toluyl- säure, p-Toluylsäure, o-Chlorbenzoesäure, p-Chlorbenzoesäure, o-Nitrobenzoesäure, p-Nitrobenzoesäure, Salicylsäure, p-Hydroxybenzoesäure, Anthranilsäure, p-Amino- benzoesäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pi- melinsäure, Korksäure, Azelainsäure, Sebacinsäure, Maleinsäure, Fumarsäure, Phthalsäure, Isophthalsäure, Terephthalsäure;
Carbonsäureester, wie z.B. die Ci-Cio-Alkylester der oben genannten Carbonsäuren, insbesondere Methylformiat, Essigester, Buttersäurebutylester, Phthalsäure-, Iso- Phthalsäure-, Terephthalsäure-, Adipinsäure-, Maleinsäuredialkylester wie z.B. die Di- methylester dieser Säuren, (Meth)acrylsäuremethylester, Butyrolacton, Caproiacton und Polycarbonsäureester, wie z.B. Polyacryl- und Polymethacrylsäureester und deren Copolymere und Polyester, wie z.B. Polymethylmethacrylat, Terephthalsäureester und andere technische Kunststoffe, wobei hier insbesondere Hydrogenolysen, also die Umsetzung von Estern zu den entsprechenden Säuren und Alkoholen, durchgeführt werden;
Fette;
Carbonsäureanhydride, wie z.B. die Anhydride der oben genannten Carbonsäuren, insbesondere Essigsäureanhydrid, Propionsäureanhydrid, Benzoesäureanhydrid und Maleinsäureanhydrid;
Carbonsäureamide, wie z.B. Formamid, Acetamid, Propionamid, Stearamid, Tereph- thalsäureamid.
Ferner können auch Hydroxycarbonsäuren, wie z.B. Milch-, Äpfel-, Wein- oder Zitronensäure, oder Aminosäuren, wie z.B. Glycin, Alanin, Prolin und Arginin, und Peptide umgesetzt werden.
Als besonders bevorzugte organische Verbindungen werden gesättigte oder ungesättigte Carbonsäuren, Carbonsäureester, Carbonsäureanhydride oder Lactone oder Gemische aus zwei oder mehr davon hydriert.
Demgemäss betrifft die vorliegende Erfindung auch ein Verfahren, wie oben beschrieben, das dadurch gekennzeichnet ist, dass die organische Verbindung eine Carbonsäure, ein Carbonsäureester, ein Carbonsäureanhydrid oder ein Lacton ist.
Beispiele dieser Verbindungen sind unter anderem Maleinsäure, Maleinsäureanhydrid, Bemsteinsäure, Bernsteinsäureanhydrid, Adipinsäure, 6-Hydroxycapronsäure, 2-Cyclo-
dodecylpropionsäure, die Ester der vorgenannten Säuren wie z.B. Methyl-, Ethyl-, Pro- pyl- oder Butylester. Weitere Beispiele sind γ-Butyrolacton und Caprolacton.
In einer ganz besonders bevorzugten Ausführungsform betrifft die vorliegende Erfin- düng ein Verfahren, wie oben beschrieben, das dadurch gekennzeichnet ist, dass die organische Verbindung Adipinsäure oder ein Adipinsäureester ist.
Die zu hydrierende Carbonylverbindung kann dem Hydrierungsreaktor allein oder als Gemisch mit dem Produkt der Hydrierungsreaktion zugeführt werden, wobei dies in unverdünnter Form oder unter Verwendung von zusätzlichem Lösungsmittel geschehen kann. Als zusätzliches Lösungsmittel eigenen sich insbesondere Wasser, Alkohole wie Methanol, Ethanol und der Alkohol, der unter den Reaktionsbedingungen entsteht. Bevorzugte Lösungsmittel sind Wasser, THF und NMP, besonders bevorzugt ist Wasser.
Die Hydrierung sowohl in Sumpf- als auch in Rieselfahrweise, wobei jeweils bevorzugt in Kreislauffahrweise gearbeitet wird, führt man im allgemeinen bei einer Temperatur im Bereich von 50 bis 3500C, bevorzugt im Bereich von 70 bis 300°C, besonders bevorzugt im Bereich von 100 bis 2700C und einem Druck im Bereich von 3 bis 350 bar, bevorzugt im Bereich von 5 bis 330 bar, besonders bevorzugt im Bereich von 10 bis 300 bar durch.
In einer ganz besonders bevorzugten Ausführungsform werden die erfindungsgemäßen Katalysatoren in Verfahren zur Herstellung von Hexandiol und/oder Caprolacton eingesetzt, wie sie in DE 196 07 954, DE 196 07 955, DE 196 47 348 und DE 196 47 349 beschrieben sind.
Mit dem erfindungsgemäßen Verfahren unter Verwendung der erfindungsgemäßen Katalysatoren werden hohe Umsätze und Selektivitäten erzielt. Gleichzeitig weisen die erfindungsgemäßen Katalysatoren eine hohe chemische und mechanische Stabilität auf.
Ganz allgemein betrifft die vorliegende Erfindung daher die Verwendung einer Behandlung mit siedendem Wasser und/oder Dampf bei der Herstellung eines Katalysators zur Erhöhung sowohl der mechanischen Stabilität als auch der Aktivität und der Selektivität des Katalysators.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung eine Verwendung, wie oben beschrieben, die dadurch gekennzeichnet ist, dass der Katalysator als Aktivkomponente Kupfer umfasst.
Die mechanische Stabilität von Festkörperkatalysatoren und speziell der erfindungsgemäßen Katalysatoren wird beschrieben durch den Parameter Seitendruckfestigkeit in verschiedenen Zuständen (oxidisch, reduziert, reduziert und unter Wasser suspen- diert).
Die Seitendruckfestigkeit wurde im Rahmen der vorliegenden Anmeldung bestimmt mit einem Gerät des Typs „Z 2.5/T 919" der Firma Zwick Roll (Ulm). Sowohl bei den reduzierten als auch bei den gebrauchten Katalysatoren wurden die Messungen in Metha- nol unter Stickstoffatmosphäre durchgeführt, um eine Re-Oxidation der Katalysatoren zu vermeiden.
Beispiele
Beispiel 1 : Herstellung des Katalysators 1
Ein Gemisch aus 12,41 kg einer 57%igen-Kupfernitratlösung, und 12,78 kg einer 33%igen-Alurniniumnitratlösung und 0,48 kg einer 40%igen Lanthannitratlösung x 6H2O wurden in 2 I Wasser gelöst (Lösung 1). Lösung 2 beinhaltet 60 kg einer
20 %igen-wasserfreies Na2COs. Lösung 1 und Lösung 2 wurden über getrennte Leitungen in ein Fällgefäß, das mit einem Rührer versehen ist und 10 I auf 8O0C erhitztes Wasser enthält, geleitet. Hierbei wurde durch entsprechende Einstellung der Zufuhrgeschwindigkeiten der Lösungl und Lösung 2 der pH-Wert auf 6,2 gebracht.
Unter Konstanthaltung des pH-Wertes bei 6,2 und der Temperatur bei 6O0C wurde die gesamte Lösungl mit Soda zur Reaktion gebracht. Die so gebildete Suspension wurde anschließend 1 Stunden lang nachgerührt, wobei der pH-Wert durch gelegentliche Zugabe von verdünnter Salpetersäure bzw. Sodalösung 2 auf bei 7,2 gefahren wird. Die Suspension wird filtriert und mit destilliertem Wasser so lange gewaschen, bis der Nitratgehalt des Waschwassers < 10 ppm betrug.
Der Filterkuchen wurde 16 h lang bei 12O0C getrocknet und anschließend 2h lang bei 6000C calciniert. Das so erhaltene Katalysatorpulver wird mit 1 Gew.-% Graphit vor- kompaktiert. Das erhaltene Kompaktat wird mit 5 Gew.% Cu-Blättchen Unicoat und anschließend mit 2 Gew.% Graphit gemischt und zu Tabletten von 3 mm Durchmesser und 3 mm Höhe verpresst. Die Tabletten wurden schließlich 2 h lang bei 35O0C calciniert.
Der so hergestellte Katalysator hat die chemische Zusammensetzung
58% CuO / 22 % AI2O3 / 5% La2O3/ 15 % Cu.
Die Seitendruckfestigkeit betrug 25 N wie in Tabelle 1 angegeben.
Beispiel 2: Wasserbehandlung zu Katalysator 2
20 g des Katalysators nach Beispiel 1 wurden mit 50 ml Wasser gemischt und 24 h bei 14O0C und einem Druck von 2 bar erhitzt. Nach dem Abtrennen des Wassers wurde der Katalysator bei 12O0C 4 h getrocknet.
Beispiel 3: Dampfbehandlung zu Katalysator 3
20 g des Katalysators nach Beispiel 1 wurde bei 14O0C bei 1 ,3 bar mit 100 %igem Wasserdampf für 20 h behandelt. So dann wurde der Katalysator bei 12O0C 4 h lang getrocknet.
Beispiel 4:
Katalysator T4489 der Zusammensetzung 60% CuO / 30% AI2O3 / 10 MnO2 vertrieben von der Fa. Südchemie.
Beispiel 5: Dampfbehandlung
Der kommerzielle Katalysator der Zusammensetzung 60% CuO / 30% AbO3 / 10 MnO2 (Handelsname T4489 der Fa. Südchemie) wurde 20 h lang bei einem Druck von 1 ,3 bar mit 100% Wasserdampf behandelt und danach bei 12O0C 4 h lang getrocknet.
Beispiel 6: Hydrierung von Adipinsäuredimethylester an den Katalysatoren 1 , 2, 3, 4 oder 5
Adipinsäuredimethylester wurde kontinuierlich in Rieselfahrweise mit Rückführung (Verhältnis Zulauf/Rückführung = 10/1) bei einer Belastung von 0,3 kg/(l*h), einem Druck von 200 bar und Reaktionstemperaturen von 210 bar bzw. 19O0C in einem senkrechten Rohrreaktor, der jeweils mit 200 ml der Katalysatoren 1 , 2, 3, 4 oder 5 gefüllt war, hydriert. Die Versuchsdauer betrug insgesamt 7 Tage. GC-analytisch wurden im Reaktoraustrag bei 1900C Esterumsätze von 99,9 %, eine Hexandiol-Selektivität von
97,5 % detektiert. Nach Ausbau war der Katalysator noch voll erhalten und wies eine hohe mechanische Stabilität auf. Die Versuchsergebnisse sind in Tabelle 1 zusam- mengefasst.
Die Daten in der folgenden Tabelle 1 zeigen, dass die erfindungsgemäßen Katalysatoren signifikant höhere Hydrieraktivitäten, d.h. höhere Umsätze an Adipinsäuredimethyl- ester bei 1900C aufweisen als der Vergleichskatalysator, sowie auch höhere Wertproduktselektivitäten, d.h. Gehalte an den Zielprodukten Hexandiol im Austrag.
Tabelle 1