EP1896782A2 - Slow cooking heating formula - Google Patents
Slow cooking heating formulaInfo
- Publication number
- EP1896782A2 EP1896782A2 EP06771498A EP06771498A EP1896782A2 EP 1896782 A2 EP1896782 A2 EP 1896782A2 EP 06771498 A EP06771498 A EP 06771498A EP 06771498 A EP06771498 A EP 06771498A EP 1896782 A2 EP1896782 A2 EP 1896782A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- reactant
- complexing agent
- heater
- oxidizing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 57
- 238000010411 cooking Methods 0.000 title description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 87
- 239000008139 complexing agent Substances 0.000 claims abstract description 82
- 239000000376 reactant Substances 0.000 claims abstract description 78
- 239000000126 substance Substances 0.000 claims abstract description 15
- 239000000446 fuel Substances 0.000 claims description 127
- 239000007800 oxidant agent Substances 0.000 claims description 79
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 69
- 239000012286 potassium permanganate Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 25
- 229910021538 borax Inorganic materials 0.000 claims description 24
- 239000004328 sodium tetraborate Substances 0.000 claims description 24
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 24
- 230000007423 decrease Effects 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims description 11
- 229920005862 polyol Polymers 0.000 claims description 11
- 150000003077 polyols Chemical class 0.000 claims description 11
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 10
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 8
- 125000003158 alcohol group Chemical group 0.000 claims description 8
- 239000004327 boric acid Substances 0.000 claims description 7
- 239000004115 Sodium Silicate Substances 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 5
- 229910002651 NO3 Inorganic materials 0.000 claims description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000001340 alkali metals Chemical class 0.000 claims description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 5
- 239000002738 chelating agent Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 230000020169 heat generation Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 239000000843 powder Substances 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000002441 reversible effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000000536 complexating effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 125000005619 boric acid group Chemical group 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 235000013547 stew Nutrition 0.000 description 2
- 241001122767 Theaceae Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- -1 aqueous glycerol Chemical class 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015927 pasta Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/16—Materials undergoing chemical reactions when used
- C09K5/18—Non-reversible chemical reactions
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J36/00—Parts, details or accessories of cooking-vessels
- A47J36/24—Warming devices
- A47J36/28—Warming devices generating the heat by exothermic reactions, e.g. heat released by the contact of unslaked lime with water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V30/00—Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
Definitions
- This disclosure relates to a heating formula and, more particularly to a slow cooking heating formula.
- Single-use chemical heaters for heating objects, for example food and beverage items, and body parts are well known.
- One type of heater utilizes the exothermic reaction of a metal oxide, typically calcium oxide, and water to generate heat.
- U.S. Patent No. 5,035,230 (“the '230 patent"), incorporated by reference herein in its entirety, discloses heaters utilizing the oxidation of primary or secondary alcohols by appropriate oxidizers to provide exothermic chemical reactions. Compounds of manganese, and chromium are the most common oxidizing agents utilized.
- primary alcohol fuels such as glycerol or ethylene glycol
- alkali metal permanganates are useful as oxidizing agents, generally in aqueous reactions.
- the '230 patent discloses embedding solid oxidizer particles, particularly particles of potassium permanganate, in a dissolvable binder, for example sodium silicate, to further reduce fuel-oxidizer contact for control of the rate of reaction.
- PCT Publication No. WO 2005/108878 (“the '878 publication”), published November 17, 2005, incorporated by reference, discloses a method of providing a releasable reaction suppressant composition, and in response to a selected temperature Attorney Docket No. 09155-024WO1 occu ⁇ ing at a product compartment, automatically releasing the suppressant composition into the reaction chamber, thereby suppressing the exothermic reaction .
- U.S. Patent No. 6,640,801 discloses a flexible disposable heating device conformable to a shape defined by its surroundings.
- the heating device includes a first zone containing a fuel, a second zone containing an oxidizer and a collapsed third zone capable of serving as an expansion chamber.
- a first frangible separator is disposed between the first zone and the second zone, the first frangible separator being manually operable to provide communication there between, defining a reaction chamber comprising at least one of said first and second chambers.
- a second frangible separator is provided that is responsive to an exothermic chemical reaction within the reaction chamber. The second frangible separator is operable to provide vapor communication between the reaction chamber and the third zone.
- Communication between the first zone and the second zone allows mixing of the fuel and the oxidizing agent to initiate an exothermic chemical reaction capable of generating a vapor and an environmental parameter associated with the exothermic chemical reaction operates the second frangible separator, permitting said vapor to flow into said third zone, thereby reducing pressure in the reaction chamber.
- This invention includes a heating formula, a portable, single-use chemical heater comprising the heating formula and heating methods utilizing the heating formula to modify reaction rate.
- the heating formula provides for extended duration heating that may be useful, for example, for portable heating of food, beverage, and other items.
- the heating formula includes a fuel, an oxidizing agent and a complexing agent.
- the complexing agent reversibly complexes with the fuel. Portions of the complexed fuel are released over time in response to the decline in concentration of uncomplexed fuel as it is used up by the reaction. Controlled slow release is achieved by the type of complexing agent and amount (relative to fuel) of complexing agent.
- the duration of the reaction for a particular heater may be increased by adding more complexing Attorney Docket No. 09155-024WO1 agent.
- the methods disclosed herein include the addition of a fuel-complexing reagent to the reaction mixture of an oxidation/reduction exothermic reaction between a fuel and an oxidizing agent.
- the fuel is an alcohol fuel, preferably a polyol such as glycerol or ethylene glycol.
- the oxidizing agent is a compound of manganese or chromium, preferably an alkali metal permanganate, more preferably a solid oxidizer, and most preferably potassium permanganate particles coated with a dissolvable binder, preferably sodium silicate.
- Preferred heaters include an oxidizer compartment, preferably containing solid, coated potassium permanganate, and a fuel compartment, preferably containing a liquid polyol such as aqueous glycerol, wherein a user initiates the reaction by compromising the separation of the compartments, permitting the reactants to come into contact, thereby initiating an exothermic chemical reaction,
- heaters include a fuel-complexing agent in one of the compartments.
- the complexing agent is a polyoxygenated ion such as borate, carbonate, nitrate, silicate, or sulfate, preferably boric acid or a borate, most preferably borax (Na 2 B 2 O 7 -IOH 2 O).
- heaters include a complexing agent adapted to reversibly complex with the oxidizer.
- An example of an oxidizer-complexing agent is a chelating agent, such as ethylenediaminetetraacetic acid (EDTA), which is generally adapted to complex with metal compounds.
- EDTA ethylenediaminetetraacetic acid
- a heating formula for a chemical heater is disclosed. The formula includes a first reactant, a second reactant and a complexing agent.
- the complexing agent is adapted to complex reversibly with at least a portion of the first reactant so as to progressively release the complexed first reactant over time as a concentration of uncomplexed first reactant decreases during an exothermic reaction with the second reactant.
- the first reactant is an oxidizing agent and the second reactant is an alcohol fuel.
- the complexing agent complexes reversibly with at least a portion of the fuel so as to progressively release complexed fuel over time as a concentration of uncomplexed fuel decreases during the exothermic reaction with the oxidizing agent.
- the first reactant is an alcohol fuel and the second reactant is an oxidizing agent.
- the complexing agent complexes reversibly with at least a portion of the oxidizing agent so as to progressively release complexed oxidizing agent over time as a concentration of uncomplexed oxidizing agent decreases during the exothermic reaction with the fuel.
- the fuel is a polyol, for example, aqueous glycerol.
- the complexing agent can be boric acid, a borate or, more preferably, borax.
- the complexing agent can be carbonate, nitrate, silicate or sulfate.
- Certain implementations include a complexing agent for the oxidizing agent that is a chelating agent, for example, ethylenediaminetetraacetic acid (EDTA).
- EDTA ethylenediaminetetraacetic acid
- a ratio of complexing agent to fuel is between 1 :20 and 1 :5. In some implementations, the ratio of complexing agent to fuel is between 1:100 and 1:1.
- Some Implementations include an oxidizing agent of an alkali metal permanganate, such as potassium permanganate.
- the fuel and the complexing agent can form an aqueous solution.
- the fuel concentration can be between 24 wt. % and 84 wt. %.
- the fuel concentration can be between 34 wt. % and 44 wt. %.
- a single-use chemical heater in another aspect, includes a disposable container with a first compartment and a second compartment. A first reactant is disposed in the first compartment and a second reactant is disposed in the second compartment.
- a separator is disposed between the first compartment and the second compartment.
- the separator is compromisable to provide fluid communication between the first compartment and the second compartment. Fluid communication initiates an exothermic chemical reaction between the first reactant and the second reactant within Attorney Docket No. 09155-024 WO 1 the container.
- a complexing agent that reversibly complexes with the first reactant is disposed in at least one of the first compartment and the second compartment.
- the first reactant is an oxidizing agent and the second reactant is an alcohol fuel.
- the complexing agent complexes reversibly with at least a portion of the fuel so as to progressively release complexed fuel over time as a concentration of uncomplexed fuel decreases during the exothermic reaction with the oxidizing agent.
- the first reactant is an alcohol fuel and the second reactant is an oxidizing agent
- the complexing agent complexes reversibly with at least a portion of the oxidizing agent so as to progressively release complexed oxidizing agent over time as a concentration of uncomplexed oxidizing agent decreases during the exothermic reaction with the fuel.
- Yet another aspect includes a method of moderating a rate of heat generation from a single-use chemical heater operable by exothermic chemical reaction of a first reactant and a second reactant.
- the method includes including in the exothermic chemical reaction a complexing agent that complexes reversibly with at least a portion of the first reactant so as to release portions of the first reactant to react with the second reactant over time as a concentration of uncomplexed first reactant decreases during the reaction.
- the first reactant is a fuel and the second reactant is an oxidizing agent.
- the complexing agent complexes reversibly with at least a portion of the fuel so as to release portions of the fuel to react with the oxidizer over time as a concentration of uncomplexed fuel decreases during the reaction.
- the first reactant is an oxidizing agent and the second reactant is a fuel.
- the complexing agent complexes reversibly with at least a portion of the oxidizing agent so as to release portions of the oxidizing agent to react with the fuel over time as a concentration of uncomplexed oxidizing agent decreases during the reaction.
- a portable heater may be provided that is well suited for heating products having varying viscosities.
- the heater may be particularly well suited to heat relatively high viscosity fluids such as certain sauces, cement and the like.
- a heater is able to provide heating over an extended period of time. Additionally, the possibility that dangerous hot spots in such a heater might occur may be reduced.
- Figure 1 is a plan view of a heater.
- Figure 2 is a bowl that was used to conduct Experiments 1, 2 and 3.
- Figure 3 is a graph showing temperature profiles related to Examples 1, 2 and 3.
- Figure 4 is a bowl that was used to conduct Experiments 4 and 5.
- slow cooking we mean an exothe ⁇ nic reaction whose rate of heat generation is slowed, in this case by a release mechanism wherein one of the reactants (e.g., fuel) already released into the reaction mechanism inhibits release of additional fuel into the reaction.
- the slow cooking heating formula includes a fuel and an oxidizing agent adapted to react exothermically with the fuel.
- the slow cooking heating formula further includes a fuel-complexing agent.
- the complexing agent is adapted to affect the duration of the exothermic reaction. More particularly, the complexing agent may be adapted to extend the duration of the reaction and to regulate its intensity.
- the complexing agent releases "tied up" portions of fuel, thereby replenishing the supply of uncomplexed fuel available to react. It will be appreciated that reversible complex formation provides a means to tailor or adapt a single-use chemical heater to the ability of an object being heated to absorb heat so as to avoid excessively high temperature, thereby slowing heat generation as needed and providing slower and longer lasting heating. It is believed that an approximate balance is maintained between the complexed and uncomplexed fuel throughout the course of the reaction. Accordingly, by including a complexing agent in the heating formula, the intensity of heat generated by the reaction may be moderated and the length of time of that the reaction lasts may be extended.
- the preferred complexing agent borax
- complexes with polyol fuel in a 1 : 1 mole ratio it has been found that a much smaller ratio of complexing agent-to-fuel in the formula is sufficient to moderate and extend the reaction.
- the complexing agent-to-fuel ratio is between 1:100 and 1:1.
- the complexing agent to fuel ratio is between 1 :20 and 1:5.
- the complexing agent typically is boric acid or a borate, and is preferably borax (Na 2 B 4 O 7 -IOH 2 O).
- the oxidizer is a compound of manganese or chromium. More preferably, the oxidizer is an alkali metal permanganate. Most preferably, the oxidizer is potassium permanganate. In a typical implementation, the oxidizer includes solid potassium permanganate particles dispersed throughout a dissolvable binder agent, preferably sodium silicate. Attorney Docket No. 09155-024WO1
- the fuel typically is an alcohol fuel. More preferably, the fuel is a polyol such as glycerol or ethylene glycol in a liquid state, preferably an aqueous solution. Our most preferred fuel is aqueous glycerol.
- the fuel concentration in the aqueous solution may be between 24 % and 84 %, based on weight, but preferably is between 34 % and 44 %, based on weight.
- the fuel and the complexing agent are adapted to combine and form an aqueous solution. It is noted that other oxidizing agents and fuels may be suitable for use with the techniques disclosed herein.
- the moderating ("slow cooking”) heating formula is used in a disposable, single-use chemical heater of the type that operates on the principle of evolution of the heat of reaction between complementary pairs of chemical entities.
- An exemplary chemical heater includes a first compartment containing oxidizing agent, preferably solid, coated potassium permanganate, and a second compartment containing a fuel, preferably a liquid polyol such as aqueous glycerol.
- the chemical heater typically is configured so that a user can initiate a reaction by compromising the separation of the compartments, for example, turning a valve or compromising a frangible separator, thereby permitting the fuel and the oxidizing agent to come into contact with each other, initiating an exothermic chemical reaction.
- the complexing agent is initially provided in at least one of the compartments.
- a preferable complexing agent is boric acid or a borate, most preferably borax (Na 2 B 4 O 7 -IOH 2 O). It is preferred that the complexing agent initially be provided in the fuel compartment.
- the complexing agent either is a liquid or dissolves in the fuel or aqueous fuel mixture.
- FIG. 1 An example of such a heater is shown in FIG. 1.
- a heat pack typically comprises two plastic sheets.
- the illustrated heater has a container 1 formed by an upper sheet 2 and a lower sheet (not shown).
- the sheets are sealed together at the edges by edge seals 3, 4, 5, and 6.
- Heat or adhesive forms the edge seals, which preferably are made so that they are not readily opened by a user.
- a separator 7 is disposed from one edge seal of the heater 3 to another edge seal 5, thus dividing the heater 1 into a first compartment 8 and a second compartment 9.
- the separator 7, in this embodiment a frangible seal is Attorney Docket No.
- the heater's container is designed to include a space for vapor above the reactants when the heat pack is in use.
- the first compartment 8 contains an aqueous solution of fuel and complexing agent and the second compartment 9 includes an oxidizing agent. Fuel in the first compartment 8 is complexed with the complexing agent so that only a portion of the fuel in the first compartment is uncomplexed. When a user compromises the separator 7, the aqueous solution containing fuel and complexing agent is permitted to flow into the second compartment 9 and to mix with the oxidizer. Uncomplexed portions of the fuel react with the oxidizing agent. As the uncomplexed portions of fuel react, complexed fuel is released essentially to replenish a supply of fuel to react with the oxidizing agent.
- a heater may be provided with multiple first and second compartments, with each compartment separated from adjacent compartment(s) by a valve or frangible separator.
- complexing agent may be provided in either one or both of the first and second compartments.
- other fuels, oxidizing agents, binding agents and/or complexing agents may be utilized.
- complexing agent may be adapted to reversibly complex with the oxidizing agent.
- a complexing agent is a chelating agent, such as ethylenediaminetetraacetic acid (EDTA).
- EDTA ethylenediaminetetraacetic acid
- a heater formulation may include a solid oxidizer embedded in or coated with dissolvable binding agent as is disclosed in United States Patent No. 5,035,230.
- the heat packs disclosed in the '230 patent have separate zones of two types.
- One zone type contains a dry reactant, i.e., short cylinders comprising potassium permanganate crystals within a sodium silicate binding agent.
- the other zone type contains an glycerol/water solution, which serves as a fuel mixture, hi certain implementations, the fuel serves as a solvent, eliminating the need for a separate solvent.
- the two types of zones are separated, for example, by a frangible seal that is meant for single use.
- frangible seal between the two zones When the frangible seal between the two zones is ruptured, the fuel solution flows to the oxidizing agent pellets and reaction occurs.
- the rate of reaction, and hence the rate of heat production, is moderated by the rate of dissolution of the binding agent, as dissolution is required to expose the oxidizer to the fuel.
- the formula and methods disclosed herein could be readily incorporated into the heat packs of the '230 patent.
- a heater may include preformed stiffenable gel as disclosed in the United States Patent No. 5,984,953.
- the heat packs disclosed in the '953 patent also utilize an exothermic oxidation/reduction chemical reaction. In those heat packs, a dissolvable binding agent was utilized.
- stiffenable gel was provided to affect the rate of reaction.
- the modulation of the exothermic chemical reactions takes place through certain reversible physical changes of the reaction medium in order to produce the self-regulating effects desired in the heat packs of the invention. Modulation helps prevent the exothermic chemical reaction from raising the operating temperature of the heat pack above a predetermined maximum temperature. Modulation also acts to increase the rate of an ongoing exothermic reaction when the container temperature falls low enough to reverse the physical changes of the reaction medium.
- the fonnula and methods disclosed herein could be readily incorporated into the heat packs of the '953 patent.
- a heater may include a releasable reaction suppressant to guard against high-temperature exotherms as disclosed in the '878 publication.
- the methods disclosed in the '878 publication include providing a container with a releasable reaction suppressant composition, and in response to a selected temperature occurring at the product compartment, automatically releasing the suppressant composition into the reaction chamber, thereby suppressing the exothermic reaction.
- the suppressant composition includes water.
- a heater may include an expansion chamber as disclosed in the '801 patent.
- The' 801 patent discloses a flexible disposable heating device conformable to a shape defined by its surroundings.
- the heating device includes a first zone containing a fuel, a second zone containing an oxidizer and a collapsed third zone capable of serving as an expansion chamber.
- a first frangible separator is disposed between the first zone and the second zone, the first frangible separator being manually operable to provide communication therebetween, defining a reaction chamber comprising at least one of said first and second chambers.
- a second frangible separator is provided that is responsive to an exothermic chemical reaction within the reaction chamber. The second frangible separator is operable to provide vapor communication between the reaction chamber and the third zone.
- Communication between the first zone and the second zone allows mixing of the fuel and the oxidizing agent to initiate an exothermic chemical reaction capable of generating a vapor and an environmental parameter associated with the exothermic chemical reaction operates the second frangible separator, permitting said vapor to flow into said third zone, thereby reducing pressure in the reaction chamber.
- the formula and methods disclosed herein could readily be incorporated into the heating devices of the '801 patent.
- FIG. 2 illustrates a prototype heater assembly that was used to conduct the experimental work reported in this example.
- the illustrated assembly includes a pair of nested circular bowls, a 14 cm diameter x 5 cm deep inner (or upper) plastic bowl 21 nested in a 14 cm diameter x 7 cm deep outer (or bottom) plastic bowl 22, leaving an approximately 2 cm annular clearance gap 24 between the top bowl 21 and the bottom bowl 22.
- Several vents 11 were provided to allow the escape of vapor/steam from the clearance area.
- Forty-five grams of coated potassium permanganate crystals 23 were placed in the bottom of outer bowl 22, residing in the clearance gap.
- the potassium permanganate crystals were coated with a water-soluble barrier coating, so that potassium permanganate crystals would not react until the coating was dissolved.
- the soluble barrier coating was a sodium silicate.
- the coated potassium permanganate 23 was a mixture of crystals having coatings having various thickness. In particular, 25% of the potassium permanganate powder had a coating of 14% by weight, 30% of the potassium permanganate powder had a coating of 17% by weight, and 45% of the potassium permanganate powder had a coating of 20% by weight.
- Three hundred milliliters of water 24 were placed in the inner bowl 21 to serve as the product to be heated. Thermocouples were placed in the water in the top bowl 21 and in the potassium permanganate powder 23 in the bottom bowl 22.
- FIG. 3 shows temperature profiles for the water (indicated by curve “D") and the reactants (indicated by curve “A") for several minutes following the addition of Attorney Docket No. 09155-024WO1 glycerol to the bottom bowl 23.
- Curve “D” indicates that the temperature of the water increased from about 21 °C to about 64 0 C in approximately 6 minutes.
- Curve “A” indicates that the temperature of the reactants began decreasing after about 6 minutes.
- Example 1 The test of Example 1 was repeated using a complexed fuel according to this invention.
- the heater assembly of FIG. 2 was used in this Example.
- FIG 3 shows temperature profiles for the water 24 (indicated by curve “E") and the reactants (indicated by curve “B") for several minutes following the addition of glycerol to the bottom bowl 22.
- Curve “E” indicates that the temperature of the water increased from about 21 0 C to about 64 0 C in approximately 6 minutes.
- Curve “B” indicates that the temperature of the reactants 2 began decreasing after about 7 minutes, representing a prolongation of heating at maximum temperature by about one minute or about 17%.
- Example 1 The test of Example 1 was again repeated, this time using a more heavily complexed fuel according to this invention.
- the assembly of FIG. 2 was used in this Example.
- FIG. 3 shows temperature profiles for the water (indicated by curve “F") and the reactants (indicated by curve “C”).
- Curve “F” indicates that the temperature of the water increased from about 21 0 C to about 64 0 C in approximately 8 minutes, some two minutes or one-third slower than Example 1.
- Curve “C” indicates that the temperature of the reactants began decreasing after about 8 minutes.
- Examples 1, 2 and 3 illustrate that the heating rate of the water in Examples 1, 2 and 3 (curves 4, 5 and 6, respectively) varied depending on the amount of borax complexing agent added to the heating formula. For example, in Examples 1 and 2 (no borax and 0.9% borax, respectively), the time required to heat the water from about 21 °C to about 64 0 C was about 6 minutes. However, in Example 3 (2.2% borax), the time required to heat the water from about 21 0 C to about 64 0 C was about 8 minutes.
- FIG. 4 illustrates a heater assembly that was used to conduct the tests reported in Examples 4 and 5.
- the illustrated assembly includes a pair of rectangularly shaped pans or trays, a 29 cm x 23 cm x 5 cm plastic top or inner tray 41 that was nested in a 29 cm x 23 cm plastic bottom or outer tray 42, leaving an approximately 3 cm clearance gap 45 between the top tray 41 and the bottom tray 42. Clearance gap 45 extended cross the tray bottoms and up their vertical sides.
- a vent 43 also was provided in outer tray 42 to vent the space 45 between the top tray and the bottom tray.
- the reactants reached a maximum temperature of about 107 °C.
- the steam heated the water in the top tray 41 from an initial temperature of about 21 °C to a final temperature of about 69 °C in approximately 23 minutes. Therefore, the average heating rate for the water was:
- Example 4 While the heating rate and final water temperature for Example 4 were similar to that of Example 5, the reactor temperature was hotter, indicating that a more significant amount of steam was lost through the vent 43 in Example 4 than in Attorney Docket No. 09155-024WO1
- Example 5 Vented steam, of course, represents wasted heat, which was reduced in Example 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Food Science & Technology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Cookers (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68513405P | 2005-05-27 | 2005-05-27 | |
PCT/US2006/020777 WO2006128118A2 (en) | 2005-05-27 | 2006-05-26 | Slow cooking heating formula |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1896782A2 true EP1896782A2 (en) | 2008-03-12 |
Family
ID=37452967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06771498A Withdrawn EP1896782A2 (en) | 2005-05-27 | 2006-05-26 | Slow cooking heating formula |
Country Status (9)
Country | Link |
---|---|
US (1) | US20080245358A1 (ja) |
EP (1) | EP1896782A2 (ja) |
JP (1) | JP5107907B2 (ja) |
CN (1) | CN101233372A (ja) |
AU (1) | AU2006249320A1 (ja) |
CA (1) | CA2608878A1 (ja) |
IL (1) | IL187437A0 (ja) |
RU (1) | RU2007149331A (ja) |
WO (1) | WO2006128118A2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070289720A1 (en) * | 2005-12-13 | 2007-12-20 | University Of South Florida | Self-Heating Chemical System for Sustained Modulation of Temperature |
WO2008051909A1 (en) * | 2006-10-25 | 2008-05-02 | Tempra Technology, Inc. | Portable flameless heat pack |
US20090090349A1 (en) * | 2007-10-05 | 2009-04-09 | Donovan James A | Pan in pan heater |
ES2656499T3 (es) | 2010-10-27 | 2018-02-27 | Fbe Pty Ltd. | Calentador portátil de fluidos |
US20160287012A1 (en) * | 2014-11-12 | 2016-10-06 | Dokdo Co., Ltd | Portable heating container |
US10046325B2 (en) | 2015-03-27 | 2018-08-14 | Rechargeable Battery Corporation | Self-heating device for warming of biological samples |
US20170042374A1 (en) * | 2015-08-13 | 2017-02-16 | James Young | Thermal food container |
EP3398492A1 (de) * | 2017-05-03 | 2018-11-07 | Uwe Arnold | Transportable vorrichtung zum erhitzen von lebensmitteln |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4462224A (en) * | 1983-07-11 | 1984-07-31 | Minnesota Mining And Manufacturing Company | Instant hot or cold, reusable cold pack |
US5035230A (en) * | 1990-02-23 | 1991-07-30 | Steidl Gary V | Disposable food heater |
US6116231A (en) * | 1998-02-11 | 2000-09-12 | Tempra Technology, Inc. | Liquid heat pack |
US5984953A (en) * | 1998-05-21 | 1999-11-16 | Tempra Technology, Inc. | Self-regulating heat pack |
US6849581B1 (en) * | 1999-03-30 | 2005-02-01 | Bj Services Company | Gelled hydrocarbon compositions and methods for use thereof |
US6537309B2 (en) * | 2001-03-26 | 2003-03-25 | Council Of Scientific And Industrial Research | Reusable heat pack, method of manufacture thereof, mixture for use in a reusable heatpack and process for the preparation thereof |
US6640801B2 (en) * | 2001-08-29 | 2003-11-04 | Tempra Technology, Inc. | Heat pack with expansion capability |
-
2006
- 2006-05-26 US US11/914,740 patent/US20080245358A1/en not_active Abandoned
- 2006-05-26 WO PCT/US2006/020777 patent/WO2006128118A2/en active Application Filing
- 2006-05-26 JP JP2008513810A patent/JP5107907B2/ja active Active
- 2006-05-26 RU RU2007149331/04A patent/RU2007149331A/ru not_active Application Discontinuation
- 2006-05-26 EP EP06771498A patent/EP1896782A2/en not_active Withdrawn
- 2006-05-26 AU AU2006249320A patent/AU2006249320A1/en not_active Abandoned
- 2006-05-26 CA CA002608878A patent/CA2608878A1/en not_active Abandoned
- 2006-05-26 CN CNA2006800273623A patent/CN101233372A/zh active Pending
-
2007
- 2007-11-18 IL IL187437A patent/IL187437A0/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2006128118A2 * |
Also Published As
Publication number | Publication date |
---|---|
AU2006249320A1 (en) | 2006-11-30 |
JP5107907B2 (ja) | 2012-12-26 |
WO2006128118A3 (en) | 2007-11-08 |
US20080245358A1 (en) | 2008-10-09 |
JP2008542678A (ja) | 2008-11-27 |
RU2007149331A (ru) | 2009-07-10 |
WO2006128118A2 (en) | 2006-11-30 |
CA2608878A1 (en) | 2006-11-30 |
IL187437A0 (en) | 2008-02-09 |
CN101233372A (zh) | 2008-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080245358A1 (en) | Slow Cooking Heating Formula | |
CA2838801C (en) | A method of modulated exothermic chemical systems through phase change materials | |
EP1079773B1 (en) | Self-regulating heat pack | |
EP1427970B1 (en) | Heat pack with expansion capability | |
AU629154B2 (en) | Disposable food heater | |
WO2009006521A2 (en) | Chemical heating compositions and methods | |
JP2016504425A (ja) | 酸素活性式携帯型ヒータ向けの電解液の調製 | |
CA2565957C (en) | Thermostatic temperature control for self-heating containers | |
US8863737B2 (en) | Sustained modulation of temperature of self heating chemical system | |
EP2697573B1 (en) | Heater | |
RU2804552C1 (ru) | Неорганическая композиция для использования в беспламенных нагревателях пищи | |
JPS61133284A (ja) | 化学発熱体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071219 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
RAX | Requested extension states of the european patent have changed |
Extension state: HR Payment date: 20071219 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20101201 |